51
|
Lenaerts A, Kucinski I, Deboutte W, Derecka M, Cauchy P, Manke T, Göttgens B, Grosschedl R. EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. J Exp Med 2022; 219:e20212437. [PMID: 36048017 PMCID: PMC9437269 DOI: 10.1084/jem.20212437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.
Collapse
Affiliation(s)
- Aurelie Lenaerts
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ward Deboutte
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
52
|
Svendsen AF, de Haan G. Is the philosopher's stone to rejuvenate blood stem cells an epigenetic regulator? NATURE AGING 2022; 2:980-981. [PMID: 37118087 DOI: 10.1038/s43587-022-00305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Arthur Flohr Svendsen
- Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, University of Amsterdam, Hematology, Amsterdam, The Netherlands
| | - Gerald de Haan
- Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, University of Amsterdam, Hematology, Amsterdam, The Netherlands.
| |
Collapse
|
53
|
Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Exp Hematol Oncol 2022; 11:83. [PMID: 36316713 PMCID: PMC9624023 DOI: 10.1186/s40164-022-00329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.
Collapse
Affiliation(s)
- Shaima Jabbar
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
54
|
Hérault L, Poplineau M, Remy E, Duprez E. Single Cell Transcriptomics to Understand HSC Heterogeneity and Its Evolution upon Aging. Cells 2022; 11:3125. [PMID: 36231086 PMCID: PMC9563410 DOI: 10.3390/cells11193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Single-cell transcriptomic technologies enable the uncovering and characterization of cellular heterogeneity and pave the way for studies aiming at understanding the origin and consequences of it. The hematopoietic system is in essence a very well adapted model system to benefit from this technological advance because it is characterized by different cellular states. Each cellular state, and its interconnection, may be defined by a specific location in the global transcriptional landscape sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented hematopoietic aging. Here, we review the advance of single-cell transcriptomic approaches for the understanding of HSC heterogeneity to grasp HSC deregulations upon aging. We also discuss the new bioinformatics tools developed for the analysis of the resulting large and complex datasets. Finally, since hematopoiesis is driven by fine-tuned and complex networks that must be interconnected to each other, we highlight how mathematical modeling is beneficial for doing such interconnection between multilayered information and to predict how HSC behave while aging.
Collapse
Affiliation(s)
- Léonard Hérault
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Elisabeth Remy
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
55
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
56
|
Arif T. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. BIOLOGY 2022; 11:1410. [PMID: 36290314 PMCID: PMC9598322 DOI: 10.3390/biology11101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases. In recent years, lysosomes have emerged as control centers of cellular metabolism, particularly in HSC quiescence, and essential regulators of cell signaling have been found on the lysosomal membrane. In addition to autophagic processes, lysosomal activities have been shown to be crucial in sustaining quiescence by restricting HSCs access to a nutritional reserve essential for their activation into the cell cycle. Lysosomal activity may preserve HSC quiescence by altering glycolysis-mitochondrial biogenesis. The understanding of HSC metabolism has significantly expanded over the decade, revealing previously unknown requirements of HSCs in both their dividing (active) and quiescent states. Therefore, understanding the role of lysosomes in HSCs will allow for the development of innovative treatment methods based on HSCs to fight clonal hematopoiesis and HSC aging.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
57
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
58
|
Shi H, Gao L, Zhang W, Jiang M. Identification and validation of a siglec-based and aging-related 9-gene signature for predicting prognosis in acute myeloid leukemia patients. BMC Bioinformatics 2022; 23:284. [PMID: 35854240 PMCID: PMC9295398 DOI: 10.1186/s12859-022-04841-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a group of highly heterogenous and aggressive blood cancer. Despite recent progress in its diagnosis and treatment, patient outcome is variable and drug resistance results in increased mortality. The siglec family plays an important role in tumorigenesis and aging. Increasing age is a risk factor for AML and cellular aging contributes to leukemogenesis via various pathways. Methods The differential expression of the siglec family was compared between 151 AML patients and 70 healthy controls, with their information downloaded from TCGA and GTEx databases, respectively. How siglec expression correlated to AML patient clinical features, immune cell infiltration, drug resistance and survival outcome was analyzed. Differentially expressed genes in AML patients with low- and high-expressed siglec9 and siglec14 were analyzed and functionally enriched. The aging-related gene set was merged with the differentially expressed genes in AML patients with low and high expression of siglec9, and merged genes were subjected to lasso regression analysis to construct a novel siglec-based and aging-related prognostic model. The prediction model was validated using a validation cohort from GEO database (GSE106291). Results The expression levels of all siglec members were significantly altered in AML. The expression of siglecs was significantly correlated with AML patient clinical features, immune cell infiltration, drug resistance, and survival outcome. Based on the differentially expressed genes and aging-related gene set, we developed a 9-gene prognostic model and decision curve analysis revealed the net benefit generated by our prediction model. The siglec-based and aging-related 9-gene prognostic model was tested using a validation data set, in which AML patients with higher risk scores had significantly reduced survival probability. Time-dependent receiver operating characteristic curve and nomogram were plotted and showed the diagnostic accuracy and predictive value of our 9-gene prognostic model, respectively. Conclusions Overall, our study indicates the important role of siglec family in AML and the good performance of our novel siglec-based and aging-related 9-gene signature in predicting AML patient outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04841-5.
