51
|
Unterberg M, Ehrentraut SF, Bracht T, Wolf A, Haberl H, von Busch A, Rump K, Ziehe D, Bazzi M, Thon P, Sitek B, Marcus K, Bayer M, Schork K, Eisenacher M, Ellger B, Oswald D, Wappler F, Defosse J, Henzler D, Köhler T, Zarbock A, Putensen CP, Schewe JC, Frey UH, Anft M, Babel N, Steinmann E, Brüggemann Y, Trilling M, Schlüter A, Nowak H, Adamzik M, Rahmel T, Koos B. Human cytomegalovirus seropositivity is associated with reduced patient survival during sepsis. Crit Care 2023; 27:417. [PMID: 37907989 PMCID: PMC10619294 DOI: 10.1186/s13054-023-04713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death. Treatment attempts targeting the immune response regularly fail in clinical trials. As HCMV latency can modulate the immune response and changes the immune cell composition, we hypothesized that HCMV serostatus affects mortality in sepsis patients. METHODS We determined the HCMV serostatus (i.e., latency) of 410 prospectively enrolled patients of the multicenter SepsisDataNet.NRW study. Patients were recruited according to the SEPSIS-3 criteria and clinical data were recorded in an observational approach. We quantified 13 cytokines at Days 1, 4, and 8 after enrollment. Proteomics data were analyzed from the plasma samples of 171 patients. RESULTS The 30-day mortality was higher in HCMV-seropositive patients than in seronegative sepsis patients (38% vs. 25%, respectively; p = 0.008; HR, 1.656; 95% CI 1.135-2.417). This effect was observed independent of age (p = 0.010; HR, 1.673; 95% CI 1.131-2.477). The predictive value on the outcome of the increased concentrations of IL-6 was present only in the seropositive cohort (30-day mortality, 63% vs. 24%; HR 3.250; 95% CI 2.075-5.090; p < 0.001) with no significant differences in serum concentrations of IL-6 between the two groups. Procalcitonin and IL-10 exhibited the same behavior and were predictive of the outcome only in HCMV-seropositive patients. CONCLUSION We suggest that the predictive value of inflammation-associated biomarkers should be re-evaluated with regard to the HCMV serostatus. Targeting HCMV latency might open a new approach to selecting suitable patients for individualized treatment in sepsis.
Collapse
Affiliation(s)
- M Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - S F Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - T Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
| | - A Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - H Haberl
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - A von Busch
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - K Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - D Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - M Bazzi
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - P Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - B Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
| | - K Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, 44801, Bochum, Germany
| | - M Bayer
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
| | - K Schork
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, 44801, Bochum, Germany
| | - M Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, 44801, Bochum, Germany
| | - B Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, Dortmund, Germany
| | - D Oswald
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, Dortmund, Germany
| | - F Wappler
- Department of Anaesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, Cologne, Germany
| | - J Defosse
- Department of Anaesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, Cologne, Germany
| | - D Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, Herford, Germany
| | - T Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, Herford, Germany
- Department of Anesthesiology and Intensive Care Medicine, AMEOS-Klinikum Halberstadt, Halberstadt, Germany
| | - A Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - C P Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - J C Schewe
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - U H Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - M Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - N Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - E Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Y Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801, Bochum, Germany
| | - M Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A Schlüter
- Knappschaft Kliniken GmbH, Recklinghausen, Germany
| | - H Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Center for Artficial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - M Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - T Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - B Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.
| |
Collapse
|
52
|
Zeng J, Jaijyan DK, Yang S, Pei S, Tang Q, Zhu H. Exploring the Potential of Cytomegalovirus-Based Vectors: A Review. Viruses 2023; 15:2043. [PMID: 37896820 PMCID: PMC10612100 DOI: 10.3390/v15102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Viral vectors have emerged as powerful tools for delivering and expressing foreign genes, playing a pivotal role in gene therapy. Among these vectors, cytomegalovirus (CMV) stands out as a promising viral vector due to its distinctive attributes including large packaging capacity, ability to achieve superinfection, broad host range, capacity to induce CD8+ T cell responses, lack of integration into the host genome, and other qualities that make it an appealing vector candidate. Engineered attenuated CMV strains such as Towne and AD169 that have a ~15 kb genomic DNA deletion caused by virus passage guarantee human safety. CMV's large genome enables the efficient incorporation of substantial foreign genes as demonstrated by CMV vector-based therapies for SIV, tuberculosis, cancer, malaria, aging, COVID-19, and more. CMV is capable of reinfecting hosts regardless of prior infection or immunity, making it highly suitable for multiple vector administrations. In addition to its broad cellular tropism and sustained high-level gene expression, CMV triggers robust, virus-specific CD8+ T cell responses, offering a significant advantage as a vaccine vector. To date, successful development and testing of murine CMV (MCMV) and rhesus CMV (RhCMV) vectors in animal models have demonstrated the efficacy of CMV-based vectors. These investigations have explored the potential of CMV vectors for vaccines against HIV, cancer, tuberculosis, malaria, and other infectious pathogens, as well as for other gene therapy applications. Moreover, the generation of single-cycle replication CMV vectors, produced by deleting essential genes, ensures robust safety in an immunocompromised population. The results of these studies emphasize CMV's effectiveness as a gene delivery vehicle and shed light on the future applications of a CMV vector. While challenges such as production complexities and storage limitations need to be addressed, ongoing efforts to bridge the gap between animal models and human translation continue to fuel the optimism surrounding CMV-based vectors. This review will outline the properties of CMV vectors and discuss their future applications as well as possible limitations.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518060, China;
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| |
Collapse
|
53
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
54
|
Lee S, Chih H, Affandi J, Waters S, Irish A, Price P. Markers of terminally differentiated T-cells as predictors of vascular health in renal transplant recipients and healthy adults. Clin Immunol 2023; 255:109760. [PMID: 37678718 DOI: 10.1016/j.clim.2023.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Meta-analyses confirm a link between persistent human cytomegalovirus (HCMV) infections and cardiovascular disease, but the mechanisms are unclear. We assess whether proportions of T-cell populations are reliable predictors of subclinical atherosclerosis and/or reflect the burden of HCMV in healthy adults and renal transplant recipients (RTR). Samples were collected from healthy adults and RTR at baseline (T0) and after 32 (24-40) months (T1). Left carotid intima media thickness (cIMT) and proportions of T-cells expressing CD57, LIR-1 or the TEMRA phenotype increased in healthy adults and RTR. The T-cell populations correlated with levels of HCMV-reactive antibodies. Proportions of CD57+, LIR-1+ and TEMRA CD8+ T-cells correlated with left and right cIMT in healthy adults. Proportions of CD57+ and LIR-1+ CD8+ T-cells at T0 predicted left cIMT at T1 among healthy adults, but these associations disappeared after adjustment for covariates. We link LIR-1+ and CD57+CD8+ T-cells with the progression of cIMT in healthy adults.
Collapse
Affiliation(s)
- Silvia Lee
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Western Australia, Australia.
| | - HuiJun Chih
- Curtin School of Population Health, Curtin University, Bentley, Perth, Australia
| | - Jacquita Affandi
- Curtin School of Population Health, Curtin University, Bentley, Perth, Australia
| | - Shelley Waters
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Ashley Irish
- Renal Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Patricia Price
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
55
|
Kohda C, Ino S, Ishikawa H, Kuno Y, Nagashima R, Iyoda M. The essential role of intestinal microbiota in cytomegalovirus reactivation. Microbiol Spectr 2023; 11:e0234123. [PMID: 37754566 PMCID: PMC10581228 DOI: 10.1128/spectrum.02341-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a member of Herpesviridae. It has been reported that HCMV is reactivated in the breast milk of HCMV-seropositive lactating women. As we have reported various aspects of the roles of indigenous microbiota, its role in the murine CMV (MCMV) reactivation was examined in this study. MCMV was latently infected in the salivary gland, mammary tissues, and colon in the pregnant mice. When the salivary gland, mammary tissues, and colon were removed 5 days after delivery, MCMV reactivation of latent infection in each organ was confirmed by the detection of MCMV IE1 mRNA using reverse transcription-quantitative PCR. MCMV reactivation was observed in 100% of the mice during pregnancy. Next, for the elimination of intestinal microbiota, the pregnant mice were treated with low-dose or high-dose non-absorbable antibiotics. Although the numbers of aerobe/anaerobe in cecal content in low-dose antibiotic-treated mice were comparable to those in untreated controls, high-dose antibiotic treatment decreased the number of aerobe/anaerobe microbes from ca.9.0 Log10 to ca.3.0 Log10 (cfu/g). However, it could not be confirmed in 16S rRNA analysis that specific bacterial phylum or genus was eliminated by this high-dose treatment. Interestingly, MCMV reactivation was also observed in 100% of low-dose antibiotic-treated mice, whereas, in high-dose antibiotic-treated mice, MCMV reactivation was not observed in the salivary gland or colon. MCMV IE1 mRNA was detected only in 33% of the mammary tissues of those high-dose-treated mice. These results suggest that the indigenous microbiota played a crucial role in the reactivation of latent infection. IMPORTANCE Human cytomegalovirus (HCMV) infection via breast milk is a serious problem for very preterm infants such as developing a sepsis-like syndrome, cholestasis, or bronchopulmonary dysplasia, among others. It has been reported that HCMV is reactivated in the breast milk of HCMV-seropositive lactating women. In this study, the roles of indigenous microbiota in the murine CMV (MCMV) reactivation were examined using a mouse model. In MCMV latently infected mice, MCMV reactivation was observed in 100% of the mice during pregnancy. For the elimination of intestinal microbiota, MCMV-latent mice were treated with non-absorbable antibiotics. After delivery, MCMV reactivation was not observed in antibiotic-treated mice. This result suggested that the indigenous microbiota played a crucial role in the reactivation of latent infection.
