51
|
Jayapal SR, Ang HYK, Wang CQ, Bisteau X, Caldez MJ, Xuan GX, Yu W, Tergaonkar V, Osato M, Lim B, Kaldis P. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle 2016; 15:3070-3081. [PMID: 27657745 DOI: 10.1080/15384101.2016.1234546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.
Collapse
Affiliation(s)
- Senthil Raja Jayapal
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | | | - Chelsia Qiuxia Wang
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,c Cancer Science Institute of Singapore, National University of Singapore , Singapore
| | - Xavier Bisteau
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Matias J Caldez
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,d National University of Singapore (NUS) , Department of Biochemistry , Singapore
| | - Gan Xiao Xuan
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Weimiao Yu
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Vinay Tergaonkar
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Motomi Osato
- c Cancer Science Institute of Singapore, National University of Singapore , Singapore
| | - Bing Lim
- b Genome Institute of Singapore , Singapore
| | - Philipp Kaldis
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,d National University of Singapore (NUS) , Department of Biochemistry , Singapore
| |
Collapse
|
52
|
Abstract
Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.
Collapse
Affiliation(s)
- Baobing Zhao
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Jing Yang
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Peng Ji
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
53
|
Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, Rappoport JZ, Wickrema A, Yang J, Ji P. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 2016; 36:498-510. [PMID: 26954545 DOI: 10.1016/j.devcel.2016.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/18/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric Wayne Roth
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, Nikon Imaging Center at Northwestern University, Chicago, IL 60611, USA
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA.
| |
Collapse
|
54
|
EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 2016; 128:1631-41. [PMID: 27480112 DOI: 10.1182/blood-2016-03-706671] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022] Open
Abstract
The mechanisms regulating the sequential steps of terminal erythroid differentiation remain largely undefined, yet are relevant to human anemias that are characterized by ineffective red cell production. Erythroid Krüppel-like Factor (EKLF/KLF1) is a master transcriptional regulator of erythropoiesis that is mutated in a subset of these anemias. Although EKLF's function during early erythropoiesis is well studied, its role during terminal differentiation has been difficult to functionally investigate due to the impaired expression of relevant cell surface markers in Eklf(-/-) erythroid cells. We have circumvented this problem by an innovative use of imaging flow cytometry to investigate the role of EKLF in vivo and have performed functional studies using an ex vivo culture system that enriches for terminally differentiating cells. We precisely define a previously undescribed block during late terminal differentiation at the orthochromatic erythroblast stage for Eklf(-/-) cells that proceed beyond the initial stall at the progenitor stage. These cells efficiently decrease cell size, condense their nucleus, and undergo nuclear polarization; however, they display a near absence of enucleation. These late-stage Eklf(-/-) cells continue to cycle due to low-level expression of p18 and p27, a new direct target of EKLF. Surprisingly, both cell cycle and enucleation deficits are rescued by epistatic reintroduction of either of these 2 EKLF target cell cycle inhibitors. We conclude that the cell cycle as regulated by EKLF during late stages of differentiation is inherently critical for enucleation of erythroid precursors, thereby demonstrating a direct functional relationship between cell cycle exit and nuclear expulsion.
Collapse
|
55
|
Wölwer CB, Pase LB, Pearson HB, Gödde NJ, Lackovic K, Huang DCS, Russell SM, Humbert PO. A Chemical Screening Approach to Identify Novel Key Mediators of Erythroid Enucleation. PLoS One 2015; 10:e0142655. [PMID: 26569102 PMCID: PMC4646491 DOI: 10.1371/journal.pone.0142655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Erythroid enucleation is critical for terminal differentiation of red blood cells, and involves extrusion of the nucleus by orthochromatic erythroblasts to produce reticulocytes. Due to the difficulty of synchronizing erythroblasts, the molecular mechanisms underlying the enucleation process remain poorly understood. To elucidate the cellular program governing enucleation, we utilized a novel chemical screening approach whereby orthochromatic cells primed for enucleation were enriched ex vivo and subjected to a functional drug screen using a 324 compound library consisting of structurally diverse, medicinally active and cell permeable drugs. Using this approach, we have confirmed the role of HDACs, proteasomal regulators and MAPK in erythroid enucleation and introduce a new role for Cyclin-dependent kinases, in particular CDK9, in this process. Importantly, we demonstrate that when coupled with imaging analysis, this approach provides a powerful means to identify and characterize rate limiting steps involved in the erythroid enucleation process.
