51
|
Viana GM, Gonzalez EA, Alvarez MMP, Cavalheiro RP, do Nascimento CC, Baldo G, D’Almeida V, de Lima MA, Pshezhetsky AV, Nader HB. Cathepsin B-associated Activation of Amyloidogenic Pathway in Murine Mucopolysaccharidosis Type I Brain Cortex. Int J Mol Sci 2020; 21:ijms21041459. [PMID: 32093427 PMCID: PMC7073069 DOI: 10.3390/ijms21041459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/28/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of β-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Renan Pelluzzi Cavalheiro
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Cinthia Castro do Nascimento
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Marcelo Andrade de Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| |
Collapse
|
52
|
A Case Report of a Japanese Boy with Morquio A Syndrome: Effects of Enzyme Replacement Therapy Initiated at the Age of 24 Months. Int J Mol Sci 2020; 21:ijms21030989. [PMID: 32024277 PMCID: PMC7037301 DOI: 10.3390/ijms21030989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Morquio A syndrome, mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disorder caused by the deficient activity of N-acetylgalactosamine-6-sulfatase (GalNac6S), due to alterations in the GALNS gene. This disorder results in marked abnormalities in bones and connective tissues, and affects multiple organs. Here, we describe the clinical course of a Japanese boy with MPS IVA who began enzyme replacement therapy (ERT) at the age of 24 months. Patient: the patient presented for kyphosis treatment at 22 months of age. An X-ray examination revealed dysostosis multiplex. Uronic acids were elevated in the urine and the keratan sulfate (KS) fraction was predominant. The leukocyte GalNac6S enzyme activity was extremely low. The patient exhibited the c.463G > A (p.Gly155Arg) mutation in GALNS. Based on these findings, his disease was diagnosed as classical (severe) Morquio A syndrome. An elosulfase alfa infusion was initiated at the age of 24 months. The patient’s body height improved from −2.5 standard deviation (SD) to −2 SD and his physical activity increased during the first 9 months on ERT. However, he gradually developed paralysis in the lower legs with declining growth velocity, which required cervical decompression surgery in the second year of the ERT. The mild mitral regurgitation, serous otitis media, and mild hearing loss did not progress during treatment. Conclusion: early initiation of the elosulfase alfa to our patient showed good effects on the visceral system and muscle strength, while its effect on bones appeared limited. Careful observation is necessary to ensure timely surgical intervention for skeletal disorders associated with neurological symptoms. Centralized and multidisciplinary management is essential to improve the prognosis of pediatric patients with MPS IVA.
Collapse
|
53
|
Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics (Basel) 2019; 9:diagnostics9040226. [PMID: 31861164 PMCID: PMC6963688 DOI: 10.3390/diagnostics9040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Current therapies for the mucopolysaccharidoses (MPS) do not effectively address skeletal and neurological manifestations. Pentosan polysulfate (PPS) is an alternative treatment strategy that has been shown to improve bone architecture, mobility, and neuroinflammation in MPS animals. The aims of this study were to a) primarily establish the safety of weekly PPS injections in attenuated MPS II, b) assess the efficacy of treatment on MPS pathology, and c) define appropriate clinical endpoints and biomarkers for future clinical trials. Subcutaneous injections were administered to three male Japanese patients for 12 weeks. Enzyme replacement therapy was continued in two of the patients while they received PPS and halted for two months in one patient before starting PPS. During treatment, one patient experienced an elevation of alanine transaminase, and another patient experienced convulsions; however, these incidences were non-cumulative and unrelated to PPS administration, respectively. Overall, the drug was well-tolerated in all patients, and no serious drug-related adverse events were noted. Generally, PPS treatment led to an increase in several parameters of shoulder range of motion and decrease of the inflammatory cytokines, MIF and TNF-α, which are potential clinical endpoints and biomarkers, respectively. Changes in urine and serum glycosaminoglycans were inconclusive. Overall, this study demonstrates the safety of using PPS in adults with MPS II and suggests the efficacy of PPS on MPS pathology with the identification of potential clinical endpoints and biomarkers.
Collapse
|
54
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
55
|
Cattoni A, Motta S, Masera N, Gasperini S, Rovelli A, Parini R. The use of recombinant human growth hormone in patients with Mucopolysaccharidoses and growth hormone deficiency: a case series. Ital J Pediatr 2019; 45:93. [PMID: 31370860 PMCID: PMC6676577 DOI: 10.1186/s13052-019-0691-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment with recombinant human growth hormone in patients affected by Mucopolysaccharidoses (MPS) is considered whenever a concurrent diagnosis of growth hormone deficiency is demonstrated. The short- and long-term effects of recombinant human growth hormone in this selected cohort is still debated, given the natural progression of disease-related skeletal malformations and the paucity of treated patients reported in literature. The presented case series provides detailed information about the response to recombinant growth hormone in MPS patients diagnosed with growth hormone deficiency. CASES PRESENTATION The growth patterns of 4 MPS female patients (current age: 11.7-14.3 years) treated with recombinant human growth hormone due to growth hormone deficiency have been retrospectively analyzed. Two patients, diagnosed with MPS IH, had undergone haematopoietic stem cell transplantation at an early age; the remaining two patients were affected by MPS IV and VI and were treated with enzyme replacement therapy. 4/4 patients presented with a progressive growth deceleration before the diagnosis of growth hormone deficiency was confirmed. This trend was initially reverted by a remarkable increase in height velocity after the start of recombinant growth hormone. We recorded an average increase in height velocity z-score of + 4.23 ± 2.9 and + 4.55 ± 0.96 respectively after 6 and 12 months of treatment. After the first 12-24 months, growth showed a deceleration in all the patients. While in a girl with MPS IH recombinant human growth hormone was discontinued due to a lack in clinical efficacy, 3/4 patients grew at a stable pace, tracking the height centile achieved after the cited initial increase in height velocity. Furthermore, mineral bone density assessed via bone densitometry, showed a remarkable increase in the two patients who were tested before and after starting treatment. CONCLUSIONS Recombinant human growth hormone appears to have effectively reverted the growth deceleration experienced by MPS patients diagnosed with growth hormone deficiency, at least during the first 12-24 months of treatment.
Collapse
Affiliation(s)
- A Cattoni
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - S Motta
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - N Masera
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - S Gasperini
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - A Rovelli
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - R Parini
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy.,TIGET Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Segrate, MI, Italy
| |
Collapse
|
56
|
Fujitsuka H, Sawamoto K, Peracha H, Mason RW, Mackenzie W, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Biomarkers in patients with mucopolysaccharidosis type II and IV. Mol Genet Metab Rep 2019; 19:100455. [PMID: 30775257 PMCID: PMC6365937 DOI: 10.1016/j.ymgmr.2019.100455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans (GAGs), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS), are the primary biomarkers in patients with mucopolysaccharidoses (MPS); however, little is known about other biomarkers. To explore potential biomarkers and their correlation with GAGs, blood samples were collected from 46 MPS II patients, 34 MPS IVA patients, and 5 MPS IVB patients. We evaluated the levels of 8 pro-inflammatory factors (EGF, IL-1β, IL-6, MIP-1α, TNF-α, MMP-1, MMP-2, and MMP-9), collagen type II, and DS, HS (HS0S, HSNS), and KS (mono-sulfated, di-sulfated) in blood. Eight biomarkers measured were significantly elevated in untreated MPS II patients, compared with those in normal controls: EGF, IL-1β, IL-6, HS0S, HSNS, DS, mono-sulfated KS, and di-sulfated KS. The same eight biomarkers remained elevated in ERT-treated patients. However, only three biomarkers remained elevated in post-HSCT MPS II patients: EGF, mono-sulfated KS, and di-sulfated KS. Post-HSCT patients with MPS II showed that IL-1β and IL-6 were normalized as HS and DS levels decreased. Eight biomarkers were significantly elevated in untreated MPS IVA patients: EGF, IL-1β, IL-6, MIP-1α, MMP-9, HSNS, mono-sulfated KS, and di-sulfated KS, and four biomarkers were elevated in MPS IVA patients under ERT: IL-6, TNF-α, mono-sulfated KS, and di-sulfated KS. There was no reduction of KS in the ERT-treated MPS IVA patient, compared with untreated patients. Two biomarkers were significantly elevated in untreated MPS IVB patients: IL-6 and TNF-α. Reversely, collagen type II level was significantly decreased in untreated and ERT-treated MPS II patients and untreated MPS IVA patients. In conclusion, selected pro-inflammatory factors can be potential biomarkers in patients with MPS II and IV as well as GAGs levels.
