51
|
Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A 2022; 110:1134-1146. [PMID: 35075781 DOI: 10.1002/jbm.a.37361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Implantation of a suitable nerve guide conduit (NGC) seeded with sufficient Schwann cells (SCs) is required to improve peripheral nerve regeneration efficiently. Given the limitations of isolating and culturing SCs, using various sources of stem cells, including mesenchymal stem cells (MSCs) obtained from nasal olfactory mucosa, can be desirable. Olfactory ecto-MSCs (OE-MSCs) are a new population of neural crest-derived stem cells that can proliferate and differentiate into SCs and can be considered a promising autologous alternative to produce SCs. Regardless, a biomimetic physicochemical microenvironment in NGC such as electroconductive substrate can affect the fate of transplanted stem cells, including differentiation toward SCs and nerve regeneration. Therefore, in this study, the effect of 3D printed polycaprolactone (PCL)/polypyrrole (PPy) conductive scaffolds on differentiation of human OE-MSCS into functional SC-like phenotypes was investigated. Biological evaluation of 3D printed scaffolds was examined by in vitro culturing the OE-MSCs on samples surfaces, and conductivity showed no effect on increased cell attachment, proliferation rate, viability, and distribution. In contrast, immunocytochemical staining and real-time polymerase chain reaction analysis indicated that 3D structures coated with PPy could provide a favorable microenvironment for OE-MSCs differentiation. In addition, it was found that differentiated OE-MSCs within PCL/PPy could secrete the highest amounts of nerve growth factor and brain-derived neurotrophic factor neurotrophic factors compared to pure PCL and 2D culture. After co-culturing with PC12 cells, a significant increase in neurite outgrowth on PCL/PPy conductive scaffold seeded with differentiated OE-MSCs. These findings indicated that 3D printed PCL/PPy conductive scaffold could support differentiation of OE-MSCs into SC-like phenotypes to promote neurite outgrowth, suggesting their potential for neural tissue engineering applications.
Collapse
Affiliation(s)
- Maedeh Entezari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Okuda H, Ishikawa T, Hori K, Kwankaew N, Ozaki N. Hedgehog signaling plays a crucial role in hyperalgesia associated with neuropathic pain in mice. J Neurochem 2022; 162:207-220. [PMID: 35437761 DOI: 10.1111/jnc.15613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Neuropathic pain is a debilitating chronic syndrome of the nervous system caused by nerve injury. In Drosophila, the Hedgehog (Hh) signaling pathway is related to increased pain sensitivity (hyperalgesia) but does not affect the baseline nociceptive threshold. In general, the contribution of the Hh signaling pathway to neuropathic pain in vertebrates is a highly debated issue. Alternatively, we investigated the potential role of Hh signaling in mechanical allodynia using a mouse model of neuropathic pain. Seven days after spinal nerve-transection (SNT) surgery, microglial activation increased in the ipsilateral spinal dorsal horn compared with that in the sham group; however, 21 days after surgery, microglial activation decreased. Contrastingly, astrocyte activation in the spinal cord did not differ between the groups. On day 21 of postsurgery, the SNT group showed marked upregulation of sonic hedgehog expression in peripheral glial cells but not in dorsal root ganglion (DRG) neurons. Intrathecal administration of the Hh signaling inhibitor vismodegib attenuated the mechanical allodynia observed on day 21 postsurgery. Conversely, intrathecal treatment with the Hh signaling activator smoothened agonist in naive mice induced mechanical allodynia, which was abolished by the ATP transporter inhibitor clodronate. Moreover, inhibition of Hh signaling by pretreatment with vismodegib significantly reduced ATP secretion and the frequency/number of spontaneous elevations of intracellular calcium ion levels in cultured DRG cells. Thus, the Hh signaling pathway appears to modulate the neural activity of DRG neurons via ATP release, and it plays an important role in sustaining mechanical allodynia and hypersensitivity in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Ishikawa
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Nichakarn Kwankaew
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
53
|
Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity. Neurosci Bull 2022; 38:720-740. [DOI: 10.1007/s12264-022-00850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
|
54
|
Liu T, Wang Y, Lu L, Liu Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J Nanobiotechnology 2022; 20:159. [PMID: 35351151 PMCID: PMC8966266 DOI: 10.1186/s12951-022-01337-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Schwann cells, the glial cells in the peripheral nervous system, are highly plastic. In response to nerve injury, Schwann cells are reprogrammed to a series of specialized repair-promoting phenotypes, known as repair Schwann cells, which play a pivotal role in nerve regeneration. However, repair Schwann cells represent a transient and unstable cell state, and these cells progressively lose their repair phenotypes and repair‐supportive capacity; the transience of this state is one of the key reasons for regeneration failure in humans. Therefore, the ability to control the phenotypic stability of repair Schwann cells is of great practical importance as well as biological interest. Results We designed and prepared a type of fluorescent–magnetic bifunctional superparamagnetic iron oxide nanoparticles (SPIONs). In the present study, we established rat sciatic nerve injury models, then applied SPIONs to Schwann cells and established an effective SPION-mediated magnetic actuation system targeting the sciatic nerves. Our results demonstrate that magnetic actuation mediated by SPIONs can induce and maintain repair-supportive phenotypes of Schwann cells, thereby promoting regeneration and functional recovery of the sciatic nerve after crush injury. Conclusions Our research indicate that Schwann cells can sense these external, magnetically driven mechanical forces and transduce them to intracellular biochemical signals that promote nerve regeneration by inducing and maintaining the repair phenotypes of Schwann cells. We hope that this study will provide a new therapeutic strategy to promote the regeneration and repair of injured peripheral nerves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01337-5.
