51
|
Gong Y, Lu Q, Liu Y, Xi L, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides). Front Nutr 2022; 9:1010859. [PMID: 36211485 PMCID: PMC9539808 DOI: 10.3389/fnut.2022.1010859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1β, il8, tgfβ, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- *Correspondence: Dong Han,
| |
Collapse
|
52
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
53
|
Kilic K, Sakat MS, Sahin A, Yildirim S, Dortbudak MB. The effectiveness of berberine on noise-induced hearing loss: a rat model. Rev Assoc Med Bras (1992) 2022; 68:1330-1336. [PMID: 36228267 PMCID: PMC9575033 DOI: 10.1590/1806-9282.20220758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE: Noise-induced hearing loss is a preventable form of hearing loss that has serious social and economic impacts. This study aimed to investigate the protective effect of berberine, a potent antioxidant and anti-inflammatory agent, against Noise-induced hearing loss. METHODS: After applying distortion product otoacoustic emission, 28 female Sprague-Dawley rats were randomly divided into four groups. Group 1 was designated as acoustic trauma group, and rats in this group were exposed to white noise for 12 h at an intensity of 4 kHz 110 dB sound pressure level. Group 2 was the control group. Group 3 was designated as the berberine group, and 100 mg/kg of berberine was administered to rats in this group by intragastric lavage for five consecutive days. Group 4 was designated as the acoustic trauma+berberine group. distortion product otoacoustic emission was repeated on the 6th day of the study and cochlear tissues of rats were dissected for histopathological and immunohistochemical analyses after sacrificing rats. RESULTS: The distortion product otoacoustic emission results showed a significant decrease in signal-noise ratio values at higher frequencies in rats of the trauma group compared to those in other groups. Acoustic trauma caused severe histopathological impairment at cochlear structures together with severe 8-hydroxy-2-deoxyguanosine expression. Rats in the acoustic trauma+berberine group showed mild histopathological changes with mild 8-hydroxy-2-deoxyguanosine expression and better signal-noise ratio values. CONCLUSION: The histopathological and audiological findings of this experimental study showed that berberine provides protection in Noise-induced hearing loss and may have the potential for use in acoustic trauma-related hearing losses.
Collapse
Affiliation(s)
- Korhan Kilic
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey.,Corresponding author:
| | - Muhammed Sedat Sakat
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey
| | - Abdulkadir Sahin
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey
| | - Serkan Yildirim
- Ataturk University, Faculty of Veterinary, Department of Pathology – Erzurum, Turkey
| | | |
Collapse
|
54
|
Ghavipanje N, Fathi Nasri MH, Vargas-Bello-Pérez E. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. J Anim Physiol Anim Nutr (Berl) 2022; 107:808-829. [PMID: 36031857 DOI: 10.1111/jpn.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In animal nutrition, the interest for novel feed additives has expanded with elevating industry standards and consumer awareness besides the demand for healthy animal-derived food products. Consumer and animal health are leading concerns dictating the importance of novel animal feed additives. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid that has exhibited diverse pharmacological properties, including metabolism-regulating, hepatoprotective, and inflammatory alleviative in addition to its antioxidant activity. Despite detailed information on cellular mechanisms associated with BBR therapeutics, and strong clinical evidence, only a few studies have focused on BBR applied to animal nutrition. However, great pieces of evidence have shown that dietary BBR supplementation could result in improved growth performance, enhanced oxido-inflammatory markers, and mitigated metabolic dysfunctions in both monogastric and ruminant animals. The data discussed in the present review may set the basis for further research on BBR in animal diets for developing novel strategies aiming to improve animal health as well as products with beneficial properties for humans.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
55
|
Rakotondrabe TF, Fan M, Guo M. Exploring potential antidiabetic and anti-inflammatory flavonoids from Euphorbia humifusa with an integrated strategy. Front Pharmacol 2022; 13:980945. [PMID: 36105200 PMCID: PMC9465062 DOI: 10.3389/fphar.2022.980945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
E. humifusa Willd, a monoecious annual plant, native to Eastern Asia, has been traditionally attributed to the treatment and prevention of miscellaneous diseases, including diabetes mellitus and its associated complications. Earlier studies have supported this species’ pharmacological efficacies including its antibacterial, antidiabetic, and anti-inflammatory properties. Even so, the underlying bioactive components with their mechanisms of action associated with its antidiabetic and anti-inflammatory effects remain elusive. The preamble in vitro assessments of the crude extract and its different fractions revealed that the n-butanol fraction (EHNB) exhibited the best activity, which was subsequently subjected to a rapid screening of candidate ligands through bio-affinity ultrafiltration with the two enzyme targets: α-glucosidase (α-Glu) and cycloxygenase-2 (COX-2) combined with UPLC/QTOF-MS. As a result, 7 compounds were identified from EHNB, among them, vitexin and astragalin were screened out as the most active ligand compounds. Vitexin showed great specific binding (SB) affinity values of 1.26 toward α-Glu and 1.32 toward COX-2, while astragalin showed 1.32 and 1.36, respectively. The docking simulation results exhibited strong interactions of vitexin and astragalin with the key residues of the enzyme targets, suggesting their possible mechanisms of action. The in vitro antidiabetic validation revealed noticeable half-maximal inhibitory effects (IC50) of 36.38 ± 3.06 µM for vitexin and 42.47 ± 4.13 µM for astragalin, much better than that of the positive drug acarbose (109.54 ± 14.23 µM). Similarly, these two compounds showed the inhibitory activity against COX-2 with the half-maximal inhibitory effects (IC50) at 27.91 ± 1.74 µM and 49.05 ± 1.49 µM, respectively. Therefore, these two flavonoid compounds (vitexin and astragalin) were speculated as potential antidiabetic and anti-inflammatory compounds from E. humifusa. Taken together, the integrated strategy applied to E. humifusa led to the fast identification of two potential double-acting flavonoids and enlightened its antidiabetic and anti-inflammatory uses. Besides these findings, the integrated strategy in this study could also be used to facilitate the rapid discovery and development of active candidates from other traditional herbal medicines against multi-drug targets and to aid in revealing their mechanisms of action for their traditional uses.
Collapse
Affiliation(s)
- Tojofaniry Fabien Rakotondrabe
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Minxia Fan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Mingquan Guo,
| |
Collapse
|
56
|
Essola NN, Takuissu GRN, Fonkoua M, Youovop Fotso JA, Mandob D, Ngondi JL, Gouado I. Effectiveness of 3 Polyherbal Formulations (EcXaPu, EcXa, and EcPu) on the Management of Oxidative Stress and Hyperglycemia. Nutr Metab Insights 2022; 15:11786388221118875. [PMID: 36003153 PMCID: PMC9393582 DOI: 10.1177/11786388221118875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress and hyperglycemia are major disorders involved in the occurrence and severity not only of chronic non-communicable diseases but also of infectious pathologies. This study aimed to evaluate the in vitro antioxidant and antihyperglycemic properties of EcXaPu, EcXa, and EcPu. The antioxidant properties were evaluated using 3 mechanisms: radical scavenging; reducing property, and metal chelating. Finally, the antihyperglycemic properties were evaluated by 2 mechanisms: glucose adsorption and cellular glucose capture. The different formulations showed their ability to scavenge DPPH, ABTS, and NO radicals with SC50 ranging from 2.75 to 3.51 mg/ml, from 2.6 to 2.76 mg/ml, and from 2.59 to 3.3 mg/ml, respectively. All the formulations also reduced MoO4 2+ and Fe3+ and chelated Cu2+ and Fe2+. The different formulations adsorbed the glucose with glucose adsorption rates ranging from 72.83% to 87.01%. The different formulations also stimulated cellular glucose uptake, with uptake rates ranging from 31.9% to 50.71% in yeast cells and from 21.81% to 39.45% in muscle cells. These formulations could be potential agents to prevent and/or protect against biological disorders associated with oxidative stress and hyperglycemia.