Collapse
Affiliation(s)
- Christina B. Wölwer
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Luke B. Pase
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Helen B. Pearson
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Nathan J. Gödde
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kurt Lackovic
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sarah M. Russell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Pathology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
56
|
Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 2015; 124:1931-40. [PMID: 25092175 DOI: 10.1182/blood-2013-11-537761] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Global nuclear condensation, culminating in enucleation during terminal erythropoiesis, is poorly understood. Proteomic examination of extruded erythroid nuclei from fetal liver revealed a striking depletion of most nuclear proteins, suggesting that nuclear protein export had occurred. Expression of the nuclear export protein, Exportin 7 (Xpo7), is highly erythroid-specific, induced during erythropoiesis, and abundant in very late erythroblasts. Knockdown of Xpo7 in primary mouse fetal liver erythroblasts resulted in severe inhibition of chromatin condensation and enucleation but otherwise had little effect on erythroid differentiation, including hemoglobin accumulation. Nuclei in Xpo7-knockdown cells were larger and less dense than normal and accumulated most nuclear proteins as measured by mass spectrometry. Strikingly,many DNA binding proteins such as histones H2A and H3 were found to have migrated into the cytoplasm of normal late erythroblasts prior to and during enucleation, but not in Xpo7-knockdown cells. Thus, terminal erythroid maturation involves migration of histones into the cytoplasm via a process likely facilitated by Xpo7.
Collapse
|
57
|
Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clin Epigenetics 2015; 7:95. [PMID: 26366232 PMCID: PMC4567832 DOI: 10.1186/s13148-015-0129-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAm) studies have proven extremely useful to understand human hematopoiesis. Due to their active DNA content, nucleated red blood cells (nRBCs) contribute to epigenetic and transcriptomic studies derived from whole cord blood. Genomic studies of cord blood hematopoietic cells isolated by fluorescence-activated cell sorting (FACS) may be significantly altered by heterotopic interactions with nRBCs during conventional cell sorting. RESULTS We report that cord blood T cells, and to a lesser extent monocytes and B cells, physically engage with nRBCs during FACS. These heterotopic interactions resulted in significant cross-contamination of genome-wide epigenetic and transcriptomic data. Formal exclusion of erythroid lineage-specific markers yielded DNAm profiles (measured by the Illumina 450K array) of cord blood CD4 and CD8 T lymphocytes, B lymphocytes, natural killer (NK) cells, granulocytes, monocytes, and nRBCs that were more consistent with expected hematopoietic lineage relationships. Additionally, we identified eight highly differentially methylated CpG sites in nRBCs (false detection rate <5 %, |Δβ| >0.50) that can be used to detect nRBC contamination of purified hematopoietic cells or to assess the impact of nRBCs on whole cord blood DNAm profiles. Several of these erythroid markers are located in or near genes involved in erythropoiesis (ZFPM1, HDAC4) or immune function (MAP3K14, IFIT1B), reinforcing a possible immune regulatory role for nRBCs in early life. CONCLUSIONS Heterotopic interactions between erythroid cells and white blood cells can result in contaminated cell populations if not properly excluded during cell sorting. Cord blood nRBCs have a distinct DNAm profile that can significantly skew epigenetic studies. Our findings have major implications for the design and interpretation of genome-wide epigenetic and transcriptomic studies using human cord blood.
Collapse
|
58
|
Rouzbeh S, Kobari L, Cambot M, Mazurier C, Hebert N, Faussat AM, Durand C, Douay L, Lapillonne H. Molecular signature of erythroblast enucleation in human embryonic stem cells. Stem Cells 2015; 33:2431-41. [DOI: 10.1002/stem.2027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Shaghayegh Rouzbeh
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
| | - Ladan Kobari
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
| | - Marie Cambot
- Institut National de Transfusion Sanguine INTS; Paris France
| | - Christelle Mazurier
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire; Créteil France
| | - Nicolas Hebert
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire; Créteil France
| | | | - Charles Durand
- CNRS UMR7622, Laboratoire de biologie et du développement; Paris France
- UPMC UMR7622, Laboratoire de biologie et du développement; Paris France
| | - Luc Douay
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire; Créteil France
- AP-HP, Hôpital St Antoine et Hôpital Trousseau, Service d'Hématologie et Immunologie Biologiques; Paris France
| | - Hélène Lapillonne
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches; Paris France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- AP-HP, Hôpital St Antoine et Hôpital Trousseau, Service d'Hématologie et Immunologie Biologiques; Paris France
| |
Collapse
|
59
|
Satchwell TJ, Bell AJ, Toye AM. The sorting of blood group active proteins during enucleation. ISBT SCIENCE SERIES 2015; 10:163-168. [PMID: 26640516 PMCID: PMC4668593 DOI: 10.1111/voxs.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleation represents the critical stage during red blood cell development when the nucleus is extruded from an orthochromatic erythroblast in order to generate a nascent immature reticulocyte. Extrusion of the nucleus results in loss of a proportion of the erythroblast plasma membrane, which surrounds the nucleus, the bulk of the endoplasmic reticulum and a small region of cytoplasm. For this reason enucleation provides an important point in erythroblast differentiation at which proteins not required for the function of the erythrocyte can be lost, whilst those that are important for the structure-function properties of the mature erythrocyte must be efficiently retained in the reticulocyte plasma membrane. Disturbances in protein distribution during enucleation are envisaged to occur during human diseases such as Hereditary Spherocytosis. This article will discuss the current knowledge of erythroblast enucleation in the context of retention and loss of proteins that display antigenic blood group sites and that exist within multiprotein complexes within the erythrocyte membrane.
