51
|
Transferrin saturation is independently associated with the severity of obstructive sleep apnea syndrome and hypoxia among obese subjects. Clin Nutr 2020; 40:608-614. [PMID: 32600855 DOI: 10.1016/j.clnu.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION & AIMS Obstructive sleep apnea syndrome (OSAS) is a frequent complication of obesity. Intermittent chronic hypoxia which frequently results from OSAS could modulate the systemic control of iron metabolism and alter serum iron parameters, especially among obese patients. AIMS to evaluate whether serum parameters of iron bioavailability and storage (primary), as well as age, waist circumference, arterial hypertension and tobacco use (secondary) are associated with OSAS severity and/or hypoxia. METHODS design: a single-center retrospective study with prospective data collection; inclusion criteria: consecutive patients referred for initial assessment for obesity underwent nocturnal respiratory polygraphy and iron status serum assessment within a 3-month period. The adjusted analyzes were performed using ANOVA and reported as adjusted means and 95% confidence interval (95% CI). RESULTS 13 men and 56 women were included. OSAS prevalence: 72% (n = 50). Ferritin (mean ± SD, 260 ± 276 vs. 111 ± 89 μg/l, p = 0.01) and transferrin saturation (31 ± 10 vs. 24 ± 9%, p = 0.002) were significantly higher in case of moderate/severe OSAS than in absent/mild OSAS, independently from gender and tobacco use. Serum iron (19.4 μg/l [CI95%, 16.5-22.3] vs. 16.2 μg/l ([14.1-18.2], p = 0.056) and transferrin saturation (31.5% [26.3-36.7]) vs. 25.3% [21.6-29.1], p = 0.043) were higher when time under oxygen saturation <90% was >15%. Age (mean ± SD, 51 ± 11 vs. 41 ± 12 yr, p = 0.001), waist circumference (136 ± 18 vs. 123 ± 12 cm, p = 0.003), arterial hypertension (59% (n = 13/22) vs. 23% (n = 11/47), p = 0.004) and tobacco use (64% (n = 14/22) vs. 32% (n = 15/47), p = 0.01) were significantly greater in moderate/severe OSAS than in absent/mild OSAS. CONCLUSIONS Transferrin saturation was associated with OSAS severity and time under hypoxia. This suggests a relationship between OSAS-induced hypoxia and iron metabolism among obese patients.
Collapse
|
52
|
Kim YJ, Kim KS, Lim D, Yang DJ, Park JI, Kim KW, Jeong JH, Choi HS, Kim DK. Epigallocatechin-3-Gallate (EGCG)-Inducible SMILE Inhibits STAT3-Mediated Hepcidin Gene Expression. Antioxidants (Basel) 2020; 9:antiox9060514. [PMID: 32545266 PMCID: PMC7346121 DOI: 10.3390/antiox9060514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic peptide hormone hepcidin, a key regulator of iron metabolism, is induced by inflammatory cytokine interleukin-6 (IL-6) in the pathogenesis of anemia of inflammation or microbial infections. Small heterodimer partner-interacting leucine zipper protein (SMILE)/CREBZF is a transcriptional corepressor of nuclear receptors that control hepatic glucose and lipid metabolism. Here, we examined the role of SMILE in regulating iron metabolism by inflammatory signals. Overexpression of SMILE significantly decreased activation of the Janus kinase 2-signal transducer and activator of transcription 3 (STAT3)-mediated hepcidin production and secretion that is triggered by the IL-6 signal in human and mouse hepatocytes. Moreover, SMILE co-localized and physically interacted with STAT3 in the nucleus in the presence of IL-6, which significantly suppressed binding of STAT3 to the hepcidin gene promoter. Interestingly, epigallocatechin-3-gallate (EGCG), a major component of green tea, induced SMILE expression through forkhead box protein O1 (FoxO1), as demonstrated in FoxO1 knockout primary hepatocytes. In addition, EGCG inhibited IL-6-induced hepcidin expression, which was reversed by SMILE knockdown. Finally, EGCG significantly suppressed lipopolysaccharide-induced hepcidin secretion and hypoferremia through induction of SMILE expression in mice. These results reveal a previously unrecognized role of EGCG-inducible SMILE in the IL-6-dependent transcriptional regulation of iron metabolism.
Collapse
Affiliation(s)
- Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Dong Ju Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju 61186, Korea;
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
53
|
Locatelli F, Del Vecchio L. Are prolyl-hydroxylase inhibitors potential alternative treatments for anaemia in patients with chronic kidney disease? Nephrol Dial Transplant 2020; 35:926-932. [DOI: 10.1093/ndt/gfz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Prolyl-hydroxylase (PHD) inhibitors (PHD-I) are the most appealing drugs undergoing clinical development for the treatment of anaemia in patients with chronic kidney disease. PHD inhibition mimics the exposure of the body to hypoxia and activates the hypoxia-inducible factor system. Among many other pathways, this activation promotes the production of endogenous erythropoietin (EPO) and the absorption and mobilization of iron. PHD-I are given orally and, differing from erythropoiesis-stimulating agents (ESAs), they correct and maintain haemoglobin levels by stimulating endogenous EPO production. Their efficacy and safety are supported by several Phases I and II studies with relatively short follow-up. This class of drugs has the potential to have a better safety profile than ESAs and there may be additional advantages for cardiovascular disease (CVD), osteoporosis and metabolism. However, possible adverse outcomes are feared. These span from the worsening or occurrence of new cancer, to eye complications or pulmonary hypertension. The data from the ongoing Phase III studies are awaited to better clarify the long-term safety and possible advantages of PHD-I.
Collapse
Affiliation(s)
- Francesco Locatelli
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital ASST-Lecco, Lecco, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital ASST-Lecco, Lecco, Italy
| |
Collapse
|
54
|
Sanghani NS, Haase VH. Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Adv Chronic Kidney Dis 2019; 26:253-266. [PMID: 31477256 PMCID: PMC7318915 DOI: 10.1053/j.ackd.2019.04.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Prolyl hydroxylase domain oxygen sensors are dioxygenases that regulate the activity of hypoxia-inducible factor (HIF), which controls renal and hepatic erythropoietin production and coordinates erythropoiesis with iron metabolism. Small molecule inhibitors of prolyl hydroxylase domain dioxygenases (HIF-PHI [prolyl hydroxylase inhibitor]) stimulate the production of endogenous erythropoietin and improve iron metabolism resulting in efficacious anemia management in patients with CKD. Three oral HIF-PHIs-daprodustat, roxadustat, and vadadustat-have now advanced to global phase III clinical development culminating in the recent licensing of roxadustat for oral anemia therapy in China. Here, we survey current clinical experience with HIF-PHIs, discuss potential therapeutic advantages, and deliberate over safety concerns regarding long-term administration in patients with renal anemia.