Collapse
Affiliation(s)
- Huiping Shi
- Soochow University Medical College, Suzhou, Jiangsu, People's Republic of China
| | - Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, 215131, People's Republic of China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
59
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
60
|
Ho WJ, Smith JNP, Park YS, Hadiono M, Christo K, Jogasuria A, Zhang Y, Broncano AV, Kasturi L, Dawson DM, Gerson SL, Markowitz SD, Desai AB. 15-PGDH regulates hematopoietic and gastrointestinal fitness during aging. PLoS One 2022; 17:e0268787. [PMID: 35587945 PMCID: PMC9119474 DOI: 10.1371/journal.pone.0268787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence implicates the eicosanoid molecule prostaglandin E2 (PGE2) in conferring a regenerative phenotype to multiple organ systems following tissue injury. As aging is in part characterized by loss of tissue stem cells' regenerative capacity, we tested the hypothesis that the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) contributes to the diminished organ fitness of aged mice. Here we demonstrate that genetic loss of 15-PGDH (Hpgd) confers a protective effect on aging of murine hematopoietic and gastrointestinal (GI) tissues. Aged mice lacking 15-PGDH display increased hematopoietic output as assessed by peripheral blood cell counts, bone marrow and splenic stem cell compartments, and accelerated post-transplantation recovery compared to their WT counterparts. Loss of Hpgd expression also resulted in enhanced GI fitness and reduced local inflammation in response to colitis. Together these results suggest that 15-PGDH negatively regulates aged tissue regeneration, and that 15-PGDH inhibition may be a viable therapeutic strategy to ameliorate age-associated loss of organ fitness.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julianne N. P. Smith
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Young Soo Park
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matthew Hadiono
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kelsey Christo
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alvin Jogasuria
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yongyou Zhang
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alyssia V. Broncano
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lakshmi Kasturi
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dawn M. Dawson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Stanton L. Gerson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Amar B. Desai
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
61
|
Wang Z, Zhang C, Warden CD, Liu Z, Yuan YC, Guo C, Wang C, Wang J, Wu X, Ermel R, Vonderfecht SL, Wang X, Brown C, Forman S, Yang Y, James You M, Chen W. Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia. Commun Biol 2022; 5:396. [PMID: 35484199 PMCID: PMC9051098 DOI: 10.1038/s42003-022-03340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/05/2022] [Indexed: 01/07/2023] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is linked to various blood disorders and malignancies. SIRT1 has been implicated in healthy aging, but its role in HSC aging is poorly understood. Surprisingly, we found that Sirt1 knockout improved the maintenance of quiescence of aging HSCs and their functionality as well as mouse survival in serial bone marrow transplantation (BMT) recipients. The majority of secondary and tertiary BMT recipients of aging wild type donor cells developed B/myeloid mixed phenotype acute leukemia (MPAL), which was markedly inhibited by Sirt1 knockout. SIRT1 inhibition also reduced the growth and survival of human B/myeloid MPAL cells. Sirt1 knockout suppressed global gene activation in old HSCs, prominently the genes regulating protein synthesis and oxidative metabolism, which may involve multiple downstream transcriptional factors. Our results demonstrate an unexpected role of SIRT1 in promoting HSC aging and age-dependent MPAL and suggest SIRT1 may be a new therapeutic target for modulating functions of aging HSCs and treatment of MPAL.