Collapse
Affiliation(s)
- Nadine Ndoe Essola
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Guy Roussel Nguemto Takuissu
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Martin Fonkoua
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | | | - Damaris Mandob
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Judith Laure Ngondi
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Innocent Gouado
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
57
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
58
|
Nematollahi S, Pishdad GR, Zakerkish M, Namjoyan F, Ahmadi Angali K, Borazjani F. The effect of berberine and fenugreek seed co-supplementation on inflammatory factor, lipid and glycemic profile in patients with type 2 diabetes mellitus: a double-blind controlled randomized clinical trial. Diabetol Metab Syndr 2022; 14:120. [PMID: 35999562 PMCID: PMC9395822 DOI: 10.1186/s13098-022-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Type 2 Diabetes mellitus is one of the most common chronic diseases in the world and has many complications. Due to the importance of using alternative therapies in managing symptoms of this disease, the present study was designed and conducted to investigate the effect of co-supplementation of berberine and fenugreek in patients with type 2 diabetes mellitus. METHODS A randomized controlled clinical trial was conducted on 50 patients with type 2 diabetes mellitus. Participants were randomized in the intervention group, which received 3 capsules/day of 500 mg (300 mg of berberine + 200 mg of fenugreek seed powder) or placebo for 12 weeks. Biochemical and anthropometric variables were measured at the beginning and end of the study. RESULTS We observed that fasting insulin, HbA1C, and hs-CRP significantly decreased in the intervention group compared to the baseline. The mean difference in insulin resistance (-0.32 vs. 0.15), fasting blood sugar (-14.40 vs. 1.68), and fasting insulin (- 2.18 vs. 1.34) were clinically significant in comparison to the control group. Almost all domains of SF-12 scores were significantly higher in the intervention group than in the placebo group. CONCLUSIONS The combination of berberine and fenugreek seed can improve cardio-metabolic status in patients with diabetes and support the anti-diabetic and anti-inflammatory role of herb in the improvement of quality of life.
Collapse
Affiliation(s)
- Shima Nematollahi
- Nutrition and Metabolic Diseases Research Center and Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholam Reza Pishdad
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Zakerkish
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroogh Namjoyan
- Research center for Traditional Medicine and History of Medicine, Shiraz University of medical sciences, Shiraz, Iran
| | - Kambiz Ahmadi Angali
- Department of Statistics and Epidemiology, School of Health Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Borazjani
- Nutrition and Metabolic Disease Research Center and Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
59
|
Khan M, Manzoor Z, Rafiq M, Munawar SH, Waqas MY, Majeed H, Ali Shah SZ, Hussain R, Hussain HI, Tahir T, Kotwica-Mojzych K, Mojzych M. Phytochemical Screening, Anti-Inflammatory, and Antidiabetic Activities of Different Extracts from Caralluma edulis Plant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165346. [PMID: 36014583 PMCID: PMC9412639 DOI: 10.3390/molecules27165346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
Abstract
The plant Caralluma edulis is traditionally used against diabetes and inflammatory conditions in Pakistan. This study was designed to provide scientific validation of the traditional use of Caralluma edulis. Phytochemicals were extracted from the plant by different solvents (distilled water, methanol, ethanol, and acetone) using the Soxhlet’s extraction method. Bioactive compounds were detected by gas chromatography–mass spectrometry (GC-MS). The in vitro anti-inflammatory activities (albumin denaturation, membrane stabilization, and proteinase inhibition) and antioxidant capacity (DPPH scavenging activity, FRAP reducing activity) of different extracts from Caralluma edulis were assessed. The antidiabetic potential of Caralluma edulis plant extracts was determined in acute and subacute diabetic rabbit models. Oxidative stress and enzymatic antioxidant status were also estimated in MDA, CAT, and SOD levels. Results showed that the methanol extract yielded the highest contents of phenolics, flavonoids, alkaloids, and terpenoids. The in vitro anti-inflammatory activity and antioxidant potential of the methanol extract were the highest among the tested solvents. The tested extracts did not show any remarkable antidiabetic activity in the acute diabetic model. However, all tested extracts demonstrated antidiabetic potential in the subacute diabetic model. No adverse effect was observed at the tested dose (200 mg/kg) of Caralluma edulis extracts in experimental animals. It is concluded that methanol is the key solvent for extracting bioactive compounds from Caralluma edulis. The plant can be used against inflammatory disorders and may prove a potential candidate for drug development. Long-term use of Caralluma edulis at the tested dose (200 mg/kg) showed antidiabetic properties in the animal model.
Collapse
Affiliation(s)
- Maria Khan
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Zahid Manzoor
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
- Correspondence: (Z.M.); or (M.M.)
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Shaukat Hussain Munawar
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Yasir Waqas
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Hamid Majeed
- Department of Food Science and Technology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Iftikhar Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Tehreem Tahir
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical Faculty, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence: (Z.M.); or (M.M.)
| |
Collapse
|
60
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
61
|
Li A, Lin C, Xie F, Jin M, Lin F. Berberine Ameliorates Insulin Resistance by Inhibiting IKK/NF-κB, JNK, and IRS-1/AKT Signaling Pathway in Liver of Gestational Diabetes Mellitus Rats. Metab Syndr Relat Disord 2022; 20:480-488. [PMID: 35862014 DOI: 10.1089/met.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Berberine is derived from rhizoma coptidis, a well-known Traditional Chinese herbal Medicine that has been found to be effective in the treatment of type 2 diabetes mellitus in recent years. The aim of the present study was to investigate the effects of berberine on a gestational diabetes mellitus (GDM) rat model and the related mechanisms. Methods: GDM was induced in Sprague-Dawley rats using a high-fat diet before and during pregnancy. Berberine (100 mg/kg/day) was administered from the 7th to 20th day of pregnancy. Insulin resistance (IR), glucose tolerance, and maternal, fetal, and placental weight were determined. Liver histopathological analysis, as well as analysis of C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), inhibitor kappa B kinaseβ (IKKβ), nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), insulin receptor substrate-1 (IRS-1), and protein kinase B (AKT), was performed at the end of pregnancy. Results: Treatment of GDM rats with berberine markedly decreased IR, the number of dead and absorptive fetuses, maternal body weight gain, and fetal and placental weight compared with GDM without berberine. Furthermore, berberine decreased CRP and TNF-α levels, IKKβ expression, NF-κB P65 nuclear translocation, and changed the phosphorylation of JNK, IRS-1, and AKT in the liver of GDM rats. Conclusions: Berberine improved IR and maternal-fetal outcomes of GDM rats, possibly through modulation of IKK/NF-κB, JNK, and IRS-1/AKT signaling pathways in the liver. Therefore, berberine may be a potential GDM treatment.