Collapse
Affiliation(s)
- Honoka Fujitsuka
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Medical Education Development Center, Gifu University, Japan
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Robert W. Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - William Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Pediatrics, Shimane University, Shimane, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
57
|
Crivaro AN, Mucci JM, Bondar CM, Ormazabal ME, Ceci R, Simonaro C, Rozenfeld PA. Efficacy of pentosan polysulfate in in vitro models of lysosomal storage disorders: Fabry and Gaucher Disease. PLoS One 2019; 14:e0217780. [PMID: 31150494 PMCID: PMC6544267 DOI: 10.1371/journal.pone.0217780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 01/18/2023] Open
Abstract
Gaucher and Fabry diseases are the most prevalent sphingolipidoses. Chronic inflammation is activated in those disorders, which could play a role in pathogenesis. Significant degrees of amelioration occur in patients upon introduction of specific therapies; however, restoration to complete health status is not always achieved. The idea of an adjunctive therapy that targets inflammation may be a suitable option for patients. PPS is a mixture of semisynthetic sulfated polyanions that have been shown to have anti-inflammatory effects in mucopolysaccharidosis type I and II patients and animal models of type I, IIIA and VI. We hypothesized PPS could be a useful adjunctive therapy to inflammation for Gaucher and Fabry diseases. The objective of this work is to analyze the in vitro effect of PPS on inflammatory cytokines in cellular models of Gaucher and Fabry diseases, and to study its effect in Gaucher disease associated in vitro bone alterations. Cultures of peripheral blood mononuclear cells from Fabry and Gaucher patients were exposed to PPS. The secretion of proinflammatory cytokines was significantly reduced. Peripheral blood cells exposed to PPS from Gaucher patients revealed a reduced tendency to differentiate to osteoclasts. Osteoblasts and osteocytes cell lines were incubated with an inhibitor of glucocerebrosidase, and conditioned media was harvested in order to analyze if those cells secrete factors that induce osteoclastogenesis. Conditioned media from this cell cultures exposed to PPS produced lower numbers of osteoclasts. We could demonstrate PPS is an effective molecule to reduce the production of proinflammatory cytokines in in vitro models of Fabry and Gaucher diseases. Moreover, it was effective at ameliorating bone alterations of in vitro models of Gaucher disease. These results serve as preclinical supportive data to start clinical trials in human patients to analyze the effect of PPS as a potential adjunctive therapy for Fabry and Gaucher diseases.
Collapse
Affiliation(s)
- Andrea N. Crivaro
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Juan M. Mucci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Constanza M. Bondar
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Maximiliano E. Ormazabal
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Romina Ceci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Calogera Simonaro
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paula A. Rozenfeld
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
- * E-mail:
| |
Collapse
|
58
|
Muschol NM, Pape D, Kossow K, Ullrich K, Arash-Kaps L, Hennermann JB, Stücker R, Breyer SR. Growth charts for patients with Sanfilippo syndrome (Mucopolysaccharidosis type III). Orphanet J Rare Dis 2019; 14:93. [PMID: 31046785 PMCID: PMC6498678 DOI: 10.1186/s13023-019-1065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Mucopolysaccharidosis (MPS) type III (Sanfilippo syndrome) comprises a group of rare, lysosomal storage diseases caused by the deficiency of one of four enzymes involved in the degradation of heparan sulfate. The clinical hallmark of the disease is severe neurological deterioration leading to dementia and death in the second decade of life. Adult MPS patients are generally of short stature. To date there is no clear description of the physical development of MPS III patients. The aim of this study was to document growth reference data for MPS III patients. We collected growth data of 182 German MPS III patients and were able to develop growth charts for this cohort. Growth curves for height, weight, head circumference, and body mass index were calculated and compared to German reference charts. Results Birth height, weight and head circumference were within the physiological ranges. Both genders were significantly taller than healthy children at 2 years of age, while only male patients were taller at the age of four. Growth velocity decelerated after the ages of 4.5 and 5 years for female and male patients, respectively. Both genders were significantly shorter than the reference group at the age of 17.5 years. Head circumference was larger compared to healthy matched controls within the first 2 years of life and remained enlarged until physical maturity. Conclusion MPS III is a not yet treatable severe neuro-degenerative disease, developing new therapeutic strategies might change the course of the disease significantly. The present charts contribute to the understanding of the natural history of MPS III. Specific growth charts represent an important tool for families and physicians as the expected height at physical maturity can be estimated and therapeutic effects can be monitored. Electronic supplementary material The online version of this article (10.1186/s13023-019-1065-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Daniel Pape
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kai Kossow
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Laila Arash-Kaps
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ralf Stücker
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sandra R Breyer
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany. .,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
59
|
Uciechowska-Kaczmarzyk U, Chauvot de Beauchene I, Samsonov SA. Docking software performance in protein-glycosaminoglycan systems. J Mol Graph Model 2019; 90:42-50. [PMID: 30959268 DOI: 10.1016/j.jmgm.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
Abstract
We present a benchmarking study for protein-glycosaminoglycan systems with eight docking programs: Dock, rDock, ClusPro, PLANTS, HADDOCK, Hex, SwissDock and ATTRACT. We used a non-redundant representative dataset of 28 protein-glycosaminoglycan complexes with experimentally available structures, where a glycosaminoglycan ligand was longer than a trimer. Overall, the ligand binding poses could be correctly predicted in many cases by the tested docking programs, however the ranks of the docking poses are often poorly assigned. Our results suggest that Dock program performs best in terms of the pose placement, has the most suitable scoring function, and its performance did not depend on the ligand size. This suggests that the implementation of the electrostatics as well as the shape complementarity procedure in Dock are the most suitable for docking glycosaminoglycan ligands. We also analyzed how free energy patterns of the benchmarking complexes affect the performance of the evaluated docking software.
Collapse
Affiliation(s)
- Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | | | - Sergey A Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
60
|
Buchinskaya NV, Kostik MM, Kolobova OL, Melnikova LN. How Not to Miss the Mild Forms of Mucopolysaccharidosis Type I in Patients With Articular Manifestations of the Disease? CURRENT PEDIATRICS 2019; 17:473-479. [DOI: 10.15690/vsp.v17i6.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Mucopolysaccharidosis type I (MPS I) is a hereditary metabolic disease that manifests itself in childhood by systemic damage to tissues and organs, a constantly progressive course leading to disability. Diagnosis of mild forms of the disease is particularly difficult due to the absence of specific symptoms. A specific symptom of the mild forms of MPS I (as for other types of MPS) is joint stiffness in children combined with hernia, frequent infections, or valvular defects. Stiffness in MPS I is often interpreted as a manifestation of rheumatological diseases (arthrogriposis, juvenile idiopathic arthritis). The article offers a simple algorithm for diagnosing MPS I, which helps to eliminate the disease using a simple test for determining the activity of an enzyme called alpha-L-iduronidase in a dried blood spot.
Collapse
|
61
|
Kuiper GA, Langereis EJ, Breyer S, Carbone M, Castelein RM, Eastwood DM, Garin C, Guffon N, van Hasselt PM, Hensman P, Jones SA, Kenis V, Kruyt M, van der Lee JH, Mackenzie WG, Orchard PJ, Oxborrow N, Parini R, Robinson A, Schubert Hjalmarsson E, White KK, Wijburg FA. Treatment of thoracolumbar kyphosis in patients with mucopolysaccharidosis type I: results of an international consensus procedure. Orphanet J Rare Dis 2019; 14:17. [PMID: 30658664 PMCID: PMC6339313 DOI: 10.1186/s13023-019-0997-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/28/2023] Open
Abstract
Background In all patients with mucopolysaccharidosis type I (MPS I), skeletal disease (dysostosis multiplex) is a prominent, debilitating, condition related complication that may impact strongly on activities of daily living. Unfortunately, it is not alleviated by treatment with hematopoietic cell transplantation (HCT) or enzyme replacement therapy (ERT). Although early kyphosis is one of the key features of dysostosis multiplex, there is no international consensus on the optimal management. Therefore, an international consensus procedure was organized with the aim to develop the first clinical practice guideline for the management of thoracolumbar kyphosis in MPS I patients. Methods A literature review was conducted to identify all available information about kyphosis and related surgery in MPS I patients. Subsequently, a modified Delphi procedure was used to develop consensus statements. The expert panel included 10 spinal orthopedic surgeons, 6 pediatricians and 3 physiotherapists, all experienced in MPS I. The procedure consisted of 2 written rounds, a face-to-face meeting and a final written round. The first 2 rounds contained case histories, general questions and draft statements. During the face-to-face meeting consensus statements were developed. In the final round, the panel had the opportunity to anonymously express their opinion about the proposed statements. Results Eighteen case series and case reports were retrieved from literature reporting on different surgical approaches and timing of thoracolumbar kyphosis surgery in MPS I. During the face-to-face meeting 16 statements were discussed and revised. Consensus was reached on all statements. Conclusion This international consensus procedure resulted in the first clinical practice guideline for the management of thoracolumbar kyphosis in MPS I patients, focusing on the goals and timing of surgery, as well as the optimal surgical approach, the utility of bracing and required additional assessments (e.g. radiographs). Most importantly, it was concluded that the decision for surgery depends not only on the kyphotic angle, but also on additional factors such as the progression of the deformity and its flexibility, the presence of symptoms, growth potential and comorbidities. The eventual goal of treatment is the maintenance or improvement of quality of life. Further international collaborative research related to long-term outcome of kyphosis surgery in MPS I is essential as prognostic information is lacking. Electronic supplementary material The online version of this article (10.1186/s13023-019-0997-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gé-Ann Kuiper
- Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", Meibergdreef 9, Amsterdam, Netherlands
| | - Eveline J Langereis
- Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", Meibergdreef 9, Amsterdam, Netherlands
| | - Sandra Breyer
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Marco Carbone
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Deborah M Eastwood
- Department of Orthopaedic Surgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, United Kingdom
| | - Christophe Garin
- Department of Paediatric Orthopaedics, Hôpital Femme-Mère-Enfant, Université Lyon 1, 69500, Lyon, Bron, France
| | - Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Femme Mère Enfant, 69500, Lyon, Bron, France
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508, AB, Utrecht, the Netherlands
| | - Pauline Hensman
- Willink Biochemicals Genetics Unit, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Simon A Jones
- Willink Biochemicals Genetics Unit, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Vladimir Kenis
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Skeletal dysplasias, The H. Turner institute for Children's Orthopedics, Saint-Petersburg, Russia
| | - Moyo Kruyt
- Department of Orthopedic Surgery, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Johanna H van der Lee
- Amsterdam UMC, University of Amsterdam, Pediatric Clinical Research Office, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Neil Oxborrow
- Royal Manchester Children's Hospital, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Rossella Parini
- Rare Metabolic Diseases Unit, Paediatric Clinic, MBBM Foundation, San Gerardo University Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Amy Robinson
- Willink Biochemicals Genetics Unit, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Elke Schubert Hjalmarsson
- Department of Physiotherapy, Queen Silvia's Children's Hospital, Rondvägen 10, 416 85, Göteborg, Sweden
| | - Klane K White
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
| | - Frits A Wijburg
- Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", Meibergdreef 9, Amsterdam, Netherlands.