Collapse
Affiliation(s)
- Zhiqiang Wang
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA ,grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Chunxiao Zhang
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Charles David Warden
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Zheng Liu
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Yate-Ching Yuan
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Chao Guo
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Charles Wang
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA ,grid.43582.380000 0000 9852 649XPresent Address: Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350 USA
| | - Jinhui Wang
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Xiwei Wu
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Richard Ermel
- grid.410425.60000 0004 0421 8357Center for Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | | | - Xiuli Wang
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Christine Brown
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Stephen Forman
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Yaling Yang
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - M. James You
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - WenYong Chen
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
62
|
Sinha S, Sinha A, Dongre P, Kamat K, Inamdar MS. Organelle dysfunction upon asrij depletion causes aging-like changes in mouse hematopoietic stem cells. Aging Cell 2022; 21:e13570. [PMID: 35289070 PMCID: PMC9009118 DOI: 10.1111/acel.13570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aging of the blood system is characterized by increased hematopoietic stem cells (HSCs) and myeloid‐biased differentiation leading to higher propensity for hematological malignancies. Unraveling cell‐intrinsic mechanisms regulating HSC aging could aid reversal or slowing of aging. Asrij/OCIAD1 is an evolutionarily conserved regulator of hematopoiesis and governs mitochondrial, endosomal, and proteasomal function in mammalian stem cells. Asrij deletion in mice causes loss of HSC quiescence, myeloid skewing, reduced p53 and increased DNA damage, features attributed to aged HSCs. Mechanistically, Asrij controls p53 ubiquitination and degradation and AKT/STAT5 activation. Asrij localizes to endosomes and mitochondria. As decline in organelle structure and function are common hallmarks of aging, we asked whether Asrij regulates organelle function in aged HSCs. We find that chronologically aged wild‐type (WT) HSCs had reduced Asrij levels. Expectedly, young asrij KO mice had reduced AcH4K16 levels; however, transcriptome analysis of KO HSCs showed a modest overlap of gene expression with aged WT HSCs. Further, analysis of organelle structure and function in asrij KO mice revealed significant changes, namely damaged mitochondria, elevated ROS; impaired endosomal trafficking seen by increased cleaved Notch1, reduced Rab5; and reduced 26S proteasome activity. Pharmacological correction of mitochondrial and proteasome activity in asrij KO mice restored HSC and myeloid cell frequencies. Furthermore, lysophosphatidic acid‐induced Asrij upregulation in aged WT mice rescued mitochondrial and proteasome activity and restored HSC frequency. Our results highlight a new role for Asrij in preventing HSC aging by regulating organelle homeostasis and will help decipher organelle dynamics in HSC longevity.
Collapse
Affiliation(s)
- Saloni Sinha
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Alice Sinha
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Prathamesh Dongre
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Kajal Kamat
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | | |
Collapse
|
63
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R. Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2713483. [PMID: 35401928 PMCID: PMC8993567 DOI: 10.1155/2022/2713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
64
|
Hematopoiesis, Inflammation and Aging-The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. J Clin Med 2022; 11:jcm11030706. [PMID: 35160156 PMCID: PMC8836692 DOI: 10.3390/jcm11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Anemia and systemic signs of inflammation are common in elderly individuals and are associated with decreased survival. The common biological context for these two states is then the hallmarks of aging, i.e., genomic instability, telomere shortening, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Such aging-associated alterations of hematopoietic stem cells are probably caused by complex mechanisms and depend on both the aging of hematopoietic (stem) cells and on the supporting stromal cells. The function of inflammatory or immunocompetent cells is also altered by aging. The intracellular signaling initiated by soluble proinflammatory mediators (e.g., IL1, IL6 and TNFα) is altered during aging and contributes to the development of both the inhibition of erythropoiesis with anemia as well as to the development of the acute-phase reaction as a systemic sign of inflammation with increased CRP levels. Both anemia and increased CRP levels are associated with decreased overall survival and increased cardiovascular mortality. The handling of elderly patients with inflammation and/or anemia should in our opinion be individualized; all of them should have a limited evaluation with regard to the cause of the abnormalities, but the extent of additional and especially invasive diagnostic evaluation should be based on an overall clinical evaluation and the possible therapeutic consequences.
Collapse
|
65
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
66
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
67
|
Kandi R, Senger K, Grigoryan A, Soller K, Sakk V, Schuster T, Eiwen K, Menon MB, Gaestel M, Zheng Y, Florian MC, Geiger H. Cdc42-Borg4-Septin7 axis regulates HSC polarity and function. EMBO Rep 2021; 22:e52931. [PMID: 34661963 PMCID: PMC8647144 DOI: 10.15252/embr.202152931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid‐primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42‐Borg4‐Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.
Collapse
Affiliation(s)
- Ravinder Kandi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
68
|
Picerno A, Stasi A, Franzin R, Curci C, di Bari I, Gesualdo L, Sallustio F. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells 2021; 13:1714-1732. [PMID: 34909119 PMCID: PMC8641024 DOI: 10.4252/wjsc.v13.i11.1714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their self-renewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Claudia Curci
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari 70124, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari 70124, Italy
| |
Collapse
|
69
|
Gámez-García A, Vazquez BN. Nuclear Sirtuins and the Aging of the Immune System. Genes (Basel) 2021; 12:1856. [PMID: 34946805 PMCID: PMC8701065 DOI: 10.3390/genes12121856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system undergoes major changes with age that result in altered immune populations, persistent inflammation, and a reduced ability to mount effective immune responses against pathogens and cancer cells. Aging-associated changes in the immune system are connected to other age-related diseases, suggesting that immune system rejuvenation may provide a feasible route to improving overall health in the elderly. The Sir2 family of proteins, also called sirtuins, have been broadly implicated in genome homeostasis, cellular metabolism, and aging. Sirtuins are key responders to cellular and environmental stress and, in the case of the nuclear sirtuins, they do so by directing responses to chromatin that include gene expression regulation, retrotransposon repression, enhanced DNA damage repair, and faithful chromosome segregation. In the immune system, sirtuins instruct cellular differentiation from hematopoietic precursors and promote leukocyte polarization and activation. In hematopoietic stem cells, sirtuins safeguard quiescence and stemness to prevent cellular exhaustion. Regulation of cytokine production, which, in many cases, requires NF-κB regulation, is the best-characterized mechanism by which sirtuins control innate immune reactivity. In adaptive immunity, sirtuins promote T cell subset differentiation by controlling master regulators, thereby ensuring an optimal balance of helper (Th) T cell-dependent responses. Sirtuins are very important for immune regulation, but the means by which they regulate immunosenescence are not well understood. This review provides an integrative overview of the changes associated with immune system aging and its potential relationship with the roles of nuclear sirtuins in immune cells and overall organismal aging. Given the anti-aging properties of sirtuins, understanding how they contribute to immune responses is of vital importance and may help us develop novel strategies to improve immune performance in the aging organism.