Collapse
Affiliation(s)
- Anyang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengfeng Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengya Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
62
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
63
|
Effect of histone deacetylase inhibitor (vorinostat) on new-onset diabetes induced by tacrolimus. J Taibah Univ Med Sci 2022; 18:9-18. [DOI: 10.1016/j.jtumed.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
|
64
|
Man B, Hu C, Yang G, Xiang J, Yang S, Ma C. Berberine attenuates diabetic atherosclerosis via enhancing the interplay between KLF16 and PPARα in ApoE−/− mice. Biochem Biophys Res Commun 2022; 624:59-67. [DOI: 10.1016/j.bbrc.2022.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
|
65
|
Gorini F, Vassalle C. Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology. Antioxidants (Basel) 2022; 11:antiox11061188. [PMID: 35740085 PMCID: PMC9227825 DOI: 10.3390/antiox11061188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is considered one of the largest global public-health concerns, affecting approximately more than 400 million individuals worldwide. The pathogenesis of T2D is very complex and, among the modifiable risk factors, selenium (Se) has recently emerged as a determinant of T2D pathogenesis and progression. Selenium is considered an essential element with antioxidant properties, and is incorporated into the selenoproteins involved in the antioxidant response. Furthermore, deiodinases, the enzymes responsible for homeostasis and for controlling the activity of thyroid hormones (THs), contain Se. Given the crucial action of oxidative stress in the onset of insulin resistance (IR) and T2D, and the close connection between THs and glucose metabolism, Se may be involved in these fundamental relationships; it may cover a dual role, both as a protective factor and as a risk factor of T2D, depending on its basal plasma concentration and the individual’s diet intake. In this review we discuss the current evidence (from experimental, observational and randomized clinical studies) on how Se is associated with the occurrence of T2D and its influence on the relationship between thyroid pathophysiology, IR and T2D.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Correspondence:
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, 56124 Pisa, Italy;
| |
Collapse
|
66
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
67
|
Hao Y, Li J, Yue S, Wang S, Hu S, Li B. Neuroprotective Effect and Possible Mechanisms of Berberine in Diabetes-Related Cognitive Impairment: A Systematic Review and Meta-Analysis of Animal Studies. Front Pharmacol 2022; 13:917375. [PMID: 35734409 PMCID: PMC9208278 DOI: 10.3389/fphar.2022.917375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine, the main bioactive component of Coptis chinensis Franch., is widely used in the treatment of diabetes. Previous studies have reported that berberine supplementation may play a multitarget therapeutic role in diabetes-related cognitive impairment (DCI). This systematic review and meta-analysis evaluated the effect and possible mechanisms of berberine in animal models of DCI. Relevant studies were searched through PubMed, Web of Science, Embase, and three Chinese databases (CNKI, Wanfang, and VIP) until March 2022. Twenty studies involving 442 animals were included, and SYRCLE’s risk of bias tool was used to assess methodological quality. The statistical analysis was performed using STATA 15.0 to calculate the weighted standard mean difference (SMD) with a 95% confidence interval (CI). The fasting blood glucose (FBG) and Morris water maze test (MWM) were the main outcomes to be analyzed. The overall results showed that berberine could significantly improve FBG, escape latency, the times of crossing the platform, the time spent in the target quadrant, serum insulin, 2hBG of oral glucose tolerance test (OGTT), amyloid β (Aβ), acetylcholinesterase (AChE), oxidative stress, and inflammation levels. The present meta-analysis demonstrated that berberine could not only lower blood glucose levels but also improve learning and memory in DCI animal models, which might involve regulating glucose and lipid metabolism, improving insulin resistance, anti-oxidation, anti-neuroinflammation, inhibiting endoplasmic reticulum (ER) stress; and improving the cholinergic system. However, additional attention should be paid to these outcomes due to the significant heterogeneity.
Collapse
Affiliation(s)
- Yanwei Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Yue
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Bin Li,
| |
Collapse
|
68
|
The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3959390. [PMID: 35656019 PMCID: PMC9155920 DOI: 10.1155/2022/3959390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/05/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the main factor responsible for poor prognosis and survival in patients with diabetes. The highly complex pathogenesis of DCM involves multiple signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (Akt) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-β (TGF-β) signaling pathway. Nuclear factor erythroid-2-related factor 2 (Nrf2) seems essential to the amelioration of the progression of DCM, not only through counterbalancing oxidative stress, but also through interacting with other signaling pathways to combat inflammation, the disorder in energy homeostasis and insulin signaling, and fibrosis. It has been evidenced that Chinese herbal monomers could attenuate DCM through the crosstalk of Nrf2 with other signaling pathways. This article has summarized the pathogenesis of DCM (especially in oxidative stress), the beneficial effects of ameliorating DCM via the Nrf2 signaling pathway and its crosstalk, and examples of Chinese herbal monomers. It will facilitate pharmacological research and development to promote the utilization of traditional Chinese medicine in DCM.
Collapse
|
69
|
Cheng Z, Kang C, Che S, Su J, Sun Q, Ge T, Guo Y, Lv J, Sun Z, Yang W, Li B, Li X, Cui R. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front Pharmacol 2022; 13:845591. [PMID: 35668943 PMCID: PMC9164284 DOI: 10.3389/fphar.2022.845591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Berberine, as a natural alkaloid compound, is characterized by a diversity of pharmacological effects. In recent years, many researches focused on the role of berberine in central nervous system diseases. Among them, the effect of berberine on neurodegenerative diseases has received widespread attention, for example Alzheimer's disease, Parkinson's disease, Huntington's disease, and so on. Recent evidence suggests that berberine inhibits the production of neuroinflammation, oxidative, and endoplasmic reticulum stress. These effects can further reduce neuron damage and apoptosis. Although the current research has made some progress, its specific mechanism still needs to be further explored. This review provides an overview of berberine in neurodegenerative diseases and its related mechanisms, and also provides new ideas for future research on berberine.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Chenglan Kang
- Department of Cardiology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songtian Che
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
70
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
71
|
Shou JW, Li XX, Tang YS, Lim-Ho Kong B, Wu HY, Xiao MJ, Cheung CK, Shaw PC. Novel mechanistic insight on the neuroprotective effect of berberine: The role of PPARδ for antioxidant action. Free Radic Biol Med 2022; 181:62-71. [PMID: 35093536 DOI: 10.1016/j.freeradbiomed.2022.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic stroke ranks the second leading cause of death and the third leading cause of disability in lifetime all around the world, urgently necessitating effective therapeutic interventions. Reactive oxygen species (ROS) have been implicated in stroke pathogenesis and peroxisome proliferator-activated receptors (PPARs) are prominent targets for ROS management. Although recent research has shown antioxidant effect of berberine (BBR), little is known regarding its effect upon ROS-PPARs signaling in stroke. The aim of this study is to explore whether BBR could target on ROS-PPARs pathway to ameliorate middle cerebral artery occlusion (MCAO)-induced stroke. Herein, we report that BBR is able to scavenge ROS in oxidation-damaged C17.2 neural stem cells and stroked mice. PPARδ, rather than PPARα or PPARγ, is involved in the anti-ROS effect of BBR, as evidenced by the siRNA transfection and specific antagonist treatment data. Further, we have found BBR could upregulate NF-E2 related factor-1/2 (NRF1/2) and NAD(P)H:quinone oxidoreductase 1 (NQO1) following a PPARδ-dependent manner. Mechanistic study has revealed that BBR acts as a potent ligand (Kd = 290 ± 92 nM) to activate PPARδ and initiates the transcriptional regulation functions, thus promoting the expression of PPARδ, NRF1, NRF2 and NQO1. Collectively, our results indicate that BBR confers neuroprotective effects by activating PPARδ to scavenge ROS, providing a novel mechanistic insight for the antioxidant action of BBR.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Meng-Jie Xiao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kai Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
72
|
Park K, Lee MS. Current Status of Autophagy Enhancers in Metabolic Disorders and Other Diseases. Front Cell Dev Biol 2022; 10:811701. [PMID: 35237600 PMCID: PMC8882819 DOI: 10.3389/fcell.2022.811701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy is pivotal in the maintenance of organelle function and intracellular nutrient balance. Besides the role of autophagy in the homeostasis and physiology of the individual tissues and whole organism in vivo, dysregulated autophagy has been incriminated in the pathogenesis of a variety of diseases including metabolic diseases, neurodegenerative diseases, cardiovascular diseases, inflammatory or immunological disorders, cancer and aging. Search for autophagy modulators has been widely conducted to amend dysregulation of autophagy or pharmacologically modulate autophagy in those diseases. Current data support the view that autophagy modulation could be a new modality for treatment of metabolic syndrome associated with lipid overload, human-type diabetes characterized by deposition of islet amyloid or other diseases including neurodegenerative diseases, infection and cardiovascular diseases. While clinically available bona fide autophagy modulators have not been developed yet, it is expected that on-going investigation will lead to the development of authentic autophagy modulators that can be safely administered to patients in the near future and will open a new horizon for treatment of incurable or difficult diseases.