| |
Collapse
|
62
|
Parker H, Bigger BW. The role of innate immunity in mucopolysaccharide diseases. J Neurochem 2018; 148:639-651. [PMID: 30451296 PMCID: PMC6590380 DOI: 10.1111/jnc.14632] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidoses are lysosomal storage disorders characterised by accumulation of abnormal pathological glycosaminoglycans, cellular dysfunction and widespread inflammation, resulting in progressive cognitive and motor decline. Lysosomes are important mediators of immune cell function, and therefore accumulation of glycosaminoglycans (GAGs) and other abnormal substrates could affect immune function and directly impact on disease pathogenesis. This review summarises current knowledge with regard to inflammation in mucopolysaccharidosis, with an emphasis on the brain and outlines a potential role for GAGs in induction of inflammation. We propose a model by which the accumulation of GAGs and other factors may impact on innate immune signalling with particular focus on the Toll‐like receptor 4 pathway. Innate immunity appears to have a dominating role in mucopolysaccharidosis; however, furthering understanding of innate immune signalling would have significant impact on highlighting novel anti‐inflammatory therapeutics for use in mucopolysaccharide diseases. ![]()
This article is part of the Special Issue “Lysosomal Storage Disorders”.
Collapse
Affiliation(s)
- Helen Parker
- Stem Cell and NeurotherapiesDivision of Cell Matrix Biology and Regenerative MedicineFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Brian W. Bigger
- Stem Cell and NeurotherapiesDivision of Cell Matrix Biology and Regenerative MedicineFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
63
|
Pain in Mucopolysaccharidoses: Analysis of the Problem and Possible Treatments. Int J Mol Sci 2018; 19:ijms19103063. [PMID: 30297617 PMCID: PMC6213542 DOI: 10.3390/ijms19103063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
Mucopolysaccharidosis (MPS) are a group of lysosomal storage disorders that are caused by the deficiency of enzymes involving in the catabolism of glycosaminoglycan (GAGs). GAGs incompletely degraded accumulate in many sites, damaging tissues and cells, leading to a variety of clinical manifestations. Many of these manifestations are painful, but few data are available in the literature concerning the prevalence, etiology, and pathogenesis of pain in children with MPS. This review, through the analysis of the data available the in literature, underscores the relevant prevalence of pain in MPSs’ children, provides the instruments to discern the etiopathogenesis of the disease and of pain, illustrates the available molecules for the management of pain and the possible advantages of non-pharmacological pain therapy in MPSs’ patients.
Collapse
|
64
|
Substrate accumulation and extracellular matrix remodelling promote persistent upper airway disease in mucopolysaccharidosis patients on enzyme replacement therapy. PLoS One 2018; 13:e0203216. [PMID: 30226843 PMCID: PMC6143186 DOI: 10.1371/journal.pone.0203216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
Introduction Mucopolysaccharide diseases are a group of lysosomal storage disorders caused by deficiencies of hydrolase enzymes, leading to pathological glycosaminoglycan accumulation. A number of mucopolysaccharidosis (MPS) types are characterised by severe airway disease, the aetiology of which is poorly understood. There is ongoing evidence of significant clinical disease in the long-term despite disease modifying therapeutic strategies, including enzyme-replacement therapy (ERT). To provide a better understanding of this aspect of disease, we have characterised extracellular matrix (ECM) and inflammatory alterations in adenotonsillar tissue samples from 8 MPS patients. Methods Adenotonsillar samples from MPS I, IVA and VI ERT treated patients and from a single enzyme naïve MPS IIIA individual were compared to non-affected control samples using quantitative immunohistochemistry, qPCR and biochemical analysis. Results Significantly increased lysosomal compartment size and total sulphated glycosaminoglycan (p = 0.0007, 0.02) were identified in patient samples despite ERT. Heparan sulphate glycosaminoglycan was significantly elevated in MPS I and IIIA (p = 0.002), confirming incomplete reversal of disease. Collagen IV and laminin α-5 (p = 0.002, 0.0004) staining demonstrated increased ECM deposition within the reticular and capillary network of MPS samples. No significant change in the expression of the pro-inflammatory cytokines IL-1α, IL-6 or TNF-α was seen compared to control. Conclusion This study suggests a role for ECM remodelling contributing to the obstructive phenotype of airway disease in MPS. Current therapeutic strategies with ERT fail to normalise these pathological alterations within adenotonsillar samples. Our findings lend novel insight into the pathological cascade of events, with primarily structural rather than inflammatory changes contributing to the continuing phenotype seen in patients despite current therapeutic regimes.
Collapse
|
65
|
Melbouci M, Mason RW, Suzuki Y, Fukao T, Orii T, Tomatsu S. Growth impairment in mucopolysaccharidoses. Mol Genet Metab 2018; 124:1-10. [PMID: 29627275 PMCID: PMC5966322 DOI: 10.1016/j.ymgme.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders that affect regulation of glycosaminoglycan (GAG) processing. In MPS, the lysosomes cannot efficiently break down GAGs, and the specific GAGs accumulated depend on the type of MPS. The level of impairment of breakdown varies between patients, making this one of the many factors that lead to a range of clinical presentations even in the same type of MPS. These clinical presentations usually involve skeletal dysplasia, in which the most common feature is bone growth impairment and successive short stature. Growth impairment occurs due to the deposition and retention of GAGs in bone and cartilage. The accumulation of GAGs in these tissues leads to progressive damage in cartilage that in turn reduces bone growth by destruction of the growth plate, incomplete ossification, and imbalance of growth. Imbalance of growth leads to various skeletal abnormalities including disproportionate dwarfism with short neck and trunk, prominent forehead, rigidity of joints, tracheal obstruction, kyphoscoliosis, pectus carinatum, platyspondyly, round-shaped vertebral bodies or beaking sign, underdeveloped acetabula, wide flared iliac, coxa valgus, flattered capital femoral epiphyses, and genu valgum. If left untreated, skeletal abnormalities including growth impairment result in a significant impact on these patients' quality of life and activity of daily living, leading to high morbidity and severe handicap. This review focuses on growth impairment in untreated patients with MPS. We comprehensively describe the growth abnormalities through height, weight, growth velocity, and BMI in each type of MPS and compare the status of growth with healthy age-matched controls. The timing, the degree, and the difference in growth impairment of each MPS are highlighted to understand the natural course of growth and to evaluate future therapeutic efficacy.