Collapse
Affiliation(s)
- Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
- Unitat de Citologia i d’Histologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193 Barcelona, Spain
| |
Collapse
|
70
|
Aging, Bone Marrow and Next-Generation Sequencing (NGS): Recent Advances and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212225. [PMID: 34830107 PMCID: PMC8620539 DOI: 10.3390/ijms222212225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aging of bone marrow (BM) remains a very imperative and alluring subject, with an ever-increasing interest among fellow scientists. A considerable amount of progress has been made in this field with the established ‘hallmarks of aging’ and continued efforts to investigate the age-related changes observed within the BM. Inflammaging is considered as a low-grade state of inflammation associated with aging, and whilst the possible mechanisms by which aging occurs are now largely understood, the processes leading to the underlying changes within aged BM remain elusive. The ability to identify these changes and detect such alterations at the genetic level are key to broadening the knowledgebase of aging BM. Next-generation sequencing (NGS) is an important molecular-level application presenting the ability to not only determine genomic base changes but provide transcriptional profiling (RNA-seq), as well as a high-throughput analysis of DNA–protein interactions (ChIP-seq). Utilising NGS to explore the genetic alterations occurring over the aging process within alterative cell types facilitates the comprehension of the molecular and cellular changes influencing the dynamics of aging BM. Thus, this review prospects the current landscape of BM aging and explores how NGS technology is currently being applied within this ever-expanding field of research.
Collapse
|
71
|
Matteini F, Mulaw MA, Florian MC. Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Front Immunol 2021; 12:738204. [PMID: 34858399 PMCID: PMC8631970 DOI: 10.3389/fimmu.2021.738204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
| | - Medhanie A. Mulaw
- Institute for Molecular Medicine and Internal Medicine I, Ulm University and University Hospital Ulm, Ulm, Germany
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
72
|
Krambs JR, Monlish DA, Gao F, Schuettpelz LG, Link DC. Microbiota Signals Suppress B Lymphopoiesis With Aging in Mice. Front Immunol 2021; 12:767267. [PMID: 34737755 PMCID: PMC8560790 DOI: 10.3389/fimmu.2021.767267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with significant changes in hematopoiesis that include a shift from lymphopoiesis to myelopoiesis and an expansion of phenotypic hematopoietic stem cells (HSCs) with impaired self-renewal capacity and myeloid-skewed lineage differentiation. Signals from commensal flora support basal myelopoiesis in young mice; however, their contribution to hematopoietic aging is largely unknown. Here, we characterize hematopoiesis in young and middle-aged mice housed under specific pathogen free (SPF) and germ-free (GF) conditions. The marked shift from lymphopoiesis to myelopoiesis that develops during aging of SPF mice is mostly abrogated in GF mice. Compared with aged SPF mice, there is a marked expansion of B lymphopoiesis in aged GF mice, which is evident at the earliest stages of B cell development. The expansion of phenotypic and functional HSCs that occurs with aging is similar in SPF and GF mice. However, HSCs from young GF mice have increased lymphoid lineage output, and the aging-associated expansion of myeloid-biased HSCs is significantly attenuated in GF mice. Consistent with these data, RNA expression profiling of phenotypic HSCs from aged GF mice show enrichment for non-myeloid biased HSCs. Surprisingly, the RNA expression profiling data also suggest that inflammatory signaling is increased in aged GF HSCs compared with aged SPF HSCs. Collectively, these data suggest that microbiota-related signals suppress B lymphopoiesis at multiple stages of development and contribute to the expansion of myeloid-biased HSCs that occurs with aging.
