51
|
Abstract
Noroviruses are recognized as emerging enteric pathogens of humans and have been identified in recent years in a number of mammalian species. The role of noroviruses as pathogens in immune-competent animals and under natural conditions remains uncertain, although both homologous and heterologous animal models are now available to investigate the pathogenesis, the immune response, and the molecular mechanism regulating norovirus infection. Recently, evidence has been gathered that noroviruses may also circulate in domestic carnivores. The zoonotic implications of these novel viruses deserve more attention, due to the strict social interactions between humans and pets.
Collapse
Affiliation(s)
- Vito Martella
- Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi Aldo Moro di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy.
| | | | | |
Collapse
|
52
|
Di Martino B, Di Profio F, Ceci C, Martella V, Lavazza A, Massirio I, Marsilio F. Seroprevalence of St-Valerien-like caliciviruses in Italian swine. J Gen Virol 2011; 93:102-105. [PMID: 21940412 DOI: 10.1099/vir.0.036236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
St-Valérien-like viruses are newly recognized porcine caliciviruses recently detected in North America and Europe. In this study, baculovirus-expressed virus-like particles of the St-Valérien strain 25A/ITA were generated and used for the development of an antibody-detection ELISA kit to assess the seroprevalence of these novel caliciviruses in swine. Antibodies specific for St-Valérien-like virus were detected in 63 (10.3 %) of 614 serum samples tested with titres ranging from 1 : 50 (28.6 %) to 1 : 800 (40.7 %). These results indicate that St-Valérien-like infections are common among domestic pigs, italy.
Collapse
Affiliation(s)
- Barbara Di Martino
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Federica Di Profio
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Chiara Ceci
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Vito Martella
- Department of Public Health and Animal Sciences, University of Bari, Valenzano, Bari, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Italy
| | | | - Fulvio Marsilio
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| |
Collapse
|
53
|
Infection of calves with bovine norovirus GIII.1 strain Jena virus: an experimental model to study the pathogenesis of norovirus infection. J Virol 2011; 85:12013-21. [PMID: 21880760 DOI: 10.1128/jvi.05342-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The experimental infection of newborn calves with bovine norovirus was used as a homologous large animal model to study the pathogenesis of norovirus infection and to determine target cells for viral replication. Six newborn calves were inoculated orally with Jena virus (JV), a bovine norovirus GIII.1 strain, and six calves served as mock-inoculated controls. Following infection, calves were euthanized before the onset of diarrhea (12 h postinoculation [hpi]), shortly after the onset of diarrhea (18 to 21 hpi), and postconvalescence (4 days pi [dpi]). Calves inoculated with JV developed severe watery diarrhea at 14 to 16 hpi, and this symptom lasted for 53.5 to 67.0 h. Intestinal lesions were characterized by severe villus atrophy together with loss and attenuation of villus epithelium. Viral capsid antigen (JV antigen) was detected by immunohistochemistry in the cytoplasm of epithelial cells on villi. In addition, granular material positive for JV antigen was detected in the lamina propria of villi. Lesions first appeared at 12 hpi and were most extensive at 18 to 19 hpi, extending from midjejunum to ileum. The intestinal mucosa had completely recovered at 4 dpi. There was no indication of systemic infection as described for norovirus infection in mice. JV was found in intestinal contents by reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) as early as 12 hpi. Fecal shedding of the virus started at 13 hpi and stopped at 23 hpi or at necropsy (4 dpi), respectively. Throughout the trial, none of the control calves tested positive for JV by ELISA or RT-PCR.
Collapse
|
54
|
Higgins PDR, Johnson LA, Sauder K, Moons D, Blanco L, Taube S, Wobus CE. Transient or persistent norovirus infection does not alter the pathology of Salmonella typhimurium induced intestinal inflammation and fibrosis in mice. Comp Immunol Microbiol Infect Dis 2011; 34:247-57. [PMID: 21237511 PMCID: PMC3167145 DOI: 10.1016/j.cimid.2010.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022]
Abstract
Murine noroviruses (MNV) are currently the most prevalent viruses infecting mouse research colonies. Concurrent infection of research mice with these viruses can dramatically alter the experimental outcome in some research models, but not others. In this report, we investigated the effect of MNV1 and MNV4 on a murine model of intestinal inflammation and fibrosis induced by Salmonella typhimurium infection in C57BL/6 mice. Subsequent co-infection of these mice with MNV1 or MNV4 did not lead to major changes in histopathology, the inflammatory response, or the fibrotic response. Thus, MNV does not substantially alter all gastrointestinal research models, highlighting the importance of investigating potential alterations in the research outcome by MNV on an individual basis. We hypothesize that this is particularly important in cases of research models that use immunocompromised mice, which could be more sensitive to MNV infection-induced changes.