Collapse
Affiliation(s)
- Neil S Sanghani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medical Cell Biology, Uppsala Universitet, Uppsala, Sweden; Department of Molecular Physiology & Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
55
|
Caltabiano S, Cizman B, Burns O, Mahar KM, Johnson BM, Ramanjineyulu B, Serbest G, Cobitz AR. Effect of renal function and dialysis modality on daprodustat and predominant metabolite exposure. Clin Kidney J 2019; 12:693-701. [PMID: 31583094 PMCID: PMC6768310 DOI: 10.1093/ckj/sfz013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Current therapies for anemia of chronic kidney disease (CKD) include administration of supplemental iron (intravenous and/or oral), blood transfusions and replacement of erythropoietin through the administration of recombinant human erythropoietin (rhEPO) and rhEPO analogs, each with limitations. Daprodustat is an orally active, small molecule hypoxia-inducible factor-prolyl hydroxylase inhibitor that is currently in Phase 3 clinical studies. As it is well appreciated that the kidney represents a major route of elimination of many drugs, and daprodustat will be administered to patients with advanced CKD as well as patients with end-stage kidney disease, it is important to characterize the pharmacokinetic profile in these patient populations to safely dose this potential new medicine. Methods The primary objective of these studies, conducted under two separate protocols and with identical assessments and procedures, was to characterize the steady-state pharmacokinetics of daprodustat and the six predominant metabolites (i.e. metabolites present in the highest concentration in circulation) in subjects with normal renal function, anemic non-dialysis (ND)-dependent CKD subjects (CKD Stage 3/4) and anemic subjects on either hemodialysis (HD) or peritoneal dialysis (PD). All enrolled subjects were administered daprodustat 5 mg once daily for 14 days (all except HD subjects) or 15 days (for HD subjects). Blood, urine and peritoneal dialysate were collected at various times for measurement of daprodustat, predominant metabolite, erythropoietin and hepcidin levels. Results The pharmacokinetic properties of steady-state daprodustat peak plasma concentration (Cmax), area under the plasma daprodustat concentration-time curve (AUC) and the time of Cmax (tmax) were comparable between all cohorts in this study. In addition, there was no clinically relevant difference in these properties in the HD subjects between a dialysis and ND day. For CKD Stage 3/4, HD (dialysis day) and PD subjects, the AUC of all daprodustat metabolites assessed was higher, while the Cmax was slightly higher than that in subjects with normal renal function. Over the course of the 14 or 15 days of daprodustat administration, hemoglobin levels were seen to be relatively stable in the subjects with normal renal function, CKD Stage 3/4 and PD subjects, while HD subjects had a decrease of 1.9 gm/dL. All renally impaired subjects appeared to have similar erythropoietin responses to daprodustat, with approximately a 3-fold increase in these levels. In subjects with minimal to no change in hemoglobin levels, hepcidin levels remained relatively stable. Daprodustat, administered 5 mg once daily for 14–15 days, was generally well tolerated with a safety profile consistent with this patient population. Conclusion These studies demonstrated no clinically meaningful change in the pharmacokinetic properties of daprodustat when administered to subjects with various degrees of renal impairment, while for CKD Stage 3/4, HD (dialysis day) and PD subjects, the Cmax and AUC of all daprodustat metabolites assessed were higher than in subjects with normal renal function. Administration of daprodustat in this study appeared to be generally safe and well tolerated.
Collapse
Affiliation(s)
| | - Borut Cizman
- Medicine Delivery Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Olivia Burns
- Clinical Pharmacology Science and Study Operations, GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Kelly M Mahar
- Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Upper Merion, PA, USA
| | | | | | | | | |
Collapse
|
56
|
Abstract
Hepcidin is central to regulation of iron metabolism. Its effect on a cellular level involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we present an overview of and rationale for exploring the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
57
|
Santos-Silva A, Ribeiro S, Reis F, Belo L. Hepcidin in chronic kidney disease anemia. VITAMINS AND HORMONES 2019; 110:243-264. [PMID: 30798815 DOI: 10.1016/bs.vh.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is associated with several complications that worsen with progression of disease; anemia, disturbances in iron metabolism and inflammation are common features. Inflammatory response starts early, releasing pro-inflammatory cytokines, acute phase reactants and hepcidin. Hepcidin production is modulated by several factors, as hypoxia/anemia, erythropoietin and erythropoiesis products, transferrin saturation (TSAT) and liver iron levels, which are altered in CKD. Treatment of CKD anemia is based on pharmaceutical intervention, with erythropoietic stimulating agents and/or iron supplementation; however, in spite of the erythropoietic benefits, this therapy, on a regular basis, involves risks, namely iron overload. To overcome these risks, some therapeutic approaches are under study to target CKD anemia. Considering the actual alerts about risk of iron overload in dialysis patients, inhibition of hepcidin, the central key player in iron homeostasis, could be a pivotal strategy in the management of CKD anemia.
Collapse
Affiliation(s)
- Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Sandra Ribeiro
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
58
|
Abstract
Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.
Collapse
Affiliation(s)
- Gautam Rishi
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
59
|
Abstract
Iron, an essential nutrient, is required for many biological processes but is also toxic in excess. The lack of a mechanism to excrete excess iron makes it crucial for the body to regulate the amount of iron absorbed from the diet. This regulation is mediated by the hepatic hormone hepcidin. Hepcidin also controls iron release from macrophages that recycle iron and from hepatocytes that store iron. Hepcidin binds to the only known iron export protein, ferroportin, inducing its internalization and degradation and thus limiting the amount of iron released into the plasma. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, hypoxia and erythropoiesis, and, to a lesser extent, testosterone. Dysregulation of hepcidin production contributes to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and non-transfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic inflammatory diseases and inherited iron-refractory iron-deficiency anemia. The present review summarizes our current understanding of the molecular mechanisms and signaling pathways contributing to hepcidin regulation by these factors and highlights the issues that still need clarification.
Collapse
Affiliation(s)
- Marie-Paule Roth
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Delphine Meynard
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
60
|
Sukhbaatar N, Weichhart T. Iron Regulation: Macrophages in Control. Pharmaceuticals (Basel) 2018; 11:ph11040137. [PMID: 30558109 PMCID: PMC6316009 DOI: 10.3390/ph11040137] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages are sentinel cells of the innate immune system and have important functions in development, tissue homeostasis, and immunity. These phylogenetically ancient cells also developed a variety of mechanisms to control erythropoiesis and the handling of iron. Red pulp macrophages in the spleen, Kupffer cells in the liver, and central nurse macrophages in the bone marrow ensure a coordinated metabolism of iron to support erythropoiesis. Phagocytosis of senescent red blood cells by macrophages in the spleen and the liver provide a continuous delivery of recycled iron under steady-state conditions and during anemic stress. Central nurse macrophages in the bone marrow utilize this iron and provide a cellular scaffold and niche to promote differentiation of erythroblasts. This review focuses on the role of the distinct macrophage populations that contribute to efficient iron metabolism and highlight important cellular and systemic mechanisms involved in iron-regulating processes.
Collapse
Affiliation(s)
- Nyamdelger Sukhbaatar
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| |
Collapse
|
61
|
Petzer V, Theurl I, Weiss G. Established and Emerging Concepts to Treat Imbalances of Iron Homeostasis in Inflammatory Diseases. Pharmaceuticals (Basel) 2018; 11:E135. [PMID: 30544952 PMCID: PMC6315795 DOI: 10.3390/ph11040135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation, being a hallmark of many chronic diseases, including cancer, inflammatory bowel disease, rheumatoid arthritis, and chronic kidney disease, negatively affects iron homeostasis, leading to iron retention in macrophages of the mononuclear phagocyte system. Functional iron deficiency is the consequence, leading to anemia of inflammation (AI). Iron deficiency, regardless of anemia, has a detrimental impact on quality of life so that treatment is warranted. Therapeutic strategies include (1) resolution of the underlying disease, (2) iron supplementation, and (3) iron redistribution strategies. Deeper insights into the pathophysiology of AI has led to the development of new therapeutics targeting inflammatory cytokines and the introduction of new iron formulations. Moreover, the discovery that the hormone, hepcidin, plays a key regulatory role in AI has stimulated the development of several therapeutic approaches targeting the function of this peptide. Hence, inflammation-driven hepcidin elevation causes iron retention in cells and tissues. Besides pathophysiological concepts and diagnostic approaches for AI, this review discusses current guidelines for iron replacement therapies with special emphasis on benefits, limitations, and unresolved questions concerning oral versus parenteral iron supplementation in chronic inflammatory diseases. Furthermore, the review explores how therapies aiming at curing the disease underlying AI can also affect anemia and discusses emerging hepcidin antagonizing drugs, which are currently under preclinical or clinical investigation.
