51
|
Kumar V, Fleming T, Terjung S, Gorzelanny C, Gebhardt C, Agrawal R, Mall MA, Ranzinger J, Zeier M, Madhusudhan T, Ranjan S, Isermann B, Liesz A, Deshpande D, Häring HU, Biswas SK, Reynolds PR, Hammes HP, Peperkok R, Angel P, Herzig S, Nawroth PP. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res 2017; 45:10595-10613. [PMID: 28977635 PMCID: PMC5737477 DOI: 10.1093/nar/gkx705] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE−/−), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany
| | - Stefan Terjung
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Division of Dermatooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, INF 156, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, INF 156, Heidelberg, Germany
| | - Julia Ranzinger
- Department of Nephrology, University of Heidelberg, Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, INF 410, Heidelberg, Germany
| | - Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD) University Hospital München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Divija Deshpande
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Peperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Herzig
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
52
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
53
|
Caraher EJ, Kwon S, Haider SH, Crowley G, Lee A, Ebrahim M, Zhang L, Chen LC, Gordon T, Liu M, Prezant DJ, Schmidt AM, Nolan A. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure. PLoS One 2017; 12:e0184331. [PMID: 28926576 PMCID: PMC5604982 DOI: 10.1371/journal.pone.0184331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is associated with WTC-LI. In our murine model, absence of RAGE mitigated acute deleterious effects of PM and may be a biologically plausible mediator of PM-related lung disease.
Collapse
Affiliation(s)
- Erin J. Caraher
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Syed H. Haider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Audrey Lee
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Minah Ebrahim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Liqun Zhang
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Respiratory Medicine, PLA, Army General Hospital, Beijing, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ann Marie Schmidt
- Departments of Biochemistry and Molecular Pharmacology and Pathology, Division of Endocrinology, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
| |
Collapse
|
54
|
Song S, Ji Y, Zhang G, Zhang X, Li B, Li D, Jiang W. Protective Effect of Atazanavir Sulphate Against Pulmonary Fibrosis In Vivo and In Vitro. Basic Clin Pharmacol Toxicol 2017; 122:199-207. [PMID: 28816009 DOI: 10.1111/bcpt.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
Atazanavir sulphate, an antiretroviral protease inhibitor, has been used to treat HIV/AIDS, but its ability to serve as an antipulmonary fibrosis (PF) agent remains unknown. In this study, the effects of atazanavir sulphate on various aspects of PF were examined and CoCl2 was used to induce the hypoxia-mimicking condition in vitro, including epithelial-mesenchymal transition (EMT) in A549 cells, endothelial-mesenchymal transition (EndMT) in human pulmonary microvascular endothelial cells (HPMECs), proliferation in human lung fibroblasts (HLF-1) and potential protective effects in human type I alveolar epithelial cells (AT I). Additionally, the effects of atazanavir sulphate were examined using a bleomycin (BLM)-induced pulmonary fibrosis model. After atazanavir sulphate treatment, in A549 cells and HPMECs, the expression of vimentin, HMGB1, Toll-like receptor 4 (TLR-4) and p-NF-κB decreased, while the expression of E-cadherin and VE-cadherin increased. In AT I cells, the expression of aquaporin 5 and RAGE were increased after atazanavir treatment. Proliferation of HLF-1 was reduced after atazanavir treatment, meanwhile the expression of hypoxia-inducible factor-1α (HIF-1α), prolyl hydroxylase domain protein 2 (PHD-2), HMGB1, TLR-9, p-NF-κB, collagen I and collagen III was decreased. In the BLM-induced pulmonary fibrosis rat model, atazanavir sulphate ameliorated PF by reducing pathological score, collagen deposition and the expression of α-SMA, HIF-1α, PHD-2, HMGB1, TLR-4, TLR-9 and p-NF-κB. In summary, our study supports the proposal that atazanavir sulphate may have a therapeutic potential in reducing the progression of pulmonary fibrosis by suppressing HMGB1/TLR signalling.
Collapse
Affiliation(s)
- Shina Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Bin Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
55
|
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2017; 4:118. [PMID: 28804709 PMCID: PMC5532376 DOI: 10.3389/fmed.2017.00118] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gustavo A Rubio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew H Limper
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Kurt Williams
- Department Pathobiology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sharon J Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioanna Ninou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
56
|
Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23:40-49. [PMID: 28416135 PMCID: PMC5509466 DOI: 10.1016/j.prrv.2017.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Collapse
Affiliation(s)
| | | | - Tim D. Oury
- Corresponding author. Tel.: +1 412 648 9659; Fax: +1 412 648 9527
| |
Collapse
|
57
|
Biomarkers in Idiopathic Pulmonary Fibrosis: A RAGE-ing Bull in the Arena. Ann Am Thorac Soc 2017; 14:613-614. [PMID: 28459629 DOI: 10.1513/annalsats.201701-024ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
58
|
Plasma Soluble Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2017; 14:628-635. [PMID: 28248552 PMCID: PMC5427736 DOI: 10.1513/annalsats.201606-485oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE The receptor for advanced glycation end products (RAGE) is underexpressed in idiopathic pulmonary fibrosis (IPF) lung, but the role of RAGE in human lung fibrosis remains uncertain. OBJECTIVES To examine (1) the association between IPF risk and variation at rs2070600, a functional missense variant in AGER (the gene that codes for RAGE), and (2) the associations between plasma-soluble RAGE (sRAGE) levels with disease severity and time to death or lung transplant in IPF. METHODS We genotyped the rs2070600 single-nucleotide polymorphism in 108 adults with IPF and 324 race-/ethnicity-matched control subjects. We measured plasma sRAGE by ELISA in 103 adults with IPF. We used generalized linear and additive models as well as Cox models to control for potential confounders. We repeated our analyses in 168 (genetic analyses) and 177 (sRAGE analyses) adults with other forms of interstitial lung disease (ILD). RESULTS There was no association between rs2070600 variation among adults with IPF (P = 0.31). Plasma sRAGE levels were lower among adults with IPF and other forms of ILD than in control subjects (P < 0.001). The rs2070600 allele A was associated with a 49% lower sRAGE level (95% confidence interval [CI], 11 to 71%; P = 0.02) among adults with IPF. In adjusted analyses, lower sRAGE levels were associated with greater disease severity (14% sRAGE decrement per 10% FVC decrement; 95% CI, 5 to 22%) and a higher rate of death or lung transplant at 1 year (adjusted hazard ratio, 1.9 per logarithmic unit of sRAGE decrement; 95% CI, 1.2-3.3) in IPF. Similar findings were observed in a heterogeneous group of adults with other forms of ILD. CONCLUSIONS Lower plasma sRAGE levels may be a biological measure of disease severity in IPF. Variation at the rs2070600 single-nucleotide polymorphism was not associated with IPF risk.