Collapse
|
73
|
Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Pharmacotherapy 2022; 146:112562. [DOI: 10.1016/j.biopha.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
|
74
|
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022; 27:950. [PMID: 35164215 PMCID: PMC8840622 DOI: 10.3390/molecules27030950] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
| |
Collapse
|
75
|
Rong Q, Han B, Li Y, Yin H, Li J, Hou Y. Berberine Reduces Lipid Accumulation by Promoting Fatty Acid Oxidation in Renal Tubular Epithelial Cells of the Diabetic Kidney. Front Pharmacol 2022; 12:729384. [PMID: 35069186 PMCID: PMC8766852 DOI: 10.3389/fphar.2021.729384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.
Collapse
Affiliation(s)
- Qingfeng Rong
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Haizhen Yin
- Central Laboratory, Shanxi Province People's Hospital, Taiyuan, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
76
|
Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G, Moretti R, Aleksova A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 2022; 289:120193. [PMID: 34864062 DOI: 10.1016/j.lfs.2021.120193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D is a hormone with both genomic and non-genomic actions. It exerts its activity by binding vitamin D receptor (VDR), which belongs to the superfamily of nuclear receptors and ligand-activated transcription factors. Since VDR has been found in various tissues, it has been estimated that it regulates approximately 3% of the human genome. Several recent studies have shown pleiotropic effects of vitamin D in various processes such as cellular proliferation, differentiation, DNA repair and apoptosis and its involvement in different pathophysiological conditions as inflammation, diabetes mellitus, and anemia. It has been suggested that vitamin D could play an important role in neurodegenerative and cardiovascular disorders. Moderate to strong associations between lower serum vitamin D concentrations and stroke and cardiovascular events have been identified in different analytic approaches, even after controlling for traditional demographic and lifestyle covariates. The mechanisms behind the associations between vitamin D and cerebrovascular and cardiologic profiles have been widely examined both in animal and human studies. Optimization of vitamin D levels in human subjects may improve insulin sensitivity and beta-cell function and lower levels of inflammatory markers. Moreover, it has been demonstrated that altered gene expression of VDR and 1,25D3-membrane-associated rapid response steroid-binding (1,25D3-MARRS) receptor influences the role of vitamin D within neurons and allows them to be more prone to degeneration. This review summarizes the current understanding of the molecular mechanisms underlying vitamin D signaling and the consequences of vitamin D deficiency in neurodegenerative and cardiovascular disorders.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria della Misericordia, 06156 Perugia, Italy
| | - Antonio Paolo Beltrami
- Clinical Pathology Department, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) and Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, Complex Case Section, Trieste, Italy
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
77
|
Wang D, Ren Y, Sun W, Gong J, Zou X, Dong H, Xu L, Wang K, Lu F. Berberine Ameliorates Glucose Metabolism in Diabetic Rats through the alpha7 Nicotinic Acetylcholine Receptor-Related Cholinergic Anti-Inflammatory Pathway. PLANTA MEDICA 2022; 88:33-42. [PMID: 33682914 DOI: 10.1055/a-1385-8015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Berberine is an isoquinoline derivative alkaloid extracted from Chinese herbs. Recent studies have demonstrated the therapeutic effect of berberine on glucose metabolic disorders. However, its specific mechanism is still unclear. Our study aimed to research the glucose-lowering effect of berberine in diabetic rats and to reveal the possible role of the cholinergic anti-inflammatory pathway. Diabetic rats induced by administration of a high-calorie diet and streptozocin tail vein injection were assessed by the oral glucose tolerance test. Then, the diabetic rats were divided into two groups, those with or without the alpha7 nicotinic acetylcholine receptor gene downregulated, respectively, followed by treatment including berberine for 6 weeks. Results of this study show that the administration of berberine downregulated levels of fasting blood glucose and fasting insulin, and ameliorated insulin resistance in diabetic rats. Treatment with berberine inhibited acetylcholinesterase activity, and upregulated acetylcholine levels in the serum and alpha7 nicotinic acetylcholine receptor gene expression in the liver tissue. Meanwhile, berberine reversed elevated expression of cytokines interleukin-1β and TNF-α in the serum and downregulated nuclear factor κB expression. However, berberine administration showed no glucose-lowering or anti-inflammatory effect in diabetic rats in which alpha7 nicotinic acetylcholine receptor gene expression was downregulated, and acetylcholinesterase activity was also significantly inhibited. In conclusion, berberine may ameliorate glucose metabolism by activating the alpha7 nicotinic acetylcholine receptor-mediated cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanlin Ren
- Department of Traditional Chinese Medicine, ZhongShan hospital of Hubei province, Wuhan, Hubei, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
78
|
Fereidouni A, Khaleghian A, Mousavi-Niri N, Moradikor N. The effects of supplementation of Nannochloropsis oculata microalgae on biochemical, inflammatory and antioxidant responses in diabetic rats. Biomol Concepts 2022; 13:314-321. [PMID: 36315027 DOI: 10.1515/bmc-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Diabetes is accompanied by inflammation and oxidation. Supplementation of anti-inflammatory and antioxidant compounds can prevent the progression of diabetes. This study aimed to investigate the effects of supplementation of Nannochloropsis oculata microalgae (NOM) on the inflammatory and antioxidant responses in diabetic rats. Sixty male rats were divided into six groups as diabetic and non-diabetic rats receiving 0, 10 and 20 mg/kg of body weight of NOM daily for 21 days. Body weight, the serum concentrations of insulin and glucose and the tissue concentrations of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione peroxidase (GPx) were assessed. The results showed that induction of diabetes significantly reduced the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while increasing the concentrations of glucose, MDA, IL-1β, IL-6, NF-κB and TNF-α. Daily oral administration of NOM (10 and 20 mg/kg) significantly maintained the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while preventing the increase in the concentrations of glucose, MDA, IL-1β and TNF-α. In conclusion, diabetes caused inflammation and oxidation while NOM worked as a natural anti-inflammatory and antioxidant compound.
