51
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
52
|
Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X, Zhang Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021; 24:1757-1771. [PMID: 34663959 PMCID: PMC8639815 DOI: 10.1038/s41593-021-00938-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
The nucleus accumbens (NAc) plays an important role in regulating multiple behaviors, and its dysfunction has been linked to many neural disorders. However, the molecular, cellular and anatomic heterogeneity underlying its functional diversity remains incompletely understood. In this study, we generated a cell census of the mouse NAc using single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization, revealing a high level of cell heterogeneity in this brain region. Here we show that the transcriptional and spatial diversity of neuron subtypes underlie the NAc's anatomic and functional heterogeneity. These findings explain how the seemingly simple neuronal composition of the NAc achieves its highly heterogenous structure and diverse functions. Collectively, our study generates a spatially resolved cell taxonomy for understanding the structure and function of the NAc, which demonstrates the importance of combining molecular and spatial information in revealing the fundamental features of the nervous system.
Collapse
Affiliation(s)
- Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Timothy R Blosser
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics,, Harvard University, Cambridge, MA, USA
| | - Mohamed N Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Junjie Hao
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics,, Harvard University, Cambridge, MA, USA
| | - Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wenqiang Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Luis M Tuesta
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics,, Harvard University, Cambridge, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
53
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
54
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. Eur J Histochem 2021; 65. [PMID: 34643358 PMCID: PMC8524362 DOI: 10.4081/ejh.2021.3284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The striatum represents the major hub of the basal ganglia, receiving projections from the entire cerebral cortex and it is assumed to play a key role in a wide array of complex behavioral tasks. Despite being extensively investigated during the last decades, the topographical organization of the striatum is not well understood yet. Ongoing efforts in neuroscience are focused on analyzing striatal anatomy at different spatial scales, to understand how structure relates to function and how derangements of this organization are involved in various neuropsychiatric diseases. While being subdivided at the macroscale level into dorsal and ventral divisions, at a mesoscale level the striatum represents an anatomical continuum sharing the same cellular makeup. At the same time, it is now increasingly ascertained that different striatal compartments show subtle histochemical differences, and their neurons exhibit peculiar patterns of gene expression, supporting functional diversity across the whole basal ganglia circuitry. Such diversity is further supported by afferent connections which are heterogenous both anatomically, as they originate from distributed cortical areas and subcortical structures, and biochemically, as they involve a variety of neurotransmitters. Specifically, the cortico-striatal projection system is topographically organized delineating a functional organization which is maintained throughout the basal ganglia, subserving motor, cognitive and affective behavioral functions. While such functional heterogeneity has been firstly conceptualized as a tripartite organization, with sharply defined limbic, associative and sensorimotor territories within the striatum, it has been proposed that such territories are more likely to fade into one another, delineating a gradient-like organization along medio-lateral and ventro-dorsal axes. However, the molecular and cellular underpinnings of such organization are less understood, and their relations to behavior remains an open question, especially in humans. In this review we aimed at summarizing the available knowledge on striatal organization, especially focusing on how it links structure to function and its alterations in neuropsychiatric diseases. We examined studies conducted on different species, covering a wide array of different methodologies: from tract-tracing and immunohistochemistry to neuroimaging and transcriptomic experiments, aimed at bridging the gap between macroscopic and molecular levels.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno.
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| |
Collapse
|
55
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
56
|
Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021; 45:6369544. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal Ganglia (BG) are a set of subcortical nuclei that are involved in the control of a wide variety of motor, cognitive and affective behaviors. Although many behavioral abnormalities associated with BG dysfunction overlap with the clinical picture precipitated by the lack of sleep, the impact of sleep alterations on neuronal activity in BG is unknown. Using wildtype C57BI mice, we investigated the circadian and sleep-related homeostatic modulation of neuronal activity in the 3 functional subdivisions of the striatum (i.e. sensorimotor, associative and limbic striatum). We found no circadian modulation of activity in both ventral and dorso-medial striatum while the dorso-lateral striatum displayed a significant circadian rhythm with increased firing rates during the subjective dark, active phase. By combining neuronal activity recordings with electroencephalogram (EEG) recordings, we found a strong modulation of neuronal activity by the nature of vigilance states with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in all striatal subregions. Depriving animals of sleep for 6 hours induced significant, but heterogenous alterations in the neuronal activity across striatal subregions. Notably, these alterations lasted for up to 48 hours in the sensorimotor striatum and persisted even after the normalization of cortical EEG power densities. Our results show that vigilance and sleep states as well as their disturbances significantly affect neuronal activity within the striatum. We propose that these changes in neuronal activity underlie both the well-established links between sleep alterations and several disorders involving BG dysfunction as well as the maladaptive changes in behavior induced in healthy subjects following sleep loss.
Collapse
Affiliation(s)
- Karim Fifel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
57
|
Astrocyte-derived neurons provide excitatory input to the adult striatal circuitry. Proc Natl Acad Sci U S A 2021; 118:2104119118. [PMID: 34389674 DOI: 10.1073/pnas.2104119118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.
Collapse
|
58
|
Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Mol Psychiatry 2021; 26:3134-3151. [PMID: 33046833 PMCID: PMC8039060 DOI: 10.1038/s41380-020-00909-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence. We replicated this finding in an independent cohort and found similar results in the dorsal striatum from cocaine self-administering mice. Using epigenome editing and 3C assays, we demonstrated a causal relationship between methylation within the IRX2 gene body, CTCF protein binding, three-dimensional (3D) chromatin interaction, and gene expression. Together, these findings suggest that cocaine-related hypomethylation of IRX2 contributes to the development and maintenance of cocaine dependence through alterations in 3D chromatin structure in the caudate nucleus.
Collapse
|
59
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
60
|
Reduced Firing of Nucleus Accumbens Parvalbumin Interneurons Impairs Risk Avoidance in DISC1 Transgenic Mice. Neurosci Bull 2021; 37:1325-1338. [PMID: 34143365 PMCID: PMC8423984 DOI: 10.1007/s12264-021-00731-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-NTM) mice to investigate risk avoidance and found that these mice were impaired in risk avoidance on the elevated plus maze (EPM) and showed reduced social preference in a three-chamber social interaction test. Following EPM tests, c-Fos expression levels indicated that the nucleus accumbens (NAc) was associated with risk-avoidance behavior in DISC1-NTM mice. In addition, in vivo electrophysiological recordings following tamoxifen administration showed that the firing rates of fast-spiking neurons (FS) in the NAc were significantly lower in DISC1-NTM mice than in wild-type (WT) mice. In addition, in vitro patch clamp recording revealed that the frequency of action potentials stimulated by current injection was lower in parvalbumin (PV) neurons in the NAc of DISC1-NTM mice than in WT controls. The impairment of risk avoidance in DISC1-NTM mice was rescued using optogenetic tools that activated NAcPV neurons. Finally, inhibition of the activity of NAcPV neurons in PV-Cre mice mimicked the risk-avoidance impairment found in DISC1-NTM mice during tests on the elevated zero maze. Taken together, our findings confirm an impairment in risk avoidance in DISC1-NTM mice and suggest that reduced excitability of NAcPV neurons is responsible.