Collapse
Affiliation(s)
- Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
62
|
Ginzburg YZ, Feola M, Zimran E, Varkonyi J, Ganz T, Hoffman R. Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia 2018; 32:2105-2116. [PMID: 30042411 PMCID: PMC6170398 DOI: 10.1038/s41375-018-0207-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023]
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm. Virtually all PV patients are iron deficient at presentation and/or during the course of their disease. The co-existence of iron deficiency and polycythemia presents a physiological disconnect. Hepcidin, the master regulator of iron metabolism, is regulated by circulating iron levels, erythroblast secretion of erythroferrone, and inflammation. Both decreased circulating iron and increased erythroferrone levels, which occur as a consequence of erythroid hyperplasia in PV, are anticipated to suppress hepcidin and enable recovery from iron deficiency. Inflammation which accompanies PV is likely to counteract hepcidin suppression, but the relatively low serum ferritin levels observed suggest that inflammation is not a major contributor to the dysregulated iron metabolism. Furthermore, potential defects in iron absorption, aberrant hypoxia sensing and signaling, and frequency of bleeding to account for iron deficiency in PV patients have not been fully elucidated. Insufficiently suppressed hepcidin given the degree of iron deficiency in PV patients strongly suggests that disordered iron metabolism is an important component of the pathobiology of PV. Normalization of hematocrit levels using therapeutic phlebotomy is the most common approach for reducing the incidence of thrombotic complications, a therapy which exacerbates iron deficiency, contributing to a variety of non-hematological symptoms. The use of cytoreductive therapy in high-risk PV patients frequently works more effectively to reverse PV-associated symptoms in iron-deficient relative to iron-replete patients. Lastly, differences in iron-related parameters between PV patients and mice with JAK2 V617F and JAK2 exon 12 mutations suggest that specific regions in JAK2 may influence iron metabolism by nuanced changes of erythropoietin receptor signaling. In this review, we comprehensively discuss the clinical consequences of iron deficiency in PV, provide a framework for understanding the potential dysregulation of iron metabolism, and present a rationale for additional therapeutic options for iron-deficient PV patients.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maria Feola
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eran Zimran
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Varkonyi
- Third Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Tomas Ganz
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ronald Hoffman
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
63
|
Del Vecchio L, Locatelli F. Investigational hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI) for the treatment of anemia associated with chronic kidney disease. Expert Opin Investig Drugs 2018; 27:613-621. [PMID: 29975110 DOI: 10.1080/13543784.2018.1493455] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In the last decade, concerns have been raised around the use of erythropoiesis-stimulating agents (ESAs) and intravenous iron in chronic kidney disease (CKD) patients, especially when given at high doses. Moreover, treatment with ESA is expensive. AREAS COVERED We searched PubMed for original articles, reviews, and editorials having as a topic anemia, CKD, hypoxia inducible factor, hepcidin, iron, and hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI). HIF-PHI are a new class of small molecules activating HIF-alfa isoforms (the main mediators of the effects of hypoxia on the body). This causes the secretion of endogenous erythropoietin and increased iron availability. Differing from ESA, HIF-PHI are administered orally. Preliminary data from phase-II clinical studies have shown their efficacy and safety in the short term. EXPERT OPINION HIF-PHI are a new promising class of drugs. The results of large, phase-III clinical studies are awaited to prove their efficacy and safety on cardiovascular events and cancer development in the long term. Their capability of penetrating the ESA market in the future will be influenced also by their selling price. The oral administration of HIF-PHI will be weighed to the 'intra-lines' infusion of ESA in hemodialysis or to the infrequent subcutaneous injections of long-acting ESA.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| | - Francesco Locatelli
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| |
Collapse
|
64
|
Ravasi G, Pelucchi S, Buoli Comani G, Greni F, Mariani R, Pelloni I, Bombelli S, Perego R, Barisani D, Piperno A. Hepcidin regulation in a mouse model of acute hypoxia. Eur J Haematol 2018; 100:636-643. [PMID: 29543343 DOI: 10.1111/ejh.13062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE During hypoxia, hepcidin expression is inhibited to allow iron mobilization to sustain erythropoietic expansion. We analyzed molecular mechanisms underlying hypoxia-induced hepcidin inhibition in an in vivo model of acute hypoxia. METHODS Mice were kept under normal or hypoxic conditions for 6 hours and 15 hours and treated with α-PDGF-BB antibody or PDGF-BB receptor inhibitor. Blood, liver, spleen, and bone marrow were collected to extract RNA and protein or to quantify EPO and PDGF-BB. mRNA and protein levels were assessed by RT-PCR and Western blot. RESULTS Hepcidin was strongly inhibited at 15 hours, and this downregulation followed erythropoiesis activation and upregulation of several growth factors. PDGF-BB, erythroferrone, GDF15, and TWSG1 were upregulated by hypoxia in the bone marrow, but not in spleen or liver. Inactivation of PDGF-BB or its receptor suppressed the hypoxia-induced hepcidin inhibition. CONCLUSION Spleen and liver are not involved in the early stages of hypoxia-induced hepcidin downregulation. Our data support the role of PDGF-BB and probably also of erythroferrone in the recruitment of iron for erythropoiesis in the hypoxia setting. The rapid normalization of all the erythroid factors against persistent hepcidin suppression suggests that other signals are involved that should be clarified in future studies.
Collapse
Affiliation(s)
- Giulia Ravasi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Pelucchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gaia Buoli Comani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federico Greni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Disorder of Iron Metabolism, ASST-Monza - S.Gerardo Hospital, Monza, Italy
| | - Irene Pelloni
- Centre for Disorder of Iron Metabolism, ASST-Monza - S.Gerardo Hospital, Monza, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Perego
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alberto Piperno
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Centre for Disorder of Iron Metabolism, ASST-Monza - S.Gerardo Hospital, Monza, Italy
| |
Collapse
|
65
|
Silva I, Rausch V, Peccerella T, Millonig G, Seitz HK, Mueller S. Hypoxia enhances H 2O 2-mediated upregulation of hepcidin: Evidence for NOX4-mediated iron regulation. Redox Biol 2018; 16:1-10. [PMID: 29459227 PMCID: PMC5832675 DOI: 10.1016/j.redox.2018.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
The exact regulation of the liver-secreted peptide hepcidin, the key regulator of systemic iron homeostasis, is still poorly understood. It is potently induced by iron, inflammation, cytokines or H2O2 but conflicting results have been reported on hypoxia. In our current study, we first show that pronounced (1%) and mild (5%) hypoxia strongly induces hepcidin in human Huh7 hepatoma and primary liver cells predominantly at the transcriptional level via STAT3 using two hypoxia systems (hypoxia chamber and enzymatic hypoxia by the GOX/CAT system). SiRNA silencing of JAK1, STAT3 and NOX4 diminished the hypoxia-mediated effect while a role of HIF1α could be clearly ruled out by the response to hypoxia-mimetics and competition experiments with a plasmid harboring the oxygen-dependent degradation domain of HIF1α. Specifically, hypoxia drastically enhances the H2O2-mediated induction of hepcidin strongly pointing towards an oxidase as powerful upstream control of hepcidin. We finally provide evidences for an efficient regulation of hepcidin expression by NADPH-dependent oxidase 4 (NOX4) in liver cells. In summary, our data demonstrate that hypoxia strongly potentiates the peroxide-mediated induction of hepcidin via STAT3 signaling pathway. Moreover, oxidases such as NOX4 or artificially overexpressed urate oxidase (UOX) can induce hepcidin. It remains to be studied whether the peroxide-STAT3-hepcidin axis simply acts to continuously compensate for oxygen fluctuations or is directly involved in iron sensing per se. Hypoxia strongly induces hepcidin via STAT3 signaling. HIF1α is not involved in hepcidin regulation under hypoxia. Hypoxia enhances hydrogen peroxide-mediated hepcidin induction. Oxidases, such as NOX4 are powerful inducers of hepcidin.