Collapse
Affiliation(s)
- Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, Medical Science Research Building One, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5682, United States.
| | | | | | | | | | | | | |
Collapse
|
55
|
The dynamics of norovirus outbreak epidemics: recent insights. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1141-9. [PMID: 21695033 PMCID: PMC3118882 DOI: 10.3390/ijerph8041141] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
Noroviruses are a major cause of gastroenteritis outbreaks worldwide. Norovirus outbreaks frequently occur as epidemics which appear to be related to both genetic and environmental factors. This review considers recent progress in understanding these factors. The norovirus genome undergoes continuous change and this appears to be important in the persistence of the virus in the community. Studies on the common GII.4 genotype have shown that some norovirus outbreak epidemics involving this genotype are correlated with specific changes in the genome. In contrast to the growing understanding of the role of genetic factors in norovirus outbreak epidemics, the role of environmental factors is less well understood. Topics reviewed here include long term excretion of norovirus in some individuals, long term survivability of norovirus in the environment, the role of meteorological factors in the control of norovirus outbreaks and the possible zoonotic transmission of the virus.
Collapse
|
56
|
Wolf S, Reetz J, Otto P. Genetic characterization of a novel calicivirus from a chicken. Arch Virol 2011; 156:1143-50. [PMID: 21404111 DOI: 10.1007/s00705-011-0964-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
We describe the identification and genetic characterization of a novel enteric calicivirus, detected by transmission electron microscopy and RT-PCR in two clinically normal chickens and in a chicken with runting and stunting syndrome from different flocks in southern Germany. Positive findings were confirmed by sequencing. The complete nucleotide sequence and genome organization of one strain (Bavaria/04V0021) was determined. The genome of the Bavaria virus is 7,908 nt long and contains two coding open reading frames. Phylogenetic analysis of the deduced partial 2C helicase/NTPase, 3C cysteine protease, RNA-dependent RNA polymerase and complete VP1 capsid protein amino acid sequences showed that the virus is genetically related to but distinct from sapoviruses and lagoviruses. Morphologically, the Bavaria virus particles are 37-42 nm in diameter and exhibit characteristic cup-shaped surface depressions.
Collapse
Affiliation(s)
- Sandro Wolf
- Department of Biology, Institute for Microbiology, Dresden University of Technology, 01062, Dresden, Germany.
| | | | | |
Collapse
|
57
|
Mechanisms of GII.4 norovirus evolution. Trends Microbiol 2011; 19:233-40. [PMID: 21310617 DOI: 10.1016/j.tim.2011.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022]
Abstract
Since the late 1990s norovirus (NoV) strains belonging to a single genotype (GII.4) have caused at least four global epidemics. To date, the higher epidemiological fitness of the GII.4 strains has been attributed to a faster rate of evolution within the virus capsid, resulting in the ability to escape herd immunity. Four key factors have been proposed to influence the rate of evolution in NoV. These include host receptor recognition, sequence space, duration of herd immunity, and replication kinetics. In this review we discuss recent advancements in our understanding of these four mechanisms in relation to GII.4 evolution.