Collapse
|
61
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
62
|
Ren Y, Liu Y, Luo M. Gap Junctions Between Striatal D1 Neurons and Cholinergic Interneurons. Front Cell Neurosci 2021; 15:674399. [PMID: 34168539 PMCID: PMC8217616 DOI: 10.3389/fncel.2021.674399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
The striatum participates in numerous important behaviors. Its principal projection neurons use GABA and peptides as neurotransmitters and interact extensively with interneurons, including cholinergic interneurons (ChIs) that are tonically active. Dissecting the interactions between projection neurons and ChIs is important for uncovering the role and mechanisms of the striatal microcircuits. Here, by combining several optogenetic tools with cell type-specific electrophysiological recordings, we uncovered direct electrical coupling between D1-type projection neurons and ChIs, in addition to the chemical transmission between these two major cell types. Optogenetic stimulation or inhibition led to bilateral current exchanges between D1 neurons and ChIs, which can be abolished by gap junction blockers. We further confirmed the presence of gap junctions through paired electrophysiological recordings and dye microinjections. Finally, we found that activating D1 neurons promotes basal activity of ChIs via gap junctions. Collectively, these results reveal the coexistence of the chemical synapse and gap junctions between D1 neurons and ChIs, which contributes to maintaining the tonically active firing patterns of ChIs.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Beijing, China
| |
Collapse
|
63
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
64
|
Rallapalle V, King AC, Gray M. BACHD Mice Recapitulate the Striatal Parvalbuminergic Interneuron Loss Found in Huntington's Disease. Front Neuroanat 2021; 15:673177. [PMID: 34108866 PMCID: PMC8180558 DOI: 10.3389/fnana.2021.673177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Huntington’s disease (HD) is a dominantly inherited, adult-onset neurodegenerative disease characterized by motor, psychiatric, and cognitive abnormalities. Neurodegeneration is prominently observed in the striatum where GABAergic medium spiny neurons (MSN) are the most affected neuronal population. Interestingly, recent reports of pathological changes in HD patient striatal tissue have identified a significant reduction in the number of parvalbumin-expressing interneurons which becomes more robust in tissues of higher disease grade. Analysis of other interneuron populations, including somatostatin, calretinin, and cholinergic, did not reveal significant neurodegeneration. Electrophysiological experiments in BACHD mice have identified significant changes in the properties of parvalbumin and somatostatin expressing interneurons in the striatum. Furthermore, their interactions with MSNs are altered as the mHTT expressing mouse models age with increased input onto MSNs from striatal somatostatin and parvalbumin-expressing neurons. In order to determine whether BACHD mice recapitulate the alterations in striatal interneuron number as observed in HD patients, we analyzed the number of striatal parvalbumin, somatostatin, calretinin, and choline acetyltransferase positive cells in symptomatic 12–14 month-old mice by immunofluorescent labeling. We observed a significant decrease in the number of parvalbumin-expressing interneurons as well as a decrease in the area and perimeter of these cells. No significant changes were observed for somatostatin, calretinin, or cholinergic interneuron numbers while a significant decrease was observed for the area of cholinergic interneurons. Thus, the BACHD mice recapitulate the degenerative phenotype observed in the parvalbumin interneurons in HD patient striata without affecting the number of other interneuron populations in the striatum.
Collapse
Affiliation(s)
- Vyshnavi Rallapalle
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Clinical and Diagnostic Sciences, Undergraduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Annesha C King
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL, United States.,Graduate Biomedical Sciences, Neuroscience Theme, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
65
|
Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021; 12:2617. [PMID: 33976169 PMCID: PMC8113549 DOI: 10.1038/s41467-021-22918-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Disruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devin P Merullo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marissa Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
66
|
Deng Y, Wang H, Joni M, Sekhri R, Reiner A. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington's disease mice. J Comp Neurol 2021; 529:1327-1371. [PMID: 32869871 PMCID: PMC8049038 DOI: 10.1002/cne.25023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
We used behavioral testing and morphological methods to detail the progression of basal ganglia neuron type-specific pathology and the deficits stemming from them in male heterozygous Q175 mice, compared to age-matched WT males. A rotarod deficit was not present in Q175 mice until 18 months, but increased open field turn rate (reflecting hyperkinesia) and open field anxiety were evident at 6 months. No loss of striatal neurons was seen out to 18 months, but ENK+ and DARPP32+ striatal perikarya were fewer by 6 months, due to diminished expression, with further decline by 18 months. No reduction in SP+ striatal perikarya or striatal interneurons was seen in Q175 mice at 18 months, but cholinergic interneurons showed dendrite attenuation by 6 months. Despite reduced ENK expression in indirect pathway striatal perikarya, ENK-immunostained terminals in globus pallidus externus (GPe) were more abundant at 6 months and remained so out to 18 months. Similarly, SP-immunostained terminals from striatal direct pathway neurons were more abundant in globus pallidus internus and substantia nigra at 6 months and remained so at 18 months. FoxP2+ arkypallidal GPe neurons and subthalamic nucleus neurons were lost by 18 months but not prototypical PARV+ GPe neurons or dopaminergic nigral neurons. Our results show that striatal projection neuron abnormalities and behavioral abnormalities reflecting them develop between 2 and 6 months of age in Q175 male heterozygotes, indicating early effects of the HD mutation. The striatal pathologies resemble those in human HD, but are less severe at 18 months than even in premanifest HD.