Collapse
Affiliation(s)
- Inês Silva
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Teresa Peccerella
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Gunda Millonig
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Helmut-Karl Seitz
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany.
| |
Collapse
|
66
|
Kong WN, Cui Y, Fu YJ, Lei Y, Ci Y, Bao Y, Zhao S, Xie L, Chang YZ, Zhao SE. The α1-adrenergic receptor is involved in hepcidin upregulation induced by adrenaline and norepinephrine via the STAT3 pathway. J Cell Biochem 2018; 119:5517-5527. [PMID: 29377263 DOI: 10.1002/jcb.26715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Elevated body iron stores are associated with hypertension progression, while hypertension is associated with elevated plasma catecholamine levels in patients. However, there is a gap in our understanding of the connection between catecholamines and iron regulation. Hepcidin is a key iron-regulatory hormone, which maintains body iron balance. In the present study, we investigated the effects of adrenaline (AD) and norepinephrine (NE) on hepatic hepcidin regulation. Mice were treated with AD, NE, phenylephrine (PE, α1-adrenergic receptor agonist), prazosin (PZ, α1-adrenergic receptor antagonist), and/or propranolol (Pro, β-adrenergic receptor antagonist). The levels of hepcidin, as well as signal transducer and activator of transcription 3 (STAT3), ferroportin 1 (FPN1), and ferritin-light (Ft-L) protein in the liver or spleen, were assessed. Six hours after AD, NE, or PE treatment, hepatic hepcidin mRNA levels increased. Pretreatment with PZ, but not Pro, abolished the effects of AD or NE on STAT3 phosphorylation and hepatic hepcidin expression. When mice were treated with AD or NE continuously for 7 days, an increase in hepatic hepcidin mRNA levels and serum hepcidin concentration was also observed. Meanwhile, the expected downstream effects of elevated hepcidin, namely decreased FPN1 expression and increased Ft-L protein and non-heme iron concentrations in the spleen, were observed after the continuous AD or NE treatments. Taken together, we found that AD or NE increase hepatic hepcidin expression via the α1-adrenergic receptor and STAT3 pathways in mice. The elevated hepatic hepcidin decreased FPN1 levels in the spleen, likely causing the increased iron accumulation in the spleen.
Collapse
Affiliation(s)
- Wei-Na Kong
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,Bioreactor and Protein Drug Research and Development Center of Hebei Universities, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, P. R. China
| | - Yanmei Cui
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yu-Jian Fu
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yuhua Lei
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yunzhe Ci
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,Chengde Medical University, Chengde, Hebei Province, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Shuqiang Zhao
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Lide Xie
- Chengde Medical University, Chengde, Hebei Province, P. R. China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Shu-E Zhao
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,The 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
67
|
Del Vecchio L, Locatelli F. Roxadustat in the treatment of anaemia in chronic kidney disease. Expert Opin Investig Drugs 2017; 27:125-133. [PMID: 29254377 DOI: 10.1080/13543784.2018.1417386] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Anaemia is one of the hallmarks of advanced chronic kidney disease (CKD); it correlates with a lower quality of life and increased cardiovascular risk. Currently its management is based on iron and erythropoiesis-stimulating agents (ESAs) therapy. Given safety issues on ESA therapy and excessive iron use, anaemia management is still suboptimal. Areas covered: The inhibitors of the prolyl-hydroxylases domain (PHD) are oral drugs which activate the hypoxia-inducible factors (HIF) and stimulate the production of endogenous erythropoietin. Roxadustat (FG-4592) is a second-generation PHD inhibitor; it is undergoing now phase-III clinical development. Expert opinion: Phase-II clinical trials have shown that roxadustat is effective and save in the short term in either non-dialysis or dialysis CKD patients. Roxadustat is a chemical drug and thus has the potential of being cheaper than traditional ESAs. Given that the peaks of endogenous EPO are much lower than those observed with traditional ESA, it is possible to speculate the roxadustat (and more in general PHD inhibitors) will be safer than ESA on cardiovascular safety end-points. Considering that HIFs are involved in different pathways, with possible promotion of relevant side effects, their safety must be proven in long-term studies.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| | - Francesco Locatelli
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| |
Collapse
|
68
|
Haase VH. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int 2017; 21 Suppl 1:S110-S124. [PMID: 28449418 DOI: 10.1111/hdi.12567] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A classic response to systemic hypoxia is the increase in red blood cell production. This response is controlled by the prolyl hydroxylase domain/hypoxia-inducible factor (HIF) pathway, which regulates a broad spectrum of cellular functions. The discovery of this pathway as a key regulator of erythropoiesis has led to the development of small molecules that stimulate the production of endogenous erythropoietin and enhance iron metabolism. This review provides a concise overview of the cellular and molecular mechanisms that govern HIF-induced erythropoietic responses and provides an update on clinical experience with compounds that target HIF-prolyl hydroxylases for anemia therapy.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Departments of Cancer Biology and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Veterans Affairs Hospital, Medical and Research Services, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
69
|
Flamme I, Ellinghaus P, Urrego D, Krüger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLoS One 2017; 12:e0186979. [PMID: 29073196 PMCID: PMC5658123 DOI: 10.1371/journal.pone.0186979] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Plasma levels of FGF23 are increased in patients with chronic kidney disease. Beside its role in phosphate homeostasis, iron deficiency and anemia are associated with increased FGF23 plasma levels. Recently, FGF23 plasma levels were shown to be increased in mice after treatment with hypoxia inducible factor-proline hydroxylase (HIF-PH) inhibitors which are strong inducers of erythropoietin and erythropoiesis and are known to modulate iron uptake and availability. Therefore we investigated a potential context between expression of FGF23 and stimulation of erythropoiesis using a HIF-PH inhibitor and erythropoietin in rats. FGF23 plasma levels are induced at peak levels 2 h after intravenous injection of recombinant human Erythropoietin (rhEPO). Likewise induction of endogenous EPO using a HIF-PH inhibitor (BAY 85–3934) is followed by an increase of FGF23 plasma levels. In contrast to rhEPO the HIF-PH inhibitor induces lower peak levels of FGF23 applying equivalent hematopoietic doses. Bone and bone marrow were identified as sources of EPO-induced FGF23. Immediate induction of FGF23 mRNA was also detected in EPO receptor positive murine hematopoietic BAF3 cells after treatment with rhEPO but not after treatment with the HIF-PH inhibitor. Pretreatment of mice with a neutralizing anti-EPO antibody abrogated FGF23 induction by the HIF-PH inhibitor. Thus, direct impact on FGF23 expression by HIF-PH inhibition in vivo via hypoxia mimicking and modulation of iron metabolism appears unlikely. Collectively, the findings point to an EPO dependent regulation pathway of FGF23 gene expression which might be important in the context of erythropoiesis stimulating therapies in patients with renal anemia.