Collapse
|
59
|
Serum HMGB1 as a Potential Biomarker for Patients with Asbestos-Related Diseases. DISEASE MARKERS 2017; 2017:5756102. [PMID: 28348451 PMCID: PMC5350493 DOI: 10.1155/2017/5756102] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 01/23/2023]
Abstract
High-mobility group box 1 (HMGB1) functions as a proinflammatory cytokine and is one of the most intriguing molecules in inflammatory disorders and cancers. Notably, HMGB1 is a potential therapeutic target and novel biomarker in related diseases. However, the diagnostic value of HMGB1 for benign and malignant asbestos-related diseases (ARDs) remains unclear. In this work, we detected preoperative serum HMGB1 levels in Chinese asbestos-exposed (AE) and ARDs populations and further evaluated the diagnostic value of HMGB1 in patients with certain types of ARDs, including those with pleural plaques, asbestosis, or malignant mesothelioma (MM). The experimental data presented that the serum level of HMGB1 was significantly elevated in AE and ARDs subjects. Our findings indicated that serum HMGB1 is a sensitive and specific biomarker for discriminating asbestosis- and MM-affected individuals from healthy or AE individuals. In addition, serum matrix metalloproteinases 2 and 9 are not correlated with HMGB1 in ARDs. Thus, our study provides supporting evidence for HMGB1 as a potential biomarker either for the clinical diagnosis of high-risk AE cohorts or for evaluating ARDs.
Collapse
|
60
|
RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis. Infect Immun 2017; 85:IAI.00954-16. [PMID: 28052995 DOI: 10.1128/iai.00954-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor capable of recognizing multiple pathogen-associated and danger-associated molecular patterns that contributes to the initiation and potentiation of inflammation in many disease processes. During infection, RAGE functions to either exacerbate disease severity or enhance pathogen clearance depending on the pathogen studied. Acinetobacter baumannii is an opportunistic human pathogen capable of causing severe infections, including pneumonia and sepsis, in impaired hosts. The role of RAGE signaling in response to opportunistic bacterial infections is largely unknown. In murine models of A. baumannii pneumonia, RAGE signaling alters neither inflammation nor bacterial clearance. In contrast, RAGE-/- mice systemically infected with A. baumannii exhibit increased survival and reduced bacterial burdens in the liver and spleen. The increased survival of RAGE-/- mice is associated with increased circulating levels of the anti-inflammatory cytokine interleukin-10 (IL-10). Neutralization of IL-10 in RAGE-/- mice results in decreased survival during systemic A. baumannii infection that mirrors that of wild-type (WT) mice, and exogenous IL-10 administration to WT mice enhances survival in this model. These findings demonstrate the role for RAGE-dependent IL-10 suppression as a key modulator of mortality from Gram-negative sepsis.
Collapse
|
61
|
Yamaguchi K, Iwamoto H, Horimasu Y, Ohshimo S, Fujitaka K, Hamada H, Mazur W, Kohno N, Hattori N. AGER gene polymorphisms and soluble receptor for advanced glycation end product in patients with idiopathic pulmonary fibrosis. Respirology 2017; 22:965-971. [PMID: 28198072 DOI: 10.1111/resp.12995] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE The receptor for advanced glycation end product (RAGE) is a multiligand cell-surface receptor abundantly expressed in the lung. RAGE/ligand interaction has been postulated to participate in the pathogenesis of inflammatory diseases, while soluble RAGE (sRAGE) might act as a decoy receptor. A functional polymorphism rs2070600 in the gene coding RAGE (AGER) might modulate its receptor function. The aim of this study was to investigate the association of AGER polymorphisms and circulatory sRAGE with the development and progression of idiopathic pulmonary fibrosis (IPF). METHODS This study comprised 87 Japanese patients with IPF and 303 healthy controls. Seven tag polymorphisms in AGER were genotyped and their distributions were compared. We also measured serum sRAGE levels, and evaluated the correlations of sRAGE levels with AGER polymorphisms and the prognosis of the patients with IPF. RESULTS The frequency of AGER rs2070600 genotype with minor allele was significantly higher in patients with IPF (OR = 1.84, 95% CI = 1.08-3.10). Additionally, the carriage of the rs2070600 minor allele and the presence of IPF were independently associated with reduced serum levels of sRAGE. Moreover, reduced sRAGE (≤471.8 pg/mL) was related to acute exacerbation of IPF and was an independent predictor of 5-year survival in patients with the disease (hazard ratio (HR) = 7.956, 95% CI = 1.575-53.34). CONCLUSION These results suggest a possible association between a functional polymorphism in AGER and IPF disease susceptibility, and indicate a potential prognostic value of circulatory sRAGE.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Witold Mazur
- Heart and Lung Centre, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
62
|
Li X, An G, Wang Y, Liang D, Zhu Z, Lian X, Niu P, Guo C, Tian L. Anti-fibrotic effects of bone morphogenetic protein-7-modified bone marrow mesenchymal stem cells on silica-induced pulmonary fibrosis. Exp Mol Pathol 2017; 102:70-77. [DOI: 10.1016/j.yexmp.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/27/2022]
|
63
|
Machahua C, Montes-Worboys A, Llatjos R, Escobar I, Dorca J, Molina-Molina M, Vicens-Zygmunt V. Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis. Respir Res 2016; 17:144. [PMID: 27816054 PMCID: PMC5097848 DOI: 10.1186/s12931-016-0460-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The abnormal epithelial-mesenchymal restorative capacity in idiopathic pulmonary fibrosis (IPF) has been recently associated with an accelerated aging process as a key point for the altered wound healing. The advanced glycation end-products (AGEs) are the consequence of non-enzymatic reactions between lipid and protein with several oxidants in the aging process. The receptor for AGEs (RAGEs) has been implicated in the lung fibrotic process and the alveolar homeostasis. However, this AGE-RAGE aging pathway has been under-explored in IPF. METHODS Lung samples from 16 IPF and 9 control patients were obtained through surgical lung biopsy. Differences in AGEs and RAGE expression between both groups were evaluated by RT-PCR, Western blot and immunohistochemistry. The effect of AGEs on cell viability of primary lung fibrotic fibroblasts and alveolar epithelial cells was assessed. Cell transformation of fibrotic fibroblasts cultured into glycated matrices was evaluated in different experimental conditions. RESULTS Our study demonstrates an increase of AGEs together with a decrease of RAGEs in IPF lungs, compared with control samples. Two specific AGEs involved in aging, pentosidine and Nε-Carboxymethyl lysine, were significantly increased in IPF samples. The immunohistochemistry identified higher staining of AGEs related to extracellular matrix (ECM) proteins and the apical surface of the alveolar epithelial cells (AECs) surrounding fibroblast foci in fibrotic lungs. On the other hand, RAGE location was present at the cell membrane of AECs in control lungs, while it was almost missing in pulmonary fibrotic tissue. In addition, in vitro cultures showed that the effect of AGEs on cell viability was different for AECs and fibrotic fibroblasts. AGEs decreased cell viability in AECs, even at low concentration, while fibroblast viability was less affected. Furthermore, fibroblast to myofibroblast transformation could be enhanced by ECM glycation. CONCLUSIONS All of these findings suggest a possible role of the increased ratio AGEs-RAGEs in IPF, which could be a relevant accelerating aging tissue reaction in the abnormal wound healing of the lung fibrotic process.