Collapse
Affiliation(s)
- Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Department of Medicine, Division of Nephrology, Showa University School of Medicine, Tokyo, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Department of Medicine, Division of Nephrology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
56
|
Martín Almazán N, Sala BM, Sandalova T, Sun Y, Resink T, Cichocki F, Söderberg-Nauclér C, Miller JS, Achour A, Sarhan D. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front Immunol 2023; 14:1230718. [PMID: 37809084 PMCID: PMC10552778 DOI: 10.3389/fimmu.2023.1230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tom Resink
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Microbial Pathogenesis Unit, Karolinska Institute, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and immunology, MediCity Research Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
57
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
58
|
Mahar UR, Jhatial MA, Qazi R, Ahmed U, Ahsan B, Bokhari SWI. Significance of CMV reactivation in non-allogeneic stem cell transplant patients with cancers: experience of single tertiary care cancer institute. Virusdisease 2023; 34:383-388. [PMID: 37780907 PMCID: PMC10533462 DOI: 10.1007/s13337-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
CMV reactivation is rare in hematological as well as solid organ malignancies in non-allogeneic stem cell transplant settings. An increasing number of patients undergoing active treatment or follow-up and diagnosed with CMV reactivation in recent years prompted us to investigate the risk factors and outcomes of CMV reactivation or disease. This was a hospital-based retrospective study that included 174 cancer patients suspected of CMV reactivation. Among them, forty-one tested positive for CMV viremia. The risk factors for CMV reactivation included the use of steroids in 78% of patients, active cancer in 43.9%, use of a monoclonal antibody rituximab in 31.7%, a history of radiation in 26.8%, and autologous stem cell transplant in 12% of patients. The median age was 36 years, and the most common clinical feature was fever (58.5%; n = 24), followed by GI symptoms (12.1%; n = 5), respiratory symptoms (14.6%; n = 6), cytopenia (7.3%; n = 3), and visual/neurological symptoms (4.8%; n = 2). The mean CMV viral load was 37,332 copies/ml (range: 75.00-633,000.00 copies/ml). Nineteen patients received CMV treatment with an average treatment duration of 81.5 days. The median overall survival was 2 months, with 12.0% of patients alive at 5 years. CMV reactivation is associated with significant morbidity and mortality. We recommend vigilant monitoring of CMV-related symptoms, with a low threshold for testing and treatment, for patients with multiple risk factors for CMV reactivation.
Collapse
Affiliation(s)
- Uzma Rasool Mahar
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Mussadique Ali Jhatial
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Romena Qazi
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ahmed
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bushra Ahsan
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Syed Waqas Imam Bokhari
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
59
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
60
|
Palma S, Forli F, Rossi C, Filice R, D'adamo C, Roversi MF, Monzani D, Lorenzoni F, Botti C, Berrettini S, Bruschini L, Berardi A, Genovese E, Canelli R. The Audiological Follow-Up of Children with Symptomatic Congenital Cytomegalovirus Infection: An Experience in Two Italian Centers. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1136. [PMID: 37508638 PMCID: PMC10378266 DOI: 10.3390/children10071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Congenital cytomegalovirus (cCMV) infection is the leading cause of non-hereditary sensorineural hearing loss in children. While about 10% of children reportedly display symptoms at birth, 85-90% of cCMV infection cases are asymptomatic. However, 10-15% of these asymptomatic infants may later develop hearing, visual, or neurodevelopmental impairments. This study aimed to evaluate the impact of cCMV infection on newborns' hearing function with a particular emphasis on progressive and late-onset cases. METHODS This study is a retrospective chart analysis with longitudinal character and was conducted in two Italian centers: Center 1 (from 1 November 2007 to 31 December 2021) and Center 2 (from 1 January 2012 to 31 December 2021). Data collected included newborn hearing screening results, characterization of hearing loss (unilateral/bilateral, degree of impairment), and audiological follow-up. RESULTS The cohort consisted of 103 children (42% males, 58% females). In total, 28 children presented with hearing impairment; 71.4% (20 out of 28) of the cases of hearing loss were severe/profound, with 35.7% of the cases due to unilateral hearing loss. Out of twenty-eight, six experienced progression of hearing loss and four had late-onset hearing loss. CONCLUSIONS In the absence of universal cCMV screening, hearing screening at birth for cCMV remains a critical factor for early diagnosis. A significant percentage of children affected by cCMV with normal audiological evaluations at birth is easily lost to follow-up. Close collaboration between neonatologists, pediatricians, and audiological services is fundamental to ensure timely diagnosis and treatment of cCMV-related hearing loss.
Collapse
Affiliation(s)
- Silvia Palma
- Audiology, Primary Care Department, AUSL of Modena, 41100 Modena, Italy
| | - Francesca Forli
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria, 56121 Pisa, Italy
| | - Cecilia Rossi
- Department of Neonatal Intensive Care Unit, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Riccardo Filice
- Department of Neonatal Intensive Care Unit, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Concetta D'adamo
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Maria Federica Roversi
- Department of Neonatal Intensive Care Unit, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Monzani
- ENT, Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, Borgo Roma Hospital, 37100 Verona, Italy
| | - Francesca Lorenzoni
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Cecilia Botti
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 21124 Modena, Italy
| | - Stefano Berrettini
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria, 56121 Pisa, Italy
| | - Luca Bruschini
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria, 56121 Pisa, Italy
| | - Alberto Berardi
- Department of Neonatal Intensive Care Unit, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Elisabetta Genovese
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Rachele Canelli
- Department of Medical and Surgical Sciences for Children and Adults, Otorhinolaryngology Unit, Azienda Ospedaliero-Universitaria, 56121 Pisa, Italy
| |
Collapse
|
61
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
62
|
Ribeiro RV, Samman A, Wang A, Wang S, Martinu T, Keshavjee S, Singer LG, Kumar D, Humar A, Cypel M. Incidence of post-transplant cytomegalovirus viremia in patients receiving lungs after ex vivo lung perfusion. JTCVS OPEN 2023; 14:590-601. [PMID: 37425481 PMCID: PMC10328819 DOI: 10.1016/j.xjon.2023.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 07/11/2023]
Abstract
Objectives Cytomegalovirus infection after lung transplant is associated with increased morbidity and mortality. Inflammation, infection, and longer ischemic times are important risk factors for cytomegalovirus infection. Ex vivo lung perfusion has helped to successfully increase the use of high-risk donors over the last decade. However, the impact of ex vivo lung perfusion on post-transplant cytomegalovirus infection is unknown. Methods We performed a retrospective analysis of all adult lung transplant recipients from 2010 to 2020. The primary end point was comparison of cytomegalovirus viremia between patients who received ex vivo lung perfusion donor lungs and patients who received non-ex vivo lung perfusion donor lungs. Cytomegalovirus viremia was defined as cytomegalovirus viral load greater than 1000 IU/mL within 2 years post-transplant. Secondary end points were the time from lung transplant to cytomegalovirus viremia, peak cytomegalovirus viral load, and survival. Outcomes were also compared between the different donor recipient cytomegalovirus serostatus matching groups. Results Included were 902 recipients of non-ex vivo lung perfusion lungs and 403 recipients of ex vivo lung perfusion lungs. There was no significant difference in the distribution of the cytomegalovirus serostatus matching groups. A total of 34.6% of patients in the non-ex vivo lung perfusion group developed cytomegalovirus viremia, as did 30.8% in the ex vivo lung perfusion group (P = .17). There was no difference in time to viremia, peak viral loads, or survival when comparing both groups. Likewise, all outcomes were comparable in the non-ex vivo lung perfusion and ex vivo lung perfusion groups within each serostatus matching group. Conclusions The practice of using more injured donor organs via ex vivo lung perfusion has not affected cytomegalovirus viremia rates and severity in lung transplant recipients in our center.
