51
|
Hufnagel DH, Wilson AJ, Saxon J, Blackwell TS, Watkins J, Khabele D, Crispens MA, Yull FE, Beeghly-Fadiel A. Expression of p52, a non-canonical NF-kappaB transcription factor, is associated with poor ovarian cancer prognosis. Biomark Res 2020; 8:45. [PMID: 32974032 PMCID: PMC7493985 DOI: 10.1186/s40364-020-00227-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The canonical and non-canonical nuclear factor-kappaB (NF-κB) signaling pathways have key roles in cancer, but studies have previously evaluated only the association of canonical transcription factors and ovarian cancer survival. Although a number of in vitro and in vivo studies have demonstrated mechanisms by which non-canonical NF-κB signaling potentially contributes to ovarian cancer progression, a prognostic association has yet to be shown in the clinical context. METHODS We assayed p65 and p52 (major components of the canonical and non-canonical NF-κB pathways) by immunohistochemistry in epithelial ovarian tumor samples; nuclear and cytoplasmic staining were semi-quantified by H-scores and dichotomized at median values. Associations of p65 and p52 with progression-free survival (PFS) and overall survival (OS) were quantified by Hazard Ratios (HR) from proportional-hazards regression. RESULTS Among 196 cases, median p52 and p65 H-scores were higher in high-grade serous cancers. Multivariable regression models indicated that higher p52 was associated with higher hazards of disease progression (cytoplasmic HR: 1.54; nuclear HR: 1.67) and death (cytoplasmic HR: 1.53; nuclear HR: 1.49), while higher nuclear p65 was associated with only a higher hazard of disease progression (HR: 1.40) in unadjusted models. When cytoplasmic and nuclear staining were combined, p52 remained significantly associated with increased hazards of disease progression (HR: 1.91, p = 0.004) and death (HR: 1.70, p = 0.021), even after adjustment for p65 and in analyses among only high-grade serous tumors. CONCLUSIONS This is the first study to demonstrate that p52, a major component of non-canonical NF-κB signaling, may be an independent prognostic factor for epithelial ovarian cancer, particularly high-grade serous ovarian cancer. Approaches to inhibit non-canonical NF-κB signaling should be explored as novel ovarian cancer therapies are needed.
Collapse
Affiliation(s)
| | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Jamie Saxon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Timothy S. Blackwell
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Jaclyn Watkins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63130 USA
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Fiona E. Yull
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
52
|
Wang M, Zhang Y, Xu Z, Qian P, Sun W, Wang X, Jian Z, Xia T, Xu Y, Tang J. RelB sustains endocrine resistant malignancy: an insight of noncanonical NF-κB pathway into breast Cancer progression. Cell Commun Signal 2020; 18:128. [PMID: 32807176 PMCID: PMC7430126 DOI: 10.1186/s12964-020-00613-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The activation of the NF-κB pathway plays a crucial role in the progression of breast cancer (BCa) and also involved in endocrine therapy resistance. On the contrary to the canonical NF-κB pathway, the effect of the noncanonical NF-κB pathway in BCa progression remains elusive. METHODS BCa tumor tissues and the corresponding cell lines were examined to determine the correlation between RelB and the aggressiveness of BCa. RelB was manipulated in BCa cells to examine whether RelB promotes cell proliferation and motility by quantitation of apoptosis, cell cycle, migration, and invasion. RNA-Seq was performed to identify the critical RelB-regulated genes involved in BCa metastasis. Particularly, RelB-regulated MMP1 transcription was verified using luciferase reporter and ChIP assay. Subsequently, the effect of RelB on BCa progression was further validated using BCa mice xenograft models. RESULTS RelB uniquely expresses at a high level in aggressive BCa tissues, particularly in triple-negative breast cancer (TNBC). RelB promotes BCa cell proliferation through increasing G1/S transition and/or decreasing apoptosis by upregulation of Cyclin D1 and Bcl-2. Additionally, RelB enhances cell mobility by activating EMT. Importantly, RelB upregulates bone metastatic protein MMP1 expression through binding to an NF-κB enhancer element located at the 5'-flanking region. Accordingly, in vivo functional validation confirmed that RelB deficiency impairs tumor growth in nude mice and inhibits lung metastasis in SCID mice. Video abstract.