Collapse
Affiliation(s)
- Ingo Flamme
- Bayer AG, Drug Discovery, Pharmaceuticals, Therapeutic Research Group, Cardiology, Wuppertal, Germany
- * E-mail:
| | - Peter Ellinghaus
- Bayer AG, Drug Discovery, Pharmaceuticals, Therapeutic Research Group, Biomarker Research, Wuppertal, Germany
| | - Diana Urrego
- Bayer AG, Drug Discovery, Pharmaceuticals, Therapeutic Research Group, Cardiology, Wuppertal, Germany
| | - Thilo Krüger
- Bayer AG, Drug Development, Pharmaceuticals, Development, CD Cardiovascular, Wuppertal, Germany
| |
Collapse
|
70
|
Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)? Cancers (Basel) 2017; 9:cancers9110145. [PMID: 29068390 PMCID: PMC5704163 DOI: 10.3390/cancers9110145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading health risk worldwide. Hepatic iron overload is frequently observed in ALD patients and it is an important and independent factor for disease progression, survival, and the development of primary liver cancer (HCC). At a systemic level, iron homeostasis is controlled by the liver-secreted hormone hepcidin. Hepcidin regulation is complex and still not completely understood. It is modulated by many pathophysiological conditions associated with ALD, such as inflammation, anemia, oxidative stress/H2O2, or hypoxia. Namely, the data on hypoxia-signaling of hepcidin are conflicting, which seems to be mainly due to interpretational limitations of in vivo data and methodological challenges. Hence, it is often overlooked that hepcidin-secreting hepatocytes are physiologically exposed to 2–7% oxygen, and that key oxygen species such as H2O2 act as signaling messengers in such a hypoxic environment. Indeed, with the recently introduced glucose oxidase/catalase (GOX/CAT) system it has been possible to independently study hypoxia and H2O2 signaling. First preliminary data indicate that hypoxia enhances H2O2-mediated induction of hepcidin, pointing towards oxidases such as NADPH oxidase 4 (NOX4). We here review and discuss novel concepts of hypoxia signaling that could help to better understand hepcidin-associated iron overload in ALD.
Collapse
|
71
|
Goto K, Kasai N, Kojima C, Ishibashi A. Postexercise serum hepcidin response to repeated sprint exercise under normoxic and hypoxic conditions. Appl Physiol Nutr Metab 2017; 43:221-226. [PMID: 28961407 DOI: 10.1139/apnm-2017-0418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We determined the effects of repeated sprint exercise under normoxic and hypoxic conditions on serum hepcidin levels. Ten male athletes (age: 20.9 ± 0.3 years; height: 175.7 ± 6.0 cm; weight: 67.3 ± 6.3 kg) performed 2 exercise trials under normoxic (NOR; fraction of inspiratory oxygen (FiO2): 20.9%) or hypoxic conditions (HYPO; FiO2: 14.5%). The exercise consisted of 3 sets of 5 × 6 s of maximal pedaling (30-s rest periods between sprints, 10-min rest periods between sets). Blood samples were collected before exercise, immediately after exercise, and 1 and 3 h after exercise. Serum hepcidin levels were significantly elevated after exercise in both trials (both P < 0.01), with no significant difference between the trials. The postexercise blood lactate levels were significantly higher in the HYPO than the NOR (P < 0.05). Both trials caused similar increases in plasma interleukin-6 and serum iron levels (P < 0.001), with no significant difference between the trials. A significant interaction (trial × time) was apparent in terms of serum erythropoietin (EPO) levels (P = 0.003). The EPO level was significantly higher in the HYPO than the NOR at 3 h after exercise (P < 0.05). In conclusion, repeated sprint exercise significantly increased serum hepcidin levels to similar extent in 2 trials, despite differences in the inspired oxygen concentrations during both the exercise and the 3-h postexercise period.
Collapse
Affiliation(s)
- Kazushige Goto
- a Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Nobukazu Kasai
- a Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Chihiro Kojima
- a Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Aya Ishibashi
- a Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.,b Department of Sports Science, Japan Institute of Sports Science, Kitaku, Tokyo, 525-8577, Japan
| |
Collapse
|
72
|
Goto K, Sumi D, Kojima C, Ishibashi A. Post-exercise serum hepcidin levels were unaffected by hypoxic exposure during prolonged exercise sessions. PLoS One 2017; 12:e0183629. [PMID: 28829838 PMCID: PMC5567555 DOI: 10.1371/journal.pone.0183629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/30/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to determine the influence of hypoxic exposure during prolonged endurance exercise sessions (79 min in total) on post-exercise hepcidin levels in trained male endurance athletes. Ten endurance athletes (mean ± standard deviation; height: 169.8 ± 7.1 cm, weight: 57.1 ± 5.0 kg) conducted two endurance exercise sessions under either a normobaric hypoxic condition [inspired O2 fraction (FiO2) = 14.5%] or a normoxic condition (FiO2 = 20.9%). Exercise consisted of 10 × 3 min running on a treadmill at 95% of maximal oxygen uptake ([Formula: see text]) with 60s of active rest at 60% of [Formula: see text]. After 10 min of rest, they subsequently performed 30 min of continuous running at 85% of [Formula: see text]. Running velocities were significantly lower in the HYPO than in the NOR (P < 0.0001). Exercise-induced blood lactate elevation was significantly greater in the HYPO (P < 0.01). There were significant increases in plasma interleukin-6, serum iron, and blood glucose levels after exercise, with no significant difference between the trials [interaction (trial × time) or main effect for trial, P > 0.05]. Serum hepcidin levels increased significantly 120 min after exercise (HYPO: from 10.7 ± 9.4 ng/mL to 15.8 ± 11.2 ng/mL; NOR: from 7.9 ± 4.7 ng/mL to 13.2 ± 7.9 ng/mL, P < 0.05), and no difference was observed between the trials. In conclusion, endurance exercise at lower running velocity in hypoxic conditions resulted in similar post-exercise hepcidin elevations as higher running velocity in normoxic conditions.
Collapse
Affiliation(s)
- Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| | - Daichi Sumi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Chihiro Kojima
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Aya Ishibashi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Japan Institute of Sports Sciences, Kitaku, Tokyo, Japan
| |
Collapse
|
73
|
Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Exp Cell Res 2017; 356:160-165. [PMID: 28483447 DOI: 10.1016/j.yexcr.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
The oxygen-sensitive hypoxia-inducible factor (HIF) pathway plays a central role in the control of erythropoiesis and iron metabolism. The discovery of prolyl hydroxylase domain (PHD) proteins as key regulators of HIF activity has led to the development of inhibitory compounds that are now in phase 3 clinical development for the treatment of renal anemia, a condition that is commonly found in patients with advanced chronic kidney disease. This review provides a concise overview of clinical effects associated with pharmacologic PHD inhibition and was written in memory of Professor Lorenz Poellinger.
Collapse
|
74
|
Langer AL, Ginzburg YZ. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation. Hemodial Int 2017; 21 Suppl 1:S37-S46. [PMID: 28328181 DOI: 10.1111/hdi.12543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development.