Collapse
Affiliation(s)
- Rafaela V.P. Ribeiro
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anas Samman
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aizhou Wang
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stella Wang
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Lianne G. Singer
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Deepali Kumar
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Atul Humar
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
63
|
Lodha M, Muchsin I, Jürges C, Juranic Lisnic V, L'Hernault A, Rutkowski AJ, Prusty BK, Grothey A, Milic A, Hennig T, Jonjic S, Friedel CC, Erhard F, Dölken L. Decoding murine cytomegalovirus. PLoS Pathog 2023; 19:e1010992. [PMID: 37172056 DOI: 10.1371/journal.ppat.1010992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023] Open
Abstract
The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include >200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model.
Collapse
Affiliation(s)
- Manivel Lodha
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Christopher Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Anne L'Hernault
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Andrzej J Rutkowski
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Bhupesh K Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Andrea Milic
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
64
|
Sheng Q, Sun Y, Zhai R, Fan X, Ying Y, Liu Z, Kong X. Murine cytomegalovirus localization and uveitic cell infiltration might both contribute to trabecular meshwork impairment in Posner-Schlossman syndrome: Evidence from an open-angle rat model. Exp Eye Res 2023; 231:109477. [PMID: 37137438 DOI: 10.1016/j.exer.2023.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
As a special type of glaucoma, Posner-Schlossman syndrome (PSS) is characterized by elevated intraocular pressure (IOP) and anterior uveitis. Cytomegalovirus (CMV) anterior chamber infection has now been considered the leading cause of PSS. We used murine CMV (MCMV) intracameral injection to establish a rat model manifested in IOP elevation and mild anterior uveitis, much like PSS; viral localization and gene expression at various time points and inflammatory cell infiltration derived from innate and adaptive immunity were investigated, as well as pathogenetic changes of the trabecular meshwork (TM). The IOP and uveitic manifestations peaked at 24 h post-infection (p.i.) and returned to normal after 96 h; the iridocorneal angle remained open consistently. At 24 h p.i., leucocytes gathered at the chamber angle. Maximum transcription of MCMV immediate early 1 (IE1) was reached at 24 h in the cornea and 48 h in the iris and ciliary body. MCMV localized in aqueous humor outflow facilities and the iris from 24 h to 28 d p.i. and was detected by in situ hybridization, though it did not transcribe after 7 d p.i. TM and iris pigment epithelial cells harboring viral inclusion bodies and autophagosomes were present at 28 d p.i. These findings shed light on how and where innate and adaptive immunity reacted after MCMV was found and transcribed in a highly ordered cascade, as well as pathogenetic changes in TM as a result of virus and uveitis behaviors.
Collapse
Affiliation(s)
- Qilian Sheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China
| | - Yanan Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China
| | - Ruyi Zhai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China
| | - Xintong Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China
| | - Yue Ying
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, 261053, China.
| | - Xiangmei Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; National Health Commission Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., 200031, Shanghai, China.
| |
Collapse
|
65
|
Labetoulle M, Boutolleau D, Burrel S, Haigh O, Rousseau A. Herpes simplex virus, varicella-zoster virus and cytomegalovirus keratitis: Facts for the clinician. Ocul Surf 2023; 28:336-350. [PMID: 34314898 DOI: 10.1016/j.jtos.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Keratitis due to Herpes simplex virus (HSK), Varicella-Zoster virus (VZK) and Cytomegalovirus remains a frequent source of concern for many ophthalmologists. They are a frequent cause of emergency consultations at eye care centers and carry the risk of permanent loss of visual acuity or visual quality and/or chronic neurotrophic keratitis, resulting in a significant decrease in the quality of life. HSK and VZK can affect the corneal epithelium, stroma, or endothelium or a combination of layers. In contrast, most cases of CMV keratitis present as isolated endothelitis (CMVE), a clinical entity that has been described within the last 2 decades. These three types of viral keratitis are characterized by a high frequency of recurrences and each new episode increases the risk of sequelae. Hence, ophthalmologists must adapt the treatment to the clinical presentation of each recurrent episode in order to mitigate the immediate consequences of viral replication and the immune response on corneal transparency. In patients with frequent recurrences, preventive long-term antiviral treatment is strongly recommended. However, in some rare cases, continuous exposure to antivirals may promote the emergence of resistant viral strains, which can be difficult to manage. In the future, the introduction of new antiviral drugs, with differing modes of action compared to current medical therapy, could be an alternative until a truly effective preventive solution, such as a vaccine, is available.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmologie Department, Hôpital Bicêtre, APHP, Université Paris Sud, 94275, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France.
| | - David Boutolleau
- Virology Department, Hôpital Pitié-Salpétrière, APHP, National Reference Center for Herperviruses (Associated Laboratory), Paris, France; Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Sonia Burrel
- Virology Department, Hôpital Pitié-Salpétrière, APHP, National Reference Center for Herperviruses (Associated Laboratory), Paris, France; Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Oscar Haigh
- Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France
| | - Antoine Rousseau
- Ophthalmologie Department, Hôpital Bicêtre, APHP, Université Paris Sud, 94275, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
66
|
Kelley EJ, Henson SN, Rahee F, Boyle AS, Engelbrektson AL, Nelson GA, Mead HL, Anderson NL, Razavi M, Yip R, Ladner JT, Scriba TJ, Altin JA. Virome-wide detection of natural infection events and the associated antibody dynamics using longitudinal highly-multiplexed serology. Nat Commun 2023; 14:1783. [PMID: 36997517 PMCID: PMC10062260 DOI: 10.1038/s41467-023-37378-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.
Collapse
Affiliation(s)
- Erin J Kelley
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Sierra N Henson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Anna L Engelbrektson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Georgia A Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Heather L Mead
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | | | | | - Richard Yip
- SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA.
| |
Collapse
|
67
|
Huang CY, Cheng YC, Hwang YS, Kang EYC, Hsiao CH. Cytomegalovirus Glycoprotein B Genotype in Patients with Anterior Segment Infection. Int J Mol Sci 2023; 24:ijms24076304. [PMID: 37047276 PMCID: PMC10094332 DOI: 10.3390/ijms24076304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
(1) The glycoprotein B (gB) on the viral envelope, encoded by the most widely characterised polymorphic gene, gpUL55, is responsible for cytomegalovirus (CMV) entry into the host and could serve as a potential marker of pathogenicity. The aim of the present study is to investigate the distribution of the CMV gB genotype in anterior segment infection in Taiwan and its correlation with clinical manifestations and outcomes. (2) Fifty-seven patients with CMV anterior segment infection were identified according to clinical features and positivity for CMV DNA in aqueous humour samples. CMV gB genotyping was performed through polymerase chain reaction assays. Patients’ medical records were retrospectively reviewed. (3) Among the 57 aqueous humour samples tested for gB, 40 (70.28%) had multiple gB genotypes, and only 17 (29.82%) had a single gB genotype. Compared with single-genotype infection, multiple-genotype infection was correlated with higher CMV loads (p < 0.001) but not correlated with outcome. A higher proportion of patients with the gB3 genotype had received filtering surgery before antiviral treatment than those without the gB3 genotype (p = 0.046). (4) Multiple-genotype infection was highly prevalent in CMV anterior segment infection in Taiwan, and gB1 and gB3 were predominant. Multiple-genotype infection was correlated with higher CMV loads but not with specific clinical manifestations or prognostic outcomes. The gB3 genotype may be correlated with poor intraocular pressure control.
Collapse
|
68
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
69
|
Griffiths ME, Meza DK, Haydon DT, Streicker DG. Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proc Natl Acad Sci U S A 2023; 120:e2216667120. [PMID: 36877838 PMCID: PMC10089182 DOI: 10.1073/pnas.2216667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Transmissible vaccines are an emerging biotechnology that hold prospects to eliminate pathogens from wildlife populations. Such vaccines would genetically modify naturally occurring, nonpathogenic viruses ("viral vectors") to express pathogen antigens while retaining their capacity to transmit. The epidemiology of candidate viral vectors within the target wildlife population has been notoriously challenging to resolve but underpins the selection of effective vectors prior to major investments in vaccine development. Here, we used spatiotemporally replicated deep sequencing to parameterize competing epidemiological mechanistic models of Desmodus rotundus betaherpesvirus (DrBHV), a proposed vector for a transmissible vaccine targeting vampire bat-transmitted rabies. Using 36 strain- and location-specific time series of prevalence collected over 6 y, we found that lifelong infections with cycles of latency and reactivation, combined with a high R0 (6.9; CI: 4.39 to 7.85), are necessary to explain patterns of DrBHV infection observed in wild bats. These epidemiological properties suggest that DrBHV may be suited to vector a lifelong, self-boosting, and transmissible vaccine. Simulations showed that inoculating a single bat with a DrBHV-vectored rabies vaccine could immunize >80% of a bat population, reducing the size, frequency, and duration of rabies outbreaks by 50 to 95%. Gradual loss of infectious vaccine from vaccinated individuals is expected but can be countered by inoculating larger but practically achievable proportions of bat populations. Parameterizing epidemiological models using accessible genomic data brings transmissible vaccines one step closer to implementation.