Collapse
Affiliation(s)
- Yunping Deng
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hongbing Wang
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Marion Joni
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Radhika Sekhri
- Department of PathologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Anton Reiner
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
67
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
68
|
Ferdinand JM, Peters KZ, Yavas E, Young AMJ. Modulation of stimulated dopamine release in rat nucleus accumbens shell by GABA in vitro: Effect of sub-chronic phencyclidine pretreatment. J Neurosci Res 2021; 99:1885-1901. [PMID: 33848365 DOI: 10.1002/jnr.24843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023]
Abstract
Dopamine signaling in nucleus accumbens (NAc) is modulated by γ-aminobutyric acid (GABA), acting through GABA-A and GABA-B receptors: dysregulation of GABAergic control of dopamine function may be important in behavioral deficits in schizophrenia. We investigated the effect of GABA-A (muscimol) and GABA-B (baclofen) receptor agonists on electrically stimulated dopamine release. Furthermore, we explored whether drug-induced changes were disrupted by pretreatment with phencyclidine, which provides a well-validated model of schizophrenia. Using brain slices from female rats, fast-scan cyclic voltammetry was used to measure electrically stimulated dopamine release in NAc shell. Both muscimol and baclofen caused concentration-dependent attenuation of evoked dopamine release: neither effect was changed by dihydro-β-erythroidine, a nicotinic acetylcholine receptor antagonist, or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), precluding indirect mechanisms using these transmitter systems in the GABAergic actions. In slices taken from rats pretreated with phencyclidine, the attenuation of evoked dopamine release by baclofen was abolished, but the attenuation by muscimol was unaffected. Since phencyclidine pretreatment was followed by drug-free washout period of at least a week, the drug was not present during recording. Therefore, disruption of GABA-B modulation of dopamine is due to long-term functional changes resulting from the treatment, rather than transient changes due to the drug's presence at test. This enduring dysregulation of GABA-B modulation of accumbal dopamine release provides a plausible mechanism through which GABA dysfunction influences accumbal dopamine leading to behavioral changes seen in schizophrenia and may provide a route for novel therapeutic strategies to treat the condition.
Collapse
Affiliation(s)
| | - Kate Z Peters
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Ersin Yavas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
69
|
Assous M. Striatal cholinergic transmission. Focus on nicotinic receptors' influence in striatal circuits. Eur J Neurosci 2021; 53:2421-2442. [PMID: 33529401 PMCID: PMC8161166 DOI: 10.1111/ejn.15135] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
The critical role of acetylcholine (ACh) in the basal ganglia is evident from the effect of cholinergic agents in patients suffering from several related neurological disorders, such as Parkinson's disease, Tourette syndrome, or dystonia. The striatum possesses the highest density of ACh markers in the basal ganglia underlying the importance of ACh in this structure. Striatal cholinergic interneurons (CINs) are responsible for the bulk of striatal ACh, although extrinsic cholinergic afferents from brainstem structures may also play a role. CINs are tonically active, and synchronized pause in their activity occurs following the presentation of salient stimuli during behavioral conditioning. However, the synaptic mechanisms involved are not fully understood in this physiological response. ACh modulates striatal circuits by acting on muscarinic and nicotinic receptors existing in several combinations both presynaptically and postsynaptically. While the effects of ACh in the striatum through muscarinic receptors have received particular attention, nicotinic receptors function has been less studied. Here, after briefly reviewing relevant results regarding muscarinic receptors expression and function, I will focus on striatal nicotinic receptor expressed presynaptically on glutamatergic and dopaminergic afferents and postsynaptically on diverse striatal interneurons populations. I will also review recent evidence suggesting the involvement of different GABAergic sources in two distinct nicotinic-receptor-mediated striatal circuits: the disynaptic inhibition of striatal projection neurons and the recurrent inhibition among CINs. A better understanding of striatal nicotinic receptors expression and function may help to develop targeted pharmacological interventions to treat brain disorders such as Parkinson's disease, Tourette syndrome, dystonia, or nicotine addiction.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
70
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
71
|
Lee J, Yoon YB, Cho KIK, Seo S, Lee JS, Jeong JM, Kim E, Kim M, Lee TY, Kwon JS. In vivo gamma-aminobutyric acid-A/benzodiazepine receptor availability and genetic liability in asymptomatic individuals with high genetic loading of schizophrenia: A [11C]flumazenil positron emission tomography study. Hum Psychopharmacol 2021; 36:e2766. [PMID: 33184922 DOI: 10.1002/hup.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Whilst reduced signalling and gene expression related to gamma-aminobutyric acid (GABA) play a role in the presumed pathophysiology of schizophrenia, its origin is unclear. Studying asymptomatic individuals with high genetic liability to schizophrenia (AIs) would provide insights. Therefore, this study aimed to investigate the role of genetic liability in GABAergic dysfunction of schizophrenia by exploring in vivo GABA-A/benzodiazepine receptor (GABAR) availability in AIs. METHODS A total of 10 AIs with multiple relatives diagnosed as schizophrenia and 11 healthy controls underwent [11C]flumazenil positron emission tomography and neurocognitive function tests. RESULTS There was no significant difference in [11C]flumazenil availability based on the groups. GABAR availability in caudate nuclei had positive correlations with genetic liability of AIs. GABAR availability in caudate nuclei and verbal memory measures of AIs revealed positive correlations. Only the correlation between right caudate and short-term verbal memory survived multiple-comparison correction (p = 0.030). CONCLUSIONS This study, for the first time, reports correlations between the genetic liability of schizophrenia and GABAR availability. Correlations between [11C]flumazenil binding in caudate of individuals with high genetic liability to schizophrenia suggests that the GABAergic dysfunction may arise from shared genetic factors and also that it may be responsible for cognitive impairment of AIs.
Collapse
Affiliation(s)
- Junhee Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kang Ik Kevin Cho
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Boston, Massachusetts, USA
| | - Seongho Seo
- Department of Neuroscience, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
72
|
Abstract
Choosing good objects is a fundamental behavior for all animals, to which the basal ganglia (BG) contribute extensively. However, the object choice needs to be changed in different environments. The mechanism of object choice is based on the neuronal circuits originating from output neurons (MSNs) in the striatum. We found that the environment information is provided by fast-spiking interneurons (FSIs) connecting to the MSN circuit. More critically, the experimental reduction of the FSI-input to MSNs disabled the monkey to learn the environment-based object choice. This proved that the object choice controlled by the downstream BG circuit is modulated by the environmental context controlled by the internal circuits in the top of BG circuit. This is important for our flexible decision. Basal ganglia contribute to object-value learning, which is critical for survival. The underlying neuronal mechanism is the association of each object with its rewarding outcome. However, object values may change in different environments and we then need to choose different objects accordingly. The mechanism of this environment-based value learning is unknown. To address this question, we created an environment-based value task in which the value of each object was reversed depending on the two scene-environments (X and Y). After experiencing this task repeatedly, the monkeys became able to switch the choice of object when the scene-environment changed unexpectedly. When we blocked the inhibitory input from fast-spiking interneurons (FSIs) to medium spiny projection neurons (MSNs) in the striatum tail by locally injecting IEM-1460, the monkeys became unable to learn scene-selective object values. We then studied the mechanism of the FSI-MSN connection. Before and during this learning, FSIs responded to the scenes selectively, but were insensitive to object values. In contrast, MSNs became able to discriminate the objects (i.e., stronger response to good objects), but this occurred clearly in one of the two scenes (X or Y). This was caused by the scene-selective inhibition by FSI. As a whole, MSNs were divided into two groups that were sensitive to object values in scene X or in scene Y. These data indicate that the local network of striatum tail controls the learning of object values that are selective to the scene-environment. This mechanism may support our flexible switching behavior in various environments.