Collapse
Affiliation(s)
- Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
55
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
56
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
57
|
Notch Signal Mediates the Cross-Interaction between M2 Muscarinic Acetylcholine Receptor and Neuregulin/ErbB Pathway: Effects on Schwann Cell Proliferation. Biomolecules 2022; 12:biom12020239. [PMID: 35204740 PMCID: PMC8961597 DOI: 10.3390/biom12020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The cross-talk between axon and glial cells during development and in adulthood is mediated by several molecules. Among them are neurotransmitters and their receptors, which are involved in the control of myelinating and non-myelinating glial cell development and physiology. Our previous studies largely demonstrate the functional expression of cholinergic muscarinic receptors in Schwann cells. In particular, the M2 muscarinic receptor subtype, the most abundant cholinergic receptor expressed in Schwann cells, inhibits cell proliferation downregulating proteins expressed in the immature phenotype and triggers promyelinating differentiation genes. In this study, we analysed the in vitro modulation of the Neuregulin-1 (NRG1)/erbB pathway, mediated by the M2 receptor activation, through the selective agonist arecaidine propargyl ester (APE). M2 agonist treatment significantly downregulates NRG1 and erbB receptors expression, both at transcriptional and protein level, and causes the internalization and intracellular accumulation of the erbB2 receptor. Additionally, starting from our previous results concerning the negative modulation of Notch-active fragment NICD by M2 receptor activation, in this work, we clearly demonstrate that the M2 receptor subtype inhibits erbB2 receptors by Notch-1/NICD downregulation. Our data, together with our previous results, demonstrate the existence of a cross-interaction between the M2 receptor and NRG1/erbB pathway-Notch1 mediated, and that it is responsible for the modulation of Schwann cell proliferation/differentiation.
Collapse
|
58
|
Analysis of Signal Transduction Pathways Downstream M2 Receptor Activation: Effects on Schwann Cell Migration and Morphology. Life (Basel) 2022; 12:life12020211. [PMID: 35207498 PMCID: PMC8875146 DOI: 10.3390/life12020211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Schwann cells (SCs) express cholinergic receptors, suggesting a role of cholinergic signaling in the control of SC proliferation, differentiation and/or myelination. Our previous studies largely demonstrated that the pharmacological activation of the M2 muscarinic receptor subtype caused an inhibition of cell proliferation and promoted the expression of pro-myelinating differentiation genes. In order to elucidate the molecular signaling activated downstream the M2 receptor activation, in the present study we investigated the signal transduction pathways activated by the M2 orthosteric agonist arecaidine propargyl ester (APE) in SCs. Methods: Using Western blot we analyzed some components of the noncanonical pathways involving β1-arrestin and PI3K/AKT/mTORC1 signaling. A wound healing assay was used to evaluate SC migration. Results: Our results demonstrated that M2 receptor activation negatively modulated the PI3K/Akt/mTORC1 axis, possibly through β1-arrestin downregulation. The involvement of the mTORC1 complex was also supported by the decreased expression of its specific target p-p70 S6KThr389. Then, we also analyzed the expression of p-AMPKαthr172, a negative regulator of myelination that resulted in reduced levels after M2 agonist treatment. The analysis of cell migration and morphology allowed us to demonstrate that M2 receptor activation caused an arrest of SC migration and modified cell morphology probably by the modulation of β1-arrestin/cofilin-1 and PKCα expression, respectively. Conclusions: The data obtained demonstrated that M2 receptor activation in addition to the canonical Gi protein-coupled pathway modulates noncanonical pathways involving the mTORC1 complex and other kinases whose activation may contribute to the inhibition of SC proliferation and migration and address SC differentiation.
Collapse
|
59
|
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci 2022; 23:816. [PMID: 35055003 PMCID: PMC8775373 DOI: 10.3390/ijms23020816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Collapse
Affiliation(s)
| | | | | | | | - Sahadev A. Shankarappa
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (P.V.); (G.R.); (P.M.); (C.J.)
| |
Collapse
|
60
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
61
|
Özdağ Acarli AN, Klein T, Egenolf N, Sommer C, Üçeyler N. Subepidermal Schwann cell counts correlate with skin innervation - an exploratory study. Muscle Nerve 2022; 65:471-479. [PMID: 35020203 DOI: 10.1002/mus.27496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Schwann cell clusters have been described at the murine dermis-epidermis border. We quantified dermal Schwann cells in the skin of patients with small fiber neuropathy (SFN) compared to healthy controls to correlate with the clinical phenotype. METHODS Skin punch biopsies from the lower legs of 28 patients with SFN (eleven men, 17 women, median age 54 years [19-73]) and 9 healthy controls (five men, four women, median age 34 years [25-69]) were immunoreacted for S100 calcium-binding protein B as a Schwann cell marker, protein-gene product 9.5 as a pan-neuronal marker, and CD207 as a Langerhans cell marker. Intraepidermal nerve fiber density (IENFD) and subepidermal Schwann cell counts were determined. RESULTS Skin samples of patients with SFN showed lower IENFD (p<0.05), fewer Schwann cells/mm (p<0.01), and fewer Schwann cell clusters/mm (p<0.05) than controls. When comparing SFN patients with reduced (n=13, median age 53 years, 19-73 years) and normal distal (n=15, median age 54 years, 43-68 years) IENFD, the number of solitary Schwann cells/mm (p<0.01) and subepidermal nerve fibers associated with Schwann cell branches (p<0.05) were lower in patients with reduced IENFD. All three parameters positively correlated with distal IENFD (p<0.05 to p<0.01), while no correlation was found between Schwann cell counts and clinical pain characteristics. DISCUSSION Our data raise questions about the mechanisms underlying the interdependence of dermal Schwann cells and skin innervation in SFN. The temporal course and functional impact of Schwann cell presence and kinetics need further investigation.