Collapse
Affiliation(s)
- Megan E. Griffiths
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel G. Streicker
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| |
Collapse
|
70
|
Zhang X, Xu J, Marshall B, Dong Z, Liu Y, Espinosa-Heidmann DG, Zhang M. Transcriptome Analysis of Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. Int J Mol Sci 2023; 24:4322. [PMID: 36901754 PMCID: PMC10001583 DOI: 10.3390/ijms24054322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Our previous studies have shown that systemic neonatal murine cytomegalovirus (MCMV) infection of BALB/c mice spread to the eye with subsequent establishment of latency in choroid/RPE. In this study, RNA sequencing (RNA-Seq) analysis was used to determine the molecular genetic changes and pathways affected by ocular MCMV latency. MCMV (50 pfu per mouse) or medium as control were injected intra-peritoneally (i.p.) into BALB/c mice at <3 days after birth. At 18 months post injection, the mice were euthanized, and the eyes were collected and prepared for RNA-Seq. Compared to three uninfected control eyes, we identified 321 differentially expressed genes (DEGs) in six infected eyes. Using the QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA), we identified 17 affected canonical pathways, 10 of which function in neuroretinal signaling, with the majority of DEGs being downregulated, while 7 pathways function in upregulated immune/inflammatory responses. Retinal and epithelial cell death pathways involving both apoptosis and necroptosis were also activated. MCMV ocular latency is associated with upregulation of immune and inflammatory responses and downregulation of multiple neuroretinal signaling pathways. Cell death signaling pathways are also activated and contribute to the degeneration of photoreceptors, RPE, and choroidal capillaries.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Diego G. Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
71
|
Forte E, Li M, Ayaloglu Butun F, Hu Q, Borst EM, Schipma MJ, Piunti A, Shilatifard A, Terhune SS, Abecassis M, Meier JL, Hummel M. Critical Role for the Human Cytomegalovirus Major Immediate Early Proteins in Recruitment of RNA Polymerase II and H3K27Ac To an Enhancer-Like Element in Ori Lyt. Microbiol Spectr 2023; 11:e0314422. [PMID: 36645269 PMCID: PMC9927211 DOI: 10.1128/spectrum.03144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac. Although it is well known that the major immediate early (IE) proteins activate early gene expression through both direct and indirect interactions, and that histone modifications play an important role in regulating viral gene expression, the role of the IE proteins in modulating viral chromatin is not fully understood. To address this question, we have used a virus engineered for conditional expression of the IE proteins combined with RNA and Chromatin immunoprecipitation (ChIP) analyses to assess the role of these proteins in modulating both viral chromatin and gene expression. Our results show that (i) there is an enhancer-like element in OriLyt that is extraordinarily enriched in H3K27Ac; (ii) in addition to activation of viral gene expression, the IE proteins play a critical role in recruitment of Pol II and H3K27Ac to this element. IMPORTANCE HCMV is an important human pathogen associated with complications in transplant patients and birth defects. The complex program of viral gene expression is regulated by both viral proteins and host factors. Here, we have investigated the role of the immediate early proteins in regulating the viral epigenome. Our results show that the viral immediate early proteins bring about an enormous enrichment of H3K27Ac marks at the OriLyt RNA4.9 promoter, concomitant with an increase in RNA4.9 expression. This epigenetic characteristic adds importantly to the view that OriLyt has structural and functional characteristics of a strong enhancer that, we now discover, is regulated by IE proteins.
Collapse
Affiliation(s)
- Eleonora Forte
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Fatma Ayaloglu Butun
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Schipma
- NUSeq Core, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Mary Hummel
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
72
|
Berg C, Rosenkilde MM. Therapeutic targeting of HCMV-encoded chemokine receptor US28: Progress and challenges. Front Immunol 2023; 14:1135280. [PMID: 36860859 PMCID: PMC9968965 DOI: 10.3389/fimmu.2023.1135280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
The pervasive human cytomegalovirus (HCMV) causes significant morbidity in immunocompromised individuals. Treatment using the current standard-of-care (SOC) is limited by severe toxic adverse effects and anti-viral resistance development. Furthermore, they only affect HCMV in its lytic phase, meaning viral disease is not preventable as latent infection cannot be treated and the viral reservoirs persist. The viral chemokine receptor (vCKR) US28 encoded by HCMV has received much attention in recent years. This broad-spectrum receptor has proven to be a desirable target for development of novel therapeutics through exploitation of its ability to internalize and its role in maintaining latency. Importantly, it is expressed on the surface of infected cells during both lytic and latent infection. US28-targeting small molecules, single-domain antibodies, and fusion toxin proteins have been developed for different treatment strategies, e.g. forcing reactivation of latent virus or using internalization of US28 as a toxin shuttle to kill infected cells. These strategies show promise for providing ways to eliminate latent viral reservoirs and prevent HCMV disease in vulnerable patients. Here, we discuss the progress and challenges of targeting US28 to treat HCMV infection and its associated diseases.
Collapse
|
73
|
Vezzani G, Pimazzoni S, Ferranti R, Calò S, Monda G, Amendola D, Frigimelica E, Maione D, Cortese M, Merola M. Human immunoglobulins are transported to HCMV viral envelope by viral Fc gamma receptors-dependent and independent mechanisms. Front Microbiol 2023; 13:1106401. [PMID: 36726564 PMCID: PMC9885202 DOI: 10.3389/fmicb.2022.1106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mirko Cortese
- GSK, Siena, Italy,Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy,Mirko Cortese, ✉
| | - Marcello Merola
- GSK, Siena, Italy,Department of Biology, University of Naples Federico II, Naples, Italy,*Correspondence: Marcello Merola, ✉
| |
Collapse
|
74
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
75
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
76
|
Rousselière A, Delbos L, Foureau A, Reynaud-Gaubert M, Roux A, Demant X, Le Pavec J, Kessler R, Mornex JF, Messika J, Falque L, Le Borgne A, Boussaud V, Tissot A, Hombourger S, Bressollette-Bodin C, Charreau B. Changes in HCMV immune cell frequency and phenotype are associated with chronic lung allograft dysfunction. Front Immunol 2023; 14:1143875. [PMID: 37187736 PMCID: PMC10175754 DOI: 10.3389/fimmu.2023.1143875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is common and often severe in lung transplant recipients (LTRs), and it is a risk factor associated with chronic lung allograft dysfunction (CLAD). The complex interplay between HCMV and allograft rejection is still unclear. Currently, no treatment is available to reverse CLAD after diagnosis, and the identification of reliable biomarkers that can predict the early development of CLAD is needed. This study investigated the HCMV immunity in LTRs who will develop CLAD. Methods This study quantified and phenotyped conventional (HLA-A2pp65) and HLA-E-restricted (HLA-EUL40) anti-HCMV CD8+ T (CD8 T) cell responses induced by infection in LTRs developing CLAD or maintaining a stable allograft. The homeostasis of immune subsets (B, CD4T, CD8 T, NK, and γδT cells) post-primary infection associated with CLAD was also investigated. Results At M18 post-transplantation, HLA-EUL40 CD8 T responses were less frequently found in HCMV+ LTRs (21.7%) developing CLAD (CLAD) than in LTRs (55%) keeping a functional graft (STABLE). In contrast, HLA-A2pp65 CD8 T was equally detected in 45% of STABLE and 47.8% of CLAD LTRs. The frequency of HLA-EUL40 and HLA-A2pp65 CD8 T among blood CD8 T cells shows lower median values in CLAD LTRs. Immunophenotype reveals an altered expression profile for HLA-EUL40 CD8 T in CLAD patients with a decreased expression for CD56 and the acquisition of PD-1. In STABLE LTRs, HCMV primary infection causes a decrease in B cells and inflation of CD8 T, CD57+/NKG2C+ NK, and δ2-γδT cells. In CLAD LTRs, the regulation of B, total CD8 T, and δ2+γδT cells is maintained, but total NK, CD57+/NKG2C+ NK, and δ2-γδT subsets are markedly reduced, while CD57 is overexpressed across T lymphocytes. Conclusions CLAD is associated with significant changes in anti-HCMV immune cell responses. Our findings propose that the presence of dysfunctional HCMV-specific HLA-E-restricted CD8 T cells together with post-infection changes in the immune cell distribution affecting NK and γδT cells defines an early immune signature for CLAD in HCMV+ LTRs. Such a signature may be of interest for the monitoring of LTRs and may allow an early stratification of LTRs at risk of CLAD.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Aurore Foureau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Martine Reynaud-Gaubert
- CHU de Marseille, APHM, Hôpital Nord, Service de Pneumologie et Equipe de Transplantation pulmonaire; Marseille, France; Aix-Marseille Université, Marseille, France
| | - Antoine Roux
- Hôpital Foch, Service de pneumologie, Suresnes, France
| | - Xavier Demant
- Hôpital Haut-Lévêque, Service de pneumologie, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et de Transplantation Pulmonaire, Groupe Hospitalier Marie-Lannelongue -Paris Saint Joseph, Le Plessis-Robinson, France
- Université Paris-Saclay, Le Kremlin Bicêtre, France
- UMR_S 999, Université Paris–Sud, Inserm, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Romain Kessler
- Groupe de transplantation pulmonaire des hôpitaux universitaires de Strasbourg, Inserm-Université de Strasbourg, Strasbourg, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, GHE, Service de Pneumologie, Inserm, Lyon, France