Collapse
Affiliation(s)
- Carlos Machahua
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
| | - Ana Montes-Worboys
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Roger Llatjos
- Department of Pathology, University Hospital of Bellvitge, Barcelona, Spain
| | - Ignacio Escobar
- Department of Thoracic Surgery, University Hospital of Bellvitge, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Maria Molina-Molina
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Vanesa Vicens-Zygmunt
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
| |
Collapse
|
64
|
Ebina M. Pathognomonic remodeling of blood and lymphatic capillaries in idiopathic pulmonary fibrosis. Respir Investig 2016; 55:2-9. [PMID: 28012489 DOI: 10.1016/j.resinv.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022]
Abstract
Numerous studies have been published investigating the pathologic alterations in various interstitial pneumonias, particularly in idiopathic pulmonary fibrosis (IPF). However, the few existing studies on capillary remodeling, which does not seem to have priority for pathologic diagnosis, are contradictory, with some reporting increased and others reduced vascularization. We hypothesized that these discrepancies were due to the temporal heterogeneity of the lesions in IPF. We subsequently developed original techniques for evaluating vascular density within the alveolar septa and discovered, for the first time, a heterogeneous increase in alveolar capillaries in the lungs of IPF patients. Notably, we consistently found that the fibrotic lesions in IPF lungs, which are composed mainly of dense collagen with myofibroblasts, featured a reduction in capillaries. This finding provides a plausible explanation for the intractability of IPF, as this reduced vascularization would result in poor delivery of anti-fibrotic agents to these lesions. We also reported the disappearance of subpleural and interlobular lymphatics in IPF lungs, which likely results in poor alveolar clearance in the diseased lungs. Finally, we assessed the autopsied lungs of patients with IPF who died because of acute exacerbation and observed increased and dilated alveolar capillaries. These capillaries are likely to be "leaky" owing to exposure to VEGF produced by regenerated alveolar type II epithelial cells. Furthermore, poor alveolar clearance may prolong the high mobility group box 1 (HMGB1)-induced lung injury in acute exacerbation of IPF. Our data obtained from the assessment of blood and lymphatic capillary alterations in IPF provide novel pathogenetic insights and may provide the basis for new therapeutic strategies targeting IPF.
Collapse
Affiliation(s)
- Masahito Ebina
- Department of Respiratory Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, 1-12-1, Fukumuro, Miyagino-ku, Sendai 983-8512, Japan.
| |
Collapse
|
65
|
Abuelezz SA, Hendawy N, Osman WM. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:897-909. [PMID: 27154762 DOI: 10.1007/s00210-016-1253-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Wesam M Osman
- Pathology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
66
|
RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells. PLoS One 2016; 11:e0152376. [PMID: 27015414 PMCID: PMC4807770 DOI: 10.1371/journal.pone.0152376] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 01/11/2023] Open
Abstract
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.
Collapse
|
67
|
Izushi Y, Teshigawara K, Liu K, Wang D, Wake H, Takata K, Yoshino T, Takahashi HK, Mori S, Nishibori M. Soluble form of the receptor for advanced glycation end-products attenuates inflammatory pathogenesis in a rat model of lipopolysaccharide-induced lung injury. J Pharmacol Sci 2016; 130:226-34. [PMID: 27038888 DOI: 10.1016/j.jphs.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory failure caused by acute lung inflammation. Recently, the receptor for advanced glycation end-products (RAGE) has attracted attention in the lung inflammatory response. However, the function of soluble form of RAGE (sRAGE), which is composed of an extracellular domain of RAGE, in ARDS remains elusive. Therefore, we investigated the dynamics of pulmonary sRAGE and the effects of exogenous recombinant human sRAGE (rsRAGE) under intratracheal lipopolysaccharide (LPS)-induced lung inflammation. Our result revealed that RAGE was highly expressed on the alveolar type I epithelial cells in the healthy rat lung including sRAGE isoform sized 45 kDa. Under LPS-induced injured lung, the release of sRAGE into the alveolar space was increased, whereas the expression of RAGE was decreased with alveolar disruption. Treatment of the injured lung with rsRAGE significantly suppressed the lung edema, the neutrophils infiltration, the release of high mobility group box-1 (HMGB1), and the expressions of TNF-α, IL-1β and iNOS. These results suggest that the alveolar release of sRAGE may play a protective role against HMGB1 as well as exogenous pathogen-associated molecular patterns. Supplementary therapy with sRAGE may be an effective therapeutic strategy for ARDS.
Collapse
Affiliation(s)
- Yasuhisa Izushi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Katsuyoshi Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideo Kohka Takahashi
- Department of Pharmacology, Kinki University, Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shuji Mori
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
68
|
Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. DISEASE MARKERS 2016; 2016:3501373. [PMID: 26980924 PMCID: PMC4766331 DOI: 10.1155/2016/3501373] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care.
Collapse
Affiliation(s)
- Raiko Blondonnet
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Jean-Michel Constantin
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Matthieu Jabaudon
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| |
Collapse
|
69
|
Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis, pharmaceutical therapy options. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2015; 14:Doc09. [PMID: 26770283 PMCID: PMC4702058 DOI: 10.3205/cto000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research in immunology has brought great progress in knowledge of inflammatory processes in the last 2 decades, which also has an impact on the upper airways. Our understanding of the pathophysiology of chronic rhinosinusitis developed from a rather mechanistic point of view with a focus on narrow clefts and mucociliary clearance to the appreciation of a complex network of immunological pathways forming the basis of disease. We today differentiate various forms of inflammation, we start to understand complex immune-regulatory networks and the reasons for their failure, and have already developed innovative approaches for therapy for the most severely ill subjects. Due to this new knowledge in inflammation and remodeling processes within mucosal tissue, specifically on the key driving factors, new diagnostic tools and therapeutic approaches for chronic rhinosinusitis have developed; the differentiation of endotypes based on pathophysiological principles will be crucial for the use of innovative therapies, mostly humanized monoclonal antibodies. Several hundred of those antibodies are currently developed for various indications and will impact our specialty as well as pneumology to a great extent.
Collapse
Affiliation(s)
- Claus Bachert
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, University of Stockholm, Sweden
| | - Gabriële Holtappels
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium
| |
Collapse
|
70
|
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a lung limited, progressive fibrotic disease with a poor prognosis. The cause is unknown, and currently there is no treatment that reverses the disease or stops progression. This combination of a poor prognosis and the absence of curative therapy has prompted a sustained investigative effort to identify beneficial treatments. Recently released trial results suggest progress. AREAS COVERED Although the mechanism of disease is poorly understood, a number of compounds that influence pathways thought to play a mechanistic role have been studied for use in IPF. This article discusses a number of these landmark trials. EXPERT OPINION From these studies we conclude that the future treatment of IPF will include expanding pharmacological options. Recent studies have identified two agents that appear to slow disease progression and may offer a window into pathogenesis and future drug targets.