Collapse
|
58
|
Brugere-Picoux J, Tessier P. Gastro-entérites virales des animaux domestiques et zoonoses. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2010. [PMID: 22046708 PMCID: PMC7111075 DOI: 10.1016/s0001-4079(19)32174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pendant longtemps les méthodes de diagnostic des diarrhées infectieuses ont été limitées aux bactéries et aux protozoaires et il a fallu les nouvelles techniques de la microscopie électronique et de la biologie moléculaire pour démontrer que les diarrhées pouvaient aussi reconnaître une origine virale chez l’Homme comme chez les animaux. En 1969, c’est chez le veau que l’utilisation de la microcopie électronique a permis d’identifier pour la première fois un virus responsable d’une diarrhée. Ce « réo-like virus » était un rotavirus et ce n’est que quatre années plus tard que l’on a découvert qu’il était aussi à l’origine des diarrhées sévères observées chez les jeunes enfants. A la même période les norovirus, en particulier le virus Norwalk humain, ont été découverts puis, selon les espèces, les coronavirus, les sapovirus, les pestivirus, les astrovirus, les adénovirus entéritiques, les torovirus, les picobirnavirus... Certains de ces virus rencontrés chez l’animal pourraient jouer un rôle zoonotique. Il s’agit principalement des rotavirus. Les rotavirus identifiés dans de nombreuses espèces animales sont généralement spécifiques de l’espèce hôte mais une transmission zoonotique est suggérée soit en raison de l’observation de cas de contaminations croisées, notamment par des reproductions expérimentales, soit par la comparaison des séquences génétiques montrant l’existence d’une parenté étroite entre certains rotavirus animaux et humains ou encore après la découverte, lors de la surveillance épidémiologique des rotaviroses humaines, de nouveaux génotypes qui s’avèrent d’origine animale. Quelques souches animales de norovirus, de sapovirus, de picobirnavirus ou d’astrovirus peuvent présenter des similitudes génétiques avec des souches humaines mais le risque de zoonose n’a jamais été démontré.
Collapse
|
59
|
Mathijs E, Muylkens B, Mauroy A, Ziant D, Delwiche T, Thiry E. Experimental evidence of recombination in murine noroviruses. J Gen Virol 2010; 91:2723-33. [PMID: 20702654 DOI: 10.1099/vir.0.024109-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on sequencing data, norovirus (NoV) recombinants have been described, but no experimental evidence of recombination in NoVs has been documented. Using the murine norovirus (MNV) model, we investigated the occurrence of genetic recombination between two co-infecting wild-type MNV isolates in RAW cells. The design of a PCR-based genotyping tool allowed accurate discrimination between the parental genomes and the detection of a viable recombinant MNV (Rec MNV) in the progeny viruses. Genetic analysis of Rec MNV identified a homologous-recombination event located at the ORF1-ORF2 overlap. Rec MNV exhibited distinct growth curves and produced smaller plaques than the wild-type MNV in RAW cells. Here, we demonstrate experimentally that MNV undergoes homologous recombination at the previously described recombination hot spot for NoVs, suggesting that the MNV model might be suitable for in vitro studies of NoV recombination. Moreover, the results show that exchange of genetic material between NoVs can generate viruses with distinct biological properties from the parental viruses.
Collapse
Affiliation(s)
- Elisabeth Mathijs
- Department of Infectious and Parasitic Diseases, Virology and Viral Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
60
|
Costantini V, Grenz L, Fritzinger A, Lewis D, Biggs C, Hale A, Vinjé J. Diagnostic accuracy and analytical sensitivity of IDEIA Norovirus assay for routine screening of human norovirus. J Clin Microbiol 2010; 48:2770-8. [PMID: 20554813 PMCID: PMC2916579 DOI: 10.1128/jcm.00654-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/14/2010] [Accepted: 06/10/2010] [Indexed: 12/29/2022] Open
Abstract
Noroviruses (NoVs) are recognized as the leading cause of epidemic and sporadic acute gastroenteritis. Early detection of NoV is crucial to control the spread of the disease. In this study, we evaluated the diagnostic accuracy, analytical sensitivity, and analytical reactivity of the IDEIA Norovirus assay (an enzyme immunoassay [EIA]) in a prospective and retrospective study design. A total of 557 prospectively collected fecal samples and a panel of 97 archived fecal samples, including 21 different GI and GII genotypes, were tested by conventional reverse transcription-PCR (RT-PCR)/bidirectional sequencing, real-time RT-PCR, and electron microscopy. The sensitivity and specificity of the EIA were 57.6% and 91.9%, respectively. The sensitivity for detecting NoV in fecal samples from outbreaks improved from 44.1% when three samples were tested to 76.9% when five samples per outbreak were tested. The EIA was able to detect strains from 7 GI and 11 GII genotypes. The analytical sensitivity of the EIA was 3.1 x 10(6) and 1.6 x 10(7) virus particles g(-1) of fecal sample for NoV GI and GII strains, respectively. Most GII samples positive by EIA had a threshold cycle (C(T)) of <26.5, and 50% of the GII samples negative by EIA had a C(T) of >25.6, suggesting that, although strains from genotypes GI.8, GII.10, and GII.16 were not detected, the low sensitivity of the EIA is primarily caused by low virus concentration. In conclusion, the current EIA may be of use as a rapid screening test during a norovirus outbreak investigation when multiple fecal samples are available; however, sporadic samples should be tested by molecular methods.