Collapse
Affiliation(s)
- Joseph R. Krambs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Darlene A. Monlish
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| | - Laura G. Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
73
|
Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci 2021; 22:11117. [PMID: 34681777 PMCID: PMC8537916 DOI: 10.3390/ijms222011117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
74
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
75
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
76
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
77
|
Saifullah HH, Lucas CM. Treatment-Free Remission in Chronic Myeloid Leukemia: Can We Identify Prognostic Factors? Cancers (Basel) 2021; 13:cancers13164175. [PMID: 34439327 PMCID: PMC8392063 DOI: 10.3390/cancers13164175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a blood cancer. Unlike other cancers CML treatment is lifelong and many patients experience side effects. For those patients who respond well to treatment and achieve deep molecular remission, quality of life is impacted because of continuous treatment. In this review, we look at emerging clinical trials which aim to investigate which patients can safely stop treatment. Treatment-free remission is the ultimate goal for CML patients, but there is still a gap in our knowledge as to why some patients can achieve treatment-free remission, while others relapse when treatment is stopped. Here we discuss if there are any prognostic factors that can predict the best candidates who qualify for treatment discontinuation, with a view to keeping them in remission. Abstract Following the development of tyrosine kinase inhibitors (TKI), the survival of patients with chronic myeloid leukaemia (CML) drastically improved. With the introduction of these agents, CML is now considered a chronic disease for some patients. Taking into consideration the side effects, toxicity, and high cost, discontinuing TKI became a goal for patients with chronic phase CML. Patients who achieved deep molecular response (DMR) and discontinued TKI, remained in treatment-free remission (TFR). Currently, the data from the published literature demonstrate that 40–60% of patients achieve TFR, with relapses occurring within the first six months. In addition, almost all patients who relapsed regained a molecular response upon retreatment, indicating TKI discontinuation is safe. However, there is still a gap in understanding the mechanisms behind TFR, and whether there are prognostic factors that can predict the best candidates who qualify for TKI discontinuation with a view to keeping them in TFR. Furthermore, the information about a second TFR attempt and the role of gradual de-escalation of TKI before complete cessation is limited. This review highlights the factors predicting success or failure of TFR. In addition, it examines the feasibility of a second TFR attempt after the failure of the first one, and the current guidelines concerning TFR in clinical practice.
Collapse
Affiliation(s)
- Hilbeen Hisham Saifullah
- Chester Medical School, University of Chester, Bache Hall, Chester CH2 1BR, UK
- Correspondence: (H.H.S.); (C.M.L.)
| | - Claire Marie Lucas
- Chester Medical School, University of Chester, Bache Hall, Chester CH2 1BR, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
- Correspondence: (H.H.S.); (C.M.L.)
| |
Collapse
|
78
|
Asada S, Kitamura T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci 2021; 112:3962-3971. [PMID: 34328684 PMCID: PMC8486184 DOI: 10.1111/cas.15094] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Recent genome‐wide studies have revealed that aging or chronic inflammation can cause clonal expansion of cells in normal tissues. Clonal hematopoiesis has been the most intensively studied form of clonal expansion in the last decade. Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐related phenomenon observed in elderly individuals with no history of hematological malignancy. The most frequently mutated genes in CHIP are DNMT3A, TET2, and ASXL1, which are associated with initiation of leukemia. Importantly, CHIP has been the focus of a number of studies because it is an independent risk factor for myeloid malignancy, cardiovascular disease (CVD), and all‐cause mortality. Animal models recapitulating human CHIP revealed that CHIP‐associated mutations alter the number and function of hematopoietic stem and progenitor cells (HSPCs) and promote leukemic transformation. Moreover, chronic inflammation caused by infection or aging confers a fitness advantage to the CHIP‐associated mutant HSPCs. Myeloid cells, such as macrophages with a CHIP‐associated mutation, accelerate chronic inflammation and are associated with increased levels of inflammatory cytokines. This positive feedback loop between CHIP and chronic inflammation promotes development of atherosclerosis and chronic heart failure and thereby increases the risk for CVD. Notably, HSPCs with a CHIP‐associated mutation may alter not only innate but also acquired immune cells. This suggests that CHIP is involved in the development of solid cancers or immune disorders, such as aplastic anemia. In this review, we provide an overview of recent findings on CHIP. We also discuss potential interventions for treating CHIP and preventing myeloid transformation and CVD progression.