Collapse
Affiliation(s)
- Melodie Melbouci
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
66
|
Nordsieck K, Baumann L, Hintze V, Pisabarro MT, Schnabelrauch M, Beck-Sickinger AG, Samsonov SA. The effect of interleukin-8 truncations on its interactions with glycosaminoglycans. Biopolymers 2018; 109:e23103. [DOI: 10.1002/bip.23103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Karoline Nordsieck
- Institute of Biochemistry, Universität Leipzig, Brüderstr. 34; Leipzig 04103 Germany
| | - Lars Baumann
- Institute of Biochemistry, Universität Leipzig, Brüderstr. 34; Leipzig 04103 Germany
- Institute for Medical Physics and Biophysics, Universität Leipzig, Härtelstr. 16-18; Leipzig 04107 Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Strasse 27; Dresden 01069 Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-49; Dresden 01307 Germany
| | | | | | - Sergey A. Samsonov
- Faculty of Chemistry; University of Gdańsk, ul. Wita Stwosza 63; Gdańsk 80-308 Poland
| |
Collapse
|
67
|
Tebani A, Schmitz-Afonso I, Abily-Donval L, Héron B, Piraud M, Ausseil J, Brassier A, De Lonlay P, Zerimech F, Vaz FM, Gonzalez BJ, Marret S, Afonso C, Bekri S. Urinary metabolic phenotyping of mucopolysaccharidosis type I combining untargeted and targeted strategies with data modeling. Clin Chim Acta 2017; 475:7-14. [PMID: 28982054 DOI: 10.1016/j.cca.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Application of metabolic phenotyping could expand the pathophysiological knowledge of mucopolysaccharidoses (MPS) and may reveal the comprehensive metabolic impairments in MPS. However, few studies applied this approach to MPS. METHODS We applied targeted and untargeted metabolic profiling in urine samples obtained from a French cohort comprising 19 MPS I and 15 MPS I treated patients along with 66 controls. For that purpose, we used ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry following a protocol designed for large-scale metabolomics studies regarding robustness and reproducibility. Furthermore, 24 amino acids have been quantified using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Keratan sulfate, Heparan sulfate and Dermatan sulfate concentrations have also been measured using an LC-MS/MS method. Univariate and multivariate data analyses have been used to select discriminant metabolites. The mummichog algorithm has been used for pathway analysis. RESULTS The studied groups yielded distinct biochemical phenotypes using multivariate data analysis. Univariate statistics also revealed metabolites that differentiated the groups. Specifically, metabolites related to the amino acid metabolism. Pathway analysis revealed that several major amino acid pathways were dysregulated in MPS. Comparison of targeted and untargeted metabolomics data with in silico results yielded arginine, proline and glutathione metabolisms being the most affected. CONCLUSION This study is one of the first metabolic phenotyping studies of MPS I. The findings might help to generate new hypotheses about MPS pathophysiology and to develop further targeted studies of a smaller number of potentially key metabolites.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76000, France; Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France
| | - Bénédicte Héron
- Departement of Pediatric Neurology, Reference Center of Lysosomal Diseases, Trousseau Hospital, APHP, GRC ConCer-LD, Sorbonne Universities, UPMC University 06, Paris, France
| | - Monique Piraud
- Service de Biochimie et Biologie Moléculaire Grand Est, Unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Jérôme Ausseil
- INSERM U1088, Laboratoire de Biochimie Métabolique, Centre de Biologie Humaine, CHU Sud, 80054 Amiens Cedex, France
| | - Anais Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Pascale De Lonlay
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Farid Zerimech
- Laboratoire de Biochimie et Biologie Moléculaire, Université de Lille et Pôle de Biologie Pathologie Génétique du CHRU de Lille, 59000 Lille, France
| | - Frédéric M Vaz
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruno J Gonzalez
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France
| | - Stephane Marret
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76000, France; Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France.
| |
Collapse
|
68
|
Williams N, Challoumas D, Ketteridge D, Cundy PJ, Eastwood DM. The mucopolysaccharidoses: advances in medical care lead to challenges in orthopaedic surgical care. Bone Joint J 2017; 99-B:1132-1139. [PMID: 28860391 DOI: 10.1302/0301-620x.99b9.bjj-2017-0487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 11/05/2022]
Abstract
The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders with clinical manifestations relevant to the orthopaedic surgeon. Our aim was to review the recent advances in their management and the implications for surgical practice. The current literature about MPSs is summarised, emphasising orthopaedic complications and their management. Recent advances in the diagnosis and management of MPSs include the recognition of slowly progressive, late presenting subtypes, developments in life-prolonging systemic treatment and potentially new indications for surgical treatment. The outcomes of surgery in these patients are not yet validated and some procedures have a high rate of complications which differ from those in patients who do not have a MPS. The diagnosis of a MPS should be considered in adolescents or young adults with a previously unrecognised dysplasia of the hip. Surgeons treating patients with a MPS should report their experience and studies should include the assessment of function and quality of life to guide treatment. Cite this article: Bone Joint J 2017;99-B:1132-9.
Collapse
Affiliation(s)
- N Williams
- University of Adelaide, 72 King William St, North Adelaide, Australia
| | - D Challoumas
- Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - D Ketteridge
- University of Adelaide, 72 King William St, North Adelaide, Australia
| | - P J Cundy
- University of Adelaide, 72 King William St, North Adelaide, Australia
| | - D M Eastwood
- Great Ormond St Hospital for Children, London, WC1N 3JH, UK
| |
Collapse
|
69
|
Treadwell M, Harmatz PR, Burton BK, Mitchell JJ, Muschol N, Jones SA, Pastores GM, Lau HA, Sparkes R, Sutton VR, Meesen B, Haller CA, Shaywitz AJ, Gold JI. Impact of Elosulfase Alfa on Pain in Patients with Morquio A Syndrome over 52 Weeks. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817718850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Barbara K. Burton
- Ann and Robert H. Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Nicole Muschol
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A. Jones
- Willink Unit, St. Mary’s Hospital, CMFT, MAHSC, University of Manchester, Manchester, United Kingdom
| | - Gregory M. Pastores
- University College Dublin, Mater Misericordiae University Hospital, Dublin, Ireland
- New York University School of Medicine, New York, NY, USA
| | - Heather A. Lau
- New York University School of Medicine, New York, NY, USA
| | | | - V. Reid Sutton
- Baylor College of Medicine & Texas Children’s Hospital, Houston, TX, USA
| | | | | | | | - Jeffrey I. Gold
- Department of Anesthesiology, Pediatrics, and Psychiatry & Behavioral Sciences, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
70
|
Reduction of Asthmatic Parameters by Sea Hare Hydrolysates in a Mouse Model of Allergic Asthma. Nutrients 2017; 9:nu9070699. [PMID: 28678189 PMCID: PMC5537814 DOI: 10.3390/nu9070699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Sea hare has a variety of biological activities. However, little is known regarding the anti-asthmatic effects of sea hare. This study was performed to identify the effect of sea hare hydrolysates (SHH) on an ovalbumin (OVA)-induced allergic asthma model. The experimental asthma model was sensitized and challenged with OVA. We found that a high-dose of SHH (HSHH) significantly inhibited OVA-induced airway inflammation and mucus production around the airway in lung sections, while low- and medium-dose SHH showed an insignificant effect. In addition, HSHH highly reduced OVA-induced production of interleukin-4, -5, -13, leukotriene D4, E4, and histamine in bronchoalveolar lavage fluid. HSHH decreased the histamine-induced increase in the intracellular Ca2+ level and contractions in asthmatic smooth muscle cells. Furthermore, HSHH did not affect the weights of the spleen nor thymus, whereas dexamethasone (DEX), a steroidal anti-inflammatory drug, reduced them. Taken together, these results showed that HSHH reduced asthmatic parameters in a mouse model of allergic asthma, and suggest that SHH could be used as a potential therapeutic agent for asthma.
Collapse
|
71
|
Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: Increased keratan urinary levels. Mol Genet Metab Rep 2017; 11:46-53. [PMID: 28487826 PMCID: PMC5408501 DOI: 10.1016/j.ymgmr.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA) is one of the 11 mucopolysaccharidoses (MPSs), a heterogeneous group of inherited lysosomal storage disorders (LSDs) caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs). Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT), the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH) and increased activity of glutathione peroxidase (GPx), while superoxide dismutase (SOD) and glutathione reductase (GR) activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- Cr, creatinine
- DI, damage index
- DTNB, 5,5′-dithiobis(2-nitrobenzoic acid)
- ELISA, enzyme-linked immunoassay
- ERT, enzyme replacement therapy
- Endo III, endonuclease III
- FU, fluorescence units
- GAGs, glycosaminoglycans
- GALNS, N-acetylgalactosamine-6-sulfatase
- GCL, glutamate cysteine ligase
- GCLC, catalytic subunit of GCL
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, glutathione oxidized
- H2O2, hydrogen peroxide
- IEM, inborn errors of metabolism
- Keratan sulfate
- LPS, lipopolysaccharide
- LSDs, lysosomal storage disorders
- MPSs, mucopolysaccharidoses
- Morquio A syndrome
- Mucopolysaccharidosis type IVA
- N-acetyl-galactosamine-6-sulfatase
- OH•, hydroxyl radical
- Oxidative stress
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SOD, superoxide dismutase
- TLR4, Toll Like Receptor 4
- TNB, tionitrobenzoic acid
- mRNA, messenger ribonucleic acid
Collapse
|
72
|
Stapleton M, Kubaski F, Mason RW, Yabe H, Suzuki Y, Orii KE, Orii T, Tomatsu S. Presentation and Treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs 2017; 5:295-307. [PMID: 29158997 PMCID: PMC5693349 DOI: 10.1080/21678707.2017.1296761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Mucopolysaccharidosis Type II (MPS II; Hunter syndrome) is an X- linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). IDS deficiency leads to primary accumulation of dermatan sulfate (DS) and heparan sulfate (HS). MPS II is both multi-systemic and progressive. Phenotypes are classified as either attenuated or severe (based on absence or presence of central nervous system impairment, respectively). AREAS COVERED Current treatments available are intravenous enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), anti-inflammatory treatment, and palliative care with symptomatic surgeries. Clinical trials are being conducted for intrathecal ERT and gene therapy is under pre-clinical investigation. Treatment approaches differ based on age, clinical severity, prognosis, availability and feasibility of therapy, and health insurance.This review provides a historical account of MPS II treatment as well as treatment development with insights into benefits and/or limitations of each specific treatment. EXPERT OPINION Conventional ERT and HSCT coupled with surgical intervention and palliative therapy are currently the treatment options available to MPS II patients. Intrathecal ERT and gene therapy are currently under investigation as future therapies. These investigative treatments are critical to address the limitations in treatment of the central nervous system (CNS).