Collapse
Affiliation(s)
- Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| | - Amanda J. Bell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
| | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| |
Collapse
|
60
|
Ji P. New Insights into the Mechanisms of Mammalian Erythroid Chromatin Condensation and Enucleation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:159-82. [DOI: 10.1016/bs.ircmb.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
61
|
Varricchio L, Migliaccio AR. The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH 2014; 4:53-72. [PMID: 25755906 PMCID: PMC4348794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Mount Sinai School of MedicineNew York, NY 10029, USA
- Istituto Superiore di Sanita’ Viale Regina Elena 299Italy
| |
Collapse
|
62
|
Ying W, Wang H, Bazer FW, Zhou B. Pregnancy-secreted Acid phosphatase, uteroferrin, enhances fetal erythropoiesis. Endocrinology 2014; 155:4521-4530. [PMID: 25093463 PMCID: PMC4197981 DOI: 10.1210/en.2014-1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Uteroferrin (UF) is a progesterone-induced acid phosphatase produced by uterine glandular epithelia in mammals during pregnancy and targeted to sites of hematopoiesis throughout pregnancy. The expression pattern of UF is coordinated with early fetal hematopoietic development in the yolk sac and then liver, spleen, and bone to prevent anemia in fetuses. Our previous studies suggested that UF exerts stimulatory impacts on hematopoietic progenitor cells. However, the precise role and thereby the mechanism of action of UF on hematopoiesis have not been investigated previously. Here, we report that UF is a potent regulator that can greatly enhance fetal erythropoiesis. Using primary fetal liver hematopoietic cells, we observed a synergistic stimulatory effect of UF with erythropoietin and other growth factors on both burst-forming unit-erythroid and colony-forming unit-erythroid formation. Further, we demonstrated that UF enhanced erythropoiesis at terminal stages using an in vitro culture system. Surveying genes that are crucial for erythrocyte formation at various stages revealed that UF, along with erythropoietin, up-regulated transcription factors required for terminal erythrocyte differentiation and genes required for synthesis of hemoglobin. Collectively, our results demonstrate that UF is a cytokine secreted by uterine glands in response to progesterone that promotes fetal erythropoiesis at various stages of pregnancy, including burst-forming unit-erythroid and colony-forming unit-erythroid progenitor cells and terminal stages of differentiation of hematopoietic cells in the erythroid lineage.