Collapse
Affiliation(s)
- Amen Sergew
- a Department of Medicine , National Jewish Health , 1400 Jackson St, M336, Denver , CO 80206 , USA
| | - Kevin K Brown
- a Department of Medicine , National Jewish Health , 1400 Jackson St, M336, Denver , CO 80206 , USA
| |
Collapse
|
71
|
Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16:907-17. [PMID: 26287597 DOI: 10.1038/ni.3253] [Citation(s) in RCA: 622] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.
Collapse
|
72
|
Antifibrotic properties of receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2015; 35:34-41. [PMID: 26545872 DOI: 10.1016/j.pupt.2015.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/02/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with poor survival. Previous reports suggested the contributory effect of receptor for advanced glycation end products (RAGE) to the pathogenesis of IPF. But the findings are controversial. The present in vivo study with RAGE null mice, we further confirmed the evidence that lack of RAGE evolves worse bleomycin-induced pulmonary fibrosis compared with control mice. Moreover, RAGE null mice spontaneously developed similar pathogenesis of lung fibrosis via immunohistochemical staining. In addition, we investigated the negative roles of RAGE on epithelial-mesenchymal transition (EMT) indicated by elevated α-smooth muscle actin (α-SMA) and collagen-I (Col-I) deposition in A549 cell treated with transforming growth factor-β (TGF-β), all of which were blocked by sRAGE, a decoy receptor. Furthermore, interacting with the specific ligand as AGE, RAGE blocked TGF-β-induced activation of Smad2, ERK and JNK signals in A549 cells, which were also challenged by sRAGE administration. This present study confirmed an important role of RAGE in vivo and vitro models of pulmonary fibrosis and suggested the therapeutic possibility for pulmonary fibrosis via RAGE regulation.
Collapse
|
73
|
Steele MP, Luna LG, Coldren CD, Murphy E, Hennessy CE, Heinz D, Evans CM, Groshong S, Cool C, Cosgrove GP, Brown KK, Fingerlin TE, Schwarz MI, Schwartz DA, Yang IV. Relationship between gene expression and lung function in Idiopathic Interstitial Pneumonias. BMC Genomics 2015; 16:869. [PMID: 26503507 PMCID: PMC4621862 DOI: 10.1186/s12864-015-2102-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022] Open
Abstract
Background Idiopathic interstitial pneumonias (IIPs) are a group of heterogeneous, somewhat unpredictable diseases characterized by progressive scarring of the interstitium. Since lung function is a key determinant of survival, we reasoned that the transcriptional profile in IIP lung tissue would be associated with measures of lung function, and could enhance prognostic approaches to IIPs. Results Using gene expression profiling of 167 lung tissue specimens with IIP diagnosis and 50 control lungs, we identified genes whose expression is associated with changes in lung function (% predicted FVC and % predicted DLCO) modeled as categorical (severe vs mild disease) or continuous variables while adjusting for smoking status and IIP subtype; false discovery rate (FDR) approach was used to correct for multiple comparisons. This analysis identified 58 transcripts that are associated with mild vs severe disease (categorical analysis), including those with established role in fibrosis (ADAMTS4, ADAMTS9, AGER, HIF-1α, SERPINA3, SERPINE2, and SELE) as well as novel IIP candidate genes such as rhotekin 2 (RTKN2) and peptidase inhibitor 15 (PI15). Protein-protein interactome analysis of 553 genes whose expression is significantly associated with lung function when modeled as continuous variables demonstrates that more severe presentation of IIPs is characterized by an increase in cell cycle progression and apoptosis, increased hypoxia, and dampened innate immune response. Our findings were validated in an independent cohort of 131 IIPs and 40 controls at the mRNA level and for one gene (RTKN2) at the protein level by immunohistochemistry in a subset of samples. Conclusions We identified commonalities and differences in gene expression among different subtypes of IIPs. Disease progression, as characterized by lower measures of FVC and DLCO, results in marked changes in expression of novel and established genes and pathways involved in IIPs. These genes and pathways represent strong candidates for biomarker studies and potential therapeutic targets for IIP severity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2102-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark P Steele
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Leah G Luna
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Elissa Murphy
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Corinne E Hennessy
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Heinz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Steve Groshong
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Carlyne Cool
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Gregory P Cosgrove
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kevin K Brown
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.,Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, CO, USA
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - David A Schwartz
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Ivana V Yang
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA. .,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
74
|
He Y, Zhu J, Huang Y, Gao H, Zhao Y. Advanced glycation end product (AGE)-induced hepatic stellate cell activation via autophagy contributes to hepatitis C-related fibrosis. Acta Diabetol 2015; 52:959-69. [PMID: 26002589 DOI: 10.1007/s00592-015-0763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
AIMS Advanced glycation end products (AGEs) have been implicated in pulmonary and renal fibrosis. Herein, we investigated whether AGEs are associated with liver fibrosis and examined the underlying mechanism by focusing on hepatic stellate cell (HSC) activation and autophagy induction. METHODS Liver fibrosis was assessed by transient elastography (FibroScan). Serum AGE levels were determined by ELISA. Rat primary HSCs and HSC-T6 were treated with BSA-AGEs, cell proliferation was examined by WST-1 assay, and cell activation was evaluated by qPCR for transcripts of α-SMA and collagen type Iα1 and by Western blotting. Autophagy was measured by detection of LC3-II lipidation, p62 degradation, and puncta GFP-LC3 formation. Receptor of AGE (RAGE)-blocking antibodies and soluble RAGE were employed to inhibit AGE-RAGE signaling. RESULTS First, elevated AGE levels were observed in CHC patients than patients with chronic hepatitis B, especially in those with insulin resistance. Second, compared to controls, AGE-treated rat primary HSCs displayed an enhanced cell proliferation (1.39-fold), increased transcripts of α-SMA (2.40-fold) and proCOL1A1 (1.76-fold), and a higher level of α-SMA protein (1.85-fold). Moreover, AGE-induced HSC activation improved autophagy flux, as evidenced by significantly more LC3-II lipidation, p62 degradation, as well as GFP-LC3 puncta formations. In addition, our results showed that AGE-induced HSC autophagy and HSC activation could be reduced by RAGEs. CONCLUSION AGEs were found to induce autophagy and activation of HSCs, which subsequently contributes to the fibrosis in CHC patients. Blocking AGE-RAGE signaling may be a promising way to alleviate fibrosis.
Collapse
Affiliation(s)
- YingLi He
- Department of Infectious Diseases, the First Affiliated Teaching Hospital, School of Medicine, Xi'an JiaoTong University, Xi'an, Shaanxi Province, China
- Institution of Hepatology, the First Affiliated Hospital of Xi'an JiaoTong University, School of Medicine, Xi'an, Shaanxi Province, China
| | - JinQiu Zhu
- The School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, Guizhou, China.
| | - YaQi Huang
- The School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, Guizhou, China
| | - Heng Gao
- Xi'an Health School, Xi'an, Shaanxi Province, China
| | - YingRen Zhao
- Department of Infectious Diseases, the First Affiliated Teaching Hospital, School of Medicine, Xi'an JiaoTong University, Xi'an, Shaanxi Province, China.