Collapse
Affiliation(s)
- Mei Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Zhi Xu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Peipei Qian
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Xiumei Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
| | - Zhang Jian
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| | - Tiansong Xia
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| | - Yong Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009 P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166 P. R. China
- Department of Toxicology and Cancer Biology, University of Kentucky Markey Cancer Center, 1059 VA Dr, Lexington, KY 40513 USA
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 P. R. China
| |
Collapse
|
53
|
Wolter M, de Vink P, Neves JF, Srdanović S, Higuchi Y, Kato N, Wilson A, Landrieu I, Brunsveld L, Ottmann C. Selectivity via Cooperativity: Preferential Stabilization of the p65/14-3-3 Interaction with Semisynthetic Natural Products. J Am Chem Soc 2020; 142:11772-11783. [PMID: 32501683 PMCID: PMC8022324 DOI: 10.1021/jacs.0c02151] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Natural
compounds are an important class of potent drug molecules
including some retrospectively found to act as stabilizers of protein–protein
interactions (PPIs). However, the design of synthetic PPI stabilizers
remains an understudied approach. To date, there are limited examples
where cooperativity has been utilized to guide the optimization of
a PPI stabilizer. The 14-3-3 scaffold proteins provide an excellent
platform to explore PPI stabilization because these proteins mediate
several hundred PPIs, and a class of natural compounds, the fusicoccanes,
are known to stabilize a subset of 14-3-3 protein interactions. 14-3-3
has been reported to negatively regulate the p65 subunit of the NF-κB
transcription factor, which qualifies this protein complex as a potential
target for drug discovery to control cell proliferation. Here, we
report the high-resolution crystal structures of two 14-3-3 binding
motifs of p65 in complex with 14-3-3. A semisynthetic natural product
derivative, DP-005, binds to an interface pocket of the p65/14-3-3
complex and concomitantly stabilizes it. Cooperativity analyses of
this interaction, and other disease relevant 14-3-3-PPIs, demonstrated
selectivity of DP-005 for the p65/14-3-3 complex. The adaptation of
a cooperative binding model provided a general approach to characterize
stabilization and to assay for selectivity of PPI stabilizers.
Collapse
Affiliation(s)
- Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Pim de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - João Filipe Neves
- U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille F-59000, France.,CNRS ERL9002 Integrative Structural Biology, Lille F-59000, France
| | - Sonja Srdanović
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Andrew Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Isabelle Landrieu
- U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille F-59000, France.,CNRS ERL9002 Integrative Structural Biology, Lille F-59000, France
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Department of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
54
|
Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, Aruni W, Aladresi AAM, Shair OHM, Alharbi SA, Chinnathambi A. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111773. [PMID: 31931385 DOI: 10.1016/j.jphotobiol.2019.111773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
Glioma is the prime cause of cancer allied mortality in adolescent people and it accounts about 80% of all malignant tumours. Eugenol is a major bioactive constituent present in the essential oils with numerous pharmacological benefits including nueroprotective activity. The major drawback of eugenol is its extreme volatile property and oxygen sensitivity therefore we increased the efficacy of drug; eugenol by encapsulating with chitosan polymer. Eugenol loaded chitosan polymer (EuCs) was characterized using FTIR, XRD, SEM, HR-TEM analysis and the encapsulation, drug release efficacy was assessed at in vitro condition. The induction of autophagy and anticancer efficacy of EuCs on glioma cells was evaluated with rat C6 glioma cells using MTT assay, acridine orange staining, immunocytochemical analysis of NFκβ protein expression and FLOW cytometric analysis. The anti-metastatic property of Eu-CS was assessed by immunoblotting and RT-PCR analysis of epithelial mesenchymal transition protein expression in EuCs treated rat C6 glioma cells. Our characterization analysis proves that EuCs possess essential physical and functional properties of copolymer to be utilized as a drug. Further the MTT analysis and AO staining confirms even in the presence of oncogenic inducer and autophagic inhibitors, EuCs exhibits apoptotic potency on rat C6 glioma cells. The result of immunocytochemical studies depicts the inhibition of NFκβ protein expression and flow cytometry studies confirm apoptosis induction by EuCs. The inhibition of metastasis by EuCs was proven by the decrease in epithelial mesenchymal transition protein expression in Eu-Cs treated rat C6 glioma cells. Over all our results authentically confirms eugenol loaded chitosan nanopolymer persuasively induces apoptosis and inhibits metastasis in rat C6 glioma cells.