| | - Jonathan Messika
- APHP, Nord-Université Paris Cité, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Loïc Falque
- Service Hospitalier Universitaire Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| | | | - Véronique Boussaud
- Service de Pneumologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Sophie Hombourger
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
- *Correspondence: Béatrice Charreau,
| |
Collapse
|
77
|
Aldè M, Caputo E, Di Berardino F, Ambrosetti U, Barozzi S, Piatti G, Zanetti D, Pignataro L, Cantarella G. Hearing outcomes in children with congenital cytomegalovirus infection: From management controversies to lack of parents' knowledge. Int J Pediatr Otorhinolaryngol 2023; 164:111420. [PMID: 36563581 DOI: 10.1016/j.ijporl.2022.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Congenital cytomegalovirus (cCMV) is the leading nongenetic cause of sensorineural hearing loss (HL). However, there are no universally accepted approaches to diagnosis, follow-up and treatment. The aim of this study was to evaluate the main characteristics of cCMV-infected children, focusing on their management and long-term hearing outcomes. METHODS This retrospective study included all children with cCMV infection who were referred to a third-level referral audiologic center for a 6-year hearing follow-up. The main information collected from the medical records included gestational age, birth weight, trimester of maternal seroconversion, hearing status at birth and after 6 years, hearing fluctuations, treatment with oral valganciclovir (within the first month of life and for 6 months), use of hearing devices, presence of speech-language delay, motor delay, cognitive delay and balance disorders, awareness of cCMV among parents, and parents' engagement in behaviors that could increase the risk of CMV infection during pregnancy. RESULTS A total of 141 children with cCMV infection (72 males and 69 females; mean gestational age: 37+3 weeks; mean birth weight: 2893 g) were assessed. Overall, 48 children (34.0%) had a diagnosis of speech-language delay, 32 (22.7%) of sensorineural HL (59.4% bilaterally; 50% of profound degree), 18 (12.8%) of motor delay, 16 (11.3%) of balance disorders, and 6 (4.3%) of cognitive delay. Among children with HL, 8 (25.0%) were fitted with hearing aids (5 unilaterally and 3 bilaterally), and 5 (15.6%) had undergone cochlear implantation (1 unilaterally and 4 bilaterally), while a bimodal hearing solution was adopted for 2 (6.3%) patients. Compared to children with asymptomatic cCMV infection, symptomatic children had a higher prevalence of neurological and auditory sequelae (P < 0.01) and bilateral (P = 0.003) and severe-to-profound HL (P = 0.004). Overall, 23 children (16.3%) received oral valganciclovir, and only one of them experienced hearing deterioration. Only 14.9% of mothers and 5% of fathers were aware that cCMV could cause progressive or late-onset HL, and 87.9% of parents (248/282) had engaged in behaviors that increased the risk of CMV infection during pregnancy. CONCLUSION This study confirmed the importance of performing a long audiological follow-up in children diagnosed with cCMV infection due to the possible late-onset, progressive and fluctuating nature of HL. Moreover, the study highlighted many current controversies in preventive (poor prenatal education), diagnostic (routine maternal serological screening) and therapeutic (valganciclovir administered to asymptomatic children) approaches to cCMV infection. More efforts should be made to improve prevention strategies and raise awareness of cCMV infection risks among the population.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Eliana Caputo
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Federica Di Berardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Umberto Ambrosetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Stefania Barozzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Gioia Piatti
- Department of Pathophysiology and Transplantation, University of Milan and Unit of Bronchopneumology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Otolaryngology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Otolaryngology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
78
|
IL-10-Secreting CD8 + T Cells Specific for Human Cytomegalovirus (HCMV): Generation, Maintenance and Phenotype. Pathogens 2022; 11:pathogens11121530. [PMID: 36558866 PMCID: PMC9781655 DOI: 10.3390/pathogens11121530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
HCMV-specific CD8+ T-cells are potent anti-viral effector cells in HCMV infected individuals, but evidence from other viral infections suggests that CD8+ T-cells can also produce the immunomodulatory cytokine IL-10. In this work we show that there are HCMV-specific IL-10 CD8+ T-cell responses in a cohort of individuals aged 23-76 years of age, predominantly directed against the HCMV proteins known to be expressed during latent infections as well as towards the proteins US3 and pp71. The analysis of HCMV-specific responses established during primary infection has shown that the IL-10 responses to US3 and pp71 HCMV proteins are detectable in the first weeks post infection, but not the responses to latency-associated proteins, and this IL-10 response is produced by both CD8+ and CD4+ T-cells. Phenotyping studies of HCMV-specific IL-10+ CD8+ T-cells show that these are CD45RA+ effector memory cells and co-express CD28 and CD57, however, the expression of the inhibitory receptor PD-1 varied from 90% to 30% between donors. In this study we have described for the first time the HCMV-specific IL-10 CD8+ T-cell responses and have demonstrated their broad specificity and the potential immune modulatory role of the immune response to HCMV latent carriage and periodic reactivation.
Collapse
|
79
|
Rousselière A, Gérard N, Delbos L, Guérif P, Giral M, Bressollette-Bodin C, Charreau B. Distinctive phenotype for HLA-E- versus HLA-A2-restricted memory CD8 αβT cells in the course of HCMV infection discloses features shared with NKG2C +CD57 +NK and δ2 -γδT cell subsets. Front Immunol 2022; 13:1063690. [PMID: 36532017 PMCID: PMC9752567 DOI: 10.3389/fimmu.2022.1063690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
The human cytomegalovirus (HCMV) triggers both innate and adaptive immune responses, including protective CD8+ αβT cells (CD8T) that contributes to the control of the infection. In addition to CD8T restricted by classical HLA class Ia molecules, HCMV also triggers CD8T recognizing peptides from the HCMV UL40 leader peptide and restricted by HLA-E molecules (HLA-EUL40 CD8T). This study investigated the frequency, phenotype and functions of HLA-EUL40 CD8T in comparison to the immunodominant HLA-A2pp65 CD8T upon acute (primary or secondary infection) or chronic infection in kidney transplant recipients (KTR) and in seropositive (HCMV+) healthy volunteer (HV) hosts. The frequency of hosts with detected HLA-EUL40 CD8T was similar after a primary infection (24%) and during viral latency in HCMV+ HV (26%) and equal to the frequency of HLA-A2pp65 CD8T cells in both conditions (29%). Both CD8T subsets vary from 0.1% to >30% of total circulating CD8T according to the host. Both HLA-EUL40 and HLA-A2pp65 CD8T display a phenotype specific of CD8+ TEMRA (CD45RA+/CCR7-) but HLA-EUL40 CD8T express distinctive level for CD3, CD8 and CD45RA. Tim3, Lag-3, 4-1BB, and to a lesser extend 2B4 are hallmarks for T cell priming post-primary infection while KLRG1 and Tigit are markers for restimulated and long lived HCMV-specific CD8T responses. These cell markers are equally expressed on HLA-EUL40 and HLA-A2pp65 CD8T. In contrast, CD56 and PD-1 are cell markers discriminating memory HLA-E- from HLA-A2-restricted CD8T. Long lived HLA-EUL40 display higher proliferation rate compared to HLA-A2pp65 CD8T consistent with elevated CD57 expression. Finally, a comparative immunoprofiling indicated that HLA-EUL40 CD8T, divergent from HLA-A2pp65 CD8T, share the expression of CD56, CD57, NKG2C, CD158 and the lack of PD-1 with NKG2C+CD57+ NK and δ2-γδT cells induced in response to HCMV and thus defines a common immunopattern for these subsets.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Nathalie Gérard
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France,*Correspondence: Béatrice Charreau,
| |
Collapse
|
80
|
Long-Term Associations between Human Cytomegalovirus Antibody Levels with All-Cause Mortality and Cardiovascular Outcomes in an Australian Community-Based Cohort. Viruses 2022; 14:v14122676. [PMID: 36560680 PMCID: PMC9783113 DOI: 10.3390/v14122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection has been shown to increase the risk of cardiovascular events and all-cause death among individuals with clinically apparent cardiovascular disease (CVD). Whether this association exists in individuals with no history of CVD remains unclear. Serum levels of HCMV IgG antibody were measured using an ELISA in 2050 participants aged 40-80 years from the 1994/1995 Busselton Health Survey who did not have CVD at baseline. Outcomes were all-cause death, cardiovascular death, acute coronary syndrome (ACS) and major adverse coronary and cerebrovascular events (MACCE, composite of all-cause death, ACS, stroke and coronary artery revascularisation procedures). Cox proportional hazards regression analysis was used to investigate HCMV antibody levels as a predictor of death and cardiovascular outcomes during follow-up periods of 5, 10 and 20 years. At baseline, participants had a mean age of 56 years and 57% were female. During the 20-year follow-up, there were 448 (21.9%) deaths (including 152 from CVD), 139 (6.8%) participants had ACS and 575 (28.0%) had MACCE. In the fully adjusted model, levels of HCMV antibody at 20 years was associated with all-cause death (HR 1.04; 95% CI 1.00, 1.07, p = 0.037) but not with CVD death, ACS or MACCE. Levels of HCMV antibody are associated with all-cause death but not with cardiovascular outcomes in adults without pre-existing CVD.