Collapse
Affiliation(s)
- Ali Fereidouni
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Khaleghian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrollah Moradikor
- Department of Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
79
|
Zhao L, Tao X, Wan C, Dong D, Wang C, Xi Q, Liu Y, Song T. Astaxanthin alleviates inflammatory pain by regulating the p38 mitogen-activated protein kinase and nuclear factor-erythroid factor 2-related factor/heme oxygenase-1 pathways in mice. Food Funct 2021; 12:12381-12394. [PMID: 34825683 DOI: 10.1039/d1fo02326h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory pain is a complex process that has a substantial negative impact on post-injury quality of life. Astaxanthin (AST), which is a lipid-soluble red-orange carotenoid that is found in lobsters, inhibits the development and maintenance of inflammation in mice via its antioxidant and anti-inflammatory activities. However, the specific mechanisms underlying these effects remain unclear. In this study, we aimed to elucidate the mechanism by which astaxanthin alleviated inflammation using a mouse model with Complete Freund's adjuvant (CFA)-induced inflammatory pain. Mechanical allodynia and thermal hyperalgesia were observed on days 1-14 post CFA injection. Expression of p38 mitogen-activated protein kinase (MAPK) in the left paw and L4-6 dorsal root ganglia (DRG) were upregulated in the CFA-induced mice. Expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were also increased. Astaxanthin relieved mechanical allodynia and thermal hyperalgesia induced by CFA and inhibited the inflammatory response (e.g., infiltration of inflammatory cells and production of inflammatory factors) in the ipsilateral paw and DRG. Additionally, AST inhibited p38 MAPK and enhanced Nrf2/HO-1 contents in the left paw and DRG, and reversed the pain induced by p38 MAPK agonist and Nrf2 inhibitors. These findings suggest that AST exerts anti-inflammatory effects and regulates p38 MAPK and Nrf2/HO-1 to alleviate inflammatory pain. AST may be a potential therapeutic agent for relieving inflammation.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chengfu Wan
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Daosong Dong
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chenglong Wang
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Qi Xi
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Yan Liu
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| |
Collapse
|
80
|
Li G, Zhang C, Liang W, Zhang Y, Shen Y, Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. PHARMACEUTICAL BIOLOGY 2021; 59:21-30. [PMID: 33417512 PMCID: PMC7808376 DOI: 10.1080/13880209.2020.1865407] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Berberine (BBR) is used to treat diarrhoea and gastroenteritis in the clinic. It was found to have anticolon cancer effects. OBJECTIVE To study the anticolon cancer mechanism of BBR by connectivity map (CMAP) analysis. MATERIALS AND METHODS CMAP based mechanistic prediction was conducted by comparing gene expression profiles of 10 μM BBR treated MCF-7 cells with that of clinical drugs such as helveticoside, ianatoside C, pyrvinium, gossypol and trifluoperazine. The treatment time was 12 h and two biological replications were performed. The DMSO-treated cells were selected as a control. The interaction between 100 μM BBR and target protein was measured by cellular thermal shift assay. The protein expression of 1-9 μM BBR treated SW480 cells were measured by WB assay. Apoptosis, cell cycle arrest, mitochondrial membrane potential (MMP) of 1-9 μM BBR treated SW480 cells were measured by flow cytometry and Hoechst 33342 staining methods. RESULTS CMAP analysis found 14 Hsp90, HDAC, PI3K or mTOR protein inhibitors have similar functions with BBR. The experiments showed that BBR inhibited SW480 cells proliferation with IC50 of 3.436 μM, induced apoptosis, autophage, MMP depolarization and arrested G1 phase of cell cycle at 1.0 μM. BBR dose-dependently up-regulated PTEN, while inhibited Notch1, PI3K, Akt and mTOR proteins at 1.0-9.0 μM (p < 0.05). BBR also acted synergistically with Hsp90 and HDAC inhibitor (0.01 μM) in SW480 cells at 0.5 and 1.0 μM. DISCUSSION AND CONCLUSIONS The integrative gene expression-based chemical genomic method using CMAP analysis may be applicable for mechanistic studies of other multi-targets drugs.
Collapse
Affiliation(s)
- Ge Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chuang Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Wei Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanbing Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xinhui Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
81
|
Errico S, Spagnoletta A, Verardi A, Moliterni S, Dimatteo S, Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr Rev Food Sci Food Saf 2021; 21:148-197. [PMID: 34773434 DOI: 10.1111/1541-4337.12863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.
Collapse
Affiliation(s)
- Simona Errico
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Anna Spagnoletta
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Alessandra Verardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Stefania Moliterni
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Salvatore Dimatteo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Paola Sangiorgio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
82
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
83
|
Abdelhameed RFA, Ibrahim AK, Elfaky MA, Habib ES, Mahamed MI, Mehanna ET, Darwish KM, Khodeer DM, Ahmed SA, Elhady SS. Antioxidant and Anti-Inflammatory Activity of Cynanchum acutum L. Isolated Flavonoids Using Experimentally Induced Type 2 Diabetes Mellitus: Biological and In Silico Investigation for NF-κB Pathway/miR-146a Expression Modulation. Antioxidants (Basel) 2021; 10:antiox10111713. [PMID: 34829584 PMCID: PMC8615122 DOI: 10.3390/antiox10111713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-β-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-β-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Correspondence: (A.K.I.); (E.T.M.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Mayada I. Mahamed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.I.); (E.T.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina M. Khodeer
- Department of Pharmacology, and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
| |
Collapse
|
84
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
85
|
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.
AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.
METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”
RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.
CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.
Collapse
|
86
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
87
|
Laouali N, MacDonald CJ, Shah S, El Fatouhi D, Mancini FR, Fagherazzi G, Boutron-Ruault MC. Dietary Copper/Zinc Ratio and Type 2 Diabetes Risk in Women: The E3N Cohort Study. Nutrients 2021; 13:2502. [PMID: 34444662 PMCID: PMC8400926 DOI: 10.3390/nu13082502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The serum copper (Cu) to zinc (Zn) ratio could be an important determinant of Type 2 diabetes (T2D) risk, but prospective epidemiological data are scarce. We aimed to investigate the association between T2D incidence and the dietary Cu/Zn ratio. A total of 70,991 women from the E3N cohort study were followed for 20 years. The intakes of copper and zinc were estimated at baseline using a validated food frequency questionnaire. We identified and validated 3292 incident T2D cases. Spline analysis showed that a Cu/Zn ratio < 0.55 was associated with a lower risk of T2D. Subgroup analyses comparing women in the highest versus the lowest quintile of Cu/Zn ratio showed the same pattern of association for obese women and those with zinc intake ≥8 mg/day. However, for women with zinc intake <8 mg/day, higher Cu/Zn ratio appeared to be associated with higher T2D risk. Our findings suggest that a lower dietary Cu/Zn ratio is associated with a lower T2D risk, especially among obese women and women with zinc intake >8 mg/day. Further studies are warranted to validate our results.