- Institution of Hepatology, the First Affiliated Hospital of Xi'an JiaoTong University, School of Medicine, Xi'an, Shaanxi Province, China.
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
75
|
Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A, Oury TD. Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol 2015; 136:747-756.e4. [PMID: 25930197 PMCID: PMC4562894 DOI: 10.1016/j.jaci.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms in the human gene for the receptor for advanced glycation end-products (RAGE) are associated with an increased incidence of asthma. RAGE is highly expressed in the lung and has been reported to play a vital role in the pathogenesis of murine models of asthma/allergic airway inflammation (AAI) by promoting expression of the type 2 cytokines IL-5 and IL-13. IL-5 and IL-13 are prominently secreted by group 2 innate lymphoid cells (ILC2s), which are stimulated by the proallergic cytokine IL-33. OBJECTIVE We sought to test the hypothesis that pulmonary RAGE is necessary for allergen-induced ILC2 accumulation in the lung. METHODS AAI was induced in wild-type and RAGE knockout mice by using IL-33, house dust mite extract, or Alternaria alternata extract. RAGE's lung-specific role in type 2 responses was explored with bone marrow chimeras and induction of gastrointestinal type 2 immune responses. RESULTS RAGE was found to drive AAI by promoting IL-33 expression in response to allergen and by coordinating the inflammatory response downstream of IL-33. Absence of RAGE impedes pulmonary accumulation of ILC2s in models of AAI. Bone marrow chimera studies suggest that pulmonary parenchymal, but not hematopoietic, RAGE has a central role in promoting AAI. In contrast to the lung, the absence of RAGE does not affect IL-33-induced ILC2 influx in the spleen, type 2 cytokine production in the peritoneum, or mucus hypersecretion in the gastrointestinal tract. CONCLUSIONS For the first time, this study demonstrates that a parenchymal factor, RAGE, mediates lung-specific accumulation of ILC2s.
Collapse
Affiliation(s)
- Elizabeth A Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Pavle S Milutinovic
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Anupriya Khare
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Lauren T Crum
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Michelle L Manni
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pa
| | - Adriane M Pawluk
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
76
|
Qu Y, Zhang L, Kang Z, Jiang W, Lv C. Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway. Pulm Pharmacol Ther 2015; 34:1-7. [PMID: 26254990 DOI: 10.1016/j.pupt.2015.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
TGF-β1/Smad3 pathway plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, including lung fibroblasts proliferation and epithelial cell aberrant activation. Ponatinib is a multi-targeted tyrosine-kinase inhibitor. However, whether Ponatinib has anti-fibrotic functions is unknown. In this study, the effects of Ponatinib on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1), on the apoptosis of human type I alveolar epithelial cells (AT I) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis was investigated in vivo. Treatment with Ponatinib resulted in a reduction of EMT in A549 cells with a decrease in vimentin and p-Smad3, whereas an increase in E-cadherin. Apoptosis of AT I was attenuated with an increase in the Bcl-2/Bax ratio. HLF-1 proliferation was reduced with a decrease in PDGF-BB and FGF-2 expressions. Treatment with Ponatinib resulted in an amelioration of the BLM-induced pulmonary fibrosis in rats with reductions of the pathological score, collagen deposition, p-Smad3, α-SMA, PDGF-BB and FGF-2 expression. In summary, Ponatinib reversed the EMT, inhibited the apoptosis of AT I, as well as HLF-1 proliferation and prevented pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Yubei Qu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Liang Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Zechun Kang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Wanglin Jiang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China.
| | - Changjun Lv
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
77
|
WANG HONGMEI, LI YONGCHUN, YU WENCHENG, MA LIQING, JI XIA, XIAO WEI. Expression of the receptor for advanced glycation end-products and frequency of polymorphism in lung cancer. Oncol Lett 2015; 10:51-60. [PMID: 26170976 PMCID: PMC4487081 DOI: 10.3892/ol.2015.3200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) is associated with the pathogenesis of cancer progression. The pathological effects mediated through RAGE are physiologically inhibited by soluble RAGE (sRAGE). The aim of the present study was to identify the expression of the sRAGE, RAGE and RAGE ligands in serum samples and lung cancer tissue obtained from lung cancer patients. Using ELISA and immunohistochemistry, it was observed that the sRAGE levels were downregulated in the serum, the expression of RAGE was decreased in the lung cancer tissue and the RAGE ligands HMGB1 and S100 were upregulated in cancer tissue. Furthermore, the presence of several selected types of RAGE polymorphism that occur in lung cancers were measured in the tissue samples. An association between the -429T/C and 2184A/G polymorphisms of RAGE and the genesis and progression of lung cancer was identified. The comparison between various histological subtypes and stages of lung cancer was performed with the aim to clarify the biological role of the RAGE gene, and identify a biomarker to aid diagnosis and predict the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- HONGMEI WANG
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - YONGCHUN LI
- Asthma Laboratory, Qingdao Key Laboratory of Common Disease, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - WENCHENG YU
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - LIQING MA
- Asthma Laboratory, Qingdao Key Laboratory of Common Disease, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - XIA JI
- Asthma Laboratory, Qingdao Key Laboratory of Common Disease, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - WEI XIAO
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
78
|
Zhang L, Ji YX, Jiang WL, Lv CJ. Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo. ACTA ACUST UNITED AC 2015; 48:545-52. [PMID: 25992646 PMCID: PMC4470314 DOI: 10.1590/1414-431x20144301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Abnormal high mobility group protein B1 (HMGB1) activation is involved in the
pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which
combines extracts from eight traditional Chinese medicines, has very good lung
protection in clinical use. However, it is not known if PRM has anti-fibrotic
activity. In this study, we investigated the effects of PRM on transforming growth
factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in
vitro and in vivo. The effects of PRM on TGF-β1-mediated
epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human
lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary
fibrosis in vivo were investigated. PRM treatment resulted in a
reduction of EMT in A549 cells that was associated with attenuating an increase of
vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an
IC50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in
rats, with reduction of histopathological scores and collagen deposition, and a
decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in
receptor for advanced glycation end-product (RAGE) expression was found in
BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis
through decreasing HMGB1 and regulating RAGE in vitro and in
vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin
and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental
pulmonary fibrosis by modulating the HMGB1/RAGE pathway.
Collapse
Affiliation(s)
- L Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Y X Ji
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - W L Jiang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - C J Lv
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
79
|
Schultze BS, Ridner SH. Death by Sugar: The Impact of Sugar on Acutely Ill Patients. J Nurse Pract 2015. [DOI: 10.1016/j.nurpra.2015.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
80
|
The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 2015; 10:e0118979. [PMID: 25781626 PMCID: PMC4364508 DOI: 10.1371/journal.pone.0118979] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.