Collapse
Affiliation(s)
| | - Thomas Klein
- Department of Neurology, University of Würzburg, Germany
| | - Nadine Egenolf
- Department of Neurology, University of Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Germany
| |
Collapse
|
62
|
Tang N, Wang X, Zhu J, Sun K, Li S, Tao K. Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomater Sci 2022; 10:808-818. [PMID: 34989358 DOI: 10.1039/d1bm01823j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is crucial and clinically relevant to clarify the homing efficiency and retention of stem cells in different implanting strategies of cell therapy for various injuries. However, the need for a tool for investigating the mechanisms is still unmet. We herein introduce multi-modal BaGdF5:Yb,Tm nanoparticles as a nanoprobe to label adipose-derived stem cells (ADSCs) and detect the homing behavior with a micro-computed tomography (micro-CT) imaging technique. The migration of cells injected locally or intravenously, with or without a chemokine, CXCL 12, was compared. A higher homing efficiency of ADSCs was observed in both intravenously injected groups, in contrast to the low efficiency of cell retention in local implantation. Meanwhile, CXCL 12 promoted the homing of ADSCs, especially in the intravenous route. Nonetheless, the administration of CXCL 12 showed its therapeutic efficacy, whereas intravenous injection of ADSCs almost did not. Our work provided a tool for in vivo imaging of the behavior of implanted cells in preclinical studies of cell therapy, and more importantly, implied that the parameters for implanting stem cells in clinical operation should be carefully considered.
Collapse
Affiliation(s)
- Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
63
|
Pandey S, Mudgal J. A Review on the Role of Endogenous Neurotrophins and Schwann Cells in Axonal Regeneration. J Neuroimmune Pharmacol 2022; 17:398-408. [PMID: 34843075 PMCID: PMC9810669 DOI: 10.1007/s11481-021-10034-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/13/2021] [Indexed: 01/13/2023]
Abstract
Injury to the peripheral nerve is traditionally referred to acquired nerve injury as they are the result of physical trauma due to laceration, stretch, crush and compression of nerves. However, peripheral nerve injury may not be completely limited to acquired physical trauma. Peripheral nerve injury equally implies clinical conditions like Guillain-Barré syndrome (GBS), Carpal tunnel syndrome, rheumatoid arthritis and diabetes. Physical trauma is commonly mono-neuropathic as it engages a single nerve and produces focal damage, while in the context of pathological conditions the damage is divergent involving a group of the nerve causing polyneuropathy. Damage to the peripheral nerve can cause a diverse range of manifestations from sensory impairment to loss of function with unpredictable recovery patterns. Presently no treatment option provides complete or functional recovery in nerve injury, as nerve cells are highly differentiated and inert to regeneration. However, the regenerative phenotypes in Schwann cells get expressed when a signalling cascade is triggered by neurotrophins. Neurotrophins are one of the promising biomolecules that are released naturally post-injury with the potential to exhibit better functional recovery. Pharmacological intervention modulating the expression of these neurotrophins such as brain-derived neurotrophic factor (BDNF) and pituitary adenylyl cyclase-activating peptide (PACAP) can prove to be a significant treatment option as endogenous compounds which may have remarkable innate advantage showing maximum 'biological relevance'.
Collapse
Affiliation(s)
- Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
64
|
Vetrano IG, Dei Cas M, Nazzi V, Eoli M, Innocenti N, Saletti V, Potenza A, Carrozzini T, Pollaci G, Gorla G, Paroni R, Ghidoni R, Gatti L. The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 23:ijms23010061. [PMID: 35008487 PMCID: PMC8744637 DOI: 10.3390/ijms23010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve sheath tumors (PNSTs) include schwannomas, neurofibromas (NFs), and plexiform neurofibromas (PNFs), among others. While they are benign tumors, according to their biological behavior, some have the potential for malignant degeneration, mainly PNFs. The specific factors contributing to the more aggressive behavior of some PNSTs compared to others are not precisely known. Considering that lipid homeostasis plays a crucial role in fibrotic/inflammatory processes and in several cancers, we hypothesized that the lipid asset was also unbalanced in this group of nerve tumors. Through untargeted lipidomics, NFs presented a significant increase in ceramide, phosphatidylcholine, and Vitamin A ester. PNFs displayed a marked decrease in 34 out of 50 lipid class analyzed. An increased level of ether- and oxidized-triacylglycerols was observed; phosphatidylcholines were reduced. After sphingolipidomic analysis, we observed six sphingolipid classes. Ceramide and dihydroceramides were statistically increased in NFs. All the glycosylated species appeared reduced in NFs, but increased in PNFs. Our findings suggested that different subtypes of PNSTs presented a specific modulation in the lipidic profile. The untargeted and targeted lipidomic approaches, which were not applied until now, contribute to better clarifying bioactive lipid roles in PNS natural history to highlight disease molecular features and pathogenesis.