Collapse
Affiliation(s)
- Molly Stapleton
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Francyne Kubaski
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W. Mason
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji E. Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
73
|
Viana GM, do Nascimento CC, Paredes-Gamero EJ, D'Almeida V. Altered Cellular Homeostasis in Murine MPS I Fibroblasts: Evidence of Cell-Specific Physiopathology. JIMD Rep 2017; 36:109-116. [PMID: 28220405 DOI: 10.1007/8904_2017_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I), a rare autosomal recessive disease, is caused by a deficiency of the lysosomal enzyme alfa-L-iduronidase. Impaired enzyme activity promotes glycosaminoglycans accumulation in several tissues and organs, leading to complex multisystemic complications. Several studies using animal models indicated different intracellular pathways involving MPS I physiopathology; however, the exact mechanisms underlying this syndrome are still not understood. Previous results from our group showed alterations in ionic homeostasis and cell viability of splenocytes and macrophages in Idua-/- mice. In the present study, we found altered intracellular ionic homeostasis in a different cell type (fibroblasts) from the same murine model. Idua-/- fibroblasts from 3-month-old mice presented higher cytoplasmatic and endoplasmic reticulum Ca2+ concentration, lower levels of mitochondrial Ca2+ and mitochondrial membrane potential and higher cytoplasmatic pH when compared to Idua+/+ animals. Also, Idua-/- fibroblasts were more resistant to the apoptotic induction with staurosporine, indicating a possible resistance to apoptotic induction in those cells. In addition, despite the intracellular ionic imbalance, no significant alterations were found in apoptosis and autophagy in Idua-/- fibroblasts, which implies that the ionic alterations did not activate those pathways. The investigation of mechanisms underlying the cellular physiopathology of lysosomal diseases is crucial for a better understanding about the progression of these diseases. Since splenocytes, macrophages, and fibroblasts have different embryonic origins and distinct structural and functional features, potentially altered signaling pathways found in a cell-specific manner in an alfa-L-iduronidase-deficient environment provide additional understanding of the clinical multisystemic presentation of this disease and provide new basis for improved therapeutic approaches.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Pediatrics, Universidade Federal de São Paulo, Rua Napoleão de Barros, 325, 3rd floor, São Paulo, 04024-002, Brazil. .,Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | - Edgar Julian Paredes-Gamero
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
74
|
Polgreen LE, Kunin-Batson A, Rudser K, Vehe RK, Utz JJ, Whitley CB, Dickson P. Pilot study of the safety and effect of adalimumab on pain, physical function, and musculoskeletal disease in mucopolysaccharidosis types I and II. Mol Genet Metab Rep 2017; 10:75-80. [PMID: 28119823 PMCID: PMC5238608 DOI: 10.1016/j.ymgmr.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/24/2022] Open
Abstract
Mucopolysaccharidosis I and II are lysosomal storage disorders that, despite treatment with hematopoietic cell transplantation (HCT) and/or enzyme replacement therapy (ERT), continue to cause significant skeletal abnormalities leading to pain, stiffness, physical dysfunction, and short stature. Tumor necrosis factor – alpha (TNF-α) is elevated in individuals with MPS I and II and associated with pain and physical dysfunction. Therefore, we evaluated the safety and effects of the TNF-α inhibitor adalimumab in patients with MPS I and II in a 32-week, randomized, double blind, placebo-controlled, crossover study of adalimumab at a dose of 20 mg (weight 15–<30 kg) or 40 mg (weight ≥ 30 kg) administered subcutaneously every other week or saline placebo for 16 weeks. Participants were evaluated at baseline, week 16, and week 32 with the Children's Health Questionnaire – Parent Form 50 (CHQ-PF50), the Pediatric Pain Questionnaire (PPQ), range-of-motion (ROM) measurements, anthropometry, six-minute walk test (6MWT), hand dynamometer, and laboratory evaluations for safety. The primary outcome was safety and primary efficacy outcome was bodily pain (BP) measured by the CHQ-PF50. Two subjects, one with MPS I and one with MPS II, completed the study. Adalimumab was well tolerated and there were no serious adverse events. Standardized BP scores for age and gender were higher (i.e. less pain) at the end of the treatment versus placebo phase for both subjects. Subject #1 became unblinded during treatment due to skin erythema. Behavior measured by both CHQ-PF50 and parental report improved during treatment compared to placebo in both subjects. ROM improved by > 5° in seven of eight joints in Subject #1 and five of eight joints in Subject #2 (range 7.0° to 52.8°). There was no change in the PPQ, 6MWT, or hand dynamometer. Data from this small pilot study suggest that treatment with adalimumab is safe, tolerable, and may improve ROM, physical function, and possibly pain, in children with MPS I or II. However, additional clinical trials are needed before this therapy should be recommended as part of clinical care.
Collapse
Affiliation(s)
- Lynda E Polgreen
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson St., Torrance, CA 90502, USA
| | - Alicia Kunin-Batson
- HealthPartners Institute, 33rd Ave S, Bloomington, MN 55425, USA; University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Kyle Rudser
- University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Richard K Vehe
- University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Jeanine J Utz
- University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Chester B Whitley
- University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Patricia Dickson
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson St., Torrance, CA 90502, USA
| |
Collapse
|
75
|
Mori D, Shibata K, Yamasaki S. C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells. PLoS One 2017; 12:e0169562. [PMID: 28046067 PMCID: PMC5207712 DOI: 10.1371/journal.pone.0169562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.
Collapse
Affiliation(s)
- Daiki Mori
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail: (SY); (KS)
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- * E-mail: (SY); (KS)
| |
Collapse
|
76
|
Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Mason RW, Orii T, Tomatsu S. Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab 2017; 120:78-95. [PMID: 27979613 PMCID: PMC5293636 DOI: 10.1016/j.ymgme.2016.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA.
Collapse
Affiliation(s)
- Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William G Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary C Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
77
|
Ryu JH, Sung J, Xie C, Shin MK, Kim CW, Kim NG, Choi YJ, Choi BD, Kang SS, Kang D. Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
78
|
Schmidt M, Breyer S, Löbel U, Yarar S, Stücker R, Ullrich K, Müller I, Muschol N. Musculoskeletal manifestations in mucopolysaccharidosis type I (Hurler syndrome) following hematopoietic stem cell transplantation. Orphanet J Rare Dis 2016; 11:93. [PMID: 27392569 PMCID: PMC4938899 DOI: 10.1186/s13023-016-0470-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is the treatment of choice for young Hurler patients. Despite halting of neurocognitive decline and improvement of life expectancy, the beneficial effect on the skeletal system is limited. As orthopedic complications are one of the most disabling factors following HSCT, this points to the need for new treatment strategies. The study summarizes musculoskeletal manifestations in 19 transplanted Hurler patients. METHODS Data were obtained retrospectively. Patients' charts for physical examinations of the joint range of motion (JROM) of shoulders, elbows, hips and knees were reviewed. Radiographic evaluations of thorax, spine, pelvis and hands were performed. MRI scans of the craniocervical junction were analyzed to determine odontoid hypoplasia and the prevalence of craniocervical stenosis. RESULTS Nineteen Hurler patients (10 females, 9 males) with an average age of 8.1 years (range 2.5-23.8) at the latest follow-up, who underwent allogenic HSCT between 1991 and 2012, were assessed after an average follow-up period of 6.4 years (range 0.7-22.5). Seventeen patients achieved long-term engraftment, two developed graft failures. The majority of patients showed a steady state or improvements in the mobility of knees (31 %/63 %), hips (47 %/40 %) and elbows (56 %/38 %). However, shoulder abduction was impaired in ¾ of patients and showed the highest rate of progression (31 %). In patients with graft failure, progressive restrictions in JROM were noted. Assessments of the craniocervical junction by MRI showed stable or improved diameters in 67 % of patients. Correction or stabilization of odontoid hypoplasia was found in 64 %. However thoracolumbar kyphosis, scoliosis, hip dysplasia and genua valga were progressive despite HSCT. At the last follow up, 47 % of patients were partially wheelchair dependent, 10 % wheelchair bound and 25 % regularly experienced pain in the spine, hips and lower extremities due to orthopedic problems. CONCLUSION Joint mobility, odontoid hypoplasia and craniocervical stenosis might stabilize or even improve in Hurler patients following HSCT. However, despite the beneficial effects on some musculoskeletal manifestations, skeletal complications are frequently observed and the overall burden of orthopedic disease is significant. Frequent multi-disciplinary follow-up in a specialized center are essential. Novel therapeutic approaches (e.g. anti-inflammatory drugs) are needed to improve musculoskeletal outcomes.