Collapse
Affiliation(s)
- Nasser Laouali
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, Amherst, MA 01002, USA
| | - Conor-James MacDonald
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
| | - Sanam Shah
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
| | - Douae El Fatouhi
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
| | - Francesca Romana Mancini
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Population Health, Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg;
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, CEDEX, 94800 Villejuif, France; (N.L.); (C.-J.M.); (S.S.); (D.E.F.); (F.R.M.)
| |
Collapse
|
88
|
Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction. Int J Mol Sci 2021; 22:ijms22157772. [PMID: 34360538 PMCID: PMC8345941 DOI: 10.3390/ijms22157772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2DM) and cardiovascular disease (CVD) are closely associated and represent a key public health problem worldwide. An excess of adipose tissue, NAFLD, and gut dysbiosis establish a vicious circle that leads to chronic inflammation and oxidative stress. Caloric restriction (CR) is the most promising nutritional approach capable of improving cardiometabolic health. However, adherence to CR represents a barrier to patients and is the primary cause of therapeutic failure. To overcome this problem, many different nutraceutical strategies have been designed. Based on several data that have shown that CR action is mediated by AMPK/SIRT1 activation, several nutraceutical compounds capable of activating AMPK/SIRT1 signaling have been identified. In this review, we summarize recent data on the possible role of berberine, resveratrol, quercetin, and L-carnitine as CR-related nutrients. Additionally, we discuss the limitations related to the use of these nutrients in the management of T2DM and CVD.
Collapse
|
89
|
Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int J Mol Sci 2021; 22:ijms22147644. [PMID: 34299261 PMCID: PMC8305176 DOI: 10.3390/ijms22147644] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many approaches have been used in the effective management of type 2 diabetes mellitus. A recent paradigm shift has focused on the role of adipose tissues in the development and treatment of the disease. Brown adipose tissues (BAT) and white adipose tissues (WAT) are the two main types of adipose tissues with beige subsets more recently identified. They play key roles in communication and insulin sensitivity. However, WAT has been shown to contribute significantly to endocrine function. WAT produces hormones and cytokines, collectively called adipocytokines, such as leptin and adiponectin. These adipocytokines have been proven to vary in conditions, such as metabolic dysfunction, type 2 diabetes, or inflammation. The regulation of fat storage, energy metabolism, satiety, and insulin release are all features of adipose tissues. As such, they are indicators that may provide insights on the development of metabolic dysfunction or type 2 diabetes and can be considered routes for therapeutic considerations. The essential roles of adipocytokines vis-a-vis satiety, appetite, regulation of fat storage and energy, glucose tolerance, and insulin release, solidifies adipose tissue role in the development and pathogenesis of diabetes mellitus and the complications associated with the disease.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Aldeam Facey
- Mona Academy of Sport, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Correspondence:
| |
Collapse
|
90
|
Sundus S, Hira K, Sohail N, Habiba, Tariq A, Ara J, Sultana V, Ehteshamul-Haque S. Protective role of Pandanus tectorius Parkinson ex Du Roi in diabetes, hyperlipidemia, liver and kidney dysfunction in alloxan diabetic rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetes mellitus (DM), an endocrine disease is characterized by increased level of blood glucose. Diabetes may affect other functions of the body and organs including, renal function and lipid metabolism. Pandanus tectorius (P. tectorius) Parkinson ex Du Roi is a small tree used in folk medicine in treatment of many diseases.
Methods
Diabetes in rats was induced by intraperitoneal injection of alloxan at a dose of 100 mg/kg body weight for 3 days. Water and ethanol extracts of root, stem and leave of P. tectorius were given to rats at 200 mg/kg body weight at day 3. Rats were sacrificed on day 4 after 12 h fasting. Serum glucose and other biochemical parameters like liver enzymes; [alanine aminotransferases (ALT), aspartate aminotransferases (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)], kidney parameters (urea & creatinine), lipid profile [total cholesterol, HDL and LDL cholesterol and triglycerides] and coronary artery risk index (CRI) were estimated in blood serum. Antioxidant potential, polyphenol content and phytochemical constituents in different parts of P. tectorius were also determined.
Results
Results showed that water extract of stem and ethanol extract of root of P. tectorius produced maximum fall in sugar level of alloxan diabetic rats. Extracts of all three plant parts significantly dropped the increased level of urea and creatinine with maximum reduction in creatinine was observed by water extract of root. P.tectorius extracts showed positive effect on liver enzymes and lipid profile by bringing them closer to normal range in comparison to alloxan diabetic control rats. Phytochemical screening indicated presence of flavonoids, alkaloids, tannins and saponin in P. tectorius. In DPPH free radical scavenging test the highest antioxidant potential was found in water extract of roots, while ethanol extract of stem also showed good activity.
Conclusion
The study demonstrated that different parts of P.tectorius have potential to attenuate diabetes and diabetes related complications like, liver, kidney dysfunction and lipid metabolism.