Collapse
Affiliation(s)
- Verónica Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mail Stop G-04, 1600 Clifton Rd., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J Virol 2010; 84:8617-25. [PMID: 20554772 DOI: 10.1128/jvi.00630-10] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, we reported the discovery and characterization of Tulane virus (TV), a novel rhesus calicivirus (CV) (T. Farkas, K. Sestak, C. Wei, and X. Jiang, J. Virol. 82:5408-5416, 2008). TV grows well in tissue culture, and it represents a new genus within Caliciviridae, with the proposed name of Recovirus. We also reported a high prevalence of CV antibodies in macaques of the Tulane National Primate Research Center (TNPRC) colony, including anti-norovirus (NoV), anti-sapovirus (SaV), and anti-TV (T. Farkas, J. Dufour, X. Jiang, and K. Sestak, J. Gen. Virol. 91:734-738, 2010). To broaden our knowledge about CV infections in captive nonhuman primates (NHP), 500 rhesus macaque stool samples collected from breeding colony TNPRC macaques were tested for CVs. Fifty-seven (11%) samples contained recovirus isolates. In addition, one NoV was detected. Phylogenetic analysis classified the recovirus isolates into two genogroups and at least four genetic types. The rhesus NoV isolate was closely related to GII human NoVs. TV-neutralizing antibodies were detected in 88% of serum samples obtained from primate caretakers. Binding and plaque reduction assays revealed the involvement of type A and B histo-blood group antigens (HBGA) in TV infection. Taken together, these findings indicate the zoonotic potential of primate CVs. The discovery of a genetically diverse and prevalent group of primate CVs and remarkable similarities between rhesus enteric CVs and human NoVs opens new possibilities for research involving in vitro and in vivo models of human NoV gastroenteritis.
Collapse
|
62
|
Abstract
To identify the prevalence and genetic variability of noroviruses in dogs, we tested fecal samples by using reverse transcription-PCR. We found canine norovirus in 40% and 9% of dogs with and without diarrhea, respectively. The virus was genetically unrelated to other noroviruses and constitutes a tentative new genogroup.
Collapse
|
63
|
Rohayem J, Bergmann M, Gebhardt J, Gould E, Tucker P, Mattevi A, Unge T, Hilgenfeld R, Neyts J. Antiviral strategies to control calicivirus infections. Antiviral Res 2010; 87:162-78. [PMID: 20471996 PMCID: PMC7114105 DOI: 10.1016/j.antiviral.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
Abstract
Caliciviridae are human or non-human pathogenic viruses with a high diversity. Some members of the Caliciviridae, i.e. human pathogenic norovirus or rabbit hemorrhagic disease virus (RHDV), are worldwide emerging pathogens. The norovirus is the major cause of viral gastroenteritis worldwide, accounting for about 85% of the outbreaks in Europe between 1995 and 2000. In the United States, 25 million cases of infection are reported each year. Since its emergence in 1984 as an agent of fatal hemorrhagic diseases in rabbits, RHDV has killed millions of rabbits and has been dispersed to all of the inhabitable continents. In view of their successful and apparently increasing emergence, the development of antiviral strategies to control infections due to these viral pathogens has now become an important issue in medicine and veterinary medicine. Antiviral strategies have to be based on an understanding of the epidemiology, transmission, clinical symptoms, viral replication and immunity to infection resulting from infection by these viruses. Here, we provide an overview of the mechanisms underlying calicivirus infection, focusing on the molecular aspects of replication in the host cell. Recent experimental data generated through an international collaboration on structural biology, virology and drug design within the European consortium VIZIER is also presented. Based on this analysis, we propose antiviral strategies that may significantly impact on the epidemiological characteristics of these highly successful viral pathogens.
Collapse
Affiliation(s)
- Jacques Rohayem
- The Calicilab, Institute of Virology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
An outbreak of norovirus (NoV) infection was identified in a kennel. Sequence analysis of a short fragment in the polymerase complex indicated the clonal origin of the strains, which were similar to the prototype canine NoV strain GIV.2/Bari/170/07-4/ITA (94.7% nucleotide identity). The findings demonstrate that canine NoV circulates in dogs in Greece and that it can spread easily across a group of animals.