Collapse
Affiliation(s)
- Mona Schmidt
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Sandra Breyer
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Ulrike Löbel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sinef Yarar
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ralf Stücker
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany
| | - Kurt Ullrich
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ingo Müller
- Clinic of Pediatric Hematology and Oncology, Division for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
79
|
Kingma SDK, Wagemans T, IJlst L, Bronckers ALJJ, van Kuppevelt TH, Everts V, Wijburg FA, van Vlies N. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease. Bone 2016; 88:92-100. [PMID: 27105565 DOI: 10.1016/j.bone.2016.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 10/21/2022]
Abstract
The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands; Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Tom Wagemans
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands; Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Lodewijk IJlst
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Antonius L J J Bronckers
- Department of Oral Cell Biology ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands.
| | - Toin H van Kuppevelt
- Toin H. van Kuppevelt: Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbus 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands.
| | - Frits A Wijburg
- Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Naomi van Vlies
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands; Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
80
|
Can Macrosomia or Large for Gestational Age Be Predictive of Mucopolysaccharidosis Type I, II and VI? Pediatr Neonatol 2016; 57:181-7. [PMID: 26522251 DOI: 10.1016/j.pedneo.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The objective of the study was to compare mean values for birth body length and weight between patients with mucopolysaccharidosis (MPS) and the general population. METHODS A retrospective analysis of birth anthropometric data was performed for patients (n = 103) with MPS I, II, and VI. Two-tailed t tests were used to compare mean values for body length and weight at birth between patients with MPS and the general population. RESULTS Mean values for birth body length and weight for all studied groups were greater than in the general population. For body length the differences were statistically significant. When considered individually, 53% of patients were large for gestational age (LGA) and 30% were macrosomic. The highest percentage of LGA was observed in MPS II males and MPS VI females (55% and 56%, respectively), while the highest percentage of macrosomia was observed in MPS VI males (36%). CONCLUSION At the time of birth, MPS patients were larger than those in the general population. High birth weight and/or LGA can be suggestive of MPS disease and should raise suspicion aiding early disease recognition.
Collapse
|
81
|
Jacques CED, Donida B, Mescka CP, Rodrigues DGB, Marchetti DP, Bitencourt FH, Burin MG, de Souza CFM, Giugliani R, Vargas CR. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1608-16. [PMID: 27251652 DOI: 10.1016/j.bbadis.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/05/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1β and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1β was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.
Collapse
Affiliation(s)
- Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Bruna Donida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Caroline P Mescka
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Daiane G B Rodrigues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Desirèe P Marchetti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Fernanda H Bitencourt
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, CEP 90650-001 Porto Alegre, RS, Brazil.
| | - Maira G Burin
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Carolina F M de Souza
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Roberto Giugliani
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, CEP 90650-001 Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
82
|
Schuchman EH. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1459-71. [PMID: 27155573 DOI: 10.1016/j.bbadis.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/20/2023]
Abstract
Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
83
|
Parini R, Jones SA, Harmatz PR, Giugliani R, Mendelsohn NJ. The natural history of growth in patients with Hunter syndrome: Data from the Hunter Outcome Survey (HOS). Mol Genet Metab 2016; 117:438-46. [PMID: 26846156 DOI: 10.1016/j.ymgme.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Hunter syndrome (mucopolysaccharidosis type II) affects growth but the overall impact is poorly understood. This study investigated the natural history of growth and related parameters and their relationship with disease severity (as indicated by cognitive impairment). Natural history data from males followed prospectively in the Hunter Outcome Survey registry and not receiving growth hormone or enzyme replacement therapy, or before treatment start, were analysed (N=676; January 2014). Analysis of first-reported measurements showed short stature by 8years of age; median age-corrected standardized height score (z-score) in patients aged 8-12years was -3.1 (1st, 3rd quartile: -4.3, -1.7; n=68). Analysis of growth velocity using consecutive values found no pubertal growth spurt. Patients had large head circumference at all ages, and above average body weight and body mass index (BMI) during early childhood (median z-score in patients aged 2-4years, weight [n=271]: 1.7 [0.9, 2.4]; BMI [n=249]: 2.0 [1.1, 2.7]). Analysis of repeated measurements over time found greater BMI in those with cognitive impairment than those without, but no difference in height, weight or head circumference. Logistic regression modelling (data from all time points) found that increased BMI was associated with the presence of cognitive impairment (odds ratio [95% CI], 3.329 [2.313-4.791]), as were increased weight (2.365 [1.630-3.433]) and head circumference (1.749 [1.195-2.562]), but not reduced height. Unlike some other MPS disorders, there is no evidence at present for predicting disease severity in patients with Hunter syndrome based on changes in growth characteristics.
Collapse
Affiliation(s)
- Rossella Parini
- Rare Metabolic Disease Unit, Pediatric Department, University Milano Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy.
| | - Simon A Jones
- Willink Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Paul R Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA.
| | - Roberto Giugliani
- Medical Genetics Service/HCPA, Department of Genetics/UFRGS and INAGEMP, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil.
| | - Nancy J Mendelsohn
- Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, 2525 Chicago Ave South, CSC 560, Minneapolis, MN 55404, USA; Department of Pediatrics, Division of Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
84
|
Viana GM, Buri MV, Paredes-Gamero EJ, Martins AM, D'Almeida V. Impaired Hematopoiesis and Disrupted Monocyte/Macrophage Homeostasis in Mucopolysaccharidosis Type I Mice. J Cell Physiol 2016; 231:698-707. [PMID: 26235607 DOI: 10.1002/jcp.25120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/30/2015] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disease caused by alpha-L-iduronidase deficiency in which heparan and dermatan sulfate degradation is compromised. Besides primary lysosomal glycosaminoglycan accumulation, further changes in cellular functions have also been described in several murine MPS models. Herein, we evaluated alterations in hematopoiesis and its implications on the production of mature progeny in a MPS I murine model. Despite the significant increase in hematopoietic stem cells, a reduction in common myeloid progenitors and granulocyte-macrophage progenitor cells was observed in Idua -/- mice bone marrow. Furthermore, no alterations in number, viability nor activation of cell death mechanisms were observed in Idua -/- mice mature macrophages but they presented higher sensitivity to apoptotic induction after staurosporine treatment. In addition, changes in Ca(2+) signaling and a reduction in phagocytosis ability were also found. In summary, our results revealed significant intracellular changes in mature Idua -/- macrophages related to alterations in Idua -/- mice hematopoiesis, revealing a disruption in cell homeostasis. These results provide new insights into physiopathology of MPS I.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcus Vinícius Buri
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Edgar Julian Paredes-Gamero
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Ana Maria Martins
- Centro de Referência de Erros Inatos do Metabolismo (CREIM), Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Vânia D'Almeida
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
85
|
Salazar DA, Rodríguez-López A, Herreño A, Barbosa H, Herrera J, Ardila A, Barreto GE, González J, Alméciga-Díaz CJ. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network. Mol Genet Metab 2016; 117:129-39. [PMID: 26276570 DOI: 10.1016/j.ymgme.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (β-hexosaminidase and β-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS.