Collapse
Affiliation(s)
- Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
- Correspondence:
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Vittoria Nazzi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Niccolò Innocenti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Antonella Potenza
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Tatiana Carrozzini
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Giuliana Pollaci
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Gemma Gorla
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Riccardo Ghidoni
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri, 20138 Milan, Italy;
| | - Laura Gatti
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| |
Collapse
|
65
|
Owen RS, Ramarathinam SH, Bailey A, Gastaldello A, Hussey K, Skipp PJ, Purcell AW, Siddle HV. The differentiation state of the Schwann cell progenitor drives phenotypic variation between two contagious cancers. PLoS Pathog 2021; 17:e1010033. [PMID: 34780568 PMCID: PMC8629380 DOI: 10.1371/journal.ppat.1010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/29/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell’s ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers. Cancer can be an infectious pathogen, with nine known cases, infecting bivalves, dogs and two independent tumours circulating in the endangered Tasmanian devil. These cancers, known as Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2), spread through the wild population much like parasites, moving between genetically distinct hosts during social biting behaviours and persisting in the population. As DFT1 and DFT2 are independent contagious cancers that arose from the same cell type, a Schwann cell, they provide a unique model system for studying the emergence of phenotypic variation in cancers derived from a single progenitor cell. In this study, we have shown that these two remarkably similar tumours have emerged from Schwann cells in different differentiation states. The differentiation state of the progenitor has altered the characteristics of each tumour, resulting in different responses to external signals. This work demonstrates that the cellular origin of infection can direct the phenotype of a contagious cancer and how it responds to signals from the host environment. Further, the plasticity of Schwann cells may make these cells more prone to forming contagious cancers, raising the possibility that further parasitic cancers could emerge from this cell type.
Collapse
Affiliation(s)
- Rachel S. Owen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Alistair Bailey
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Annalisa Gastaldello
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kathryn Hussey
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul J. Skipp
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hannah V. Siddle
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
66
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
67
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
68
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
69
|
Roballo KCS, Gigley JP, Smith TA, Bittner GD, Bushman JS. Functional and immunological peculiarities of peripheral nerve allografts. Neural Regen Res 2021; 17:721-727. [PMID: 34472457 PMCID: PMC8530136 DOI: 10.4103/1673-5374.322445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general. Three topics are addressed: The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration. The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures. Lastly, potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.
Collapse
Affiliation(s)
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
70
|
Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res 2021; 17:748-753. [PMID: 34472460 PMCID: PMC8530131 DOI: 10.4103/1673-5374.322446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries commonly occur due to trauma, like a traffic accident. Peripheral nerves get severed, causing motor neuron death and potential muscle atrophy. The current golden standard to treat peripheral nerve lesions, especially lesions with large (≥ 3 cm) nerve gaps, is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur. If not tended early, degeneration of motor neurons and loss of axon regeneration can occur, leading to loss of function. Although surgical procedures exist, patients often do not fully recover, and quality of life deteriorates. Peripheral nerves have limited regeneration, and it is usually mediated by Schwann cells and neurotrophic factors, like glial cell line-derived neurotrophic factor, as seen in Wallerian degeneration. Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth. Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy, sciatic nerve crush, and compression, thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries. Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries. In this review, we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor, the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries, delivery systems, and complementary treatments (electrical muscle stimulation and exercise). Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients’ quality of life.
Collapse
Affiliation(s)
| | | | | | - John M Spitsbergen
- Biological Sciences Department, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
71
|
El-Sawaf ES, Saleh S, Abdallah DM, Ahmed KA, El-Abhar HS. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci 2021; 279:119697. [PMID: 34102194 DOI: 10.1016/j.lfs.2021.119697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
AIMS Vitamin D and rosuvastatin are well-known drugs that mediate beneficial effects in treating type-2 diabetes (T2D) complications; however, their anti-neuropathic potential is debatable. Hence, our study investigates their neurotherapeutic potential and the possible underlying mechanisms using a T2D-associated neuropathy rat model. MAIN METHODS Diabetic peripheral neuropathy (DPN) was induced with 8 weeks of administration of a high fat fructose diet followed by a single i.p. injection of streptozotocin (35 mg/kg). Six weeks later, DPN developed and rats were divided into five groups; viz., control, untreated DPN, DPN treated with vitamin D (cholecalciferol, 3500 IU/kg/week), DPN treated with rosuvastatin (10 mg/kg/day), or DPN treated with combination vitamin D and rosuvastatin. We determined their anti-neuropathic effects on small nerves (tail flick test); large nerves (electrophysiological and histological examination); neuronal inflammation (TNF-α and IL-18); apoptosis (caspase-3 activity and Bcl-2); mitochondrial function (NRF-1, TFAM, mtDNA, and ATP); and NICD1, Wnt-10α/β-catenin, and TGF-β/Smad-7 pathways. KEY FINDINGS Two-month treatment with vitamin D and/or rosuvastatin regenerated neuronal function and architecture and abated neuronal inflammation and apoptosis. This was verified by the inhibition of the neuronal content of TNF-α, IL-18, and caspase-3 activity, while augmenting Bcl-2 content in the sciatic nerve. These treatments inhibited the protein expressions of NICD1, Wnt-10α, β-catenin, and TGF-β; increased the sciatic nerve content of Smad-7; and enhanced mitochondrial biogenesis and function. SIGNIFICANCE Vitamin D and/or rosuvastatin alleviated diabetes-induced neuropathy by suppressing Notch1 and Wnt-10α/β-catenin; modulating TGF-β/Smad-7 signaling pathways; and enhancing mitochondrial function, which lessened neuronal degeneration, demyelination, and fibrosis.