Collapse
|
65
|
La Rosa G, Iaconelli M, Pourshaban M, Fratini M, Muscillo M. Molecular detection and genetic diversity of norovirus genogroup IV: a yearlong monitoring of sewage throughout Italy. Arch Virol 2010; 155:589-93. [DOI: 10.1007/s00705-010-0619-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/04/2010] [Indexed: 02/03/2023]
|
66
|
Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. J Clin Microbiol 2010; 48:1215-22. [PMID: 20164276 DOI: 10.1128/jcm.02130-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular biological survey on porcine norovirus (NoV) and sapovirus (SaV) was conducted in Toyama Prefecture, Japan, during fiscal year 2008. Both NoV and SaV were detected from swine fecal samples throughout the surveillance period, indicating that these viruses were circulating in this region. NoV strains detected in this study belonged to three genotypes that are known as typical swine NoVs. Although human NoVs were occasionally detected, it was unclear whether they replicated in pigs. As for SaV, genogroup VII (GVII) and other divergent genogroups were identified in addition to the dominant genogroup, GIII, which is the prototypic porcine SaV. In addition, 3 strains genetically related to human SaV were detected. Two of these 3 strains were closely related to human SaV GV. Our study showed that genetic diversification of porcine SaV is currently progressing in the swine population.
Collapse
|
67
|
Cunha JB, de Mendonça MCL, Miagostovich MP, Leite JPG. First detection of porcine norovirus GII.18 in Latin America. Res Vet Sci 2010; 89:126-9. [PMID: 20080272 DOI: 10.1016/j.rvsc.2009.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/20/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
Human (Hu) noroviruses (NoVs) circulate worldwide infecting people of all ages in developing and developed countries. Animal NoVs present some antigenic and genetic relationship to HuNoVs, although their zoonotic potential has not been established yet. Among animal NoVs, porcine (Po) NoVs are the most genetically related to HuNoVs. PoNoVs have only been detected in healthy finisher pigs in a few developed countries. Information about them lacks in developing countries. In this study 96 fecal samples from pigs of different ages from five farms in Rio de Janeiro State, Brazil were tested for NoVs. We report detection and genotyping by RT-PCR, nucleotide sequencing and phylogenetic analysis of partial polymerase and capsid regions of viral genome PoNoV genogroup II genotype 18 (GII.18) in one stool sample from a healthy finisher pig. This is the first report of PoNoV detection in Latin America and it supports the assumption that PoNoVs present a worldwide distribution.
Collapse
Affiliation(s)
- J B Cunha
- Laboratory of Comparative Virology, Pav. Hélio & Peggy Pereira, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, 4365, CEP 21040-360 Manguinhos, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
68
|
Bank-Wolf BR, König M, Thiel HJ. Zoonotic aspects of infections with noroviruses and sapoviruses. Vet Microbiol 2010; 140:204-12. [DOI: 10.1016/j.vetmic.2009.08.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/03/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|
69
|
Detection of antibodies against norovirus genogroup GIV in carnivores. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:180-2. [PMID: 19923574 DOI: 10.1128/cvi.00312-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noroviruses (NoVs) resembling human NoV genotype GIV (Alphatron-like) have recently been detected in carnivores. By using an enzyme-linked immunosorbent assay based on baculovirus-expressed capsid protein VP1 of lion strain GGIV.2/Pistoia/387/06/ITA, NoV-specific antibodies were detected in cats (16.11%) and dogs (4.8%), demonstrating that these animals are exposed to infections caused by NoVs.