Collapse
|
73
|
Menniti FS, Chappie TA, Schmidt CJ. PDE10A Inhibitors-Clinical Failure or Window Into Antipsychotic Drug Action? Front Neurosci 2021; 14:600178. [PMID: 33551724 PMCID: PMC7855852 DOI: 10.3389/fnins.2020.600178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
PDE10A, a phosphodiesterase that inactivates both cAMP and cGMP, is a unique signaling molecule in being highly and nearly exclusively expressed in striatal medium spiny neurons. These neurons dynamically integrate cortical information with dopamine-signaled value to mediate action selection among available behavioral options. Medium spiny neurons are components of either the direct or indirect striatal output pathways. Selective activation of indirect pathway medium spiny neurons by dopamine D2 receptor antagonists is putatively a key element in the mechanism of their antipsychotic efficacy. While PDE10A is expressed in all medium spiny neurons, studies in rodents indicated that PDE10A inhibition has behavioral effects in several key assays that phenocopy dopamine D2 receptor inhibition. This finding gave rise to the hypothesis that PDE10A inhibition also preferentially activates indirect pathway medium spiny neurons, a hypothesis that is consistent with electrophysiological, neurochemical, and molecular effects of PDE10A inhibitors. These data underwrote industry-wide efforts to investigate and develop PDE10A inhibitors as novel antipsychotics. Disappointingly, PDE10A inhibitors from 3 companies failed to evidence antipsychotic activity in patients with schizophrenia to the same extent as standard-of-care D2 antagonists. Given the notable similarities between PDE10A inhibitors and D2 antagonists, gaining an understanding of why only the latter class is antipsychotic affords a unique window into the basis for this therapeutic efficacy. With this in mind, we review the data on PDE10A inhibition as a step toward back-translating the limited antipsychotic efficacy of PDE10A inhibitors, hopefully to inform new efforts to develop better therapeutics to treat psychosis and schizophrenia.
Collapse
Affiliation(s)
- Frank S Menniti
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Thomas A Chappie
- Internal Medicine Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, United States
| | - Christopher J Schmidt
- Pfizer Innovation and Research Lab Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States
| |
Collapse
|
74
|
Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry 2021; 26:234-246. [PMID: 32071384 PMCID: PMC7431371 DOI: 10.1038/s41380-020-0683-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The development of drug addiction is associated with functional adaptations within the reward circuitry, within which the nucleus accumbens (NAc) is anatomically positioned as an interface between motivational salience and behavioral output. The functional output of NAc is profoundly altered after exposure to drugs of abuse, and some of the functional changes continue to evolve during drug abstinence, contributing to numerous emotional and motivational alterations related drug taking, seeking, and relapse. As in most brain regions, the functional output of NAc is critically dependent on the dynamic interaction between excitation and inhibition. One of the most prominent sources of inhibition within the NAc arises from fast-spiking interneurons (FSIs). Each NAc FSI innervates hundreds of principal neurons, and orchestrates population activity through its powerful and sustained feedforward inhibition. While the role of NAc FSIs in the context of drug addiction remains poorly understood, emerging evidence suggests that FSIs and FSI-mediated local circuits are key targets for drugs of abuse to tilt the functional output of NAc toward a motivational state favoring drug seeking and relapse. In this review, we discuss recent findings and our conceptualization about NAc FSI-mediated regulation of motivated and cocaine-induced behaviors. We hope that the conceptual framework proposed in this review may provide a useful guidance for ongoing and future studies to determine how FSIs influence the function of NAc and related reward circuits, ultimately leading to addictive behaviors.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
75
|
Chuhma N. Functional Connectome Analysis of the Striatum with Optogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:417-428. [PMID: 33398830 DOI: 10.1007/978-981-15-8763-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural circuit function is determined not only by anatomical connections but also by the strength and nature of the connections, that is functional or physiological connectivity. To elucidate functional connectivity, selective stimulation of presynaptic terminals of an identified neuronal population is crucial. However, in the central nervous system, intermingled input fibers make selective electrical stimulation impossible. With optogenetics, this becomes possible, and enables the comprehensive study of functional synaptic connections between an identified population of neurons and defined postsynaptic targets to determine the functional connectome. By stimulating convergent synaptic inputs impinging on individual postsynaptic neurons, low frequency and small amplitude synaptic connections can be detected. Further, the optogenetic approach enables the measurement of cotransmission and its relative strength. Recently, optogenetic methods have been more widely used to study synaptic connectivity and revealed novel synaptic connections and revised connectivity of known projections. In this chapter, I focus on functional synaptic connectivity in the striatum, the main input structure of the basal ganglia, involved in the motivated behavior, cognition, and motor control, and its disruption in a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
76
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
77
|
Marche K, Apicella P. Activity of fast-spiking interneurons in the monkey striatum during reaching movements guided by external cues or by a free choice. Eur J Neurosci 2020; 53:1752-1768. [PMID: 33314343 DOI: 10.1111/ejn.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/14/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Parvalbumin-containing GABAergic interneurons in the striatum, electrophysiologically identified as fast-spiking interneurons (FSIs), exert inhibitory control over striatal output to drive appropriate behavior. While a number of studies have emphasized their importance in motor control, it is unknown how these putative interneurons adapt their functional properties to different modes of movement selection. Here, we tested whether FSIs are sensitive to externally versus internally selected movements by recording their activity while two male rhesus monkeys performed reaching movements to visual targets. Two variants were used: an external condition, in which movements were instructed via external cues, and an internal condition, in which movements were guided by an internal representation of the target location. These conditions allowed to contrast the FSI activity associated with either externally cued or internally driven movement selection. After extensive training, reaching performance was only marginally affected by the type of movement, albeit with some differences between the monkeys. Over two-thirds of the FSIs were modulated around movement onset, regardless of the condition, and consisting mostly of increased activity. We found that a subset of FSIs showed stronger activation related to the initiation of movements in the external condition than in the internal condition, suggesting a dependence on movement selection mode. Moreover, this difference in the strength of FSI activation was predominant in the motor striatum. These data indicate that changes in FSI activity carry information that is scaled by constraints on action selection reflecting the involvement of local striatal inhibitory circuits in adaptation of behavior according to task demands.
