51
|
Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci 2016; 19:647-655. [PMID: 29323671 PMCID: PMC4896837 DOI: 10.1038/nn.4276] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities.
Collapse
Affiliation(s)
- Boaz Barak
- McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
- Department of Brain &Cognitive Sciences, MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
- Department of Brain &Cognitive Sciences, MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
52
|
Sinha S, McGovern RA, Sheth SA. Deep brain stimulation for severe autism: from pathophysiology to procedure. Neurosurg Focus 2016; 38:E3. [PMID: 26030703 DOI: 10.3171/2015.3.focus1548] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.
Collapse
Affiliation(s)
- Saurabh Sinha
- 1Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Robert A McGovern
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
53
|
Rothwell PE. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders? Front Neurosci 2016; 10:20. [PMID: 26903789 PMCID: PMC4742554 DOI: 10.3389/fnins.2016.00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/15/2016] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
54
|
Park HR, Lee JM, Moon HE, Lee DS, Kim BN, Kim J, Kim DG, Paek SH. A Short Review on the Current Understanding of Autism Spectrum Disorders. Exp Neurobiol 2016; 25:1-13. [PMID: 26924928 PMCID: PMC4766109 DOI: 10.5607/en.2016.25.1.1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by a deficit in social behaviors and nonverbal interactions such as reduced eye contact, facial expression, and body gestures in the first 3 years of life. It is not a single disorder, and it is broadly considered to be a multi-factorial disorder resulting from genetic and non-genetic risk factors and their interaction. Genetic studies of ASD have identified mutations that interfere with typical neurodevelopment in utero through childhood. These complexes of genes have been involved in synaptogenesis and axon motility. Recent developments in neuroimaging studies have provided many important insights into the pathological changes that occur in the brain of patients with ASD in vivo. Especially, the role of amygdala, a major component of the limbic system and the affective loop of the cortico-striatothalamo-cortical circuit, in cognition and ASD has been proved in numerous neuropathological and neuroimaging studies. Besides the amygdala, the nucleus accumbens is also considered as the key structure which is related with the social reward response in ASD. Although educational and behavioral treatments have been the mainstay of the management of ASD, pharmacological and interventional treatments have also shown some benefit in subjects with ASD. Also, there have been reports about few patients who experienced improvement after deep brain stimulation, one of the interventional treatments. The key architecture of ASD development which could be a target for treatment is still an uncharted territory. Further work is needed to broaden the horizons on the understanding of ASD.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
55
|
Widge AS, Dougherty DD. Deep Brain Stimulation for Treatment-Refractory Mood and Obsessive-Compulsive Disorders. Curr Behav Neurosci Rep 2015. [DOI: 10.1007/s40473-015-0049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
56
|
Rutishauser U, Mamelak AN, Adolphs R. The primate amygdala in social perception - insights from electrophysiological recordings and stimulation. Trends Neurosci 2015; 38:295-306. [PMID: 25847686 DOI: 10.1016/j.tins.2015.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
Abstract
The role of the amygdala in emotion and social perception has been intensively investigated primarily through studies using functional magnetic resonance imaging (fMRI). Recently, this topic has been examined using single-unit recordings in both humans and monkeys, with a focus on face processing. The findings provide novel insights, including several surprises: amygdala neurons have very long response latencies, show highly nonlinear responses to whole faces, and can be exquisitely selective for very specific parts of faces such as the eyes. In humans, the responses of amygdala neurons correlate with internal states evoked by faces, rather than with their objective features. Current and future studies extend the investigations to psychiatric illnesses such as autism, in which atypical face processing is a hallmark of social dysfunction.
Collapse
Affiliation(s)
- Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
57
|
Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, Janasik SP, Segu ZM, Khanna R, Goswami C, Zhu W, Park SJ, Li L, Mechref YS, Clapp DW, Shekhar A. Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci 2014; 17:1583-90. [PMID: 25242307 PMCID: PMC4213300 DOI: 10.1038/nn.3822] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022]
Abstract
Children with neurofibromatosis type 1 (NF1) are increasingly recognized as having a high prevalence of social difficulties and autism spectrum disorders (ASDs). We demonstrated a selective social learning deficit in mice with deletion of a single Nf1 allele (Nf1(+/-)), along with greater activation of the mitogen-activated protein kinase pathway in neurons from the amygdala and frontal cortex, structures that are relevant to social behaviors. The Nf1(+/-) mice showed aberrant amygdala glutamate and GABA neurotransmission, deficits in long-term potentiation and specific disruptions in the expression of two proteins that are associated with glutamate and GABA neurotransmission: a disintegrin and metalloprotease domain 22 (Adam22) and heat shock protein 70 (Hsp70), respectively. All of these amygdala disruptions were normalized by the additional deletion of the p21 protein-activated kinase (Pak1) gene. We also rescued the social behavior deficits in Nf1(+/-) mice with pharmacological blockade of Pak1 directly in the amygdala. These findings provide insights and therapeutic targets for patients with NF1 and ASDs.