Collapse
Affiliation(s)
- Engie S El-Sawaf
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Samira Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
72
|
Khodabakhsh P, Pournajaf S, Mohaghegh Shalmani L, Ahmadiani A, Dargahi L. Insulin Promotes Schwann-Like Cell Differentiation of Rat Epidermal Neural Crest Stem Cells. Mol Neurobiol 2021; 58:5327-5337. [PMID: 34297315 DOI: 10.1007/s12035-021-02423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 10/20/2022]
Abstract
Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 μg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 μg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
73
|
Suzuki H, Sakai T. Current Concepts of Stem Cell Therapy for Chronic Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22147435. [PMID: 34299053 PMCID: PMC8308009 DOI: 10.3390/ijms22147435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in clinical trials. In addition, several more are coming down the translational pipeline. Among ongoing and completed trials are those reporting the use of mesenchymal stem cells, neural stem/progenitor cells, induced pluripotent stem cells, olfactory ensheathing cells, and Schwann cells. The advancements in stem cell technology, combined with the powerful neuroimaging modalities, can now accelerate the pathway of promising novel therapeutic strategies from bench to bedside. Various combinations of different molecular therapies have been combined with supportive scaffolds to facilitate favorable cell–material interactions. In this review, we summarized some of the most recent insights into the preclinical and clinical studies using stem cells and other supportive drugs to unlock the microenvironment in chronic SCI to treat patients with this condition. Successful future therapies will require these stem cells and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, loss of structural framework, and immunorejection.
Collapse
|
74
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto, Tinduh D, Notobroto HB, Sigit Prakoeswa CR, Rantam FA, Rhatomy S. Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (Lond) 2021; 67:102482. [PMID: 34168873 PMCID: PMC8209190 DOI: 10.1016/j.amsu.2021.102482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
The use of stem cells is a breakthrough in medical biotechnology which brings regenerative therapy into a new era. Over the past several decades, stem cells had been widely used as regenerative therapy and Mesenchymal Stem Cells (MSCs) had emerged as a promising therapeutic option. Currently stem cells are effective therapeutic agents againts several diseases due to their tissue protective and repair mechanisms. This therapeutic effect is largely due to the biomolecular properties including secretomes. Injury to peripheral nerves has significant health and economic consequences, and no surgical procedure can completely restore sensory and motor function. Stem cell therapy in peripheral nerve injury is an important future intervention to achieve the best clinical outcome improvement. Adipose mesenchymal stem cells (AdMSCs) are multipotent mesenchymal stem cells which are similar to bone marrow-derived mesenchymal stem cells (BM-MSCs). The following review aims to provide an overview of the use of AdMSCs and their secretomes in regenerating peripheral nerves.
Collapse
Affiliation(s)
- Tito Sumarwoto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Suroto
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Romaniyanto
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Damayanti Tinduh
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Physical Medicine and Rehabilitation Department, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
75
|
Pompili E, Fabrizi C. Thrombin in peripheral nerves: friend or foe? Neural Regen Res 2021; 16:1223-1224. [PMID: 33269786 PMCID: PMC8224103 DOI: 10.4103/1673-5374.300446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| |
Collapse
|
76
|
Zhang Y, Zhu Z, Liu X, Xu S, Zhang Y, Xu Y, He B. Integrated analysis of long noncoding RNAs and mRNA expression profiles reveals the potential role of lncRNAs in early stage of post-peripheral nerve injury in Sprague-Dawley rats. Aging (Albany NY) 2021; 13:13909-13925. [PMID: 33971626 PMCID: PMC8202893 DOI: 10.18632/aging.202989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/23/2021] [Indexed: 04/16/2023]
Abstract
The regulatory role of lncRNAs in the early stage post peripheral nerve injury (PNI) is not yet clear. In this study, next-generation sequencing was used to perform deep sequencing on normal sciatic nerves (control) and lesional tissues derived on the 4th (D4) and 7th days (D7) after sciatic nerve injury in rats. Time-point unique differentially expressed lncRNAs (DElncRNAs) were analyzed for functional enrichment. The results showed that 776 DElncRNAs were unique to D4, and their functions were mainly enriched in wound healing, phosphatase binding and MAPK signaling pathways; 317 DElncRNAs were unique to D7, and their functions were mainly enriched in ion transmembrane transporter channel activity; 579 DElncRNAs were shared by these two days, and their functions were mainly enriched in axongenesis, the PI3K-Akt signaling pathway and cell cycle. Furthermore, lncRNA-mRNA interaction networks were constructed in functions or pathways with a high enrichment rate. Finally, 3 mRNAs and 4 lncRNAs in the axongenesis interaction network were selected, and their expression levels were verified by RT-qPCR. This study preliminarily revealed the regulatory role of lncRNAs at different time points in the early stage post PNI, which provides potential targets for basic research and clinical treatment of PNI.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangxia Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yangbin Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo He
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
77
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
78
|
Park K, Shin Y, Lee G, Park H, Choi Y. Dabrafenib Promotes Schwann Cell Differentiation by Inhibition of the MEK-ERK Pathway. Molecules 2021; 26:2141. [PMID: 33917810 PMCID: PMC8068149 DOI: 10.3390/molecules26082141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Schwann cell differentiation involves a dynamic interaction of signaling cascades. However, much remains to be elucidated regarding the function of signaling molecules that differ depending on the context in which the molecules are engaged. Here, we identified a small molecule, dabrafenib, which promotes Schwann cell differentiation in vitro and exploited this compound as a pharmacological tool to understand the molecular mechanisms regulating Schwann cell differentiation. The results indicated that dabrafenib inhibited ERK phosphorylation and enhanced ErbB2 autophosphorylation and Akt phosphorylation, and the effects of dabrafenib on ErbB2 and Akt phosphorylation were phenocopied by pharmacological inhibition of the MEK-ERK signaling pathway. However, the small molecule inhibitors of MEK and ERK had no effect on the expression of Oct6 and EGR2, which are key transcription factors that drive Schwann cell differentiation. In addition, pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) almost completely interfered with dabrafenib-induced Schwann cell differentiation. These results suggest that the ErbB2-PI3K-Akt axis is required for the induction of Schwann cell differentiation by dabrafenib in vitro. Although additional molecules targeted by dabrafenib remain to be identified, our data provides insights into the crosstalk that exists between the MEK-ERK signaling pathway and the PI3K-Akt axis in Schwann cell differentiation.