Collapse
Affiliation(s)
- Wei Ying
- Department of Animal Science (W.Y., F.W.B.), Texas A&M University, College Station, Texas 77843-2471; and Department of Veterinary Physiology and Pharmacology (H.W., B.Z.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4466
| | | | | | | |
Collapse
|
63
|
Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, Silva APG, Prabhu D, Yao Y, Aribeana C, Fuchs SY, Mackay JP, Holzbaur ELF, Weiss MJ. Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell 2014; 30:688-700. [PMID: 25241935 DOI: 10.1016/j.devcel.2014.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/24/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
Abstract
TRIM58 is an E3 ubiquitin ligase superfamily member implicated by genome-wide association studies to regulate human erythrocyte traits. Here, we show that Trim58 expression is induced during late erythropoiesis and that its depletion by small hairpin RNAs (shRNAs) inhibits the maturation of late-stage nucleated erythroblasts to anucleate reticulocytes. Imaging flow cytometry studies demonstrate that Trim58 regulates polarization and/or extrusion of erythroblast nuclei. In vitro, Trim58 directly binds and ubiquitinates the intermediate chain of the microtubule motor dynein. In cells, Trim58 stimulates proteasome-dependent degradation of the dynein holoprotein complex. During erythropoiesis, Trim58 expression, dynein loss, and enucleation occur concomitantly, and all are inhibited by Trim58 shRNAs. Dynein regulates nuclear positioning and microtubule organization, both of which undergo dramatic changes during erythroblast enucleation. Thus, we propose that Trim58 promotes this process by eliminating dynein. Our findings identify an erythroid-specific regulator of enucleation and elucidate a previously unrecognized mechanism for controlling dynein activity.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Traxler
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenna M Nickas
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Olivia Y Zhou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacob E Lazarus
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana P G Silva
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia
| | - Dolly Prabhu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Yao
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiaka Aribeana
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel P Mackay
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia
| | - Erika L F Holzbaur
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
64
|
Zhao B, Mei Y, Yang J, Ji P. Mouse fetal liver culture system to dissect target gene functions at the early and late stages of terminal erythropoiesis. J Vis Exp 2014:e51894. [PMID: 25225899 DOI: 10.3791/51894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Erythropoiesis involves a dynamic process that begins with committed erythroid burst forming units (BFU-Es) followed by rapidly dividing erythroid colony forming units (CFU-Es). After CFU-Es, cells are morphologically recognizable and generally termed terminal erythroblasts. One of the challenges for the study of terminal erythropoiesis is the lack of experimental approaches to dissect gene functions in a chronological manner. In this protocol, we describe a unique strategy to determine gene functions in the early and late stages of terminal erythropoiesis. In this system, mouse fetal liver TER119 (mature erythroid cell marker) negative erythroblasts were purified and transduced with exogenous expression of cDNAs or small hairpin RNAs (shRNAs) for the genes of interest. The cells were subsequently cultured in medium containing growth factors other than erythropoietin (Epo) to maintain their progenitor stage for 12 hr while allowing the exogenous cDNAs or shRNAs to express. The cells were changed to Epo medium after 12 hr to induce cell differentiation and proliferation while the exogenous genetic materials were already expressed. This protocol facilitates analysis of gene functions in the early stage of terminal erythropoiesis. To study late stage terminal erythropoiesis, cells were immediately cultured in Epo medium after transduction. In this way, the cells were already differentiated to the late stage of terminal erythropoiesis when the transduced genetic materials were expressed. We recommend a general application of this strategy that would help understand detailed gene functions in different stages of terminal erythropoiesis.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Northwestern University
| | - Yang Mei
- Department of Pathology, Northwestern University
| | - Jing Yang
- Department of Pathology, Northwestern University
| | - Peng Ji
- Department of Pathology, Northwestern University;
| |
Collapse
|
65
|
|
66
|
Zhao B, Keerthivasan G, Mei Y, Yang J, McElherne J, Wong P, Doench JG, Feng G, Root DE, Ji P. Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis. Haematologica 2014; 99:1157-67. [PMID: 24747950 DOI: 10.3324/haematol.2014.105809] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Differentiation of erythroblasts to mature red blood cells involves dynamic changes of the membrane and cytoskeleton networks that are not fully characterized. Using a mouse fetal liver erythroblast culture system and a targeted shRNA functional screening strategy, we identified a critical role of pleckstrin-2 in actin dynamics and protection of early stage terminal erythroblasts from oxidative damage. Knockdown of pleckstrin-2 in the early stage of terminal erythropoiesis disrupted the actin cytoskeleton and led to differentiation inhibition and apoptosis. This pro-survival and differentiation function of pleckstrin-2 was mediated through its interaction with cofilin, by preventing cofilin's mitochondrial entry when the intracellular level of reactive oxygen species was higher in the early stage of terminal erythropoiesis. Treatment of the cells with a scavenger of reactive oxygen species rescued cofilin's mitochondrial entry and differentiation inhibition induced by pleckstrin-2 knockdown. In contrast, pleckstrin-2 knockdown in late stage terminal erythroblasts had no effect on survival or differentiation but blocked enucleation due to disorganized actin cytoskeleton. Thus, our study identified a dual function of pleckstrin-2 in the early and late stages of terminal erythropoiesis through its regulations of actin dynamics and cofilin's mitochondrial localization, which reflects intracellular level of reactive oxygen species in different developmental stages.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ganesan Keerthivasan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James McElherne