Collapse
Affiliation(s)
- Kévin Marche
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
78
|
Arasaratnam CJ, Singh-Bains MK, Waldvogel HJ, Faull RLM. Neuroimaging and neuropathology studies of X-linked dystonia parkinsonism. Neurobiol Dis 2020; 148:105186. [PMID: 33227492 DOI: 10.1016/j.nbd.2020.105186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
X-linked Dystonia Parkinsonism (XDP) is a recessive, genetically inherited neurodegenerative disorder endemic to Panay Island in the Philippines. Clinical symptoms include the initial appearance of dystonia, followed by parkinsonian traits after 10-15 years. The basal ganglia, particularly the striatum, is an area of focus in XDP neuropathology research, as the striatum shows marked atrophy that correlates with disease progression. Thus, XDP shares features of Parkinson's disease symptomatology, in addition to the genetic predisposition and presence of striatal atrophy resembling Huntington's disease. However, further research is required to reveal the detailed pathology and indicators of disease in the XDP brain. First, there are limited neuropathological studies that have investigated neuronal changes and neuroinflammation in the XDP brain. However, multiple neuroimaging studies on XDP patients provide clues to other affected brain regions. Furthermore, molecular pathological studies have elucidated that the main genetic cause of XDP is in the TAF-1 gene, but how this mutation relates to XDP neuropathology still remains to be fully investigated. Hence, we aim to provide an extensive overview of the current literature describing neuropathological changes within the XDP brain, and discuss future research avenues, which will provide a better understanding of XDP neuropathogenesis.
Collapse
Affiliation(s)
- Christine J Arasaratnam
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Malvindar K Singh-Bains
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
79
|
Malankhanova T, Suldina L, Grigor’eva E, Medvedev S, Minina J, Morozova K, Kiseleva E, Zakian S, Malakhova A. A Human Induced Pluripotent Stem Cell-Derived Isogenic Model of Huntington's Disease Based on Neuronal Cells Has Several Relevant Phenotypic Abnormalities. J Pers Med 2020; 10:jpm10040215. [PMID: 33182269 PMCID: PMC7712151 DOI: 10.3390/jpm10040215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder caused by a CAG triplet expansion in the first exon of the HTT gene. Here we report the introduction of an HD mutation into the genome of healthy human embryonic fibroblasts through CRISPR/Cas9-mediated homologous recombination. We verified the specificity of the created HTT-editing system and confirmed the absence of undesirable genomic modifications at off-target sites. We showed that both mutant and control isogenic induced pluripotent stem cells (iPSCs) derived by reprogramming of the fibroblast clones can be differentiated into striatal medium spiny neurons. We next demonstrated phenotypic abnormalities in the mutant iPSC-derived neural cells, including impaired neural rosette formation and increased sensitivity to growth factor withdrawal. Moreover, using electron microscopic analysis, we detected a series of ultrastructural defects in the mutant neurons, which did not contain huntingtin aggregates, suggesting that these defects appear early in HD development. Thus, our study describes creation of a new isogenic iPSC-based cell system that models HD and recapitulates HD-specific disturbances in the mutant cells, including some ultrastructural features implemented for the first time.
Collapse
|
80
|
Fisher SD, Ferguson LA, Bertran-Gonzalez J, Balleine BW. Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action. Curr Biol 2020; 30:4541-4546.e5. [PMID: 33007245 DOI: 10.1016/j.cub.2020.08.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023]
Abstract
In mammalian species, the capacity for goal-directed action relies on a process of cognitive-emotional integration, which melds the causal and incentive learning processes that link action-goal associations with the current value of the goal [1]. Recent evidence suggests that such integration depends on a cortical-limbic-striatal circuit centered on the posterior dorsomedial striatum (pDMS) [2]. Learning-related plasticity has been described at both classes of principal neuron in the pDMS, the direct (dSPNs) and indirect (iSPNs) pathway spiny projection neurons [3-5], and is thought to depend on inputs from prelimbic cortex (PL) [6] and the basolateral amygdala (BLA) [7]. Nevertheless, the relative contribution of these structures to the cellular changes associated with goal-directed learning has not been assessed, nor is it known whether any plasticity specific to the PL and BLA inputs to the pDMS is localized to dSPNs, iSPNs, or both cell types. Here, by combining instrumental conditioning with circuit-specific manipulations and ex vivo optogenetics in mice, we discovered that the PL and not the BLA input to pDMS is pivotal for goal-directed learning and that plasticity in the PL-pDMS pathway was bilateral and specific to dSPNs in the pDMS. Subsequent experiments revealed the BLA is critically but indirectly involved in striatal plasticity via its input to the PL; inactivation of the BLA projection to PL blocked goal-directed learning and prevented learning-related plasticity at dSPNs in pDMS.
Collapse
Affiliation(s)
- Simon D Fisher
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lachlan A Ferguson
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jesus Bertran-Gonzalez
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Bernard W Balleine
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
81
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
82
|
Intrinsic electrophysiological properties predict variability in morphology and connectivity among striatal Parvalbumin-expressing Pthlh-cells. Sci Rep 2020; 10:15680. [PMID: 32973206 PMCID: PMC7518419 DOI: 10.1038/s41598-020-72588-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Determining the cellular content of the nervous system in terms of cell types and the rules of their connectivity represents a fundamental challenge to the neurosciences. The recent advent of high-throughput techniques, such as single-cell RNA-sequencing has allowed for greater resolution in the identification of cell types and/or states. Although most of the current neuronal classification schemes comprise discrete clusters, several recent studies have suggested that, perhaps especially, within the striatum, neuronal populations exist in continua, with regards to both their molecular and electrophysiological properties. Whether these continua are stable properties, established during development, or if they reflect acute differences in activity-dependent regulation of critical genes is currently unknown. We set out to determine whether gradient-like molecular differences in the recently described Pthlh-expressing inhibitory interneuron population, which contains the Pvalb-expressing cells, correlate with differences in morphological and connectivity properties. We show that morphology and long-range inputs correlate with a spatially organized molecular and electrophysiological gradient of Pthlh-interneurons, suggesting that the processing of different types of information (by distinct anatomical striatal regions) has different computational requirements.
Collapse
|
83
|
Gupta RK, Kuznicki J. Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing. Cells 2020; 9:E1751. [PMID: 32707839 PMCID: PMC7463515 DOI: 10.3390/cells9081751] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
The present review discusses recent progress in single-cell RNA sequencing (scRNA-seq), which can describe cellular heterogeneity in various organs, bodily fluids, and pathologies (e.g., cancer and Alzheimer's disease). We outline scRNA-seq techniques that are suitable for investigating cellular heterogeneity that is present in cell populations with very high resolution of the transcriptomic landscape. We summarize scRNA-seq findings and applications of this technology to identify cell types, activity, and other features that are important for the function of different bodily organs. We discuss future directions for scRNA-seq techniques that can link gene expression, protein expression, cellular function, and their roles in pathology. We speculate on how the field could develop beyond its present limitations (e.g., performing scRNA-seq in situ and in vivo). Finally, we discuss the integration of machine learning and artificial intelligence with cutting-edge scRNA-seq technology, which could provide a strong basis for designing precision medicine and targeted therapy in the future.