Collapse
|
91
|
Chen C, Lin Q, Zhu XY, Xia J, Mao T, Chi T, Wan J, Lu JJ, Li Y, Cui J, Liu J, Cui XY, Zhang J, Zhou K, Li D. Pre-clinical Evidence: Berberine as a Promising Cardioprotective Candidate for Myocardial Ischemia/Reperfusion Injury, a Systematic Review, and Meta-Analysis. Front Cardiovasc Med 2021; 8:646306. [PMID: 34124190 PMCID: PMC8187562 DOI: 10.3389/fcvm.2021.646306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: Myocardial ischemia/reperfusion (I/R) injury is one of the causes of most cardiomyocyte injuries and deaths. Berberine (BBR) has been suggested a potential to exert protective effects against myocardial I/R injury. This systematic review aims to determine the intrinsic mechanisms of BBR's protective effects in myocardial I/R injury. Methods: Seven databases were searched for studies performed from inception to July 2020. Methodological quality was assessed by SYRCLE's-RoB tool. Results: Ten studies including a total of 270 animals were included in this study. The methodology quality scores of the included studies ranged from 5 to 7 points. The meta-analysis we conducted demonstrated that BBR significantly reduced myocardial infarct size and the incidence of ventricular arrhythmia, compared to control groups (P < 0.00001). Cardiac function of animals in the BBR treatment group was also markedly increased (P < 0.00001). The index of myocardial apoptosis and the levels of biomarkers of myocardial infarction (LDH and CK) were also decreased in the BBR treatment groups compared to the control groups (P < 0.00001). Conclusions: The pre-clinical evidence, according to our study, showed that BBR is a promising therapeutic agent for myocardial I/R injury. However, this conclusion should be further investigated in clinical studies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Ying Zhu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Junyan Xia
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingqian Zhang
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
92
|
Liu Y, Long S, Zhang S, Tan Y, Wang T, Wu Y, Jiang T, Liu X, Peng D, Liu Z. Synthesis and antioxidant activities of berberine 9- O-benzoic acid derivatives. RSC Adv 2021; 11:17611-17621. [PMID: 35480221 PMCID: PMC9033176 DOI: 10.1039/d1ra01339d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Although berberine (BBR) shows antioxidant activity, its activity is limited. We synthesized 9-O-benzoic acid berberine derivatives, and their antioxidant activities were screened via ABTS, DPPH, HOSC and FRAP assays. The para-position was modified with halogen elements on the benzoic acid ring, which led to an enhanced antioxidant activity and the substituent on the ortho-position was found to be better than the meta-position. Compounds 8p, 8c, 8d, 8i, 8j, 8l, and especially 8p showed significantly higher antioxidant activities, which could be attributed to the electronic donating groups. All the berberine derivatives possessed proper lipophilicities. In conclusion, compound 8p is a promising antioxidant candidate with remarkable elevated antioxidant activity and moderate lipophilicity. Although berberine (BBR) shows antioxidant activity, its activity is limited.![]()
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shuo Long
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| |
Collapse
|
93
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
94
|
Guo X, Wu Y, Zhang C, Wu L, Qin L, Liu T. Network Pharmacology Analysis of ZiShenWan for Diabetic Nephropathy and Experimental Verification of Its Anti-Inflammatory Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1577-1594. [PMID: 33883881 PMCID: PMC8055297 DOI: 10.2147/dddt.s297683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The inflammatory response plays a critical role in DN. ZiShenWan (ZSW) is a classical Chinese medicinal formula with remarkable clinical therapeutic effects on DN, but its pharmacological action mechanisms remain unclear. Aim In this study, a network pharmacology approach was applied to investigate the pharmacological mechanisms of ZSW in DN therapy. Based on the results of network analysis, the core targets and signaling pathways related to anti-inflammatory effect were verified via experiments in vivo. Methods The candidate chemical ingredients of ZSW as well as its putative targets and known therapeutic targets of DN were acquired from appropriate databases. The “herb-ingredient-target” network for ZSW in DN treatment was established. The protein–protein interaction (PPI) network of potential targets was constructed to screen the core targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition to biochemical and pathological indicators, the core targets and signaling pathways associated with inflammation were partially validated in db/db mice at molecular level. Results A total of 56 active ingredients in ZSW and 166 DN-related targets were selected from databases. A high proportion of core targets and top signaling pathways participate in inflammation. ZSW markedly alleviated renal injuries pathologically and regulated related biomarkers. In particular, ZSW significantly inhibited the exaggerated release of inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor receptor (TNF)-ɑ, and monocyte chemotactic protein (MCP)-1 as well as regulating p38 mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K)–protein kinase B (Akt) signaling pathways in db/db mice. Conclusion This study first comprehensively investigated the active ingredients, potential targets, and molecular mechanism of ZSW as a therapy for DN. ZSW achieved renoprotective effects in DN via regulation of multiple targets and signaling pathways, especially by alleviating inflammation. Results indicate that ZSW is a promising multi-target therapeutic approach for DN treatment.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Nephrology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
95
|
Al-Aubaidy HA, Dayan A, Deseo MA, Itsiopoulos C, Jamil D, Hadi NR, Thomas CJ. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients 2021; 13:1133. [PMID: 33808180 PMCID: PMC8065815 DOI: 10.3390/nu13041133] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The benefits of a Mediterranean Diet (MedDiet) in the management of diabetes have been reported, but the contribution of polyphenol-rich citrus fruit has not been studied widely. Here, we report the sub-study findings of a previously conducted MedDiet intervention clinical trial in patients with type 2 diabetes mellitus (T2DM), where we aimed to measure the diet intervention effects on plasma citrus bioflavonoids levels and biomarkers of inflammation and oxidative stress. We analysed plasma samples from 19 (of original 27) participants with T2DM who were randomly assigned to consume the MedDiet intervention or their usual diet for 12 weeks and then crossed over to the alternate diet. Compared with baseline, MedDiet significantly increased levels of the citrus bioflavonoids naringin, hesperitin and hesperidin (by 60%, 58% and 39%, respectively, p < 0.05) and reduced plasma levels of the pro-inflammatory cytokine IL-6 (by 49%, p = 0.016). Oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) decreased by 32.4% (p = 0.128). Usual diet did not induce these beneficial changes. The reduced inflammatory profile of T2DM participants may, in part, be attributed to the anti-inflammatory actions of citrus bioflavonoids. Together with indications of improved oxidative stress, these findings add to the scientific evidence base for beneficial consumption of citrus fruit in the MedDiet pattern.
Collapse
Affiliation(s)
- Hayder A. Al-Aubaidy
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia; (A.D.); (D.J.); (C.J.T.)
| | - Aanchal Dayan
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia; (A.D.); (D.J.); (C.J.T.)
| | - Myrna A. Deseo
- ARC Research Hub for Medicinal Agriculture, La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne 3086, Australia;
| | - Catherine Itsiopoulos
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne 3086, Australia;
| | - Dina Jamil
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia; (A.D.); (D.J.); (C.J.T.)
| | - Najah R. Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Al-Najaf 0054, Iraq;
| | - Colleen J. Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia; (A.D.); (D.J.); (C.J.T.)
| |
Collapse
|
96
|
Gusti AMT, Qusti SY, Bahijri SM, Toraih EA, Bokhari S, Attallah SM, Alzahrani A, Alshehri WMA, Alotaibi H, Fawzy MS. Glutathione S-Transferase ( GSTT1 rs17856199) and Nitric Oxide Synthase ( NOS2 rs2297518) Genotype Combination as Potential Oxidative Stress-Related Molecular Markers for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:1385-1403. [PMID: 33790606 PMCID: PMC8006960 DOI: 10.2147/dmso.s300525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Deregulation of the antioxidant enzymes was implicated in pathogenesis and complications of type 2 diabetes mellitus (T2DM). The data relate the genetic variants of these enzymes to T2DM are inconsistent among various populations. PURPOSE We aimed to explore the association of 13 genetic variants of "superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and nitric oxide synthase (NOS)" with T2DM susceptibility and the available clinical laboratory data. SUBJECTS AND METHODS A total of 384 individuals were enrolled in this work. Different genotypes of the genes mentioned above were characterized using TaqMan OpenArray Genotyping assays on a Real-Time polymerase chain reaction system. RESULTS After age- and sex-adjustment, among the studied 13 variants, GSTT1 rs17856199 was associated with T2DM under homozygote (OR=3.42; 95% CI:1.04-11.2, p=0.031), and recessive (OR=3.57; 95% CI: 1.11-11.4, p=0.029) comparison models. The NOS2 rs2297518*A allele was more frequent among the T2DM cohort (58.1% vs 35.4%, p<0.001) and showed a dose-response effect; being heterozygote was associated with higher odds for developing DM (OR=4.06, 95% CI=2.13-7.73, p<0.001), whereas being AA homozygote had double the risk (OR=9.06, 95% CI=3.41-24.1, p<0.001). Combined NOS2 rs2297518*A and either GSTT1 rs17856199*A or *C genotype carriers were more likely to develop T2DM. Different associations with sex, BMI, hyperglycemia, and/or hyperlipidemia were evident. The principal component analysis revealed NOS2 rs2297518*G, old age, dyslipidemia, high systolic blood pressure, and elevated HbA1c were the main classifiers of T2DM patients. CONCLUSION The oxidative stress-related molecular markers, GSTT1 rs17856199 and NOS2 rs2297518 variants were significantly associated with T2DM risk and phenotype in the study population.