Collapse
|
70
|
Farkas T, Dufour J, Jiang X, Sestak K. Detection of norovirus-, sapovirus- and rhesus enteric calicivirus-specific antibodies in captive juvenile macaques. J Gen Virol 2009; 91:734-8. [PMID: 19889933 DOI: 10.1099/vir.0.015263-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to determine the prevalence of anti-norovirus (NoV), -sapovirus (SaV) and -Tulane virus (TV) antibodies in rhesus macaques of the Tulane National Primate Research Center and to evaluate the antigenic relationship between these viruses. A high prevalence of NoV-binding (51-61 %) and SaV-binding (50-56 %) antibodies and TV-neutralizing (69 %) antibodies were detected. Serum samples obtained during a human NoV outbreak and a multivalent anti-NoV hyperimmune serum were not able to neutralize TV infectivity. Conversely, low levels of cross-reactivity between the prototype TV and NoVs, but not between the TV and SaVs were detected by ELISA. These data indicate the preservation of some cross-reactive B-cell epitopes between the rhesus and human caliciviruses (CVs). The high prevalence of human and rhesus CV-specific serum antibodies suggests the frequent exposure of colony macaques to enteric CVs including the possibility of CV transmission between human and non-human primate hosts.
Collapse
Affiliation(s)
- Tibor Farkas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
71
|
Molecular epidemiology of genogroup II-genotype 4 noroviruses in the United States between 1994 and 2006. J Clin Microbiol 2009; 48:168-77. [PMID: 19864482 DOI: 10.1128/jcm.01622-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human noroviruses (NoVs) of genogroup II, genotype 4 (GII.4) are the most common strains detected in outbreaks of acute gastroenteritis worldwide. To gain insight into the epidemiology and genetic variation of GII.4 strains, we analyzed 773 NoV outbreaks reported to the CDC from 1994 to 2006. Of these NoV outbreaks, 629 (81.4%) were caused by GII viruses and 342 (44.2%) were caused by GII.4 strains. The proportion of GII.4 outbreaks increased from 5% in 1994 to 85% in 2006, but distinct annual differences were noted, including sharp increases in 1996, 2003, and 2006 each associated with newly emerging GII.4 strains. Sequence analysis of the full-length VP1 gene of GII.4 strains identified in this study and from GenBank segregated these viruses into at least 9 distinct subclusters which had 1.3 to 3.2% amino acid variation between strains in different subclusters. We propose that GII.4 subclusters be defined as having >5% sequence variation between strains. Our data confirm other studies on the rapid emergence and displacement of highly virulent GII.4 strains.
Collapse
|
72
|
Abstract
Point source norovirus outbreaks can be difficult to track due to high background levels of the virus in the environment and the limited strain variation in some genotyping regions. However, rapid and accurate source identification can limit the spread of a foodborne outbreak and reduce the number of cases. Harmonization of genotyping assays is critical for enabling the rapid exchange of sequence data nationally and internationally. Several regions of the genome have been proposed for this purpose, but no consensus has been reached. In the present study, two standardized genotyping protocols (region C and region D) were evaluated by nine laboratories in Canada and the United States, using a coded panel of 96 fecal specimens representing 22 different norovirus genotypes. Overall, region C typing had a success rate of 78% compared to 52% for region D; however, region D provides greater nucleotide sequence diversity for identifying new GII.4 variant strains. Significant differences in the genotyping success rate were observed among the nine participating laboratories (10% to 100%) and among the different genotypes (6% to 100%). For several genogroup II strains, reduced region D amplification correlated directly with mismatches between primer sequences and the template. Based on overall performance, we recommend the region C protocol for routine genotyping of noroviruses, while the region D protocol may be useful for identifying new GII.4 variants. Standardized genotyping protocols will enable rapid exchange of outbreak and sequence data through electronic norovirus surveillance networks.
Collapse
|
73
|
Abstract
Alphatronlike (genogroup IV [GIV]) noroviruses (NoVs) have been recently identified in carnivores. By screening a collection of 183 fecal samples collected during 2007 from dogs with enteric signs, the overall NoV prevalence was found to be 2.2% (4/183). A unique strain, Bari/91/07/ITA, resembled GIV.2 NoVs in its ORF1 (polymerase complex), while it was genetically unrelated in its full-length ORF2 (capsid gene) to GIV animal and human NoVs (54.0 to 54.4% amino acid identity) and to any other NoV genogroup (<54.7% amino acid identity). It displayed the highest identity (58.1% amino acid identity) to unclassified human strain Chiba/040502/04/Jp. Interestingly, the very 5' end of ORF2 of the canine virus matched short noroviral sequences (88.9% nucleotide identity and 98.9% amino acid identity) identified from oysters in Japan, indicating that similar viruses may be common environmental contaminants.