Collapse
Affiliation(s)
- Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw Poland;
- Postgraduate School of Molecular Medicine, Warsaw Medical University, 61 Żwirki i Wigury St., 02-091 Warsaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw Poland;
| |
Collapse
|
84
|
Morales JC, Higgs MH, Song SC, Wilson CJ. Broadband Entrainment of Striatal Low-Threshold Spike Interneurons. Front Neural Circuits 2020; 14:36. [PMID: 32655378 PMCID: PMC7326000 DOI: 10.3389/fncir.2020.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Striatal interneurons and spiny projection (SP) neurons are differentially tuned to spectral components of their input. Previous studies showed that spike responses of somatostatin/NPY-expressing low threshold spike (LTS) interneurons have broad frequency tuning, setting these cells apart from other striatal GABAergic interneurons and SP neurons. We investigated the mechanism of LTS interneuron spiking resonance and its relationship to non-spiking membrane impedance resonance, finding that abolition of impedance resonance did not alter spiking resonance. Because LTS interneurons are pacemakers whose rhythmic firing is perturbed by synaptic input, we tested the hypothesis that their spiking resonance arises from their phase resetting properties. Phase resetting curves (PRCs) were measured in LTS interneurons and SP neurons and used to make phase-oscillator models of both cell types. The models reproduced the broad tuning of LTS interneurons, and the differences from SP neurons. The spectral components of the PRC predicted each cell's sensitivity to corresponding input frequencies. LTS interneuron PRCs contain larger high-frequency components than SP neuron PRCs, providing enhanced responses to input frequencies above the cells' average firing rates. Thus, LTS cells can be entrained by input oscillations to which SP neurons are less responsive. These findings suggest that feedforward inhibition by LTS interneurons may regulate SP neurons' entrainment by oscillatory afferents.
Collapse
Affiliation(s)
- Juan C Morales
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Soomin C Song
- Skirball Institute of Biomolecular Medicine and Neurosciences Institute, New York University School of Medicine, New York, NY, United States
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
85
|
DeForest BA, Bohorquez J, Perez MA. Vibration attenuates spasm-like activity in humans with spinal cord injury. J Physiol 2020; 598:2703-2717. [PMID: 32298483 DOI: 10.1113/jp279478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Cutaneous reflexes were tested to examine the neuronal mechanisms contributing to muscle spasms in humans with chronic spinal cord injury (SCI). Specifically, we tested the effect of Achilles and tibialis anterior tendon vibration on the early and late components of the cutaneous reflex and reciprocal Ia inhibition in the soleus and tibialis anterior muscles in humans with chronic SCI. We found that tendon vibration reduced the amplitude of later but not earlier cutaneous reflex in the antagonist but not in the agonist muscle relative to the location of the vibration. In addition, reciprocal Ia inhibition between antagonist ankle muscles increased with tendon vibration and participants with a larger suppression of the later component of the cutaneous reflex had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration attenuates late cutaneous spasm-like reflex activity, likely via reciprocal inhibitory mechanisms, and may represent a method, when properly targeted, for controlling spasms in humans with SCI. ABSTRACT The neuronal mechanisms contributing to the generation of involuntary muscle contractions (spasms) in humans with spinal cord injury (SCI) remain poorly understood. To address this question, we examined the effect of Achilles and tibialis anterior tendon vibration at 20, 40, 80 and 120 Hz on the amplitude of the long-polysynaptic (LPR, from reflex onset to 500 ms) and long-lasting (LLR, from 500 ms to reflex offset) cutaneous reflex evoked by medial plantar nerve stimulation in the soleus and tibialis anterior, and reciprocal Ia inhibition between these muscles, in 25 individuals with chronic SCI. We found that Achilles tendon vibration at 40 and 80 Hz, but not other frequencies, reduced the amplitude of the LLR in the tibialis anterior, but not the soleus muscle, without affecting the amplitude of the LPR. Vibratory effects were stronger at 80 than 40 Hz. Similar results were found in the soleus muscle when the tibialis anterior tendon was vibrated. Notably, tendon vibration at 80 Hz increased reciprocal Ia inhibition between antagonistic ankle muscles and vibratory-induced increases in reciprocal Ia inhibition were correlated with decreases in the LLR, suggesting that participants with a larger suppression of later cutaneous reflex activity had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration suppresses late spasm-like activity in antagonist but not agonist muscles, likely via reciprocal inhibitory mechanisms, in humans with chronic SCI. We argue that targeted vibration of antagonistic tendons might help to control spasms after SCI.
Collapse
Affiliation(s)
- Bradley A DeForest
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33124
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| |
Collapse
|
86
|
Opposing Ventral Striatal Medium Spiny Neuron Activities Shaped by Striatal Parvalbumin-Expressing Interneurons during Goal-Directed Behaviors. Cell Rep 2020; 31:107829. [DOI: 10.1016/j.celrep.2020.107829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022] Open
|
87
|
Gestational alcohol exposure disrupts cognitive function and striatal circuits in adult offspring. Nat Commun 2020; 11:2555. [PMID: 32444624 PMCID: PMC7244532 DOI: 10.1038/s41467-020-16385-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal alcohol exposure (FAE) is the leading preventable developmental cause of cognitive dysfunction. Even in the absence of binge drinking, alcohol consumption during pregnancy can leave offspring deficient. However, the mechanisms underlying these deficiencies are unknown. Using a mouse model of gestational ethanol exposure (GEE), we show increased instrumental lever-pressing and disruption of efficient habitual actions in adults, indicative of disrupted cognitive function. In vivo electrophysiology reveals disrupted action encoding in dorsolateral striatum (DLS) associated with altered habit learning. GEE mice exhibit decreased GABAergic transmission onto DLS projection neurons, including inputs from parvalbumin interneurons, and increased endocannabinoid tone. Chemogenetic activation of DLS parvalbumin interneurons reduces the elevated lever pressing of GEE mice. Pharmacologically increasing endocannabinoid tone mimics GEE effects on cognition and synaptic transmission. These findings show GEE induces long-lasting deficits in cognitive function that may contribute to human FAE, and identify potential mechanisms for future therapeutic targeting. Alcohol is the leading cause of preventable birth defects in the US, collectively referred to as Fetal Alcohol Spectrum Disorder. Here, the authors show that fetal alcohol exposure induces lasting neurophysiological changes in dorsal striatum that contribute to less efficient decision making.
Collapse
|
88
|
Hjorth JJJ, Kozlov A, Carannante I, Frost Nylén J, Lindroos R, Johansson Y, Tokarska A, Dorst MC, Suryanarayana SM, Silberberg G, Hellgren Kotaleski J, Grillner S. The microcircuits of striatum in silico. Proc Natl Acad Sci U S A 2020; 117:9554-9565. [PMID: 32321828 PMCID: PMC7197017 DOI: 10.1073/pnas.2000671117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, soma-dendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.