Collapse
Affiliation(s)
- Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan.,Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
79
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
80
|
Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021; 9:biomedicines9070752. [PMID: 34209598 PMCID: PMC8301491 DOI: 10.3390/biomedicines9070752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil;
| | - Lucas E. B. de Souza
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14051-060, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
81
|
Bousounis P, Bergo V, Trompouki E. Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells 2021; 10:1386. [PMID: 34199874 PMCID: PMC8227236 DOI: 10.3390/cells10061386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
Collapse
Affiliation(s)
- Pavlos Bousounis
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
82
|
Mining old transcriptomes to predict HSC age. Blood 2021; 138:422-423. [PMID: 34383038 DOI: 10.1182/blood.2021012002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
|
83
|
Low Plasma Citrate Levels and Specific Transcriptional Signatures Associated with Quiescence of CD34 + Progenitors Predict Azacitidine Therapy Failure in MDS/AML Patients. Cancers (Basel) 2021; 13:cancers13092161. [PMID: 33946220 PMCID: PMC8125503 DOI: 10.3390/cancers13092161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Epigenetic drugs, such as azacitidine (AZA), hold promise in the treatment of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), however, the mechanisms predicting the patients’ response to AZA is not completely understood. Quiescence of hematopoietic CD34+ progenitors has been proposed as a predictive factor for AZA therapy failure in MDS/AML patients, but the interplay between CD34+ cell cycle status and their metabolic signature in a predisposition to AZA (non)responsiveness remains unclear. Our data on patients with MDS or AML with myelodysplasia-related changes (AML-MRC) suggest that AZA-responders have actively cycling CD34+ cells poised for erythro-myeloid differentiation, with high metabolic activity controlling histone acetylation. Conversely, the patients who progressed early on AZA therapy revealed quiescence signature of their CD34+ cells, with signs of reduced metabolically-controlled acetylation of histones needed for transcription-permissive chromatin configuration. Our study delineates plasma citrate levels and CD34+ cells’ transcriptional signatures associated with cycling status and metabolic characteristics as factors predicting the response to AZA monotherapy in MDS/AML-MRC patients. Abstract To better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations. Transcriptional landscapes of the patients’ HSPCs were comparable to those published previously, including decreased signatures of active cell cycling and DNA damage response in PD compared to RD and controls. In addition, PD-derived HSPCs revealed repressed markers of the tricarboxylic acid cycle, with IDH2 among the top 50 downregulated genes in PD compared to RD. Decreased citrate plasma levels, downregulated expression of the (ATP)-citrate lyase and other transcriptional/metabolic networks indicate metabolism-driven histone modifications in PD HSPCs. Observed histone deacetylation is consistent with transcription-nonpermissive chromatin configuration and quiescence of PD HSPCs. This study highlights the complexity of the molecular network underlying response/resistance to hypomethylating agents.
Collapse
|
84
|
Higa KC, Goodspeed A, Chavez JS, De Dominici M, Danis E, Zaberezhnyy V, Rabe JL, Tenen DG, Pietras EM, DeGregori J. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med 2021; 218:212039. [PMID: 33914855 PMCID: PMC8094119 DOI: 10.1084/jem.20200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell–intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1β, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.
Collapse
Affiliation(s)
- Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Eric M Pietras
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
85
|
Mehdi MM, Solanki P, Singh P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch Gerontol Geriatr 2021; 95:104413. [PMID: 33845417 DOI: 10.1016/j.archger.2021.104413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented.
Collapse
Affiliation(s)
- Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Preeti Solanki
- Multidisciplinary Research Unit, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, 124001, Haryana, India
| | - Prabhakar Singh
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| |
Collapse
|
86
|
McMahon M, Forester C, Buffenstein R. Aging through an epitranscriptomic lens. NATURE AGING 2021; 1:335-346. [PMID: 37117595 DOI: 10.1038/s43587-021-00058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 04/30/2023]
Abstract
The mechanistic causes of aging, the time-related decline in function and good health that leads to increased mortality, remain poorly understood. Here we propose that age-dependent alteration of the epitranscriptome, encompassing more than 150 chemically distinct post-transcriptional modifications or editing events, warrants exploration as an important modulator of aging. The epitranscriptome is a potent regulator of RNA function, diverse cellular processes and tissue regenerative capacity. To date, only a few studies link alterations in the epitranscriptome to molecular and physiological changes during aging; however, epitranscriptome dysfunction is associated with and underlies several age-associated pathologies, including cancer and neurodegenerative, cardiovascular and autoimmune diseases. For example, changes in RNA modifications (such as N6-methyladenosine and inosine) impact cardiac physiology and are linked to cardiac fibrosis. Although an uncharted research focus, mapping epitranscriptome alterations in the context of aging may elucidate novel predictors of both health and lifespan, and may identify therapeutic targets for attenuating aging and abrogating age-related diseases.