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Piu Wong
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - John G Doench
- Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA
| | - Gang Feng
- Biomedical Informatics Center, Northwestern University, Chicago, IL, USA
| | - David E Root
- Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
67
|
Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. Int J Biochem Cell Biol 2014; 50:112-22. [PMID: 24594363 DOI: 10.1016/j.biocel.2014.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/17/2014] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Abstract
To clarify the role of HDACs in erythropoiesis, expression, activity and function of class I (HDAC1, HDAC2, HDAC3) and class IIa (HDAC4, HDAC5) HDACs during in vitro maturation of human erythroblasts were compared. During erythroid maturation, expression of HDAC1, HDAC2 and HDAC3 remained constant and activity and GATA1 association (its partner of the NuRD complex), of HDAC1 increased. By contrast, HDAC4 content drastically decreased and HDAC5 remained constant in content but decreased in activity. In erythroid cells, pull down experiments identified the presence of a novel complex formed by HDAC5, GATA1, EKLF and pERK which was instead undetectable in cells of the megakaryocytic lineage. With erythroid maturation, association among HDAC5, GATA1 and EKLF persisted but levels of pERK sharply decreased. Treatment of erythroleukemic cells with inhibitors of ERK phosphorylation reduced by >90% the total and nuclear content of HDAC5, GATA1 and EKLF, suggesting that ERK phosphorylation is required for the formation of this complex. Based on the function of class IIa HDACs as chaperones of other proteins to the nucleus and the erythroid-specificity of HDAC5 localization, this novel HDAC complex was named nuclear remodeling shuttle erythroid (NuRSERY). Exposure of erythroid cells to the class II-selective HDAC inhibitor (HDACi) APHA9 increased γ/(γ+β) globin expression ratios (Mai et al., 2007), suggesting that NuRSERY may regulate globin gene expression. In agreement with this hypothesis, exposure of erythroid cells to APHA9 greatly reduced the association among HDAC5, GATA1 and EKLF. Since exposure to APHA9 did not affect survival rates or p21 activation, NuRSERY may represent a novel, possibly less toxic, target for epigenetic therapies of hemoglobinopaties and other disorders.
Collapse
|
68
|
Xia J, Zhou Y, Ji H, Wang Y, Wu Q, Bao J, Ye F, Shi Y, Bu H. Loss of histone deacetylases 1 and 2 in hepatocytes impairs murine liver regeneration through Ki67 depletion. Hepatology 2013; 58:2089-2098. [PMID: 23744762 DOI: 10.1002/hep.26542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Histone deacetylases 1 and 2 (HDAC1 and HDAC2) are ubiquitously expressed in tissues, including the liver, and play critical roles in numerous physiopathological processes. Little is known regarding the role of HDAC1 and HDAC2 in liver regeneration. In this study we generated mice in which Hdac1, Hdac2 or both genes were selectively knocked out in hepatocytes to investigate the role of these genes in liver regeneration following hepatic injury induced by partial hepatectomy or carbon tetrachloride administration. The loss of HDAC1 and/or HDAC2 (HDAC1/2) protein resulted in impaired liver regeneration. HDAC1/2 inactivation did not decrease hepatocytic 5-bromo-2-deoxyuridine uptake or the expression of proliferating cell nuclear antigen, cyclins, or cyclin-dependent kinases. However, the levels of Ki67, a mitotic marker that is expressed from the mid-G1 phase to the end of mitosis and is closely involved in the regulation of mitotic progression, were greatly decreased, and abnormal mitosis lacking Ki67 expression was frequently observed in HDAC1/2-deficient livers. The down-regulation of either HDAC1/2 or Ki67 in the mouse liver cancer cell line Hepa1-6 resulted in similar mitotic defects. Finally, both HDAC1 and HDAC2 proteins were associated with the Ki67 gene mediated by CCAAT/enhancer-binding protein β. CONCLUSION Both HDAC1 and HDAC2 play crucial roles in the regulation of liver regeneration. The loss of HDAC1/2 inhibits Ki67 expression and results in defective hepatocyte mitosis and impaired liver regeneration.
Collapse
Affiliation(s)
- Jie Xia
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China; State Key Laboratory of Biotherapy, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Thurn KT, Thomas S, Raha P, Qureshi I, Munster PN. Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol Cancer Ther 2013; 12:2078-87. [PMID: 23939379 DOI: 10.1158/1535-7163.mct-12-1242] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is a major regulator of the DNA damage response. ATM promotes the activation of BRCA1, CHK2, and p53 leading to the induction of response genes such as CDKN1A (p21), GADD45A, and RRM2B that promote cell-cycle arrest and DNA repair. The upregulation of these response genes may contribute to resistance of cancer cells to genotoxic therapies. Here, we show that histone deacetylases (HDAC) play a major role in mitigating the response of the ATM pathway to DNA damage. HDAC inhibition decreased ATM activation and expression, and attenuated the activation of p53 in vitro and in vivo. Select depletion of HDAC1 and HDAC2 was sufficient to modulate ATM activation, reduce GADD45A and RRM2B induction, and increase sensitivity to DNA strand breaks. The regulation of ATM by HDAC enzymes therefore suggests a vital role for HDAC1 and HDAC2 in the DNA damage response, and the potential use of the ATM pathway as a pharmacodynamic marker for combination therapies involving HDAC inhibitors.