Collapse
Affiliation(s)
- J J Johannes Hjorth
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Alexander Kozlov
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Ilaria Carannante
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | | | - Robert Lindroos
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Yvonne Johansson
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | | | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engeneering and Computer Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden;
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm
| |
Collapse
|
89
|
Ponzi A, Barton SJ, Bunner KD, Rangel-Barajas C, Zhang ES, Miller BR, Rebec GV, Kozloski J. Striatal network modeling in Huntington's Disease. PLoS Comput Biol 2020; 16:e1007648. [PMID: 32302302 PMCID: PMC7197869 DOI: 10.1371/journal.pcbi.1007648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/04/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Medium spiny neurons (MSNs) comprise over 90% of cells in the striatum. In vivo MSNs display coherent burst firing cell assembly activity patterns, even though isolated MSNs do not burst fire intrinsically. This activity is important for the learning and execution of action sequences and is characteristically dysregulated in Huntington's Disease (HD). However, how dysregulation is caused by the various neural pathologies affecting MSNs in HD is unknown. Previous modeling work using simple cell models has shown that cell assembly activity patterns can emerge as a result of MSN inhibitory network interactions. Here, by directly estimating MSN network model parameters from single unit spiking data, we show that a network composed of much more physiologically detailed MSNs provides an excellent quantitative fit to wild type (WT) mouse spiking data, but only when network parameters are appropriate for the striatum. We find the WT MSN network is situated in a regime close to a transition from stable to strongly fluctuating network dynamics. This regime facilitates the generation of low-dimensional slowly varying coherent activity patterns and confers high sensitivity to variations in cortical driving. By re-estimating the model on HD spiking data we discover network parameter modifications are consistent across three very different types of HD mutant mouse models (YAC128, Q175, R6/2). In striking agreement with the known pathophysiology we find feedforward excitatory drive is reduced in HD compared to WT mice, while recurrent inhibition also shows phenotype dependency. We show that these modifications shift the HD MSN network to a sub-optimal regime where higher dimensional incoherent rapidly fluctuating activity predominates. Our results provide insight into a diverse range of experimental findings in HD, including cognitive and motor symptoms, and may suggest new avenues for treatment.
Collapse
Affiliation(s)
- Adam Ponzi
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - Scott J. Barton
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Kendra D. Bunner
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Emily S. Zhang
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Benjamin R. Miller
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
90
|
Rubi L, Fritschy JM. Increased GABAergic transmission in neuropeptide Y-expressing neurons in the dopamine-depleted murine striatum. J Neurophysiol 2020; 123:1496-1503. [PMID: 32159408 DOI: 10.1152/jn.00059.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As the main input nucleus of the basal ganglia, the striatum plays a central role in planning, control, and execution of movement and motor skill learning. More than 90% of striatal neurons, so-called medium spiny neurons (MSN), are GABAergic projection neurons, innervating primarily the substantia nigra pars reticulata or the globus pallidus internus. The remaining neurons are GABAergic and cholinergic interneurons, synchronizing and controlling striatal output by reciprocal connections with MSN. Besides prominent local cholinergic influence, striatal function is globally regulated by dopamine (DA) from the nigrostriatal pathway. Little is known about whether DA depletion, as occurs in Parkinson's disease, affects the activity of striatal interneurons. Here we focused on neuropeptide Y (NPY)-expressing interneurons, which are among the major subgroups of GABAergic interneurons in the striatum. We investigated the effects of striatal DA depletion on GABAergic transmission in NPY interneurons by electrophysiologically recording GABAergic spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs) in identified NPY interneurons in slices from 6-hydroxydopamine (6-OHDA)- and vehicle-injected transgenic NPY-humanized Renilla green fluorescent protein (hrGFP) mice with the whole cell patch-clamp technique. We report a significant increase in sIPSC and mIPSC frequency as well as the occurrence of giant synaptic and burst sIPSCs in the 6-OHDA group, suggesting changes in GABAergic circuit activity and synaptic transmission. IPSC kinetics remained unchanged, pointing to mainly presynaptic changes in GABAergic transmission. These results show that chronic DA depletion following 6-OHDA injection causes activity-dependent and -independent increase of synaptic GABAergic inhibition onto striatal NPY interneurons, confirming their involvement in the functional impairments of the DA-depleted striatum.NEW & NOTEWORTHY Neuropeptide Y (NPY) interneurons regulate the function of striatal projection neurons and are upregulated upon dopamine depletion in the striatum. Here we investigated how dopamine depletion affects NPY circuits and show electrophysiologically that it leads to the occurrence of giant synaptic and burst GABAergic spontaneous inhibitory postsynaptic currents (IPSCs) and to an activity-independent increase in GABAergic miniature IPSC frequency in NPY neurons. We suggest that degeneration of dopaminergic terminals in the striatum causes functional changes in striatal GABAergic function.
Collapse
Affiliation(s)
- Lena Rubi
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Jean-Marc Fritschy
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
91
|
Decreased density of cholinergic interneurons in striatal territories in Williams syndrome. Brain Struct Funct 2020; 225:1019-1032. [PMID: 32189114 DOI: 10.1007/s00429-020-02055-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increased social approach behavior in WS may represent a unique inability to inhibit responses to specific social stimuli, which is likely associated with abnormalities of frontostriatal circuitry. The striatum is characterized by a diversity of interneuron subtypes, including inhibitory parvalbumin-positive interneurons (PV+) and excitatory cholinergic interneurons (Ch+). Animal model research has identified an important role for these specialized cells in regulating social approach behavior. Previous research in humans identified a depletion of interneuron subtypes associated with neuropsychiatric disorders. Here, we examined the density of PV+ and Ch+ interneurons in the striatum of 13 WS and neurotypical (NT) subjects. We found a significant reduction in the density of Ch+ interneurons in the medial caudate nucleus and nucleus accumbens, important regions receiving cortical afferents from the orbitofrontal and ventromedial prefrontal cortex, and circuitry involved in language and reward systems. No significant difference in the distribution of PV+ interneurons was found. The pattern of decreased Ch+ interneuron densities in WS differs from patterns of interneuron depletion found in other disorders.