Collapse
Affiliation(s)
- Andrei I. Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Philip L. Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John P. Spence
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN 46202
| | - David Arendt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lauren M. Federici
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cristian Bernabe
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Steven P. Janasik
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Zaneer M. Segu
- Department of Chemistry, METACyt Biochemical Analysis Center, Indiana University, Bloomington, IN 47405
| | - Rajesh Khanna
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Chirayu Goswami
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Weiguo Zhu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Su-Jung Park
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yehia S. Mechref
- Department of Chemistry, METACyt Biochemical Analysis Center, Indiana University, Bloomington, IN 47405
| | - D. Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
- Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
58
|
Williams NR, Taylor JJ, Lamb K, Hanlon CA, Short EB, George MS. Role of functional imaging in the development and refinement of invasive neuromodulation for psychiatric disorders. World J Radiol 2014; 6:756-778. [PMID: 25349661 PMCID: PMC4209423 DOI: 10.4329/wjr.v6.i10.756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/17/2014] [Accepted: 08/31/2014] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) is emerging as a powerful tool for the alleviation of targeted symptoms in treatment-resistant neuropsychiatric disorders. Despite the expanding use of neuropsychiatric DBS, the mechanisms responsible for its effects are only starting to be elucidated. Several modalities such as quantitative electroencephalography as well a intraoperative recordings have been utilized to attempt to understand the underpinnings of this new treatment modality, but functional imaging appears to offer several unique advantages. Functional imaging techniques like positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging have been used to examine the effects of focal DBS on activity in a distributed neural network. These investigations are critical for advancing the field of invasive neuromodulation in a safe and effective manner, particularly in terms of defining the neuroanatomical targets and refining the stimulation protocols. The purpose of this review is to summarize the current functional neuroimaging findings from neuropsychiatric DBS implantation for three disorders: treatment-resistant depression, obsessive-compulsive disorder, and Tourette syndrome. All of the major targets will be discussed (Nucleus accumbens, anterior limb of internal capsule, subcallosal cingulate, Subthalamic nucleus, Centromedial nucleus of the thalamus-Parafasicular complex, frontal pole, and dorsolateral prefrontal cortex). We will also address some apparent inconsistencies within this literature, and suggest potential future directions for this promising area.
Collapse
|
59
|
Koek RJ, Langevin JP, Krahl SE, Kosoyan HJ, Schwartz HN, Chen JWY, Melrose R, Mandelkern MJ, Sultzer D. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials 2014; 15:356. [PMID: 25208824 PMCID: PMC4168122 DOI: 10.1186/1745-6215-15-356] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. METHODS/DESIGN We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. DISCUSSION While the rationale for studying DBS for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD. TRIAL REGISTRATION PCC121657, 19 March 2014.
Collapse
Affiliation(s)
- Ralph J Koek
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />16111 Plummer St. (116A-11), North Hills, CA 91343 USA
| | - Jean-Philippe Langevin
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurosurgery Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, C 90073 USA
| | - Scott E Krahl
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Hovsep J Kosoyan
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Holly N Schwartz
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - James WY Chen
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Rebecca Melrose
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Brain, Behavior, and Aging Research Center, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Mark J Mandelkern
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Imaging Department, Radiology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />Physics Department, UC Irvine, Irvine, CA 92697 USA
| | - David Sultzer
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
60
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
61
|
Williams NR, Okun MS. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 2013; 123:4546-56. [PMID: 24177464 DOI: 10.1172/jci68341] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation.
Collapse
|
62
|
Hariz M, Blomstedt P, Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. Mov Disord 2013; 28:1784-92. [PMID: 24123327 DOI: 10.1002/mds.25665] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/27/2013] [Accepted: 08/09/2013] [Indexed: 01/15/2023] Open
Abstract
In the last quarter of a century, DBS has become an established neurosurgical treatment for Parkinson's disease (PD), dystonia, and tremors. Improved understanding of brain circuitries and their involvement in various neurological and psychiatric illnesses, coupled with the safety of DBS and its exquisite role as a tool for ethical study of the human brain, have unlocked new opportunities for this technology, both for future therapies and in research. Serendipitous discoveries and advances in structural and functional imaging are providing abundant "new" brain targets for an ever-increasing number of pathologies, leading to investigations of DBS in diverse neurological, psychiatric, behavioral, and cognitive conditions. Trials and "proof of concept" studies of DBS are underway in pain, epilepsy, tinnitus, OCD, depression, and Gilles de la Tourette syndrome, as well as in eating disorders, addiction, cognitive decline, consciousness, and autonomic states. In parallel, ongoing technological development will provide pulse generators with longer battery longevity, segmental electrode designs allowing a current steering, and the possibility to deliver "on-demand" stimulation based on closed-loop concepts. The future of brain stimulation is certainly promising, especially for movement disorders-that will remain the main indication for DBS for the foreseeable future-and probably for some psychiatric disorders. However, brain stimulation as a technique may be at risk of gliding down a slippery slope: Some reports indicate a disturbing trend with suggestions that future DBS may be proposed for enhancement of memory in healthy people, or as a tool for "treatment" of "antisocial behavior" and for improving "morality."
Collapse
Affiliation(s)
- Marwan Hariz
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|