Collapse
Affiliation(s)
- Diego A Salazar
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Chemistry Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angélica Herreño
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Hector Barbosa
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Juliana Herrera
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Andrea Ardila
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| | - George E Barreto
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Janneth González
- Grupo Bioquímica Computacional y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| |
Collapse
|
86
|
Lakomá J, Donadio V, Liguori R, Caprini M. Characterization of Human Dermal Fibroblasts in Fabry Disease. J Cell Physiol 2016; 231:192-203. [PMID: 26058984 DOI: 10.1002/jcp.25072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
Fabry disease (FD) is a hereditary X-linked metabolic lysosomal storage disorder due to insufficient amounts or a complete lack of the lysosomal enzyme α-galactosidase A (α-GalA). The loss of α-GalA activity leads to an abnormal accumulation of globotriaosylcerami (Gb3) in lysosomes and other cellular components of different tissues and cell types, affecting the cell function. However, whether these biochemical alterations also modify functional processes associated to the cell mitotic ability is still unknown. The goal of the present study was to characterize lineages of human dermal fibroblasts (HDFs) of FD patients and healthy controls focusing on Gb3 accumulation, expression of chloride channels that regulate proliferation, and proliferative activity. The biochemical and functional analyses indicate the existence of quantitative differences in some but not all the parameters of cytoskeletal organization, proliferation, and differentiation processes.
Collapse
Affiliation(s)
- Jarmila Lakomá
- Laboratory of Human General Physiology, Department of Pharmacy Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences, AUSL Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences, AUSL Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Caprini
- Laboratory of Human General Physiology, Department of Pharmacy Biotechnology FaBiT, University of Bologna, Bologna, Italy
| |
Collapse
|
87
|
Growth patterns in children with mucopolysaccharidosis I and II. World J Pediatr 2015; 11:226-31. [PMID: 25410665 DOI: 10.1007/s12519-014-0517-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) diseases lead to a profound disruption in normal mechanisms of growth and development. This study was undertaken to determine the general growth of children with MPS I and II. METHODS The anthropometric data of patients with MPS I and II (n=76) were retrospectively analyzed. The growth patterns of these patients were analyzed and then plotted onto Polish reference charts. Longitudinal analyses were performed to estimate age-related changes. RESULTS At the time of birth, the body length was greater than reference charts for all MPS groups (Hurler syndrome, P=0.006; attenuated MPS II, P=0.011; severe MPS II, P<0.001). The mean z-score values for every MPS group showed that until the 30th month of life, the growth patterns for all patients were similar. Afterwards, these growth patterns start to differ for individual groups. The body height below the 3rd percentile was achieved around the 30th month for boys with Hurler syndrome, between the 4th and 5th year for patients with severe MPS II and between the 7th and 8th year for patients with attenuated MPS II. CONCLUSIONS The growth pattern differs between patients with MPS I and II. It reflects the clinical severity of MPS and may assist in the evaluation of clinical efficacy of available therapies.
Collapse
|
88
|
Tonetto A, Lago PW, Borba M, Rosa V. Effects of chrondro-osseous regenerative compound associated with local treatments in the regeneration of bone defects around implants: an in vivo study. Clin Oral Investig 2015; 20:267-74. [DOI: 10.1007/s00784-015-1509-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
|
89
|
Żuber Z, Jurecka A, Różdżyńska-Świątkowska A, Migas-Majoch A, Lembas A, Kieć-Wilk B, Tylki-Szymańska A. Ultrasonographic Features of Hip Joints in Mucopolysaccharidoses Type I and II. PLoS One 2015; 10:e0123792. [PMID: 25922936 PMCID: PMC4414504 DOI: 10.1371/journal.pone.0123792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/07/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The primary aim of this study was to assess the ultrasonographic features of hip joints in patients with mucopolysaccharidosis (MPS) type I and II in comparison with healthy population. The secondary aims were to correlate these features with clinical measures and to evaluate the utility of ultrasound in the diagnosis of MPS disease. MATERIALS AND METHODS Sixteen MPS I (n = 3) and II (n = 13) patients were enrolled in the present study and underwent clinical and radiological evaluation, and bilateral high-resolution ultrasonography (US) of hip joints. The distance from the femoral neck to joint capsule (synovial joint space, SJS), joint effusion, synovial hyperthrophy, and local pathological vascularization were evaluated. The results were compared to the healthy population and correlated with clinical and radiological measures. RESULTS 1. There was a difference in US SJS between children with MPS disease and the normative value for healthy population (7mm). Mean values of SJS were 15.81 ± 4.08 cm (right hip joints) and 15.69 ± 4.19 cm (left joints). 2. No inflammatory joint abnormalities were detected in MPS patients. 3. There was a clear correlation between US SJS and patients' age and height, while no clear correlation was observed between SJS and disease severity. CONCLUSIONS 1. Patients with MPS I and II present specific features in hip joint ultrasonography. 2. The data suggests that ultrasonography might be effective in the evaluation of hip joint involvement in patients with MPS and might present a valuable tool in facilitating the diagnosis and follow up of the disease.
Collapse
Affiliation(s)
- Zbigniew Żuber
- Department of Pediatrics, St. Louis Regional Children’s Hospital, Cracow, Poland
| | - Agnieszka Jurecka
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
- Department of Genetics, University of Gdańsk, Gdańsk, Poland
- * E-mail:
| | | | - Agata Migas-Majoch
- Department of Pediatrics, St. Louis Regional Children’s Hospital, Cracow, Poland
| | - Agnieszka Lembas
- Department of Radiology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Beata Kieć-Wilk
- Department of Metabolic Diseases, Medical College Jagiellonian University, Krakow, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
90
|
Clarke LA, Hollak CEM. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best Pract Res Clin Endocrinol Metab 2015; 29:219-35. [PMID: 25987175 DOI: 10.1016/j.beem.2014.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lysosomal storage disorders affect multiple organs including the skeleton. Disorders with prominent skeletal symptoms are type 1 and 3 Gaucher disease, the mucopolysaccharidoses, the glycoproteinoses and pycnodysostosis. Clinical manifestations range from asymptomatic radiographical evidence of bone pathology to overt bone crises (Gaucher), short stature with typical imaging features known as dysostosis multiplex (MPS), with spine and joint deformities (mucopolysaccharidoses, mucolipidosis), or osteopetrosis with pathological fractures (pynodysostosis). The pathophysiology of skeletal disease is only partially understood and involves direct substrate storage, inflammation and other complex alterations of cartilage and bone metabolism. Current treatments are enzyme replacement therapy, substrate reduction therapy and hematopoietic stem cell transplantation. However, effects of these interventions on skeletal disease manifestations are less well established and outcomes are highly dependent on disease burden at treatment initiation. It is now clear that adjunctive treatments that target skeletal disease are needed and should be part of future research agenda.
Collapse
Affiliation(s)
- Lorne A Clarke
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Carla E M Hollak
- Department of Internal Medicine/Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
91
|
Yokoi K, Akiyama K, Kaneshiro E, Higuchi T, Shimada Y, Kobayashi H, Akiyama M, Otsu M, Nakauchi H, Ohashi T, Ida H. Effect of donor chimerism to reduce the level of glycosaminoglycans following bone marrow transplantation in a murine model of mucopolysaccharidosis type II. J Inherit Metab Dis 2015; 38:333-40. [PMID: 25503568 DOI: 10.1007/s10545-014-9800-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficient activity of the iduronate-2-sulfatase. This leads to accumulation of glycosaminoglycans (GAGs) in the lysosomes of various cells. Although it has been proposed that bone marrow transplantation (BMT) may have a beneficial effect for patients with MPS II, the requirement for donor-cell chimerism to reduce GAG levels is unknown. To address this issue, we transplanted various ratios of normal and MPS II bone marrow cells in a mouse model of MPS II and analyzed GAG accumulation in various tissues. Chimerism of whole leukocytes and each lineage of BMT recipients' peripheral blood was similar to infusion ratios. GAGs were significantly reduced in the liver, spleen, and heart of recipients. The level of GAG reduction in these tissues depends on the percentage of normal-cell chimerism. In contrast to these tissues, a reduction in GAGs was not observed in the kidney and brain, even if 100 % donor chimerism was achieved. These observations suggest that a high degree of chimerism is necessary to achieve the maximum effect of BMT, and donor lymphocyte infusion or enzyme replacement therapy might be considered options in cases of low-level chimerism in MPS II patients.
Collapse
Affiliation(s)
- Kentaro Yokoi
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Brands MMG, Güngör D, van den Hout JMP, Karstens FPJ, Oussoren E, Plug I, Boelens JJ, van Hasselt PM, Hollak CEM, Mulder MF, Rubio Gozalbo E, Smeitink JA, Smit GPA, Wijburg FA, Meutgeert H, van der Ploeg AT. Pain: a prevalent feature in patients with mucopolysaccharidosis. Results of a cross-sectional national survey. J Inherit Metab Dis 2015; 38:323-31. [PMID: 25048386 DOI: 10.1007/s10545-014-9737-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND While clinical observations suggest that many patients with mucopolysaccharidosis (MPS) experience chronic pain, few studies have assessed its extent and impact. We therefore investigated its prevalence in patients with all types of MPS in the Netherlands. We also examined the association between pain and health related quality of life (HRQoL) and other clinical variables. METHODS We conducted a nationwide MPS survey that used questionnaires on MPS and disease-related symptoms (MPS-specific questionnaire), developmental level (Vineland Screener 0-6 years), quality of life (PedsQl and SF-36), and disability (Childhood Health Assessment Questionnaire). Depending on their age and developmental level, patients or their parents were asked to assess pain by keeping a pain diary for five consecutive days: either the Non-communicating Children's Pain Checklist - Revised (3-18 years intellectually disabled and children <8 years), the VAS-score (> 18 years), or the Faces Pain Scale - Revised (8-18 years). RESULTS Eighty-nine MPS patients were invited, 55 of whom agreed to participate (response rate 62 %; median age 10.9 years, range 2.9-47.2 years). They covered a wide spectrum in all age groups, ranging from no pain to severe pain. Forty percent scored above the cut-off value for pain. Most reported pain sites were the back and hips. While the MPS III group experienced the highest frequency of pain (52.9 %), 50 % of patients with an intellectual disability seemed to experience pain, versus 30 % of patients with a normal intelligence. MPS patients scored much lower (i.e., more pain) than a random sample of the Dutch population on the bodily pain domain of the SF-36 scale and the PedsQl. CONCLUSION With or without intellectual disabilities, many MPS patients experience pain. We recommend that standardized pain assessments are included in the regular follow-up program of patients with MPS.