Collapse
Affiliation(s)
- Arielle L Langer
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yelena Z Ginzburg
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
75
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
76
|
Abstract
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
77
|
|
78
|
Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int 2016; 90:1115-1122. [DOI: 10.1016/j.kint.2016.07.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
|
79
|
Sikorska K, Bernat A, Wroblewska A. Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis. Hepatobiliary Pancreat Dis Int 2016; 15:461-479. [PMID: 27733315 DOI: 10.1016/s1499-3872(16)60135-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The liver, as the main iron storage compartment and the place of hepcidin synthesis, is the central organ involved in maintaining iron homeostasis in the body. Excessive accumulation of iron is an important risk factor in liver disease progression to cirrhosis and hepatocellular carcinoma. Here, we review the literature on the molecular pathogenesis of iron overload and its clinical consequences in chronic liver diseases. DATA SOURCES PubMed was searched for English-language articles on molecular genesis of primary and secondary iron overload, as well as on their association with liver disease progression. We have also included literature on adjuvant therapeutic interventions aiming to alleviate detrimental effects of excessive body iron load in liver cirrhosis. RESULTS Excess of free, unbound iron induces oxidative stress, increases cell sensitivity to other detrimental factors, and can directly affect cellular signaling pathways, resulting in accelerated liver disease progression. Diagnosis of liver cirrhosis is, in turn, often associated with the identification of a pathological accumulation of iron, even in the absence of genetic background of hereditary hemochromatosis. Iron depletion and adjuvant therapy with antioxidants are shown to cause significant improvement of liver functions in patients with iron overload. Phlebotomy can have beneficial effects on liver histology in patients with excessive iron accumulation combined with compensated liver cirrhosis of different etiology. CONCLUSION Excessive accumulation of body iron in liver cirrhosis is an important predictor of liver failure and available data suggest that it can be considered as target for adjuvant therapy in this condition.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | | | | |
Collapse
|
80
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
81
|
Šimetić L, Zibar L. Laboratory use of hepcidin in renal transplant recipients. Biochem Med (Zagreb) 2016; 26:34-52. [PMID: 26981017 PMCID: PMC4783088 DOI: 10.11613/bm.2016.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
Abstract
Hepcidin is a small peptide with a critical role in cellular iron homeostasis, as it regulates utilization of stored iron and antimicrobial defense in inflammation (bacterial and fungal). Since it was isolated in 2000, and especially in the last decade, numerous studies aimed to evaluate the clinical use of plasma and urine hepcidin as a marker of anemia, especially anemia of chronic disease and post-transplant anemia (PTA). Hepcidin regulation is delicately tuned by two inflammatory pathways activated by interleukin-6 (IL-6) and bone morphogenic proteins (BMPs) and iron regulated pathway sensitive to circulating transferin-iron (TR-Fe) complex. BMP-mediated pathway and TR-Fe sensitive pathway seem to be connected by hemojuveline, a BMP co-factor that interacts with transferine receptor 2 (TRF2) in cases of high TR-Fe circulatory concentration. In addition to these regulatory mechanisms other regulators and signaling pathways are being extensively researched.
Hepcidin has been identified as an important contributor to morbidity and mortality in end stage renal disease (ESRD) but no such association has jet been found in case of PTA. However, there is an association between higher doses of erythropoiesis-stimulating agents (ESA) and mortality in the posttransplant period and the assumption that hepcidin might play a role in ESA resistance in PTA. Thus the review’s main goal was to summarize papers published on the association of hepcidin with PTA, give up-to-date information on hepcidin regulation and on potential therapeutics that optimize hepcidin regulation. We also compared the performances of tests for hepcidin determination and reviewed research on immunosuppressants’ (IS) effect on hepcidin concentration.
Collapse
Affiliation(s)
- Lucija Šimetić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia; Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Lada Zibar
- Department for Dialysis, Osijek University Hospital, Osijek, Croatia; Department of Pathophysiology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
82
|
Abstract
Hepcidin is the master regulator of systemic iron homeostasis, facilitating iron balance by controlling intestinal iron absorption and recycling. Hepcidin levels are suppressed when erythropoiesis is stimulated, for example following acute blood loss, appropriately enhancing cellular iron export to the plasma to support production of new red blood cells. However, persistent increased and ineffective erythropoiesis, for example in thalassemia, results in sustained elevations in iron absorption, which cause iron overload with associated organ toxicities. The ligands, receptors, and canonical pathways by which iron loading and inflammation upregulate hepcidin expression have been largely established. However, although several mechanisms have been proposed, the means by which erythropoiesis causes hepcidin suppression have been unclear. The erythroid-derived hormone erythroferrone appears to be a convincing candidate for the link between increased erythropoiesis and hepcidin suppression. If confirmed to be clinically and physiologically relevant in humans, potentiation or inhibition of erythroferrone activity could be a crucial pharmaceutical strategy.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Hal Drakesmith
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| |
Collapse
|
83
|
Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D, Rastogi A, Zeig S, Lepore JJ, Cobitz AR. Four-Week Studies of Oral Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor GSK1278863 for Treatment of Anemia. J Am Soc Nephrol 2016; 27:1234-44. [PMID: 26494831 PMCID: PMC4814173 DOI: 10.1681/asn.2014111139] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 07/07/2015] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor prolyl hydroxylase inhibitors stabilize levels of hypoxia-inducible factor that upregulate transcription of multiple genes associated with the response to hypoxia, including production of erythropoietin. We conducted two phase 2a studies to explore the relationship between the dose of the hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 and hemoglobin response in patients with anemia of CKD (baseline hemoglobin 8.5-11.0 g/dl) not undergoing dialysis and not receiving recombinant human erythropoietin (nondialysis study) and in patients with anemia of CKD (baseline hemoglobin 9.5-12.0 g/dl) on hemodialysis and being treated with stable doses of recombinant human erythropoietin (hemodialysis study). Participants were randomized 1:1:1:1 to a once-daily oral dose of GSK1278863 (0.5 mg, 2 mg, or 5 mg) or control (placebo for the nondialysis study; continuing on recombinant human erythropoietin for the hemodialysis study) for 4 weeks, with a 2-week follow-up. In the nondialysis study, GSK1278863 produced dose-dependent effects on hemoglobin, with the highest dose resulting in a mean increase of 1 g/dl at week 4. In the hemodialysis study, treatment with GSK1278863 in the 5-mg arm maintained mean hemoglobin concentrations after the switch from recombinant human erythropoietin, whereas mean hemoglobin decreased in the lower-dose arms. In both studies, the effects on hemoglobin occurred with elevations in endogenous erythropoietin within the range usually observed in the respective populations and markedly lower than those in the recombinant human erythropoietin control arm in the hemodialysis study, and without clinically significant elevations in plasma vascular endothelial growth factor concentrations. GSK1278863 was generally safe and well tolerated at the doses and duration studied. GSK1278863 may prove an effective alternative for managing anemia of CKD.
Collapse
Affiliation(s)
| | | | - Rayma Maier
- Clinical Statistics, GlaxoSmithKline, Stockley Park, London, United Kingdom
| | - Brendan M Johnson
- Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Delyth Jones
- Clinical Statistics, GlaxoSmithKline, Stockley Park, London, United Kingdom
| | - Anjay Rastogi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Steven Zeig
- Pines Clinical Research, Pembroke Pines, Florida; and
| | - John J Lepore
- Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Alexander R Cobitz
- Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, Pennsylvania
| |
Collapse
|
84
|
Yousaf F, Spinowitz B. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin? Curr Hypertens Rep 2016; 18:23. [DOI: 10.1007/s11906-016-0629-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
85
|
Fábián Z, Taylor CT, Nguyen LK. Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling. J Mol Med (Berl) 2016; 94:377-90. [PMID: 26821588 DOI: 10.1007/s00109-016-1383-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022]
Abstract
Hypoxia is a common micro-environmental stress which is experienced by cells during a range of physiologic and pathophysiologic processes. The identification of the hypoxia-inducible factor (HIF) as the master regulator of the transcriptional response to hypoxia transformed our understanding of the mechanism underpinning the hypoxic response at the molecular level and identified HIF as a potentially important new therapeutic target. It has recently become clear that multiple levels of regulatory control exert influence on the HIF pathway giving the response a complex and dynamic activity profile. These include positive and negative feedback loops within the HIF pathway as well as multiple levels of crosstalk with other signaling pathways. The emerging model reflects a multi-level regulatory network that affects multiple aspects of the physiologic response to hypoxia including proliferation, apoptosis, and differentiation. Understanding the interplay between the molecular mechanisms involved in the dynamic regulation of the HIF pathway at a systems level is critically important in defining new appropriate therapeutic targets for human diseases including ischemia, cancer, and chronic inflammation. Here, we review our current knowledge of the regulatory circuits which exert influence over the HIF response and give examples of in silico model-based predictions of the dynamic behaviour of this system.