Collapse
|
92
|
Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020; 167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor. This review characterizes our current understanding of the role of SST and SST-expressing cells in general in modulating several behaviors intrinsically linked to substance abuse and affective disorders, specifically: anxiety and fear; stress and depression; feeding and drinking; and circadian rhythms. We further summarize evidence of a direct role for the SST system, and specifically somatostatin receptors 2 and 4, in substance abuse disorders. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
93
|
Wu CS, Jew CP, Sun H, Ballester Rosado CJ, Lu HC. mGlu5 in GABAergic neurons modulates spontaneous and psychostimulant-induced locomotor activity. Psychopharmacology (Berl) 2020; 237:345-361. [PMID: 31646346 PMCID: PMC7024012 DOI: 10.1007/s00213-019-05367-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE A role of group I metabotropic glutamate receptor 5 (mGlu5) in regulating spontaneous locomotion and psychostimulant-induced hyperactivity has been proposed. OBJECTIVES This study aims to determine if mGlu5 in GABAergic neurons regulates spontaneous or psychostimulant-induced locomotion. METHODS We generated mice specifically lacking mGlu5 in forebrain GABAergic neuron by crossing DLX-Cre mice with mGlu5flox/flox mice to generate DLX-mGlu5 KO mice. The locomotion of adult mice was examined in the open-field assay (OFA) and home cage setting. The effects of the mGlu5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP), cocaine, and methylphenidate on acute motor behaviors in DLX-mGlu5 KO and littermate control mice were assessed in OFA. Striatal synaptic plasticity of these mice was examined with field potential electrophysiological recordings. RESULTS Deleting mGlu5 from forebrain GABAergic neurons results in failure to induce long-term depression (LTD) in the dorsal striatum and absence of habituated locomotion in both novel and familiar settings. In a familiar environment (home cage), DLX-mGlu5 KO mice were hyperactive. In the OFA, DLX-mGlu5 KO mice exhibited initial hypo-activity, and then gradually increased their locomotion with time, resulting in no habituation response. DLX-mGlu5 KO mice exhibited almost no locomotor response to MPEP (40 mg/kg), while the same dose elicited hyperlocomotion in control mice. The DLX-mGlu5 KO mice also showed reduced hyperactivity response to cocaine, while they retained normal hyperactivity response to methylphenidate, albeit with delayed onset. CONCLUSION mGlu5 in forebrain GABAergic neurons is critical to trigger habituation upon the initiation of locomotion as well as to mediate MPEP-induced hyperlocomotion and modulate psychostimulant-induced hyperactivity.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, 123 Cater-Mattil, 2253 TAMU, College Station, TX, 77843, USA.
| | - Christopher P Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
| | - Carlos J Ballester Rosado
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
94
|
Muñoz-Manchado AB, Bengtsson Gonzales C, Zeisel A, Munguba H, Bekkouche B, Skene NG, Lönnerberg P, Ryge J, Harris KD, Linnarsson S, Hjerling-Leffler J. Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. Cell Rep 2020; 24:2179-2190.e7. [PMID: 30134177 PMCID: PMC6117871 DOI: 10.1016/j.celrep.2018.07.053] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 11/02/2022] Open
Abstract
Striatal locally projecting neurons, or interneurons, act on nearby circuits and shape functional output to the rest of the basal ganglia. We performed single-cell RNA sequencing of striatal cells enriching for interneurons. We find seven discrete interneuron types, six of which are GABAergic. In addition to providing specific markers for the populations previously described, including those expressing Sst/Npy, Th, Npy without Sst, and Chat, we identify two small populations of cells expressing Cck with or without Vip. Surprisingly, the Pvalb-expressing cells do not constitute a discrete cluster but rather are part of a larger group of cells expressing Pthlh with a spatial gradient of Pvalb expression. Using PatchSeq, we show that Pthlh cells exhibit a continuum of electrophysiological properties correlated with expression of Pvalb. Furthermore, we find significant molecular differences that correlate with differences in electrophysiological properties between Pvalb-expressing cells of the striatum and those of the cortex.
Collapse
Affiliation(s)
- Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carolina Bengtsson Gonzales
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Amit Zeisel
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bo Bekkouche
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nathan G Skene
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter Lönnerberg
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jesper Ryge
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Kenneth D Harris
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UCL Department of Neuroscience, Physiology and Pharmacology, 21 University Street, London WC1E 6DE, UK
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
95
|
Duhne M, Lara‐González E, Laville A, Padilla‐Orozco M, Ávila‐Cascajares F, Arias‐García M, Galarraga E, Bargas J. Activation of parvalbumin‐expressing neurons reconfigures neuronal ensembles in murine striatal microcircuits. Eur J Neurosci 2020; 53:2149-2164. [DOI: 10.1111/ejn.14670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Mariana Duhne
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Esther Lara‐González
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Antonio Laville
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Montserrat Padilla‐Orozco
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Fatima Ávila‐Cascajares
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Mario Arias‐García
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Elvira Galarraga
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - José Bargas
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| |
Collapse
|
96
|
Lee K, Masmanidis SC. Aberrant features of in vivo striatal dynamics in Parkinson's disease. J Neurosci Res 2019; 97:1678-1688. [PMID: 31502290 PMCID: PMC6801089 DOI: 10.1002/jnr.24519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
The striatum plays an important role in learning, selecting, and executing actions. As a major input hub of the basal ganglia, it receives and processes a diverse array of signals related to sensory, motor, and cognitive information. Aberrant neural activity in this area is implicated in a wide variety of neurological and psychiatric disorders. It is therefore important to understand the hallmarks of disrupted striatal signal processing. This review surveys literature examining how in vivo striatal microcircuit dynamics are impacted in animal models of one of the most widely studied movement disorders, Parkinson's disease. The review identifies four major features of aberrant striatal dynamics: altered relative levels of direct and indirect pathway activity, impaired information processing by projection neurons, altered information processing by interneurons, and increased synchrony.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| | - Sotiris C. Masmanidis
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| |
Collapse
|
97
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
98
|
Benthall KN, Ong SL, Bateup HS. Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1. Cell Rep 2019; 23:3197-3208. [PMID: 29898392 PMCID: PMC6089242 DOI: 10.1016/j.celrep.2018.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023] Open
Abstract
mTORC1 is a central signaling hub that integrates intra- and extracellular signals to regulate a variety of cellular metabolic processes. Mutations in regulators of mTORC1 lead to neurodevelopmental disorders associated with autism, which is characterized by repetitive, inflexible behaviors. These behaviors may result from alterations in striatal circuits that control motor learning and habit formation. However, the consequences of mTORC1 dysregulation on striatal neuron function are largely unknown. To investigate this, we deleted the mTORC1 negative regulator Tsc1 from identified striatonigral and striatopallidal neurons and examined how cell-autonomous upregulation of mTORC1 activity affects their morphology and physiology. We find that loss of Tsc1 increases the excitability of striatonigral, but not striatopallidal, neurons and selectively enhances corticostriatal synaptic transmission. These findings highlight the critical role of mTORC1 in regulating striatal activity in a cell type- and input-specific manner, with implications for striatonigral pathway dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- Katelyn N Benthall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stacie L Ong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
99
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
100
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|