Collapse
Affiliation(s)
- Kyuhee Park
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| | - Yoonkyoung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, Donga University Medical School, Busan 49201, Korea; (Y.S.); (H.P.)
| | - Gyeongbeen Lee
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| | - Hwantae Park
- Department of Physiology, Peripheral Neuropathy Research Center, Donga University Medical School, Busan 49201, Korea; (Y.S.); (H.P.)
| | - Yongmun Choi
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| |
Collapse
|
79
|
Fornaro M, Marcus D, Rattin J, Goral J. Dynamic Environmental Physical Cues Activate Mechanosensitive Responses in the Repair Schwann Cell Phenotype. Cells 2021; 10:cells10020425. [PMID: 33671410 PMCID: PMC7922665 DOI: 10.3390/cells10020425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Schwann cells plastically change in response to nerve injury to become a newly reconfigured repair phenotype. This cell is equipped to sense and interact with the evolving and unusual physical conditions characterizing the injured nerve environment and activate intracellular adaptive reprogramming as a consequence of external stimuli. Summarizing the literature contributions on this matter, this review is aimed at highlighting the importance of the environmental cues of the regenerating nerve as key factors to induce morphological and functional changes in the Schwann cell population. We identified four different microenvironments characterized by physical cues the Schwann cells sense via interposition of the extracellular matrix. We discussed how the physical cues of the microenvironment initiate changes in Schwann cell behavior, from wrapping the axon to becoming a multifunctional denervated repair cell and back to reestablishing contact with regenerated axons.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
- Correspondence: ; Tel.: +001-630-515-6055
| | - Dominic Marcus
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Jacob Rattin
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| |
Collapse
|
80
|
Wagstaff LJ, Gomez-Sanchez JA, Fazal SV, Otto GW, Kilpatrick AM, Michael K, Wong LYN, Ma KH, Turmaine M, Svaren J, Gordon T, Arthur-Farraj P, Velasco-Aviles S, Cabedo H, Benito C, Mirsky R, Jessen KR. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. eLife 2021; 10:e62232. [PMID: 33475496 PMCID: PMC7819709 DOI: 10.7554/elife.62232] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS.
Collapse
Affiliation(s)
- Laura J Wagstaff
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
| | - Shaline V Fazal
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Georg W Otto
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
| | - Kirolos Michael
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Liam YN Wong
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Ki H Ma
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick ChildrenTorontoCanada
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Cristina Benito
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Kristjan R Jessen
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
81
|
TNFα promotes oral cancer growth, pain, and Schwann cell activation. Sci Rep 2021; 11:1840. [PMID: 33469141 PMCID: PMC7815837 DOI: 10.1038/s41598-021-81500-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is very painful and impairs a patient's ability to eat, talk, and drink. Mediators secreted from oral cancer can excite and sensitize sensory neurons inducing pain. Cancer mediators can also activate Schwann cells, the peripheral glia that regulates neuronal function and repair. The contribution of Schwann cells to oral cancer pain is unclear. We hypothesize that the oral cancer mediator TNFα activates Schwann cells, which further promotes cancer progression and pain. We demonstrate that TNFα is overexpressed in human oral cancer tissues and correlates with increased self-reported pain in patients. Antagonizing TNFα reduces oral cancer proliferation, cytokine production, and nociception in mice with oral cancer. Oral cancer or TNFα alone increases Schwann cell activation (measured by Schwann cell proliferation, migration, and activation markers), which can be inhibited by neutralizing TNFα. Cancer- or TNFα-activated Schwann cells release pro-nociceptive mediators such as TNFα and nerve growth factor (NGF). Activated Schwann cells induce nociceptive behaviors in mice, which is alleviated by blocking TNFα. Our study suggests that TNFα promotes cancer proliferation, progression, and nociception at least partially by activating Schwann cells. Inhibiting TNFα or Schwann cell activation might serve as therapeutic approaches for the treatment of oral cancer and associated pain.
Collapse
|
82
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
83
|
Wilcox MB, Jessen KR, Quick TJ, Phillips JB. The molecular profile of nerve repair: humans mirror rodents. Neural Regen Res 2021; 16:1440-1441. [PMID: 33318445 PMCID: PMC8284295 DOI: 10.4103/1673-5374.301014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Matthew B Wilcox
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore; Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX; UCL Centre for Nerve Engineering, University College London, London, UK
| | - Kristjan R Jessen
- UCL Centre for Nerve Engineering; Department of Cell and Developmental Biology, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore; UCL Centre for Nerve Engineering, University College London, London, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX; UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
84
|
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS One 2020; 15:e0242137. [PMID: 33180885 PMCID: PMC7660510 DOI: 10.1371/journal.pone.0242137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.