Collapse
Affiliation(s)
- Zsolt Fábián
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.,Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and Biomedical Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
86
|
Recalcati S, Gammella E, Cairo G. New perspectives on the molecular basis of the interaction between oxygen homeostasis and iron metabolism. HYPOXIA 2015; 3:93-103. [PMID: 27774486 PMCID: PMC5045093 DOI: 10.2147/hp.s83537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen and iron are two elements closely related from a (bio)chemical point of view. Moreover, they share the characteristic of being indispensable for life, while also being potentially toxic. Therefore, their level is strictly monitored, and sophisticated pathways have evolved to face variations in either element. In addition, the expression of proteins involved in iron and oxygen metabolism is mainly controlled by a complex interplay of proteins that sense both iron levels and oxygen availability (ie, prolyl hydroxylases, hypoxia inducible factors, and iron regulatory proteins), and in turn activate feedback mechanisms to re-establish homeostasis. In this review, we describe how cells and organisms utilize these intricate networks to regulate responses to changes in oxygen and iron levels. We also explore the role of these pathways in some pathophysiological settings.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
87
|
Abstract
Iron is an important micronutrient that may be depleted in celiac disease. Iron deficiency and anemia may complicate well-established celiac disease, but may also be the presenting clinical feature in the absence of diarrhea or weight loss. If iron deficiency anemia occurs, it should be thoroughly evaluated, even if celiac disease has been defined since other superimposed causes of iron deficiency anemia may be present. Most often, impaired duodenal mucosal uptake of iron is evident since surface absorptive area in the duodenum is reduced, in large part, because celiac disease is an immune-mediated disorder largely focused in the proximal small intestinal mucosa. Some studies have also suggested that blood loss may occur in celiac disease, sometimes from superimposed small intestinal disorders, including ulceration or neoplastic diseases, particularly lymphoma. In addition, other associated gastric or colonic disorders may be responsible for blood loss. Rarely, an immune-mediated hemolytic disorder with increased urine iron loss may occur that may respond to a gluten-free diet. Reduced expression of different regulatory proteins critical in iron uptake has also been defined in the presence and absence of anemia. Finally, other rare causes of microcytic anemia may occur in celiac disease, including a sideroblastic form of anemia reported to have responded to a gluten-free diet.
Collapse
|
88
|
Abstract
Anemia in the setting of chronic inflammatory disorders is a very frequent clinical condition, which is, however, often neglected or not properly treated given the problems often caused by the diseases underlying the development of anemia. Mechanistically, anemia is mainly caused by inflammation-driven retention of iron in macrophages making the metal unavailable for heme synthesis in the course of erythropoiesis, and further by impaired biological activity of the red blood cell hormone erythropoietin and the reduced proliferative capacity of erythroid progenitor cells. Anemia can be aggravated by chronic blood loss, as found in subjects with gastrointestinal cancers, inflammatory or infectious bowel disease, or iatrogenic blood loss in the setting of dialysis, all resulting in true iron deficiency. The identification of such patients is a clinical necessity because these individuals need contrasting therapies in comparison to subjects suffering from only classical anemia of chronic disorders. The diagnosis is challenging because no state of the art laboratory test is currently available that can clearly separate patients with inflammatory anemia from those with additional true iron deficiency. However, based on our expanding knowledge on the pathophysiology of inflammatory anemia, new diagnostic markers, including the iron-regulatory hormone hepcidin, and hematologic parameters emerge. Apart from traditional anemia treatments such as blood transfusions, recombinant erythropoietin, and iron, including new high-molecular-weight formulations, new therapeutics are currently under preclinical and clinical evaluation. These novel compounds aim at correcting anemia by multiple pathways, including antagonizing the inflammation- and hepcidin-driven retention of iron in the monocyte-macrophage system and thereby promoting the supply of iron for erythropoiesis or by stimulating the endogenous formation of erythopoietin via stabilization of hypoxia-regulated factors.
Collapse
Affiliation(s)
- Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
89
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
90
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
91
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
92
|
Abstract
Iron, an essential nutrient, is required for many diverse biological processes. The absence of a defined pathway to excrete excess iron makes it essential for the body to regulate the amount of iron absorbed; a deficiency could lead to iron deficiency and an excess to iron overload and associated disorders such as anaemia and haemochromatosis respectively. This regulation is mediated by the iron-regulatory hormone hepcidin. Hepcidin binds to the only known iron export protein, ferroportin (FPN), inducing its internalization and degradation, thus limiting the amount of iron released into the blood. The major factors that are implicated in hepcidin regulation include iron stores, hypoxia, inflammation and erythropoiesis. The present review summarizes our present knowledge about the molecular mechanisms and signalling pathways contributing to hepcidin regulation by these factors.
Collapse
|
93
|
Yun S, Vincelette ND. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis. Crit Rev Oncol Hematol 2015; 95:12-25. [PMID: 25737209 DOI: 10.1016/j.critrevonc.2015.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review.
Collapse
Affiliation(s)
- Seongseok Yun
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Nicole D Vincelette
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
94
|
Martelli A, Schmucker S, Reutenauer L, Mathieu JRR, Peyssonnaux C, Karim Z, Puy H, Galy B, Hentze MW, Puccio H. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab 2015; 21:311-323. [PMID: 25651183 DOI: 10.1016/j.cmet.2015.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Mitochondrial iron accumulation is a hallmark of diseases associated with impaired iron-sulfur cluster (Fe-S) biogenesis, such as Friedreich ataxia linked to frataxin (FXN) deficiency. The pathophysiological relevance of the mitochondrial iron loading and the underlying mechanisms are unknown. Using a mouse model of hepatic FXN deficiency in combination with mice deficient for iron regulatory protein 1 (IRP1), a key regulator of cellular iron metabolism, we show that IRP1 activation in conditions of Fe-S deficiency increases the available cytosolic labile iron pool. Surprisingly, our data indicate that IRP1 activation sustains mitochondrial iron supply and function rather than driving detrimental iron overload. Mitochondrial iron accumulation is shown to depend on mitochondrial dysfunction and heme-dependent upregulation of the mitochondrial iron importer mitoferrin-2. Our results uncover an unexpected protective role of IRP1 in pathological conditions associated with altered Fe-S metabolism.