Collapse
|
81
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
82
|
Impact of Dextran-Sodium-Sulfate-Induced Enteritis on Murine Cytomegalovirus Reactivation. Viruses 2022; 14:v14122595. [PMID: 36560599 PMCID: PMC9781000 DOI: 10.3390/v14122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Ulcerative colitis (UC) is an inflammatory bowel disease that causes inflammation of the intestines, which participates in human cytomegalovirus (HCMV) reactivation from its latent reservoir. CMV-associated colitis plays a pejorative role in the clinical course of UC. We took advantage of a model of chemically induced enteritis to study the viral reactivation of murine CMV (MCMV) in the context of gut inflammation. (2) Methods: Seven-week-old BALB/c mice were infected by 3 × 103 plaque-forming units (PFU) of MCMV; 2.5% (w/v) DSS was administered in the drinking water from day (D) 30 to D37 post-infection to induce enteritis. (3) Results: MCMV DNA levels in the circulation decreased from D21 after infection until resolution of the acute infection. DSS administration resulted in weight loss, high disease activity index, elevated Nancy index shortening of the colon length and increase in fecal lipocalin. However, chemically induced enteritis had no impact on MCMV reactivation as determined by qPCR and immunohistochemistry of intestinal tissues. (4) Conclusions: Despite the persistence of MCMV in the digestive tissues after the acute phase of infection, the gut inflammation induced by DSS did not induce MCMV reactivation in intestinal tissues, thus failing to recapitulate inflammation-driven HCMV reactivation in human UC.
Collapse
|
83
|
Wass AB, Krishna BA, Herring LE, Gilbert TSK, Nukui M, Groves IJ, Dooley AL, Kulp KH, Matthews SM, Rotroff DM, Graves LM, O’Connor CM. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. SCIENCE ADVANCES 2022; 8:eadd1168. [PMID: 36288299 PMCID: PMC9604534 DOI: 10.1126/sciadv.add1168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.
Collapse
Affiliation(s)
- Amanda B. Wass
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin A. Krishna
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masatoshi Nukui
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ian J. Groves
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L. Dooley
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katherine H. Kulp
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephen M. Matthews
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine M. O’Connor
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
84
|
Jung SH, Lee KT. Atherosclerosis by Virus Infection—A Short Review. Biomedicines 2022; 10:biomedicines10102634. [PMID: 36289895 PMCID: PMC9599298 DOI: 10.3390/biomedicines10102634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis manifests by the thickening of artery walls and their narrowed channels through the accumulation of plaque. It is one of the most important indicators of cardiovascular disease. It can be caused by various factors, such as smoking, a high cholesterol diet, hypertension, hyperglycemia, and genetic factors. However, atherosclerosis can also develop due to infection. It has been reported that some bacteria and viruses can cause the development of atherosclerosis. Examples of these viruses are influenza viruses, herpes viruses, hepatitis viruses, or papillomaviruses, which are all prevalent and eminent globally for infecting the population worldwide. Moreover, many patients with coronavirus disease 2019 (COVID-19) showed symptoms of cardiovascular disease. In this review paper, the viruses linked to the development of atherosclerosis are introduced, and their viral characteristics, the mechanisms of the development of atherosclerosis, and the current vaccines and antiviral treatment methods are summarized.
Collapse
Affiliation(s)
- Seang-Hwan Jung
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (S.-H.J.); (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (S.-H.J.); (K.-T.L.)
| |
Collapse
|
85
|
Dhital R, Anand S, Graber B, Zeng Q, Velazquez VM, Boddeda SR, Fitch JR, Minz RW, Minz M, Sharma A, Cianciolo R, Shimamura M. Murine cytomegalovirus promotes renal allograft inflammation via Th1/17 cells and IL-17A. Am J Transplant 2022; 22:2306-2322. [PMID: 35671112 PMCID: PMC9547825 DOI: 10.1111/ajt.17116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) infection is associated with renal allograft failure. Allograft damage in animal models is accelerated by CMV-induced T helper 17 (Th17) cell infiltrates. However, the mechanisms whereby CMV promotes Th17 cell-mediated pathological organ inflammation are uncharacterized. Here we demonstrate that murine CMV (MCMV)-induced intragraft Th17 cells have a Th1/17 phenotype co-expressing IFN-γ and/or TNF-α, but only a minority of these cells are MCMV specific. Instead, MCMV promotes intragraft expression of CCL20 and CXCL10, which are associated with recruitment of CCR6+ CXCR3+ Th17 cells. MCMV also enhances Th17 cell infiltrates after ischemia-reperfusion injury, independent of allogeneic responses. Pharmacologic inhibition of the Th17 cell signature cytokine, IL-17A, ameliorates MCMV-associated allograft damage without increasing intragraft viral loads or reducing MCMV-specific Th1 cell infiltrates. Clinically, HCMV DNAemia is associated with higher serum IL-17A among renal transplant patients with acute rejection, linking HCMV reactivation with Th17 cell cytokine expression. In summary, CMV promotes allograft damage via cytokine-mediated Th1/17 cell recruitment, which may be pharmacologically targeted to mitigate graft injury while preserving antiviral T cell immunity.
Collapse
Affiliation(s)
- Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Shashi Anand
- Department of ImmunopathologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Brianna Graber
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Qiang Zeng
- Center for Regenerative MedicineThe Abigail Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Victoria M. Velazquez
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Srinivasa R. Boddeda
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - James R. Fitch
- The Steve and Cindy Rasmussen Institute for Genomic MedicineNationwide Children's HospitalColumbusOhioUSA
| | - Ranjana W. Minz
- Department of ImmunopathologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Mukut Minz
- Department of Renal Transplant SurgeryPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Ashish Sharma
- Department of Renal Transplant SurgeryPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA,Division of Pediatric Infectious Diseases, Department of Pediatrics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
86
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
87
|
Matthews E, Beckham JD, Piquet AL, Tyler KL, Chauhan L, Pastula DM. Herpesvirus-Associated Encephalitis: an Update. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:92-100. [PMID: 36186545 PMCID: PMC9510386 DOI: 10.1007/s40475-022-00255-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/03/2022]
Abstract
Purpose of Review Recent Findings Summary
Collapse
|
88
|
El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. Oncogenic and Stemness Signatures of the High-Risk HCMV Strains in Breast Cancer Progression. Cancers (Basel) 2022; 14:cancers14174271. [PMID: 36077806 PMCID: PMC9455011 DOI: 10.3390/cancers14174271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lately, human cytomegalovirus (HCMV) has been progressively implicated in carcinogenesis alongside its oncomodulatory impact. CMV-Transformed Human mammary epithelial cells (CTH) phenotype might be defined by giant cell cycling, whereby the generation of polyploid giant cancer cells (PGCCs) could expedite the acquisition of malignant phenotypes. Herein, the main study objectives were to assess the transformation potential in vitro and evaluate the obtained cellular phenotype, the genetic and molecular features, and the activation of cellular stemness programs of HCMV strains, B544 and B693, which were previously isolated from triple-negative breast cancer (TNBC) biopsies. The strains’ sensitivity to paclitaxel and ganciclovir combination therapy was evaluated. A unique molecular landscape was unveiled in the tumor microenvironment of TNBC harboring high-risk HCMV. Overall, the explicit oncogenic and stemness signatures highlight HCMV potential in breast cancer progression thus paving the way for targeted therapies and clinical interventions which prolong the overall survival of breast cancer patients. Abstract Background: Human cytomegalovirus (HCMV) oncomodulation, molecular mechanisms, and ability to support polyploid giant cancer cells (PGCCs) generation might underscore its contribution to oncogenesis, especially breast cancers. The heterogeneity of strains can be linked to distinct properties influencing the virus-transforming potential, cancer types induced, and patient’s clinical outcomes. Methods: We evaluated the transforming potential in vitro and assessed the acquired cellular phenotype, genetic and molecular features, and stimulation of stemness of HCMV strains, B544 and B693, isolated from EZH2HighMycHigh triple-negative breast cancer (TNBC) biopsies. Therapeutic response assessment after paclitaxel (PTX) and ganciclovir (GCV) treatment was conducted in addition to the molecular characterization of the tumor microenvironment (TME). Findings: HCMV-B544 and B693 transformed human mammary epithelial cells (HMECs). We detected multinucleated and lipid droplet-filled PGCCs harboring HCMV. Colony formation was detected and Myc was overexpressed in CMV-Transformed-HMECs (CTH cells). CTH-B544 and B693 stimulated stemness and established an epithelial/mesenchymal hybrid state. HCMV-IE1 was detected in CTH long-term cultures indicating a sustained viral replication. Biopsy B693 unveiled a tumor signature predicting a poor prognosis. CTH-B544 cells were shown to be more sensitive to PTX/GCV therapy. Conclusion: The oncogenic and stemness signatures of HCMV strains accentuate the oncogenic potential of HCMV in breast cancer progression thereby leading the way for targeted therapies and innovative clinical interventions that will improve the overall survival of breast cancer patients.