Collapse
Affiliation(s)
- Mary McMahon
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Craig Forester
- Department of Pediatrics, University of Colorado, Denver, CO, USA
- Children's Hospital Colorado, Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
87
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
88
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
89
|
Keinan N, Scharff Y, Goldstein O, Chamo M, Ilic S, Gazit R. Syngeneic leukemia models using lentiviral transgenics. Cell Death Dis 2021; 12:193. [PMID: 33602907 PMCID: PMC7893004 DOI: 10.1038/s41419-021-03477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Viral
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Immunocompetence
- Lentivirus/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/virology
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Oncogenes
- Transplantation, Isogeneic
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Mice
Collapse
Affiliation(s)
- Nurit Keinan
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Ye'ela Scharff
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Oron Goldstein
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Michael Chamo
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Stefan Ilic
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel.
| |
Collapse
|
90
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|
91
|
Paghera S, Sottini A, Previcini V, Capra R, Imberti L. Age-Related Lymphocyte Output During Disease-Modifying Therapies for Multiple Sclerosis. Drugs Aging 2021; 37:739-746. [PMID: 32761321 DOI: 10.1007/s40266-020-00789-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with multiple sclerosis exhibit the same qualitative and quantitative changes in immune system cells observed in aging. In the last 20 years, multiple sclerosis patients have shown an increase in life expectancy and average age, but clinical trial inclusion criteria typically exclude patients over the age of 55 years. Therefore, disease-modifying therapies are likely administered to patients older than those enrolled in clinical trials. OBJECTIVE In order to investigate whether disease-modifying therapies for multiple sclerosis induce modifications to the immune system that may have (super)additive effects resulting in an acceleration of immunosenescence, we quantified the number of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs). These molecules are contained in new T and B lymphocytes released by the thymus and bone marrow and are considered molecular age-related markers. METHODS The markers of aging were measured by a multiplex quantitative real-time PCR assay in 122 patients who had started therapy with interferon-beta (IFN-β), fingolimod, alemtuzumab, or natalizumab. Samples were obtained before the therapy and at 6 and 12 months of treatment. Comparisons between the variables were performed by a non-parametric statistical analysis. RESULTS In therapy-naive patients, a significant and direct correlation was found between a lower number of newly produced T and B cells and older age. Although disease-modifying therapies induced different changes (both increases and decreases) in the production of new T and B lymphocytes, 12 months of therapy with IFN-β or natalizumab did not affect the correlations found at baseline between the release of lymphocytes containing TRECs or KRECs and age. On the contrary, in patients treated with alemtuzumab, both correlations were lost, while in fingolimod-treated patients, only the correlation between TRECs and age disappeared. CONCLUSIONS This observational study indicated that different age-related changes of the new T and B lymphocyte production could be one of the reasons for the emergence, in the real-world setting, of adverse events not otherwise observed in clinical trials; thus, caution is advised when choosing disease-modifying therapies for multiple sclerosis patients.
Collapse
Affiliation(s)
- Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vanessa Previcini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
92
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
93
|
Biological characteristics of aging in human acute myeloid leukemia cells: the possible importance of aldehyde dehydrogenase, the cytoskeleton and altered transcriptional regulation. Aging (Albany NY) 2020; 12:24734-24777. [PMID: 33349623 PMCID: PMC7803495 DOI: 10.18632/aging.202361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Patients with acute myeloid leukemia (AML) have a median age of 65-70 years at diagnosis. Elderly patients have more chemoresistant disease, and this is partly due to decreased frequencies of favorable and increased frequencies of adverse genetic abnormalities. However, aging-dependent differences may also contribute. We therefore compared AML cell proteomic and phosphoproteomic profiles for (i) elderly low-risk and younger low-risk patients with favorable genetic abnormalities; and (ii) high-risk patients with adverse genetic abnormalities and a higher median age against all low-risk patients with lower median age. Elderly low-risk and younger low-risk patients showed mainly phosphoproteomic differences especially involving transcriptional regulators and cytoskeleton. When comparing high-risk and low-risk patients both proteomic and phosphoproteomic studies showed differences involving cytoskeleton and immunoregulation but also transcriptional regulation and cell division. The age-associated prognostic impact of cyclin-dependent kinases was dependent on the cellular context. The protein level of the adverse prognostic biomarker mitochondrial aldehyde dehydrogenase (ALDH2) showed a similar significant upregulation both in elderly low-risk and elderly high-risk patients. Our results suggest that molecular mechanisms associated with cellular aging influence chemoresistance of AML cells, and especially the cytoskeleton function may then influence cellular hallmarks of aging, e.g. mitosis, polarity, intracellular transport and adhesion.