Collapse
Affiliation(s)
- Alain Martelli
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France.
| | - Stéphane Schmucker
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France
| | - Laurence Reutenauer
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France
| | - Jacques R R Mathieu
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université Paris Descartes, 75014 Paris, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université Paris Descartes, 75014 Paris, France
| | - Zoubida Karim
- Inserm Unité 1149, Center for Research on Inflammation (CRI), Université Paris Diderot, Sorbonne Paris Cité, site Bichat, 75018 Paris, France
| | - Hervé Puy
- Inserm Unité 1149, Center for Research on Inflammation (CRI), Université Paris Diderot, Sorbonne Paris Cité, site Bichat, 75018 Paris, France; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, 92701 Colombes, France
| | - Bruno Galy
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Hélène Puccio
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France.
| |
Collapse
|
95
|
Wichaiyo S, Yatmark P, Morales Vargas RE, Sanvarinda P, Svasti S, Fucharoen S, Morales NP. Effect of iron overload on furin expression in wild-type and β-thalassemic mice. Toxicol Rep 2015; 2:415-422. [PMID: 28962376 PMCID: PMC5598392 DOI: 10.1016/j.toxrep.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Furin is a proprotein convertase enzyme. In the liver, it cleaves prohepcidin to form active hepcidin-25, which regulates systemic iron homeostasis. Hepcidin deficiency is a component of several iron overload disorders, including β-thalassemia. Several studies have identified factors that repress hepcidin gene transcription in iron overload. However, the effect of iron overload on furin, a post-translational regulator of hepcidin, has never been evaluated. The present study aimed to investigate the changes in furin and related factors in parenteral iron-overloaded mice, including those with β-thalassemia. Wild-type (WT) and β-thalassemia intermedia (th3/+) C57BL/6 mice were intraperitoneally injected with 9 doses of iron dextran (1 g iron/kg body weight) over 2 weeks. In the iron overload condition, our data demonstrated a significant Furin mRNA reduction in WT and th3/+ mice. In addition, the liver furin protein level in iron-overloaded WT mice was significantly reduced by 70% compared to control WT mice. However, the liver furin protein in iron-overloaded th3/+ mice did not show a significant reduction compared to control th3/+ mice. The hepcidin gene (hepcidin antimicrobial peptide gene, Hamp1) expression was increased in iron-overloaded WT and th3/+ mice. Surprisingly, the liver hepcidin protein level and total serum hepcidin were not increased in both WT and th3/+ mice with iron overload, regardless of the increase in Hamp1 mRNA. In conclusion, we demonstrate furin downregulation in conjunction with Hamp1 mRNA-unrelated pattern of hepcidin protein expression in iron-overloaded mice, particularly the WT mice, suggesting that, not only the amount of hepcidin but also the furin-mediated physiological activity may be decreased in severe iron overload condition.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Paranee Yatmark
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Ronald Enrique Morales Vargas
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pimtip Sanvarinda
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Noppawan Phumala Morales
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
- Corresponding author at: Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Tel.: +66 2 201 5507; fax: +66 2 354 7157.
| |
Collapse
|
96
|
Zou J, Wang X, Zhang L, Wang J. Iron Nanoparticles Significantly Affect the In Vitro and In Vivo Expression of Id Genes. Chem Res Toxicol 2015; 28:373-83. [DOI: 10.1021/tx500333q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinglu Zou
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xin Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ling Zhang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
97
|
Abstract
Iron and oxygen metabolism are intimately linked with one another.
Collapse
Affiliation(s)
- Robert J. Simpson
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| | - Andrew T. McKie
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| |
Collapse
|
98
|
Gammella E, Diaz V, Recalcati S, Buratti P, Samaja M, Dey S, Noguchi CT, Gassmann M, Cairo G. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Regul Integr Comp Physiol 2014; 308:R330-5. [PMID: 25519735 DOI: 10.1152/ajpregu.00410.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Under conditions of accelerated erythropoiesis, elevated erythropoietin (Epo) levels are associated with inhibition of hepcidin synthesis, a response that ultimately increases iron availability to meet the enhanced iron needs of erythropoietic cells. In the search for erythroid regulators of hepcidin, many candidates have been proposed, including Epo itself. We aimed to test whether direct interaction between Epo and the liver is required to regulate hepcidin. We found that prolonged administration of high doses of Epo in mice leads to great inhibition of liver hepcidin mRNA levels, and concomitant induction of the hepcidin inhibitor erythroferrone (ERFE). Epo treatment also resulted in liver iron mobilization, mediated by increased ferroportin activity and accompanied by reduced ferritin levels and increased TfR1 expression. The same inhibitory effect was observed in mice that do not express the homodimeric Epo receptor (EpoR) in liver cells because EpoR expression is restricted to erythroid cells. Similarly, liver signaling pathways involved in hepcidin regulation were not influenced by the presence or absence of hepatic EpoR. Moreover, Epo analogs, possibly interacting with the postulated heterodimeric β common EpoR, did not affect hepcidin expression. These findings were supported by the lack of inhibition on hepcidin found in hepatoma cells exposed to various concentrations of Epo for different periods of times. Our results demonstrate that hepcidin suppression does not require the direct binding of Epo to its liver receptors and rather suggest that the role of Epo is to stimulate the synthesis of the erythroid regulator ERFE in erythroblasts, which ultimately downregulates hepcidin.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Victor Diaz
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy;
| |
Collapse
|
99
|
Affiliation(s)
- Léon Kautz
- Department of Medicine ; David Geffen School of Medicine, University of California, Los Angeles, UCLA, department of Medicine, 10833 LeConte avenue, CHS37-131, CA90095 Los Angeles, CA, États-Unis
| |
Collapse
|
100
|
Kong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen WB, Chang YZ, Zhao SE. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res 2014; 160:258-67. [PMID: 24962641 DOI: 10.1007/s12011-014-0051-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
Studies have shown that men and women exhibit significant differences regarding iron status. However, the effects of sex on iron accumulation and distribution are not well established. In this study, female and male Sprague-Dawley rats were killed at 4 months of age. Blood samples were analyzed to determine the red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct), and mean red blood cell volume (MCV). The serum samples were analyzed to determine the concentrations of serum iron (SI), transferrin saturation (TS), ferritin, soluble transferrin receptor (sTfR), and erythropoietin (EPO). The tissue nonheme iron concentrations were measured in the liver, spleen, bone marrow, kidney, heart, gastrocnemius, duodenal epithelium, lung, pallium, cerebellum, hippocampus, and striatum. Hepatic hepcidin expression was detected by real-time PCR analysis. The synthesis of ferroportin 1 (FPN1) in the liver, spleen, kidney, and bone marrow was determined by Western blot analysis. The synthesis of duodenal cytochrome B561 (DcytB), divalent metal transporter 1 (DMT1), FPN1, hephaestin (HP) in the duodenal epithelium was also measured by Western blot analysis. The results showed that the RBC, Hb, and Hct in male rats were higher than those in female rats. The SI and plasma TS levels were lower in male rats than in female rats. The levels of serum ferritin and sTfR were higher in male rats than in female rats. The EPO levels in male rats were lower than that in female rats. The nonheme iron contents in the liver, spleen, bone marrow, and kidney in male rats were also lower (56.7, 73.2, 60.6, and 61.4 % of female rats, respectively). Nonheme iron concentrations in the heart, gastrocnemius, duodenal epithelium, lung, and brain were similar in rats of both sexes. A moderate decrease in hepatic hepcidin mRNA content was also observed in male rats (to 56.0 % of female rats). The levels of FPN1 protein in the liver, spleen, and kidney were higher in male rats than in female rats. There was no significant change in FPN1 expression in bone marrow. Significant difference was also not found in DcytB, DMT1, FPN1, and HP protein levels in the duodenal epithelium between male and female rats. These data suggest that iron is distributed differently in male and female rats. This difference in iron distribution may be associated with the difference in the hepcidin level.
Collapse
Affiliation(s)
- Wei-Na Kong
- The 3rd Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|