Collapse
Affiliation(s)
- Zhenjiang Li
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province 475000, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hariprasath Lakshmanan
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Subramanian Kumaran
- Centre for Drug Discovery and Development, Col Dr.Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Wilson Aruni
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Aref Ali Mohammed Aladresi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
55
|
Liang L, Wu J, Luo J, Wang L, Chen ZX, Han CL, Gan TQ, Huang JA, Cai ZW. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett 2020; 19:519-526. [PMID: 31897166 PMCID: PMC6924048 DOI: 10.3892/ol.2019.11090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
The present study investigated the sensitization of 5-fluorouracil (5-FU)-resistant colon cancer cells in vitro, using oxymatrine, a Chinese herb, and a quinolizidine alkaloid compound extracted from the root of Sophora flavescens. The HCT-8 colon cancer cell line and its 5-FU-resistant subline HCT-8/5-FU were treated with 5-FU and oxymatrine, alone or in combination, at various doses. The cells were subsequently assessed for changes in cell viability, apoptosis and morphology and analyzed by fluorescence microscopy and western blotting. The data demonstrated that HCT-8/5-FU markedly increased the dose of 5-FU required for the suppression of tumor cell viability (78.77±1.90 µg/ml vs. 9.20±0.96 µg/ml in parental HCT-8 cells), whereas HCT-8/5-FU induced the tumor cell epithelial-mesenchymal transition (EMT). By contrast, oxymatrine alone and in combination with 5-FU altered HCT-8/5-FU cell morphology, apoptosis and EMT phenotypes. The combination of oxymatrine and 5-FU reduced the protein expression of snail family transcriptional repressor 2 and vimentin, phosphorylated p65 and induced the expression of E-cadherin, by inhibiting the nuclear factor κB (NF-κB) signaling pathway. In conclusion, the data from the present study demonstrated that EMT was associated with 5-FU chemoresistance in HCT-8/5-FU colon cancer cells, and that oxymatrine treatment was able to reverse such resistance. Oxymatrine may regulate tumor cell EMT and inactivate the NF-κB signaling pathway, and may therefore serve as a potential therapeutic drug to reverse 5-FU resistance in colon cancer cells.
Collapse
Affiliation(s)
- Li Liang
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Wu
- Department of Thoracic-Cardiac Surgery, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Jie Luo
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Wang
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zu Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Cheng Long Han
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ting Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie An Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zheng Wen Cai
- Department of Medical Oncology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
56
|
Yue Y, Liu L, Liu P, Li Y, Lu H, Li Y, Zhang G, Duan X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol Lett 2019; 19:1393-1399. [PMID: 32002030 PMCID: PMC6960385 DOI: 10.3892/ol.2019.11242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
2′,4′-dihydroxy-6′-methoxychalcone (cardamonin) is a natural compound with anti-proliferative effects on several cancer types including nasopharyngeal carcinoma. The effects of cardamonin on melanoma cells are unknown. The present study investigated the anti-proliferative effect of cardamonin on human melanoma cell lines (M14 and A375), and the underlying apoptosis inducing mechanisms. MTS assay showed that cardamonin inhibited M14 cells viability, and a reduction of the M14 cell density was also observed. Flow cytometry showed that cardamonin induced M14 cells apoptosis in a dose-dependent manner. Western blot analysis showed protein expression in M14 and A375; the pro-apoptotic protein BAX was upregulated, while the anti-apoptotic protein B-cell lymphoma-2 was downregulated. The protein expression of cleaved caspase-8, −9 and cleaved poly (ADP-ribose) polymerase was increased, whereas P65 was decreased. Furthermore, cardamonin inhibited M14 cell migration. These findings suggest that cardamonin may be a novel anticancer treatment for human melanoma.