Collapse
|
74
|
Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes 2009; 39:66-75. [PMID: 19396587 DOI: 10.1007/s11262-009-0360-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 04/13/2009] [Indexed: 12/19/2022]
Abstract
This study reports the molecular characterization of novel caliciviruses, the St-Valérien-like viruses, which were isolated from pig feces in the province of Quebec, Canada between 2005 and 2007. The genomes of St-Valérien-like viruses contain 6409 nucleotides and include two main open reading frames (ORFs). ORF1 encodes the non structural (NS) polyprotein and the major capsid protein (VP1) while ORF2 encodes the putative basic minor capsid protein. Typical conserved amino acid motifs predict a gene order reminiscent of calicivirus genomes. Phylogenetic, pairwise homology, and distance analyses performed on complete genomic sequences and partial amino acid sequences from the NTPase, polymerase, and major capsid protein segregated the St-Valérien-like viruses in a unique cluster sharing a common root with the Tulane virus and the noroviruses. Based on the genomic analyses presented, the St-Valérien-like viruses are members of a new genus of Caliciviridae for which we propose the name Valovirus.
Collapse
|
75
|
L’Homme Y, Sansregret R, Plante-Fortier É, Lamontagne AM, Lacroix G, Ouardani M, Deschamps J, Simard G, Simard C. Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005–2007. Arch Virol 2009; 154:581-93. [DOI: 10.1007/s00705-009-0344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 02/23/2009] [Indexed: 02/05/2023]
|
76
|
La Rosa G, Pourshaban M, Iaconelli M, Muscillo M. Detection of genogroup IV noroviruses in environmental and clinical samples and partial sequencing through rapid amplification of cDNA ends. Arch Virol 2008; 153:2077-83. [PMID: 18985275 DOI: 10.1007/s00705-008-0241-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/08/2008] [Indexed: 11/25/2022]
Abstract
Noroviruses (NoVs) give rise to clinically relevant gastroenteritis in all age groups and are widely distributed in both clinical and environmental settings. NoVs are classified into five genogroups (GI to GV), of which GI, GII and GIV infect humans. While data on the epidemiology of human NoVs GI and GII have been steadily increasing, very little information has been published on the spread of GIV in either the health care system or the environment, resulting in a lack of information about its clinical significance and pathogenesis. In order to investigate the distribution of GIV strains in the environment, we analyzed sewage samples collected from five treatment plants, by using newly designed nested RT-PCR assays. A collection of clinical stool samples, originating from pediatric patients with symptoms of acute gastroenteritis, previously analyzed in our laboratory for the presence of NoV GI or GII, was also analyzed for the presence of GIV norovirus. Results of this work attest to the presence of GIV in both clinical and environmental contexts and underline the importance of routinely screening for this genogroup, along with GI and GII, in order to better understand its distribution, prevalence and role during epidemics, which is probably underestimated.
Collapse
Affiliation(s)
- G La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | | | | | | |
Collapse
|
77
|
Wei C, Farkas T, Sestak K, Jiang X. Recovery of infectious virus by transfection of in vitro-generated RNA from tulane calicivirus cDNA. J Virol 2008; 82:11429-36. [PMID: 18787011 PMCID: PMC2573278 DOI: 10.1128/jvi.00696-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/29/2008] [Indexed: 12/28/2022] Open
Abstract
Tulane virus (TV) is a newly reported calicivirus that was isolated from stool samples of captive rhesus macaques from the Tulane National Primate Research Center (TNPRC). The virus has been cultivated successfully in LLC-MK2 rhesus monkey kidney cells. Its complete genomic sequence suggests that TV represents a new genus and is evolutionarily more closely related to Norovirus than to any other genus of Caliciviridae. In this study, we demonstrated that RNA transcripts made in vitro from the full-length genomic cDNA of TV were infectious upon transfection into permissive LLC-MK2 cells. The recombinant virus exhibited plaque morphologies and growth kinetics similar to those of the wild-type virus in this cell line. Capping was required for TV RNA infectivity. Although a subgenomic RNA has been detected in TV-transfected cells, a separate subgenomic RNA transcript was not required for the initial transfection to establish the replication. Transfection of truncated RNA lacking open reading frame 2 (ORF2) and ORF3 or TV-norovirus chimeric RNA resulted in abortive replication without the production of infectious progeny viruses, indicating that both ORFs are essential for the replication of TV. A heterologous insertion at the 5' end of the genome also hampered viral replication, suggesting that an authentic 5' end of the genome is critical for replication. The availability of the complete genomic sequence and the reverse genetics system described herein make TV a valuable model for studying calicivirus pathogenesis and replication.