Collapse
Affiliation(s)
- K Ted Thurn
- Corresponding Author: Pamela N. Munster, Division of Hematology and Oncology, Department of Medicine, University of California, 1600 Divisadero, Room A719, Box 1711, San Francisco, CA 94143.
| | | | | | | | | |
Collapse
|
70
|
Li X, Wu Z, Fu X, Han W. How Far Are Stem-Cell-Derived Erythrocytes from the Clinical Arena? Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
71
|
Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 2013; 8:e63329. [PMID: 23696815 PMCID: PMC3656957 DOI: 10.1371/journal.pone.0063329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/30/2013] [Indexed: 02/06/2023] Open
Abstract
Murine very small embryonic-like (VSEL) cells, defined by the Lin(-)Sca-1(+)CD45(-) phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-)Sca(+)CD45(-) population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin(-)Sca-1(+)CD45(-) population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+)KDR(-), c-Kit(-)KDR(+), and c-Kit(-)KDR(-) subpopulations could be distinguished, while c-Kit(+)KDR(+) events were very rare. The c-Kit(+)KDR(-) subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-)KDR(+) cells. The c-Kit(-)KDR(-)FSC(low) subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-)Sca-1(+)CD45(-)FSC(low) population, even by single-cell qRT-PCR. We also found that the Lin(-)Sca-1(+)CD45(-)c-Kit(+) subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+)c-Kit(+)Lin(-) (SKL) CD34(-)CD45(-)CD105(+) cells, expressing particular HSC markers. Co-culture of Lin(-)Sca-1(+)CD45(-)FSC(low) with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-)CD105(+) subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-)Sca-1(+)CD45(-)FSC(low) cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin(-)Sca-1(+)CD45(-)c-Kit(+)KDR(-) subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| |
Collapse
|
72
|
Choi HS, Lee EM, Kim HO, Park MI, Baek EJ. Autonomous control of terminal erythropoiesis via physical interactions among erythroid cells. Stem Cell Res 2013; 10:442-53. [DOI: 10.1016/j.scr.2013.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/25/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022] Open
|
73
|
Zeuner A, Martelli F, Vaglio S, Federici G, Whitsett C, Migliaccio AR. Concise review: stem cell-derived erythrocytes as upcoming players in blood transfusion. Stem Cells 2013; 30:1587-96. [PMID: 22644674 DOI: 10.1002/stem.1136] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood transfusions have become indispensable to treat the anemia associated with a variety of medical conditions ranging from genetic disorders and cancer to extensive surgical procedures. In developed countries, the blood supply is generally adequate. However, the projected decline in blood donor availability due to population ageing and the difficulty in finding rare blood types for alloimmunized patients indicate a need for alternative red blood cell (RBC) transfusion products. Increasing knowledge of processes that govern erythropoiesis has been translated into efficient procedures to produce RBC ex vivo using primary hematopoietic stem cells, embryonic stem cells, or induced pluripotent stem cells. Although in vitro-generated RBCs have recently entered clinical evaluation, several issues related to ex vivo RBC production are still under intense scrutiny: among those are the identification of stem cell sources more suitable for ex vivo RBC generation, the translation of RBC culture methods into clinical grade production processes, and the development of protocols to achieve maximal RBC quality, quantity, and maturation. Data on size, hemoglobin, and blood group antigen expression and phosphoproteomic profiling obtained on erythroid cells expanded ex vivo from a limited number of donors are presented as examples of the type of measurements that should be performed as part of the quality control to assess the suitability of these cells for transfusion. New technologies for ex vivo erythroid cell generation will hopefully provide alternative transfusion products to meet present and future clinical requirements.