Collapse
|
85
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
86
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
87
|
Elsayed H, Faroni A, Ashraf MR, Osuji J, Wunderley L, Zhang L, Elsobky H, Mansour M, Zidan AS, Reid AJ. Development and Characterisation of an in vitro Model of Wallerian Degeneration. Front Bioeng Biotechnol 2020; 8:784. [PMID: 32754584 PMCID: PMC7365951 DOI: 10.3389/fbioe.2020.00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Following peripheral nerve injury, a sequence of events termed Wallerian degeneration (WD) takes place at the distal stump in order to allow the regenerating axons to grow back toward the target organs. Schwann cells (SCs) play a lead role in this by initiating the inflammatory response attracting macrophages and immune cells, as well as producing neurotrophic signals that are essential for nerve regeneration. The majority of existing research has focused on tools to improve regeneration, overlooking the critical degeneration phase. This is also due to the lack of in vitro models recapitulating the features of in vivo WD. In particular, to understand the initial SC response following injury, and to investigate potential interventions, a model that isolates the nerve from other systemic influences is required. Stem cell intervention has been extensively studied as a potential therapeutic intervention to augment regeneration; however, data regarding their role in WD is lacking. Thus, in this study we describe an in vitro model using rat sciatic nerve explants degenerating up to 14 days. Characterisation of this model was performed by gene and protein expression for key markers of WD, in addition to immunohistochemical analysis and electron microscopy. We found changes in keeping with WD in vivo: upregulation of repair program protein CJUN, downregulation of myelin protein genes and subsequent disorganisation and breakdown of myelin structure. As a means of testing the effects of stem cell intervention on WD we established indirect co-cultures of human adipose-derived mesenchymal stem cells (AD-MSC) with the degenerating nerve explants. The stem cell intervention potentiated neurotrophic factors and Cjun expression. We conclude that our in vitro model shares the main features of in vivo WD, and we provide proof of principle on its effectiveness to study experimental approaches for nerve regeneration focused on the events happening during WD.
Collapse
Affiliation(s)
- Heba Elsayed
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mohammad R Ashraf
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Judith Osuji
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Lydia Wunderley
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Hesham Elsobky
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Mansour
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Ashraf S Zidan
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt.,Mansoura University Hospital, Mansoura, Egypt
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
88
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
89
|
Stassart RM, Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol 2020; 81:490-506. [PMID: 32628805 DOI: 10.1002/dneu.22771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Ruth M Stassart
- Department of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Ashwin Woodhoo
- Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
90
|
Assinck P, Sparling JS, Dworski S, Duncan GJ, Wu DL, Liu J, Kwon BK, Biernaskie J, Miller FD, Tetzlaff W. Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports 2020; 15:140-155. [PMID: 32559459 PMCID: PMC7363874 DOI: 10.1016/j.stemcr.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cell transplantation for spinal cord injury (SCI) has largely been studied in sub-acute settings within 1–2 weeks of injury. In contrast, here we transplanted skin-derived precursors differentiated into Schwann cells (SKP-SCs) into the contused rat spinal cord 8 weeks post-injury (wpi). Twenty-one weeks later (29 wpi), SKP-SCs were found to have survived transplantation, integrated with host tissue, and mitigated the formation of a dense glial scar. Furthermore, transplanted SKP-SCs filled much of the lesion sites and greatly enhanced the presence of endogenous SCs, which myelinated thousands of sprouting/spared host axons in and around the injury site. In addition, SKP-SC transplantation improved locomotor outcomes and decreased pathological thickening of bladder wall. To date, functional improvements have very rarely been observed with cell transplantation beyond the sub-acute stage of injury. Hence, these findings indicate that skin-derived SCs are a promising candidate cell type for the treatment of chronic SCI. SKP-SCs injected 8 weeks after SCI survive long-term and integrate with host tissue SKP-SC transplants boosted the presence of endogenous SCs in the chronic SCI site Treated spinal cords showed enhanced growth and SC myelination of axons Treated rats displayed better locomotor outcomes with reduced bladder pathologies
Collapse
Affiliation(s)
- Peggy Assinck
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Joseph S Sparling
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shaalee Dworski
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Greg J Duncan
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Di L Wu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
91
|
Mikulka CR, Dearborn JT, Benitez BA, Strickland A, Liu L, Milbrandt J, Sands MS. Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proc Natl Acad Sci U S A 2020; 117:9032-9041. [PMID: 32253319 PMCID: PMC7183170 DOI: 10.1073/pnas.1917675117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as "cross-correction." Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.
Collapse
Affiliation(s)
- Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
92
|
Wilcox MB, Laranjeira SG, Eriksson TM, Jessen KR, Mirsky R, Quick TJ, Phillips JB. Characterising cellular and molecular features of human peripheral nerve degeneration. Acta Neuropathol Commun 2020; 8:51. [PMID: 32303273 PMCID: PMC7164159 DOI: 10.1186/s40478-020-00921-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Nerve regeneration is a key biological process in those recovering from neural trauma. From animal models it is known that the regenerative capacity of the peripheral nervous system (PNS) relies heavily on the remarkable ability of Schwann cells to undergo a phenotypic shift from a myelinating phenotype to one that is supportive of neural regeneration. In rodents, a great deal is known about the molecules that control this process, such as the transcription factors c-Jun and early growth response protein 2 (EGR2/KROX20), or mark the cells and cellular changes involved, including SOX10 and P75 neurotrophin receptor (p75NTR). However, ethical and practical challenges associated with studying human nerve injury have meant that little is known about human nerve regeneration.The present study addresses this issue, analysing 34 denervated and five healthy nerve samples from 27 patients retrieved during reconstructive nerve procedures. Using immunohistochemistry and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR), the expression of SOX10, c-Jun, p75NTR and EGR2 was assessed in denervated samples and compared to healthy nerve. Nonparametric smoothing linear regression was implemented to better visualise trends in the expression of these markers across denervated samples.It was found, first, that two major genes associated with repair Schwann cells in rodents, c-Jun and p75NTR, are also up-regulated in acutely injured human nerves, while the myelin associated transcription factor EGR2 is down-regulated, observations that encourage the view that rodent models are relevant for learning about human nerve injury. Second, as in rodents, the expression of c-Jun and p75NTR declines during long-term denervation. In rodents, diminishing c-Jun and p75NTR levels mark the general deterioration of repair cells during chronic denervation, a process thought to be a major obstacle to effective nerve repair. The down-regulation of c-Jun and p75NTR reported here provides the first molecular evidence that also in humans, repair cells deteriorate during chronic denervation.