Collapse
Affiliation(s)
- Amani M T Gusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory, Biochemistry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Safaa Y Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suhad M Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Saudi Diabetes Research Group, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samia Bokhari
- Department of Endocrinology and Diabetes, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Sami M Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Pathology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulwahab Alzahrani
- Department of Molecular Biology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Wafaa M A Alshehri
- Department of Chemistry, Faculty of Science, University of Bisha, Al Namas, Saudi Arabia
| | | | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| |
Collapse
|
97
|
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, Ye L, Chen X, Li P, Yuan Y, Zhang H, Xie L, Li X, Xiao J, Wang J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12:107. [PMID: 33479232 PMCID: PMC7819983 DOI: 10.1038/s41419-021-03407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.
Collapse
Affiliation(s)
- Rui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China ,grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China ,grid.12981.330000 0001 2360 039XSchool of Chemistry, Sun Yat-sen University, 510275 Guangzhou, Guangdong China
| | - Beini Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Chengbiao Wu
- grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China
| | - Duohui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yanqing Wu
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Libing Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Luxia Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiongjian Chen
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Peifeng Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yuan Yuan
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Hongyu Zhang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Ling Xie
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiaokun Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Xiao
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
98
|
Wang Y, Tai YL, Zhao D, Zhang Y, Yan J, Kakiyama G, Wang X, Gurley EC, Liu J, Liu J, Liu J, Lai G, Hylemon PB, Pandak WM, Chen W, Zhou H. Berberine Prevents Disease Progression of Nonalcoholic Steatohepatitis through Modulating Multiple Pathways. Cells 2021; 10:210. [PMID: 33494295 PMCID: PMC7912096 DOI: 10.3390/cells10020210] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The disease progression of nonalcoholic fatty liver disease (NAFLD) from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is driven by multiple factors. Berberine (BBR) is an ancient Chinese medicine and has various beneficial effects on metabolic diseases, including NAFLD/NASH. However, the underlying mechanisms remain incompletely understood due to the limitation of the NASH animal models used. Methods: A high-fat and high-fructose diet-induced mouse model of NAFLD, the best available preclinical NASH mouse model, was used. RNAseq, histological, and metabolic pathway analyses were used to identify the potential signaling pathways modulated by BBR. LC-MS was used to measure bile acid levels in the serum and liver. The real-time RT-PCR and Western blot analysis were used to validate the RNAseq data. Results: BBR not only significantly reduced hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also restored the bile acid homeostasis by targeting multiple pathways. In addition, BBR markedly inhibited inflammation by reducing immune cell infiltration and inhibition of neutrophil activation and inflammatory gene expression. Furthermore, BBR was able to inhibit hepatic fibrosis by modulating the expression of multiple genes involved in hepatic stellate cell activation and cholangiocyte proliferation. Consistent with our previous findings, BBR's beneficial effects are linked with the downregulation of microRNA34a and long noncoding RNA H19, which are two important players in promoting NASH progression and liver fibrosis. Conclusion: BBR is a promising therapeutic agent for NASH by targeting multiple pathways. These results provide a strong foundation for a future clinical investigation.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Qianjiang, Hefei 230012, China;
| | - Yun-Ling Tai
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Derrick Zhao
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Yuan Zhang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Junkai Yan
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Genta Kakiyama
- Department of Internal Medicine, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (G.K.); (W.M.P.)
| | - Xuan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Emily C. Gurley
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA;
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L6M0L8, Canada;
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia, 23298 Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - William M. Pandak
- Department of Internal Medicine, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (G.K.); (W.M.P.)
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Qianjiang, Hefei 230012, China;
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| |
Collapse
|
99
|
Shao J, Liu S, Zheng X, Chen J, Li L, Zhu Z. Berberine promotes peri-implant osteogenesis in diabetic rats by ROS-mediated IRS-1 pathway. Biofactors 2021; 47:80-92. [PMID: 33233028 DOI: 10.1002/biof.1692] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 02/04/2023]
Abstract
Accompanying with diabetes mellitus-induced osteoporosis (DM-OS), diabetic patients show poor peri-implant osteogenesis after implantation for dentition defect. Berberine (BBR), a candidate oral hypoglycemic agent, is a promising agent for treating DM-OS. In this study, BBR was applied on DM rats and high-glucose-cultured bone mesenchymal stem cells (BMSCs) to investigate its therapeutic mechanism on DM-OS, thus laying a theoretical basis for the future application of BBR in implant restoration. Phenotypes were assessed in the DM rats after 4 w of gavage with BBR. Furthermore, BMSCs were cultured with high glucose and BBR. Cell Counting Kit-8, 2',7'-dichlorofluorescin diacetate (H2 DCF-DA), quantitative real-time PCR (qRT-PCR), and western blot were performed to estimate the cell proliferation, oxidative stress, and osteogenic differentiation. Moreover, the DM rats treated with BBR and insulin receptor substrate-1 anti-sense oligonucleotide (IRS-1-ASO) underwent a 4-w implant-healing period and then micro computed tomography (Micro-CT) and histology were performed to verify the mechanism. Results showed that the 4-w administration of BBR markedly improved the glucose metabolism and bone metabolism in the DM rats. in vitro experiments revealed that BBR alleviated high-glucose-inhibited osteogenesis of the BMSCs by upregulating reactive oxygen species (ROS)-mediated IRS-1 signaling. Besides, injection of IRS-1-ASO abolished the BBR promotion of implant osseointegration in the DM rats. In conclusion, targeting ROS-mediated IRS-1 signaling, BBR acted as an efficient agent to advance osseointegration in DM, which indicated that BBR use is a good strategy for future implants restoration in diabetic patients.
Collapse
Affiliation(s)
- Jingjing Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
100
|
Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, Du H, Xu T, Jiang G, Fan G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed Pharmacother 2020; 133:110984. [PMID: 33186794 DOI: 10.1016/j.biopha.2020.110984] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The increased incidence of metabolic diseases (e.g., diabetes and obesity) has seriously affected human health and life safety worldwide. It is of great significance to find effective drugs from natural compounds to treat metabolic diseases. Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, exists in many traditional medicinal plants. In recent years, BBR has received widespread attention due to its good potential in the treatment of metabolic diseases. In order to promote the basic research and clinical application of BBR, this review provides a timely and comprehensive summary of the pharmacological and clinical advances of BBR in the treatment of five metabolic diseases, including type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease, hyperlipidemia, and gout. Both animal and clinical studies have proved that BBR has good therapeutic effects on these five metabolic diseases. The therapeutic effects of BBR are based on regulating various metabolic aspects and pathophysiological procedures. For example, it can promote insulin secretion, improve insulin resistance, inhibit lipogenesis, alleviate adipose tissue fibrosis, reduce hepatic steatosis, and improve gut microbiota disorders. Collectively, BBR may be a good and promising drug candidate for the treatment of metabolic diseases. More studies, especially clinical trials, are needed to further confirm its molecular mechanisms and targets. In addition, large-scale, long-term and multi-center clinical trials are necessary to evaluate the efficacy and safety of BBR in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Xinmei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guihua Jiang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|