Collapse
|
94
|
Arai F, Stumpf PS, Ikushima YM, Hosokawa K, Roch A, Lutolf MP, Suda T, MacArthur BD. Machine Learning of Hematopoietic Stem Cell Divisions from Paired Daughter Cell Expression Profiles Reveals Effects of Aging on Self-Renewal. Cell Syst 2020; 11:640-652.e5. [DOI: 10.1016/j.cels.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/22/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
|
95
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
96
|
Hajishengallis G, Li X, Chavakis T. Immunometabolic control of hematopoiesis. Mol Aspects Med 2020; 77:100923. [PMID: 33160640 DOI: 10.1016/j.mam.2020.100923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSC) lie at the center of the hematopoiesis process, as they bear capacity to self-renew and generate all hematopoietic lineages, hence, all mature blood cells. The ability of HSCs to recognize systemic infection or inflammation or other forms of peripheral stress, such as blood loss, is essential for demand-adapted hematopoiesis. Also of critical importance for HSC function, specific metabolic cues (e.g., associated with changes in energy or O2 levels) can regulate HSC function and fate decisions. In this regard, the metabolic adaptation of HSCs facilitates their switching between different states, namely quiescence, self-renewal, proliferation and differentiation. Specific metabolic alterations in hematopoietic stem and progenitor cells (HSPCs) have been linked with the induction of trained myelopoiesis in the bone marrow as well as with HSPC dysfunction in aging and clonal hematopoiesis of indeterminate potential (CHIP). Thus, HSPC function is regulated by both immunologic/inflammatory and metabolic cues. The immunometabolic control of HSPCs and of hematopoiesis is discussed in this review along with the translational implications thereof, that is, how metabolic pathways can be therapeutically manipulated to prevent or reverse HSPC dysfunction or to enhance or attenuate trained myelopoiesis according to the needs of the host.
Collapse
Affiliation(s)
- George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, United States.
| | - Xiaofei Li
- Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, United States.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom; National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
97
|
Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regen 2020; 40:29. [PMID: 33292805 PMCID: PMC7643313 DOI: 10.1186/s41232-020-00138-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have self-renewal capacity and differentiation potential into all lineages of blood cells throughout the lifetime of an organism. The function of HSCs gradually changes during aging. To date, various stress factors influencing HSC aging have been identified. The increased production of reactive oxygen species and DNA damage responses are causatively attributed to HSC aging. The increased apolarity is a prominent feature of aged HSCs, whereas it is less obvious in young HSCs. The bone marrow (BM) microenvironment niche is a crucial factor for HSC aging. Mesenchymal stem cells show skewed differentiation during aging, which leads to decreased bone formation and increased adipogenesis. The accumulation of adipocytes confers negative effects on hematopoiesis. Loss of sympathetic nerve fibers or adrenoreceptor β3 signaling induces premature HSC and niche aging. Epigenetic regulators such as polycomb group proteins and the sirtuin family of proteins act to prevent premature aging. Targeting these factors, several rejuvenation strategies for aged HSCs have been employed in mice. However, we still do not know whether these strategies can be extrapolated to human HSCs. Aging is frequently accompanied by the development of clonal hematopoiesis, which is called age-related clonal hematopoiesis (ARCH) or clonal hematopoiesis of indeterminate potential (CHIP). Most ARCH/CHIP mutations occur in genes encoding epigenetic regulators including DNMT3A, TET2, and ASXL1, which suggests the relevance of epigenetic drift during the aging process. ARCH/CHIP is a strong risk factor for subsequent hematologic cancer. Notably, it also has an impact on the development of non-malignant disorders such as coronary heart disease. Further studies are warranted to decipher the complete picture of molecular crosstalk that regulates HSC aging.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
98
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
99
|
ALKBH3 is dispensable in maintaining hematopoietic stem cells but forced ALKBH3 rectified the differentiation skewing of aged hematopoietic stem cells. BLOOD SCIENCE 2020; 2:137-143. [PMID: 35400026 PMCID: PMC8975010 DOI: 10.1097/bs9.0000000000000057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 10/26/2022] Open
|
100
|
SanMiguel JM, Young K, Trowbridge JJ. Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp Hematol 2020; 91:1-9. [PMID: 32991978 DOI: 10.1016/j.exphem.2020.09.197] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Over the past 25 years, the importance of hematopoietic stem cell (HSC) aging in overall hematopoietic and immune system health span has been appreciated. Much work has been done in model organisms to understand the intrinsic dysregulation that occurs in HSCs during aging, with the goal of identifying modifiable mechanisms that represent the proverbial "fountain of youth." Much more recently, the discovery of somatic mutations that are found to provide a selective advantage to HSCs and accumulate in the hematopoietic system during aging, termed clonal hematopoiesis (CH), inspires revisiting many of these previously defined drivers of HSC aging in the context of these somatic mutations. To truly understand these processes and develop a holistic picture of HSC aging, ongoing and future studies must include investigation of the critical changes that occur in the HSC niche or bone marrow microenvironment with aging, as increasing evidence supports that these HSC-extrinsic alterations provide necessary inflammation, signaling pathway activation or repression, and other selective pressures to favor HSC aging-associated phenotypes and CH. Here, we provide our perspectives based on the past 8 years of our own laboratory's investigations into these mechanisms and chart a path for integrative studies that, in our opinion, will provide an ideal opportunity to discover HSC and hematopoietic health span-extending interventions. This path includes examining when and how aging-associated HSC-intrinsic and HSC-extrinsic changes accumulate over time in different individuals and developing new models to track and test relevant HSC-extrinsic changes, complementary to innovative HSC lineage tracing systems that have recently been developed.
Collapse
|