Collapse
|
81
|
Zhou X, Li YJ, Gao SY, Wang XZ, Wang PY, Yan YF, Xie SY, Lv CJ. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21. J Cell Mol Med 2015; 19:1103-13. [PMID: 25704671 PMCID: PMC4420612 DOI: 10.1111/jcmm.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/24/2014] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)-induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM-induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac-treated rat lungs compared with BLM-induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E-cadherin and α-smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN-γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) levels. Moreover, higher miR-21 levels with the decreased E-cadherin and increased α-SMA expressions were found in transforming growth factor-β1-treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN-γ-induced STAT3/p-STAT3 expression to down-regulate miR-21, sulindac could significantly reverse EMT in A549 cells and prevent BLM-induced PF.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China; Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicol Appl Pharmacol 2015; 283:50-6. [DOI: 10.1016/j.taap.2015.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/06/2014] [Accepted: 01/04/2015] [Indexed: 12/15/2022]
|
83
|
A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation. PLoS One 2015; 10:e0117056. [PMID: 25635824 PMCID: PMC4312074 DOI: 10.1371/journal.pone.0117056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/18/2014] [Indexed: 11/20/2022] Open
Abstract
There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7−/− mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7−/− mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7−/− mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7−/− mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.
Collapse
|
84
|
Nasal Immunity, Rhinitis, and Rhinosinusitis. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
85
|
Ellson CD, Dunmore R, Hogaboam CM, Sleeman MA, Murray LA. Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 51:163-8. [PMID: 24749648 DOI: 10.1165/rcmb.2013-0366tr] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The chronic debilitating lung disease, idiopathic pulmonary fibrosis (IPF), is characterized by a progressive decline in lung function, with a median mortality rate of 2-3 years after diagnosis. IPF is a disease of unknown cause and progression, and multiple pathways have been demonstrated to be activated in the lungs of these patients. A recent genome-wide association study of more than 1,000 patients with IPF identified genes linked to host defense, cell-cell adhesion, and DNA repair being altered due to fibrosis (Fingerlin, et al. Nat Genet 2013;45:613-620). Further emerging data suggest that the respiratory system may not be a truly sterile environment, and it exhibits an altered microbiome during fibrotic disease (Molyneaux and Maher. Eur Respir Rev 2013;22:376-381). These altered host defense mechanisms might explain the increased susceptibility of patients with IPF to microbial- and viral-induced exacerbations. Moreover, chronic epithelial injury and apoptosis are key features in IPF, which might be mediated, in part, by both pathogen-associated (PA) and danger-associated molecular patterns (MPs). Emerging data indicate that both PAMPs and danger-associated MPs contribute to apoptosis, but not necessarily in a manner that allows for the removal of dying cells, without further exacerbating inflammation. In contrast, both types of MPs drive cellular necrosis, leading to an exacerbation of lung injury and/or infection as the debris promotes a proinflammatory response. Thus, this Review focuses on the impact of MPs resulting from infection-driven apoptosis and necrosis during chronic fibrotic lung disease.
Collapse
|
86
|
Wood TT, Winden DR, Marlor DR, Wright AJ, Jones CM, Chavarria M, Rogers GD, Reynolds PR. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L758-64. [PMID: 25260756 DOI: 10.1152/ajplung.00185.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time.
Collapse
Affiliation(s)
- Tyler T Wood
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Duane R Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Derek R Marlor
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alex J Wright
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Cameron M Jones
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Michael Chavarria
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Geraldine D Rogers
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
87
|
Kuipers MT, Aslami H, Tuinman PR, Tuip-de Boer AM, Jongsma G, van der Sluijs KF, Choi G, Wolthuis EK, Roelofs JJ, Bresser P, Schultz MJ, van der Poll T, Wieland CW. The receptor for advanced glycation end products in ventilator-induced lung injury. Intensive Care Med Exp 2014. [PMID: 26215707 PMCID: PMC4678142 DOI: 10.1186/s40635-014-0022-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). The innate immune response mediates this iatrogenic inflammatory condition. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that can amplify immune and inflammatory responses. We hypothesized that RAGE signaling contributes to the pro-inflammatory state induced by MV. Methods RAGE expression was analyzed in lung brush and lavage cells obtained from ventilated patients and lung tissue of ventilated mice. Healthy wild-type (WT) and RAGE knockout (KO) mice were ventilated with relatively low (approximately 7.5 ml/kg) or high (approximately 15 ml/kg) tidal volume. Positive end-expiratory pressure was set at 2 cm H2O during both MV strategies. Also, WT and RAGE KO mice with lipopolysaccharide (LPS)-induced lung injury were ventilated with the above described ventilation strategies. In separate experiments, the contribution of soluble RAGE, a RAGE isoform that may function as a decoy receptor, in ventilated RAGE KO mice was investigated. Lung wet-to-dry ratio, cell and neutrophil influx, cytokine and chemokine concentrations, total protein levels, soluble RAGE, and high-mobility group box 1 (HMGB1) presence in lung lavage fluid were analyzed. Results MV was associated with increased RAGE mRNA levels in both human lung brush samples and lung tissue of healthy mice. In healthy high tidal volume-ventilated mice, RAGE deficiency limited inflammatory cell influx. Other VILI parameters were not affected. In our second set of experiments where we compared RAGE KO and WT mice in a 2-hit model, we observed higher pulmonary cytokine and chemokine levels in RAGE KO mice undergoing LPS/high tidal volume MV as compared to WT mice. Third, in WT mice undergoing the LPS/high tidal volume MV, we observed HMGB1 presence in lung lavage fluid. Moreover, MV increased levels of soluble RAGE in lung lavage fluid, with the highest levels found in LPS/high tidal volume-ventilated mice. Administration of soluble RAGE to LPS/high tidal volume-ventilated RAGE KO mice attenuated the production of inflammatory mediators. Conclusions RAGE was not a crucial contributor to the pro-inflammatory state induced by MV. However, the presence of sRAGE limited the production of pro-inflammatory mediators in our 2-hit model of LPS and high tidal volume MV. Electronic supplementary material The online version of this article (doi:10.1186/s40635-014-0022-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria T Kuipers
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Centre, University of Amsterdam, room M0-220, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Iwamoto H, Gao J, Pulkkinen V, Toljamo T, Nieminen P, Mazur W. Soluble receptor for advanced glycation end-products and progression of airway disease. BMC Pulm Med 2014; 14:68. [PMID: 24758342 PMCID: PMC4021457 DOI: 10.1186/1471-2466-14-68] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Background The receptor for advanced glycation end-products (RAGE) is highly expressed in the lung, where it is believed to have a homeostatic role. Reduced plasma levels of soluble RAGE (sRAGE) have been reported in patients with chronic obstructive pulmonary disease (COPD). The aim of the present study was to evaluate the association of plasma sRAGE levels with a longitudinal decline of lung function. We have also measured plasma levels of high mobility group box 1 (HMGB1), a RAGE ligand which has been associated with chronic inflammatory diseases including COPD. Methods Baseline plasma concentrations of sRAGE and HMGB1 were measured in non-smokers (n = 32), smokers without COPD (n = 212), and smokers with COPD (n = 51), and the associations of the plasma sRAGE and HMGB1 levels with longitudinal declines of lung function during a 4-year follow-up period were analysed. Results The plasma levels of sRAGE were significantly lower in smokers without COPD and in smokers with COPD, as compared to those of non-smokers. Plasma sRAGE levels positively correlated with FVC and FEV1 and inversely correlated with BMI and pack-years. Lower sRAGE levels were associated with greater declines of FEV1/FVC over 4 years in all participants. Moreover, multivariate regression analysis indicated that the baseline plasma sRAGE concentration was an independent predictor of FEV1/FVC decline in all groups. A subgroup analysis showed that decreased sRAGE levels are significantly associated with a more rapid decline of FEV1/FVC in smokers with COPD. There was no significant correlation between plasma HMGB1 levels and longitudinal decline of lung function. Conclusions Lower plasma concentrations of sRAGE were associated with greater progression of airflow limitations over time, especially in smokers with COPD, suggesting that RAGE might have a protective role in the lung.