Collapse
Affiliation(s)
- Ann Zeuner
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
74
|
Tallack MR, Magor GW, Dartigues B, Sun L, Huang S, Fittock JM, Fry SV, Glazov EA, Bailey TL, Perkins AC. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res 2012; 22:2385-98. [PMID: 22835905 PMCID: PMC3514668 DOI: 10.1101/gr.135707.111] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KLF1 (formerly known as EKLF) regulates the development of erythroid cells from bi-potent progenitor cells via the transcriptional activation of a diverse set of genes. Mice lacking Klf1 die in utero prior to E15 from severe anemia due to the inadequate expression of genes controlling hemoglobin production, cell membrane and cytoskeletal integrity, and the cell cycle. We have recently described the full repertoire of KLF1 binding sites in vivo by performing KLF1 ChIP-seq in primary erythroid tissue (E14.5 fetal liver). Here we describe the KLF1-dependent erythroid transcriptome by comparing mRNA-seq from Klf1+/+ and Klf1−/− erythroid tissue. This has revealed novel target genes not previously obtainable by traditional microarray technology, and provided novel insights into the function of KLF1 as a transcriptional activator. We define a cis-regulatory module bound by KLF1, GATA1, TAL1, and EP300 that coordinates a core set of erythroid genes. We also describe a novel set of erythroid-specific promoters that drive high-level expression of otherwise ubiquitously expressed genes in erythroid cells. Our study has identified two novel lncRNAs that are dynamically expressed during erythroid differentiation, and discovered a role for KLF1 in directing apoptotic gene expression to drive the terminal stages of erythroid maturation.
Collapse
Affiliation(s)
- Michael R Tallack
- Mater Medical Research Institute, Mater Hospital, Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ubukawa K, Sawada K. [Bone marrow failure syndrome (idiopathic hematopoietic disorders): progress in diagnosis and treatment. Topics: IV. Recent topics of hematopoiesis; 2. The mechanism of erythroblasts enucleation]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2012; 101:2002-9. [PMID: 22897005 DOI: 10.2169/naika.101.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kumi Ubukawa
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Japan
| | | |
Collapse
|
76
|
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics 2012; 4:51-65. [PMID: 22332658 DOI: 10.2217/epi.11.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
miRNAs are a family of small ncRNAs that regulate gene expression by targeting mRNAs in a sequence-specific manner, inducing translational repression or mRNA degradation. In this review, we present and discuss the available literature on the expression of miRNAs in erythroid cells. There are several experimental systems that can be employed for studies focusing on the relationship between miRNAs and erythroid differentiation, including human embryonic stem cells forced to erythroid differentiation, K562 and UT-7 cells induced to hemoglobin production by chemical compounds, erythropoietin-treated erythroid precursor cells from normal subjects or patients affected by hematological disease and in vivo systems, such as zebrafish embryos. Several miRNAs were identified as deeply involved in the erythroid phenotype, including miR-15a, miR-16-1, miR-126, miR-144, miR-451 and miR-210. Several functions related with erythroid cells were demonstrated to be regulated by these miRNAs, including maturation and proliferation of early erythroid cells, expression of fetal γ-globin genes and enucleation. These identified erythroid specific miRNAs represent the starting point to develop new protocols for miRNA therapeutics, based on both anti-miR molecules or miRNA replacement.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- BioPharmaNet, Department of Biochemistry & Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Ji P, Lodish HF. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation. Biochem Biophys Res Commun 2011; 417:1188-92. [PMID: 22226968 DOI: 10.1016/j.bbrc.2011.12.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 01/14/2023]
Abstract
During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
78
|
Migliaccio AR, Masselli E, Varricchio L, Whitsett C. Ex-vivo expansion of red blood cells: how real for transfusion in humans? Blood Rev 2011; 26:81-95. [PMID: 22177597 DOI: 10.1016/j.blre.2011.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5×10(12) cells vs 10(7) cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- The Tisch Cancer Institute and Myeloproliferative Disease Research Consortium (MPD-RC), Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
79
|
Abstract
Mammalian erythroblasts undergo enucleation, a process thought to be similar to cytokinesis. Although an assemblage of actin, non-muscle myosin II, and several other proteins is crucial for proper cytokinesis, the role of non-muscle myosin II in enucleation remains unclear. In this study, we investigated the effect of various cell-division inhibitors on cytokinesis and enucleation. For this purpose, we used human colony-forming unit-erythroid (CFU-E) and mature erythroblasts generated from purified CD34(+) cells as target cells for cytokinesis and enucleation assay, respectively. Here we show that the inhibition of myosin by blebbistatin, an inhibitor of non-muscle myosin II ATPase, blocks both cell division and enucleation, which suggests that non-muscle myosin II plays an essential role not only in cytokinesis but also in enucleation. When the function of non-muscle myosin heavy chain (NMHC) IIA or IIB was inhibited by an exogenous expression of myosin rod fragment, myosin IIA or IIB, each rod fragment blocked the proliferation of CFU-E but only the rod fragment for IIB inhibited the enucleation of mature erythroblasts. These data indicate that NMHC IIB among the isoforms is involved in the enucleation of human erythroblasts.