Collapse
Affiliation(s)
- Matthew B. Wilcox
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Simão G Laranjeira
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Tuula M. Eriksson
- Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Kristjan R. Jessen
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rhona Mirsky
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tom J. Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
93
|
Liu K, Ma W, Li C, Li J, Zhang X, Liu J, Liu W, Wu Z, Zang C, Liang Y, Guo J, Li L. Advances in Transcription Factors Related to Neuroglial Cell Reprogramming. Transl Neurosci 2020; 11:17-27. [PMID: 32161682 PMCID: PMC7053399 DOI: 10.1515/tnsci-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/07/2020] [Indexed: 11/27/2022] Open
Abstract
Neuroglial cells have a high level of plasticity, and many types of these cells are present in the nervous system. Neuroglial cells provide diverse therapeutic targets for neurological diseases and injury repair. Cell reprogramming technology provides an efficient pathway for cell transformation during neural regeneration, while transcription factor-mediated reprogramming can facilitate the understanding of how neuroglial cells mature into functional neurons and promote neurological function recovery.
Collapse
Affiliation(s)
- Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Junjun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Xingkui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Zheng Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chenghao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jianhui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
94
|
Chu LW, Cheng KI, Chen JY, Cheng YC, Chang YC, Yeh JL, Hsu JH, Dai ZK, Wu BN. Loganin prevents chronic constriction injury-provoked neuropathic pain by reducing TNF-α/IL-1β-mediated NF-κB activation and Schwann cell demyelination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153166. [PMID: 31955133 DOI: 10.1016/j.phymed.2019.153166] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Peripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity. PURPOSE This study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain. METHODS Sprague-Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies. RESULTS Thermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1β), inflammatory proteins (TNF-α, IL-1β, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats. CONCLUSION Our findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1β-dependent NF-κB activation.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
95
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
96
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
97
|
Araki T. Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:23-31. [PMID: 31760635 DOI: 10.1007/978-981-32-9636-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
98
|
Wu S, Ni S, Jiang X, Kuss MA, Wang HJ, Duan B. Guiding Mesenchymal Stem Cells into Myelinating Schwann Cell-Like Phenotypes by Using Electrospun Core-Sheath Nanoyarns. ACS Biomater Sci Eng 2019; 5:5284-5294. [PMID: 33455233 DOI: 10.1021/acsbiomaterials.9b00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve guidance conduit (NGC)-infilling substrates have been reported to facilitate the regeneration of injured peripheral nerves (PNs), especially for large nerve gaps. In this study, longitudinally oriented electrospun core-sheath nanoyarns (csNYs), consisting of a polylactic acid microfiber core and an electrospun nanofiber sheath, were fabricated for potential PN tissue engineering applications. Our novel csNY displayed a well-aligned nanofibrous surface topography, resembling the ultrastructure of axons and fascicles of a native PN system, and it also provided a mechanically stable structure. The biological results showed that the csNY significantly enhanced the attachment, growth, and proliferation of human adipose derived mesenchymal stem cells (hADMSC) and also promoted the migration, proliferation, and phenotype maintenance of rabbit Schwann cells (rSCs). Our csNY notably increased the differentiation capability of hADMSC into SC-like cells (hADMSC-SC), in comparison with a 2D tissue culture polystyrene plate. More importantly, when combined with the appropriate induction medium, our csNY promoted hADMSC-SC to express high levels of myelination-associated markers. Overall, this study demonstrates that our csNYs have great potential to serve as not only ideal in vitro culture models for understanding SC-axon interaction and SC myelination but also as promising NGC-infilling substrates for PN regeneration applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
| | | | | | | | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
99
|
Xue Y, Yin P, Li G, Zhong D. Transcriptomes in rat sciatic nerves at different stages of experimental autoimmune neuritis determined by RNA sequencing. Clin Exp Immunol 2019; 198:184-197. [PMID: 31344254 DOI: 10.1111/cei.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 11/28/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is characterized by acute immune-mediated peripheral neuropathy, which may result in rapidly progressive paralysis and fatal respiratory failure. As the underlying pathological mechanisms of GBS are unclear, we surveyed the transcriptome of rats with experimental autoimmune neuritis (EAN), a model of GBS. Briefly, sciatic nerves on both sides were collected from 8-10-week-old Lewis rats during early (10 days post-induction), peak (19 days) and late neuritis (30 days). Total RNA was sequenced to identify differentially expressed genes. Compared to control rats without induced neuritis, 33 genes were differentially expressed in the early phase (14 up-regulated and 19 down-regulated), with an adjusted P-value < 0·05 and |log2 fold-change| >1, as were 137 genes in the peak phase (126 up-regulated and 11 down-regulated) and 60 genes in the late phase (58 up-regulated and two down-regulated). Eleven of these genes were common to all stages, suggesting their crucial roles throughout the disease course. Analysis of protein-protein interactions revealed Fos, Ccl2, Itgax and C3 as node genes at different stages. Functional analysis of differentially expressed genes identified biological processes and pathways that are activated as neuritis progresses. This is the first genomewide gene expression study of peripheral nerves in experimental autoimmune neuritis model. Dynamic gene expression and significantly altered biological functions were detected in different phases of the disease, increasing our understanding of the molecular mechanisms underlying EAN and highlighting potential targets for its diagnosis and treatment.
Collapse
Affiliation(s)
- Y Xue
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - P Yin
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - G Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - D Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
100
|
Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci 2019; 12:177. [PMID: 31379499 PMCID: PMC6650784 DOI: 10.3389/fnmol.2019.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purβ, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purβ limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.
Collapse
Affiliation(s)
- Belin Sophie
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Herron Jacob
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - VerPlank J S Jordan
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Park Yungki
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States
| | - Feltri M Laura
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Poitelon Yannick
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|