Collapse
Affiliation(s)
- Hiroshi Iwamoto
- Heart and Lung Center, Division of Pulmonary medicine, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
89
|
Blackwell TS, Tager AM, Borok Z, Moore BB, Schwartz DA, Anstrom KJ, Bar-Joseph Z, Bitterman P, Blackburn MR, Bradford W, Brown KK, Chapman HA, Collard HR, Cosgrove GP, Deterding R, Doyle R, Flaherty KR, Garcia CK, Hagood JS, Henke CA, Herzog E, Hogaboam CM, Horowitz JC, King TE, Loyd JE, Lawson WE, Marsh CB, Noble PW, Noth I, Sheppard D, Olsson J, Ortiz LA, O'Riordan TG, Oury TD, Raghu G, Roman J, Sime PJ, Sisson TH, Tschumperlin D, Violette SM, Weaver TE, Wells RG, White ES, Kaminski N, Martinez FJ, Wynn TA, Thannickal VJ, Eu JP. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 2014; 189:214-22. [PMID: 24160862 DOI: 10.1164/rccm.201306-1141ws] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
Collapse
|
90
|
Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB. Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 2014; 9:e92111. [PMID: 24647608 PMCID: PMC3960165 DOI: 10.1371/journal.pone.0092111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted. Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing. 873 genes were differentially expressed in IPF (FDR<5%), and 440 unique genes had significant differential splicing events in at least one exonic region (FDR<5%). We used qPCR to validate the differential exon usage in the second and third most significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will serve as a resource for future investigations of gene regulation in IPF.
Collapse
Affiliation(s)
- Tracy Nance
- Department of Pathology, Stanford University, Stanford, California, United States of America
- * E-mail: (TN); (GR); (SBM)
| | - Kevin S. Smith
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Vanessa Anaya
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Rhea Richardson
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Lawrence Ho
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mauro Pala
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Sara Mostafavi
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Alexis Battle
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Carol Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Glenn Rosen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, United States of America
- * E-mail: (TN); (GR); (SBM)
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, Stanford, California, United States of America
- * E-mail: (TN); (GR); (SBM)
| |
Collapse
|
91
|
Milutinovic PS, Englert JM, Crum LT, Mason NS, Ramsgaard L, Enghild JJ, Sparvero LJ, Lotze MT, Oury TD. Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products. PLoS One 2014; 9:e88259. [PMID: 24642901 PMCID: PMC3958346 DOI: 10.1371/journal.pone.0088259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.
Collapse
Affiliation(s)
- Pavle S. Milutinovic
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Judson M. Englert
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Lauren T. Crum
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neale S. Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lasse Ramsgaard
- Center for Insoluble Protein Structures, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J. Enghild
- Center for Insoluble Protein Structures, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Louis J. Sparvero
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
92
|
Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One 2014; 9:e86903. [PMID: 24475194 PMCID: PMC3903589 DOI: 10.1371/journal.pone.0086903] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
The human receptor for advanced glycation endproducts (RAGE) is a multiligand cell surface protein belonging to the immunoglobulin superfamily, and is involved in inflammatory and immune responses. Most importantly, RAGE is considered a receptor for HMGB1 and several S100 proteins, which are Damage-Associated Molecular Pattern molecules (DAMPs) released during tissue damage. In this study we show that the Ager gene coding for RAGE first appeared in mammals, and is closely related to other genes coding for cell adhesion molecules (CAMs) such as ALCAM, BCAM and MCAM that appeared earlier during metazoan evolution. RAGE is expressed at very low levels in most cells, but when expressed at high levels, it mediates cell adhesion to extracellular matrix components and to other cells through homophilic interactions. Our results suggest that RAGE evolved from a family of CAMs, and might still act as an adhesion molecule, in particular in the lung where it is highly expressed or under pathological conditions characterized by an increase of its protein levels.
Collapse
Affiliation(s)
- Luca Sessa
- Chromatin Dynamics Unit, San Raffaele University and Research Institute, Milano, Italy
| | - Elena Gatti
- Chromatin Dynamics Unit, San Raffaele University and Research Institute, Milano, Italy
| | - Filippo Zeni
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, Milano, Italy
| | - Antonella Antonelli
- Chromatin Dynamics Unit, San Raffaele University and Research Institute, Milano, Italy
| | - Alessandro Catucci
- Chromatin Dynamics Unit, San Raffaele University and Research Institute, Milano, Italy
| | - Michael Koch
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Giulio Pompilio
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, Milano, Italy
| | - Günter Fritz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Angela Raucci
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, Milano, Italy
- * E-mail: (MEB); (AR)
| | - Marco E. Bianchi
- Chromatin Dynamics Unit, San Raffaele University and Research Institute, Milano, Italy
- * E-mail: (MEB); (AR)
| |
Collapse
|
93
|
Vuga LJ, Milosevic J, Pandit K, Ben-Yehudah A, Chu Y, Richards T, Sciurba J, Myerburg M, Zhang Y, Parwani AV, Gibson KF, Kaminski N. Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis. PLoS One 2013; 8:e83120. [PMID: 24376648 PMCID: PMC3869779 DOI: 10.1371/journal.pone.0083120] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-β1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-β1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-β1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-β1 signaling should be persuaded.