Collapse
Affiliation(s)
- Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
78
|
Martella V, Lorusso E, Decaro N, Elia G, Radogna A, D'Abramo M, Desario C, Cavalli A, Corrente M, Camero M, Germinario CA, Bányai K, Di Martino B, Marsilio F, Carmichael LE, Buonavoglia C. Detection and molecular characterization of a canine norovirus. Emerg Infect Dis 2008; 14:1306-8. [PMID: 18680664 PMCID: PMC2600395 DOI: 10.3201/eid1408.080062] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified a novel calicivirus in a pup with enteritis. The isolate was related genetically (90.1% aa identity in the capsid protein) to a lion norovirus strain.
Collapse
|
79
|
Self-assembly of the recombinant capsid protein of a swine norovirus into virus-like particles and evaluation of monoclonal antibodies cross-reactive with a human strain from genogroup II. J Clin Microbiol 2008; 46:3971-9. [PMID: 18842943 DOI: 10.1128/jcm.01204-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses (NoVs) are responsible for the majority of gastroenteritis outbreaks in humans. Recently, NoV strains which are genetically closely related to human genogroup II (GII) NoVs have been detected in fecal specimens from swine. These findings have raised concern about the possible role of pigs as reservoirs for NoVs that could infect humans. To better understand the epidemiology of swine NoVs in both the swine and the human populations, rapid immunoassays are needed. In this study, baculovirus recombinants were generated to express the capsid gene of a swine NoV GII genotype 11 (GII.11) strain which self-assembled into virus-like particles (VLPs). Subsequently, the purified VLPs were used to evoke monoclonal antibodies (MAbs) in mice. A panel of eight promising MAbs was obtained and evaluated for their ability to bind to heterologous VLPs, denaturated antigens, and truncated capsid proteins. The MAbs could be classified into two groups: two MAbs that recognized linear epitopes located at the amino-terminal half (shell domain) of the swine NoV GII.11 VLPs and that cross-reacted with human GII.4 NoV VLPs. The other six MAbs bound to conformational epitopes and did not cross-react with the human GII.4 VLPs. To our knowledge, this is the first report on the characterization of MAbs against swine NoVs. The swine NoV VLPs and the MAbs described here may be further used for the design of diagnostic reagents that could help increase our knowledge of the prevalence of NoV infections in pigs and the possible role of pigs as reservoirs for NoVs.
Collapse
|
80
|
|
81
|
|
82
|
Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 2008; 82:5408-16. [PMID: 18385231 DOI: 10.1128/jvi.00070-08] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we report the characterization of a novel calicivirus (CV), the Tulane virus (TV), which was isolated from stool samples of captive juvenile rhesus macaques (Macaca mulatta) of the Tulane National Primate Research Center. The complete genome of TV contains 6,714 nucleotides plus a poly(A) tail and is organized into three open reading frames (ORFs) that encode the nonstructural (NS) polyprotein (ORF1); the capsid protein (ORF2), with an estimated molecular mass of 57.9 kDa; and a possible minor structural protein (ORF3), with an isoelectric point (pI) of 10.0 and a calculated molecular mass of 22.8 kDa. The NS polyprotein revealed all typical CV amino acid motifs, including GXXGXGKT (NTPase), EYXEX (Vpg), GDCG (protease), and GLPSG and YGDD (polymerase). Phylogenetic trees constructed for the NS polyprotein, NTPase, protease, polymerase, and capsid protein sequences consistently placed the TV on a branch rooted with Norovirus, but with distances equal to those between other genera. The TV can be cultured in a monkey kidney cell line (LLC-MK2) with the appearance of typical cytopathic effect. TV exhibits a typical CV morphology, with a diameter of 36 nm, and has a buoyant density of 1.37 g/ml. According to these physicochemical and genetic characteristics, TV represents a new CV genus for which we propose the name "Recovirus" (rhesus enteric CV). Although the pathogenicity of TV in rhesus macaques remains to be elucidated, the likelihood of TV causing intestinal infection and the availability of a tissue culture system make this virus a valuable surrogate for human CVs.
Collapse
|