Collapse
Affiliation(s)
- Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Mona Diab-Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beirut 1500, Lebanon
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
- Department of Virology, CHU Besançon, 25030 Besançon, France
- Correspondence: ; Tel.: +33-381-665-616; Fax: +33-381-665-695
| |
Collapse
|
89
|
Watanabe M, Jergovic M, Davidson L, LaFleur BJ, Castaneda Y, Martinez C, Smithey MJ, Stowe RP, Haddad EK, Nikolich‐Žugich J. Inflammatory and immune markers in HIV-infected older adults on long-term antiretroviral therapy: Persistent elevation of sCD14 and of proinflammatory effector memory T cells. Aging Cell 2022; 21:e13681. [PMID: 35975357 PMCID: PMC9470897 DOI: 10.1111/acel.13681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
HIV-positive patients whose viral loads are successfully controlled by active antiretroviral therapy (ART) show no clinical signs of AIDS. However, their lifespan is shorter compared with individuals with no HIV infection and they prematurely exhibit a multitude of chronic diseases typically associated with advanced age. It was hypothesized that immune system aging may correlate with, and provide useful biomarkers for, this premature loss of healthspan in HIV-positive subjects. Here, we tested whether the immune correlates of aging, including cell numbers and phenotypes, inflammatory status, and control of human cytomegalovirus (hCMV) in HIV-positive subjects on long-term successful ART (HIV+) may reveal increased "immunological age" compared with HIV-negative, age-matched cohort (HIV-) in participants between 50 and 69 years of age. Specifically, we expected that younger HIV+ subjects may immunologically resemble older individuals without HIV. We found no evidence to support this hypothesis. While T cells from HIV+ participants displayed differential expression in several differentiation and/or inhibitory/exhaustion markers in different T cell subpopulations, aging by a decade did not pronounce these changes. Similarly, while the HIV+ participants exhibited higher T cell responses and elevated inflammatory marker levels in plasma, indicative of chronic inflammation, this trait was not age-sensitive. We did find differences in immune control of hCMV, and, more importantly, a sustained elevation of sCD14 and of proinflammatory CD4 and CD8 T cell responses across age groups, pointing towards uncontrolled inflammation as a factor in reduced healthspan in successfully treated older HIV+ patients.
Collapse
Affiliation(s)
- Makiko Watanabe
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Mladen Jergovic
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Lisa Davidson
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Bonnie J. LaFleur
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA,R. Ken Coit College of PharmacyUniveristy of ArizonaTucsonArizonaUSA
| | - Yvonne Castaneda
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Carmine Martinez
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Megan J. Smithey
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | | | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
90
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
91
|
Abstract
Over a century of research has focused on improving our understanding of congenital cytomegalovirus (cCMV), yet it remains the most common congenital infection in the United States, affecting 3 to 6 per 1000 live born infants each year. Pregnancies affected by cCMV are at a heightened risk of spontaneous abortion and intrauterine fetal demise. Neonates born with cCMV are also at substantial risk for long-term neurodevelopmental sequelae and disability, including sensorineural hearing loss, even those born without clinically apparent disease. Considerable progress has been made in recent years in study of the epidemiology and transmission of cCMV, developing better diagnostic strategies, implementing newborn screening programs, improving therapeutics, and launching vaccine trials. In this article, we review recent developments in the understanding of the virology and immunobiology of cytomegalovirus. We further discuss how this knowledge informs our understanding of the pathophysiology of cCMV and directs strategies aimed at improving outcomes and quality of life for congenitally infected children. We also provide an update on the epidemiology of cCMV in the United States, evolving scientific understanding of maternal-fetal transmission, enhanced screening approaches, and recognition of neonatal and long-term sequelae. Finally, we review the current landscape of pediatric cCMV research and provide recommendations for novel and high-priority areas for future investigation.
Collapse
Affiliation(s)
- Megan H. Pesch
- University of Michigan and CS Mott Children’s Hospital, Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Ann Arbor, Michigan
| | - Mark R. Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Division of Pediatric Infectious Diseases
| |
Collapse
|
92
|
Calkova T, Cervenka S, Yolken RH, Andreassen OA, Andreou D. Cytomegalovirus infection associated with lower IQ in adolescent patients with schizophrenia spectrum disorders: A preliminary report. J Psychiatr Res 2022; 151:571-574. [PMID: 35636034 DOI: 10.1016/j.jpsychires.2022.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Cytomegalovirus (CMV) infection of immunocompetent hosts is usually inapparent, but typically results in a non-silent chronic latency which is considerably more active than previously considered. In adults with schizophrenia spectrum disorders, CMV latent infection has been associated with cognitive disturbance including lower intelligent quotient (IQ). We hypothesized that the same pattern will be present in adolescent patients with schizophrenia spectrum disorders (early-onset non-affective psychosis). We included 17 adolescents with schizophrenia spectrum disorders (10 patients with schizophrenia, one patient with schizoaffective disorder and six patients with psychosis not otherwise specified), mean age 16.7 years, females 71% and CMV seropositivity 35%. Current IQ was estimated with the Wechsler Abbreviated Scale of Intelligence. CMV immunoglobulin G (IgG) concentrations were measured by solid-phase immunoassays and expressed as dichotomous measures (seropositive/CMV + vs. seronegative/CMV-). CMV + patients (mean IQ 91) had significantly lower full-scale IQ than CMV- patients (mean IQ 110) (20 units difference; p < 0.001). Post-hoc analyses showed that CMV + patients had both lower performance and lower verbal IQ relative to CMV- patients (p = 0.001 and 0.049, respectively). In this preliminary report, we found that CMV IgG seropositivity, reflecting previous CMV infection and current latency, was associated with lower IQ. This may be indicative of an unfavorable impact of CMV infection on general intelligence in early-onset non-affective psychosis.
Collapse
Affiliation(s)
- Tereza Calkova
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Region Vastmanland - Uppsala University, Centre for Clinical Research, Vastmanland Hospital Vasteras, Västerås, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
93
|
Tan JS, Ren JM, Fan L, Wei Y, Hu S, Zhu SS, Yang Y, Cai J. Genetic Predisposition of Anti-Cytomegalovirus Immunoglobulin G Levels and the Risk of 9 Cardiovascular Diseases. Front Cell Infect Microbiol 2022; 12:884298. [PMID: 35832381 PMCID: PMC9272786 DOI: 10.3389/fcimb.2022.884298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating evidence has indicated that persistent human cytomegalovirus (HCMV) infection is associated with several cardiovascular diseases including atherosclerosis and coronary artery disease. However, whether there is a causal association between the level of anti-HCMV immune response and the risk of cardiovascular diseases remains unknown. Methods Single-nucleotide polymorphisms associated with anti-cytomegalovirus immunoglobulin (Ig) G levels were used as instrumental variables to estimate the causal effect of anti-cytomegalovirus IgG levels on 9 cardiovascular diseases (including atrial fibrillation, coronary artery disease, hypertension, heart failure, peripheral artery disease, pulmonary embolism, deep vein thrombosis of the lower extremities, rheumatic valve diseases, and non-rheumatic valve diseases). For each cardiovascular disease, Mendelian randomization (MR) analyses were performed. Inverse variance-weighted meta-analysis (IVW) with a random-effects model was used as a principal analysis. In addition to this, the weighted median approach and MR-Egger method were used for further sensitivity analysis. Results In the IVW analysis, genetically predicted anti-cytomegalovirus IgG levels were suggestively associated with coronary artery disease with an odds ratio (OR) of 1.076 [95% CI, 1.009–1.147; p = 0.025], peripheral artery disease (OR 1.709; 95% CI, 1.039–2.812; p = 0.035), and deep vein thrombosis (OR 1.002; 95% CI, 1.000–1.004; p = 0.025). In the further analysis, similar causal associations were obtained from weighted median analysis and MR-Egger analysis with lower precision. No notable heterogeneities and horizontal pleiotropies were observed (p > 0.05). Conclusions/Interpretation Our findings first provide direct evidence that genetic predisposition of anti-cytomegalovirus IgG levels increases the risk of coronary artery disease, peripheral artery disease, and deep vein thrombosis.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Meng Ren
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Luyun Fan
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Song Hu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Song Zhu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmin Yang
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| | - Jun Cai
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| |
Collapse
|
94
|
Wedemann L, Flomm FJ, Bosse JB. The unconventional way out-Egress of HCMV through multiviral bodies. Mol Microbiol 2022; 117:1317-1323. [PMID: 35607767 DOI: 10.1111/mmi.14946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus and the leading cause of congenital disabilities as well as a significant cause of disease in immunocompromised patients. The envelopment and egress of HCMV particles is an essential step of the viral life cycle as it determines viral spread and potentially tropism. Here we review the current literature on HCMV envelopment and egress with a particular focus on the role of virus-containing multivesicular body-like vesicles for virus egress and spread. We discuss the difficulties of determining the cellular provenance of these structures in light of viral redistribution of cellular marker proteins and provide potential paths to illuminate their genesis. Finally, we discuss how divergent egress pathways could result in virions of different tropisms.