Collapse
Affiliation(s)
- Louis J. Vuga
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Jadranka Milosevic
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kusum Pandit
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ahmi Ben-Yehudah
- Pittsburgh Development Center, Magee-Women’s Research Institute and Foundation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yanxia Chu
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas Richards
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joshua Sciurba
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Myerburg
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yingze Zhang
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anil V. Parwani
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kevin F. Gibson
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
94
|
Kyung SY, Byun KH, Yoon JY, Kim YJ, Lee SP, Park JW, Lee BH, Park JS, Jang AS, Park CS, Jeong SH. Advanced glycation end-products and receptor for advanced glycation end-products expression in patients with idiopathic pulmonary fibrosis and NSIP. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 7:221-228. [PMID: 24427342 PMCID: PMC3885476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
Advanced glycation end products (AGEs) are associated with the pathogenesis of various diseases. AGEs induce excess accumulation of extracellular matrix and expression of profibrotic cytokines. In addition, studies on receptor for advanced glycation end products (RAGE) have shown that the ligand-RAGE interaction activates several intracellular signaling cascades associated with several fibrotic diseases. We investigated the expression of AGEs and RAGE in samples from patients with idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP). Lung tissues and plasma samples from patients with IPF (n=10), NSIP (n=10), and control subjects (n=10) were obtained. Expression of AGEs and RAGE was determined by immunofluorescence assay of lung tissue. Circulating AGEs were measured by Western blot and enzyme-linked immunosorbent assay. Lungs with IPF showed strong expression for both AGEs and RAGE compared to that in NSIP and controls. However, no difference in AGE or RAGE expression was observed in lungs with NSIP compared to that in the controls. Levels of circulating AGEs also increased significantly in lungs of patients with IPF compared to those with NSIP and normal control. Increased AGE-RAGE interaction may play an important role in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Sun Young Kyung
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Kyung Hee Byun
- Department of Anatomy, Gachon University of Medicine and ScienceIncheon, Republic of Korea
| | - Jin Young Yoon
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Yu Jin Kim
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Sang Pyo Lee
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Jeong-Woong Park
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Bong Hee Lee
- Department of Anatomy, Gachon University of Medicine and ScienceIncheon, Republic of Korea
| | - Jong Sook Park
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - An Soo Jang
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - Choon Sik Park
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| |
Collapse
|
95
|
Cheng DT, Kim DK, Cockayne DA, Belousov A, Bitter H, Cho MH, Duvoix A, Edwards LD, Lomas DA, Miller BE, Reynaert N, Tal-Singer R, Wouters EFM, Agustí A, Fabbri LM, Rames A, Visvanathan S, Rennard SI, Jones P, Parmar H, MacNee W, Wolff G, Silverman EK, Mayer RJ, Pillai SG. Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188:948-57. [PMID: 23947473 DOI: 10.1164/rccm.201302-0247oc] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RATIONALE Emphysema in chronic obstructive pulmonary disease (COPD) can be characterized by high-resolution chest computed tomography (HRCT); however, the repeated use of HRCT is limited because of concerns regarding radiation exposure and cost. OBJECTIVES To evaluate biomarkers associated with emphysema and COPD-related clinical characteristics, and to assess the relationships of soluble receptor for advanced glycation endproducts (sRAGE), a candidate systemic biomarker identified in this study, with single-nucleotide polymorphisms (SNPs) in the gene coding for RAGE (AGER locus) and with clinical characteristics. METHODS Circulating levels of 111 biomarkers were analyzed for association with clinical characteristics in 410 patients with COPD enrolled in the TESRA study. sRAGE was also measured in the ECLIPSE cohort in 1,847 patients with COPD, 298 smokers and 204 nonsmokers. The association between 21 SNPs in the AGER locus with sRAGE levels and clinical characteristics was also investigated. MEASUREMENTS AND MAIN RESULTS sRAGE was identified as a biomarker of diffusing capacity of carbon monoxide and lung density in the TESRA cohort. In the ECLIPSE cohort, lower sRAGE levels were associated with increased emphysema, increased Global Initiative for Chronic Obstructive Lung Disease stage, and COPD disease status. The associations with emphysema in both cohorts remained significant after covariate adjustment (P < 0.0001). One SNP in the AGER locus, rs2070600, was associated with circulating sRAGE levels both in TESRA (P = 0.0014) and ECLIPSE (7.07 × 10(-16)), which exceeded genome-wide significance threshold. Another SNP (rs2071288) was also associated with sRAGE levels (P = 0.01) and diffusing capacity of carbon monoxide (P = 0.01) in the TESRA study. CONCLUSIONS Lower circulating sRAGE levels are associated with emphysema severity and genetic polymorphisms in the AGER locus are associated with systemic sRAGE levels. Clinical trial registered with www.clinicaltrials.gov (NCT 00413205 and NCT 00292552).
Collapse
|
96
|
Hagiwara S, Jha JC, Cooper ME. Identifying and interpreting novel targets that address more than one diabetic complication: a strategy for optimal end organ protection in diabetes. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0148-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
97
|
Van Crombruggen K, Jacob F, Zhang N, Bachert C. Damage-associated molecular patterns and their receptors in upper airway pathologies. Cell Mol Life Sci 2013; 70:4307-21. [PMID: 23673984 PMCID: PMC11113492 DOI: 10.1007/s00018-013-1356-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022]
Abstract
Inflammation of the nasal (rhinitis) and sinus mucosa (sinusitis) are prevalent medical conditions of the upper airways that are concurrent in many patients; hence the terminology "rhinosinusitis". The disease status is further defined to be "chronic" in case symptoms persist for more than 12 weeks without resolution. A diverse spectrum of external factors including viral and bacterial insults together with epithelial barrier malfunctions could be implicated in the chronicity of the inflammatory responses in chronic rhinosinusitis (CRS). However, despite massive research efforts in an attempt to unveil the pathophysiology, the exact reason for a lack of resolution still remains poorly understood. A novel set of molecules that could be implicated in sustaining the inflammatory reaction may be found within the host itself. Indeed, besides mediators of inflammation originating from outside, some endogenous intracellular and/or extracellular matrix (ECM) components from the host can be released into the extracellular space upon damage induced during the initial inflammatory reaction where they gain functions distinct from those during normal physiology. These "host-self" molecules are known to modulate inflammatory responses under pathological conditions, potentially preventing resolution and contributing to the development of chronic inflammation. These molecules are collectively classified as damage-associated molecular patterns (DAMPs). This review summarizes the current knowledge regarding DAMPs in upper airway pathologies, also covering those that were previously investigated for their intracellular and/or ECM functions often acting as an antimicrobial agent or implicated in tissue/cell homeostasis, and for which their function as a danger signaling molecule was not assessed. It is, however, of importance to assess these molecules again from a point of view as a DAMP in order to further unravel the pathogenesis of CRS.
Collapse
Affiliation(s)
- Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium,
| | | | | | | |
Collapse
|
98
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
99
|
Opposite behavior of plasma levels surfactant protein type B and receptor for advanced glycation end products in pulmonary sarcoidosis. Respir Med 2013; 107:1617-24. [DOI: 10.1016/j.rmed.2013.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/13/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022]
|
100
|
B Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 2013; 49:167-79. [PMID: 23526222 DOI: 10.1165/rcmb.2013-0094tr] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell-cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease.
Collapse
Affiliation(s)
- Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | |
Collapse
|