Collapse
Affiliation(s)
- Marion M G Brands
- Erasmus MC Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Langereis EJ, van Vlies N, Wijburg FA. Diagnosis, classification and treatment of mucopolysaccharidosis type I. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1016908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
94
|
Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, Moura DJ, Saffi J, Bender F, Burin MG, Coitinho AS, Giugliani R, Vargas CR. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1012-9. [PMID: 25701642 DOI: 10.1016/j.bbadis.2015.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/17/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress.
Collapse
Affiliation(s)
- Bruna Donida
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Desirèe P Marchetti
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Giovana B Biancini
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Marion Deon
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Paula R Manini
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências de Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil.
| | - Helen T da Rosa
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências de Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil.
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências de Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil.
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências de Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil.
| | - Fernanda Bender
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Maira G Burin
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Adriana S Coitinho
- Programa de Pós-Graduação em Ciências Biológicas-Fisiologia, Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Ciências Básicas e da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil.
| | - Roberto Giugliani
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Genética, e Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, CEP 90650-001 Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
95
|
Heppner JM, Zaucke F, Clarke LA. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol Genet Metab 2015; 114:146-55. [PMID: 25410057 DOI: 10.1016/j.ymgme.2014.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications.
Collapse
Affiliation(s)
- Jonathan M Heppner
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada.
| |
Collapse
|
96
|
Xing EM, Wu S, Ponder KP. The effect of Tlr4 and/or C3 deficiency and of neonatal gene therapy on skeletal disease in mucopolysaccharidosis VII mice. Mol Genet Metab 2015; 114:209-16. [PMID: 25559179 PMCID: PMC4381425 DOI: 10.1016/j.ymgme.2014.12.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder caused by the deficiency of the enzyme β-glucuronidase (Gusb(-/-)) and results in glycosaminoglycan (GAG) accumulation. Skeletal abnormalities include stunted long bones and bone degeneration. GAGs have been hypothesized to activate toll-like receptor 4 (Tlr4) signaling and the complement pathway, resulting in upregulation of inflammatory cytokines that suppress growth and cause degeneration of the bone. Gusb(-/-) mice were bred with Tlr4- and complement component 3 (C3)-deficient mice, and the skeletal manifestations of the doubly- and triply-deficient mice were compared to those of purebred Gusb(-/-) mice. Radiographs showed that purebred Gusb(-/-) mice had shorter tibias and femurs, and wider femurs, compared to normal mice. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice. The glenoid cavity and humerus were scored on a scale from 0 (normal) to +3 (severely abnormal) for dysplasia and bone irregularities, and the joint space was measured. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice, and their joint space remained abnormally wide. Gusb(-/-) mice treated neonatally with an intravenous retroviral vector (RV) had thinner femurs, longer legs, and a narrowed joint space compared with untreated purebred Gusb(-/-) mice, but no improvement in glenohumeral degeneration. We conclude that Tlr4- and/or C3-deficiency fail to ameliorate skeletal abnormalities, and other pathways may be involved. RV treatment improves some but not all aspects of bone disease. Radiographs may be an efficient method for future evaluation, as they readily show glenohumeral joint abnormalities.
Collapse
Affiliation(s)
- Elizabeth M Xing
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan Wu
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Katherine P Ponder
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
97
|
Kingma SDK, Wagemans T, IJlst L, Wijburg FA, van Vlies N. Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models. J Inherit Metab Dis 2014; 37:813-21. [PMID: 24699889 DOI: 10.1007/s10545-014-9703-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which results in the accumulation of these GAGs and subsequent cellular dysfunction. Patients present with a variety of symptoms, including severe skeletal disease. Genistein has been shown previously to inhibit GAG synthesis in MPS fibroblasts, presumably through inhibition of tyrosine kinase activity of the epidermal growth factor receptor (EGFR). To determine the potentials of genistein for the treatment of skeletal disease, MPS I fibroblasts were induced into chondrocytes and osteoblasts and treated with genistein. Surprisingly, whereas tyrosine phosphorylation levels (as a measure for tyrosine kinase inhibition) were decreased in all treated cell lines, there was a 1.3 and 1.6 fold increase in GAG levels in MPS I chondrocytes and fibroblast, respectively (p < 0.05). Sulfate incorporation in treated MPS I fibroblasts was 2.6 fold increased (p < 0.05), indicating increased GAG synthesis despite tyrosine kinase inhibition. This suggests that GAG synthesis is not exclusively regulated through the tyrosine kinase activity of the EGFR. We hypothesize that the differences in outcomes between studies on the effect of genistein in MPS are caused by the different effects of genistein on different growth factor signaling pathways, which regulate GAG synthesis. More studies are needed to elucidate the precise signaling pathways which are affected by genistein and alter GAG metabolism in order to evaluate the therapeutic potential of genistein for MPS patients.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
98
|
Orthopedic management of the extremities in patients with Morquio A syndrome. J Child Orthop 2014; 8:295-304. [PMID: 25001525 PMCID: PMC4128951 DOI: 10.1007/s11832-014-0601-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Musculoskeletal involvement in Morquio A syndrome (mucopolysaccharidosis IVA; MPS IVA) contributes significantly to morbidity and mortality. While the spinal manifestations of the disorder have received considerable attention in the literature, there have been few reported studies to date to guide the management of the orthopedic problems associated with the lower and upper extremities. PURPOSE The objective was to develop recommendations for the management of the extremities in patients with Morquio A syndrome. METHODS A group of specialists in orthopedics, pediatrics and genetics with experience in the management of Morquio A patients convened to review and discuss current clinical practices and to develop preliminary recommendations. Evidence from the literature was retrieved. Recommendations were further refined until consensus was reached. RESULTS AND CONCLUSIONS This present article provides a detailed review and discussion of the lower and upper extremity deformities in Morquio A syndrome and presents recommendations for the assessment and treatment of these complications. Key issues, including the importance of early diagnosis and the implications of medical therapy, are also addressed. The recommendations herein represent an attempt to develop a uniform and practical approach to managing patients with Morquio A syndrome and improving their outcomes.
Collapse
|
99
|
Wang RY, Aminian A, McEntee MF, Kan SH, Simonaro CM, Lamanna WC, Lawrence R, Ellinwood NM, Guerra C, Le SQ, Dickson PI, Esko JD. Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I. Mol Genet Metab 2014; 112:286-93. [PMID: 24951454 PMCID: PMC4122635 DOI: 10.1016/j.ymgme.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. METHODS Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. RESULTS All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. CONCLUSIONS Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. CLINICAL RELEVANCE The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA.
| | | | - Michael F McEntee
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Calogera M Simonaro
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William C Lamanna
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | | | - Catalina Guerra
- Biological Resource Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Steven Q Le
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
100
|
Abstract
The mucopolysaccharidoses (MPSs) are a group of rare genetic disorders of glycosaminoglycan catabolism, caused by a deficiency of lysosomal enzymes required for GAG degradation. Incomplete breakdown of glycosaminoglycans leads to progressive accumulation of these substances in many tissues throughout the body. Different residual enzymatic activity can result in different phenotypes of the same MPS disorder, from severe to attenuated. Musculoskeletal manifestations are common across all forms of MPS. Skeletal and joint abnormalities are prominent features of many MPS disorders, particularly attenuated phenotypes. However, diagnostic delays occur frequently for patients with an MPS, especially those with more attenuated forms of disease. In the absence of appropriate treatment, these conditions are chronic, progressive and often debilitating, but treatment for many types of MPS is now available. Therefore, increasing awareness of MPS among rheumatologists is extremely important.
Collapse
Affiliation(s)
- Rolando Cimaz
- Department of Pediatrics, Rheumatology Unit, AOU Meyer Hospital, Viale Pieraccini, no. 24, 50139, Firenze, Italy,
| | | |
Collapse
|