Collapse
Affiliation(s)
- Linda Wedemann
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| | - Felix J Flomm
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| | - Jens B Bosse
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| |
Collapse
|
95
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
96
|
Johari YB, Scarrott JM, Pohle TH, Liu P, Mayer A, Brown AJ, James DC. Engineering of the CMV promoter for controlled expression of recombinant genes in HEK293 cells. Biotechnol J 2022; 17:e2200062. [PMID: 35482470 DOI: 10.1002/biot.202200062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 11/08/2022]
Abstract
Expression of recombinant genes in HEK293 cells is frequently utilized for production of recombinant proteins and viral vectors. These systems frequently employ the cytomegalovirus (CMV) promoter to drive recombinant gene transcription. However, the mechanistic basis of CMV-mediated transcriptional activation in HEK293 cells is unknown and consequently there are no strategies to engineer CMV for controlled expression of recombinant genes. Extensive bioinformatic analyses of transcription factor regulatory elements (TFREs) within the human CMV sequence and transcription factor mRNAs within the HEK293 transcriptome revealed 80 possible regulatory interactions. Through in vitro functional testing using reporter constructs harboring discrete TFREs or CMV deletion variants we identified key TFRE components and clusters of TFREs (cis-regulatory modules) within the CMV sequence. Our data reveal that CMV activity in HEK293 cells is a function of the promoters various constituent TFREs including AhR:ARNT, CREB, E4F, Sp1, ZBED1, JunB, c-Rel, and NF-κB. We also identified critical Sp1-dependent upstream activator elements near the transcriptional start site that were required for efficient transcription and YY1 and RBP-Jκ binding sites that mediate transrepression. Our study shows for the first time that novel, compact CMV-derived promoters can be engineered that exhibit up to 50% higher transcriptional efficiency (activity per unit DNA sequence) or 14% increase in total activity compared to the wild-type counterpart.
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.,Syngensys Ltd., Sheffield, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.,Syngensys Ltd., Sheffield, UK
| |
Collapse
|
97
|
Andreou D, Jørgensen KN, Nerland S, Yolken RH, Haukvik UK, Andreassen OA, Agartz I. Cytomegalovirus Infection Associated with Smaller Total Cortical Surface Area in Schizophrenia Spectrum Disorders. Schizophr Bull 2022; 48:1164-1173. [PMID: 35388401 PMCID: PMC9434442 DOI: 10.1093/schbul/sbac036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cytomegalovirus (CMV) congenital infection and in immunodeficiency can have deleterious effects on human cortex. In immunocompetent adults, the putative association between CMV infection and cortical measures has not been explored. We hypothesized that CMV exposure is associated with smaller cortical surface area or cortical thinning mainly in patients with schizophrenia spectrum disorders. STUDY DESIGN We included 67 adult patients with schizophrenia spectrum disorders and 262 adult healthy controls. We measured circulating CMV IgG antibody concentrations with solid-phase immunoassay techniques. We measured the total cortical surface area, regional cortical surface areas and the overall mean cortical thickness based on T1-weighted MRI scans processed in FreeSurfer v6.0. STUDY RESULTS In the whole sample analysis, we found a significant diagnostic group-by-CMV status interaction on the total surface area (P = .020). Among patients, CMV antibody positivity was significantly associated with smaller total surface area (P = .002, partial eta2 = 0.138) whereas no such association was found in healthy controls (P = .059). Post hoc analysis among patients showed that higher CMV antibody concentrations were also significantly associated with smaller total surface area (P = .038), and that CMV antibody positivity was significantly inversely associated with 14 left and 16 right regional surface areas mainly in the frontal and temporal lobes. CMV infection was not associated with the overall mean cortical thickness. CONCLUSIONS The results are indicative of a cortical surface area vulnerability to CMV infection in patients with schizophrenia spectrum disorders but not in healthy controls. CMV infection may contribute to the established cortical surface area aberrations in schizophrenia.
Collapse
Affiliation(s)
- Dimitrios Andreou
- To whom correspondence should be addressed; Diakonhjemmet Hospital, Department of Psychiatric Research, Forskningsveien 7, 0373, Oslo, Norway; tel: +46737678848, fax: +4722029901, e-mail:
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Robert H Yolken
- Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Forensic Research and Education, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
98
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
99
|
Gröschel M, Voigt S, Schwitzer S, Ernst A, Basta D. Cytomegalovirus Seropositivity as a Potential Risk Factor for Increased Noise Trauma Susceptibility. Noise Health 2022; 24:1-6. [PMID: 35645133 PMCID: PMC9239143 DOI: 10.4103/nah.nah_4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CONTEXT Cytomegalovirus (CMV) represents the leading congenital viral infection in humans. Although congenital CMV due to vertically transmitted infections is the main cause of CMV-related diseases, adult CMV infections might still be of clinical significance. It is still discussed how far CMV seropositivity, due to horizontal infection in immunocompetent adults, is able to induce significant dysfunction. The present study investigates in how far CMV seropositivity is an additional risk factor for an increasing susceptibility to sensorineural hearing loss induced by acoustic injury during adulthood in a guinea pig CMV (GPCMV) model of noise-induced hearing loss (NIHL). METHODS Two groups (GPCMV seropositive vs. seronegative) of normal hearing adult guinea pigs were exposed to a broadband noise (5-20 kHz) for 2 hours at 115 dB sound pressure level. Frequency-specific auditory brainstem response recordings for determination of auditory threshold shift were carried out and the number of missing outer hair cells was counted 2 weeks after the noise exposure. RESULTS The data show a slightly increased shift in auditory thresholds in seropositive animals compared to the seronegative control group in response to noise trauma. However, the observed difference was significant at least at high frequencies. The differences in threshold shift are not correlated with outer hair cell loss between the experimental groups. CONCLUSION The results point to potential additional pathologies in a guinea pig NIHL model in correlation to GPCMV seropositivity, which should be taken into account when assessing risks of latent/reactivated CMV infection. Due to the relatively slight effect in the present data, the aim of future studies should be a more detailed consideration (e.g., larger sample size) and to localize possible target structures as well as the significance of the infection route.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany,Address for correspondence: Dr Moritz Gröschel, Department of Otolaryngology, Unfallkrankenhaus Berlin, Warener Str 7, 12683 Berlin, Germany. E-mail:
| | - Stefan Voigt
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Susanne Schwitzer
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| |
Collapse
|
100
|
Khan MM, Ali MJ, Hanif H, Maqsood MH, Ahmad I, Alvarez JEG, Catana MA, Lau DTY. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac018. [PMID: 35663152 PMCID: PMC9154071 DOI: 10.1093/gastro/goac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) remains a global public health problem despite the availability of effective vaccine and antiviral therapy. Cytomegalovirus (CMV), another hepatotropic virus, is also very prevalent in the general population worldwide. Both HBV and CMV can persist in the host and have potential to reactivate especially with weakened host cellular immunity. Superimposed CMV infection can lead to severe HBV reactivation. The pathogenesis of the co-infection of HBV and CMV remains poorly understood. Studies reported conflicting results regarding the inhibitory effect of CMV on HBV replication. There is an unmet need on the management of co-infection of HBV and CMV; research initiatives dedicated to understanding their interactions are urgently needed.
Collapse
Affiliation(s)
- Muzammil M Khan
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mukarram J Ali
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hira Hanif
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Muhammad H Maqsood
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Imama Ahmad
- Department of Medicine, North Shore Medical Center, Salem, MA, USA
| | - Javier E G Alvarez
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria-Andreea Catana
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daryl T Y Lau
- Department of Medicine, Division of Gastroenterology, Liver Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Corresponding author. Department of Medicine, Liver Research Center, 110 Francis Street, Suite 4A, Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Tel: +1 (617) 632-1070; Fax: (617) 632-1065;
| |
Collapse
|