Collapse
|
80
|
From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 2011; 118:6258-68. [PMID: 21998215 DOI: 10.1182/blood-2011-07-356006] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article reviews the regulation of production of RBCs at several levels. We focus on the regulated expansion of burst-forming unit-erythroid erythroid progenitors by glucocorticoids and other factors that occur during chronic anemia, inflammation, and other conditions of stress. We also highlight the rapid production of RBCs by the coordinated regulation of terminal proliferation and differentiation of committed erythroid colony-forming unit-erythroid progenitors by external signals, such as erythropoietin and adhesion to a fibronectin matrix. We discuss the complex intracellular networks of coordinated gene regulation by transcription factors, chromatin modifiers, and miRNAs that regulate the different stages of erythropoiesis.
Collapse
|
81
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
82
|
Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 2011; 21:409-15. [PMID: 21592797 DOI: 10.1016/j.tcb.2011.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW Reticulocyte remodeling has emerged as an important model for the understanding of vesicular trafficking and selective autophagy in mammalian cells. This review covers recent advances in our understanding of these processes in reticulocytes and the role of these processes in erythroid development. RECENT FINDINGS Enucleation is caused by the coalescence of vesicles at the nuclear-cytoplasmic junction and microfilament contraction. Mitochondrial elimination is achieved through selective autophagy, in which mitochondria are targeted to autophagosomes, and undergo subsequent degradation and exocytosis. The mechanism involves an integral mitochondrial outer membrane protein and general autophagy pathways. Plasma membrane remodeling, and the elimination of certain intracellular organelles occur through the exosomal pathway. SUMMARY Vesicular trafficking and selective autophagy have emerged as central processes in cellular remodeling. In reticulocytes, this includes enucleation and the elimination of all membrane-bound organelles and ribosomes. Ubiquitin-like conjugation pathways, which are required for autophagy in yeast, are not essential for mitochondrial clearance in reticulocytes. Thus, in higher eukaryotes, there appears to be redundancy between these pathways and other processes, such as vesicular nucleation. Future studies will address the relationship between autophagy and vesicular trafficking, and the significance of both for cellular remodeling.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
84
|
Huang Z, Fong CY, Gauthaman K, Sukumar P, Choolani M, Bongso A. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child. J Cell Biochem 2011; 112:1475-85. [DOI: 10.1002/jcb.23084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
85
|
Zhang L, Flygare J, Wong P, Lim B, Lodish HF. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 2010; 25:119-24. [PMID: 21196494 DOI: 10.1101/gad.1998711] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using RNA-seq technology, we found that the majority of microRNAs (miRNAs) present in CFU-E erythroid progenitors are down-regulated during terminal erythroid differentiation. Of the developmentally down-regulated miRNAs, ectopic overexpression of miR-191 blocks erythroid enucleation but has minor effects on proliferation and differentiation. We identified two erythroid-enriched and developmentally up-regulated genes, Riok3 and Mxi1, as direct targets of miR-191. Knockdown of either Riok3 or Mxi1 blocks enucleation, and either physiological overexpression of miR-191 or knockdown of Riok3 or Mxi1 blocks chromatin condensation. Thus, down-regulation of miR-191 is essential for erythroid chromatin condensation and enucleation by allowing up-regulation of Riok3 and Mxi1.
Collapse
Affiliation(s)
- Lingbo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
86
|
Jayapal SR, Lee KL, Ji P, Kaldis P, Lim B, Lodish HF. Down-regulation of Myc is essential for terminal erythroid maturation. J Biol Chem 2010; 285:40252-65. [PMID: 20940306 PMCID: PMC3001006 DOI: 10.1074/jbc.m110.181073] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 02/06/2023] Open
Abstract
Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.
Collapse
Affiliation(s)
- Senthil Raja Jayapal
- From the Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, 4 Engineering Drive 3, Singapore 117576
- the Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672
| | - Kian Leong Lee
- the Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Peng Ji
- the Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Philipp Kaldis
- the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
| | - Bing Lim
- From the Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, 4 Engineering Drive 3, Singapore 117576
- the Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Harvey F. Lodish
- From the Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, 4 Engineering Drive 3, Singapore 117576
- the Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|