Collapse
Affiliation(s)
- Yuyang Yue
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lijuan Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peipei Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuting Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Haitao Lu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanjia Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Guoqiang Zhang
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinsuo Duan
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
57
|
Evidence That Calebin A, a Component of Curcuma Longa Suppresses NF-B Mediated Proliferation, Invasion and Metastasis of Human Colorectal Cancer Induced by TNF-β (Lymphotoxin). Nutrients 2019; 11:nu11122904. [PMID: 31805741 PMCID: PMC6950382 DOI: 10.3390/nu11122904] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Natural polyphenol Calebin A has been recently discovered as a novel derivate from turmeric with anti-cancer potential. Pro-inflammatory cytokine TNF-β (lymphotoxin α) is a stimulant for cancer cell malignity via activation of NF-κB pathway, also in colorectal cancer (CRC). Here, we investigated the potential of Calebin A to suppress TNF-β-induced NF-κB signalling in CRC. Materials and Methods: Three distinct CRC cell lines (HCT116, RKO, SW480) were treated in monolayer or 3-dimensional alginate culture with TNF-β, Calebin A, curcumin, BMS-345541, dithiothreitol (DTT) or antisense oligonucleotides-(ASO) against NF-κB. Results: Calebin A suppressed dose-dependent TNF-β-induced CRC cell vitality and proliferation in monolayer culture. Further, in alginate culture, Calebin A significantly suppressed TNF-β-enhanced colonosphere development, as well as invasion and colony formation of all three CRC cell lines investigated. Calebin A specifically blocked TNF-β-induced activation and nuclear translocation of p65-NF-κB, similar to curcumin (natural NF-κB inhibitor), BMS-345541 (specific IKK inhibitor) and ASO-NF-κB. Moreover, Immunofluorescence and Immunoblotting showed that Calebin A, similar to curcumin or BMS-345541 suppressed TNF-β-induced activation and nuclear translocation of p65-NF-κB and the transcription of NF-κB-promoted biomarkers associated with proliferation, migration and apoptosis, in a dose- and time-dependent manner. Those findings were potentiated by the specific treatment of extracted nuclei with DTT, which abrogated Calebin A-mediated nuclear p65-NF-κB-inhibition and restored p65-NF-κB-activity in the nucleus. Conclusion: Overall, these results demonstrate, for the first time, that multitargeted Calebin A has an anti-cancer capability on TNF-β-induced malignities through inhibitory targeting of NF-κB activation in the cytoplasm, as well as by suppressing the binding of p65-NF-κB to DNA.
Collapse
|
58
|
Cárdenas S, Colombero C, Panelo L, Dakarapu R, Falck JR, Costas MA, Nowicki S. GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158573. [PMID: 31760076 DOI: 10.1016/j.bbalip.2019.158573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Recent studies have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is a key molecule in sustaining androgen-mediated prostate cancer cell survival. Thus, the aim of this study was to determine whether 20-HETE can affect the metastatic potential of androgen-insensitive prostate cancer cells, and the implication of the newly described 20-HETE receptor, GPR75, in mediating these effects. METHODS The expression of GPR75, protein phosphorylation, actin polymerization and protein distribution were assessed by western blot and/or fluorescence microscopy. Additionally, in vitro assays including epithelial-mesenchymal transition (EMT), metalloproteinase-2 (MMP-2) activity, scratch wound healing, transwell invasion and soft agar colony formation were used to evaluate the effects of 20-HETE agonists/antagonists or GPR75 gene silencing on the aggressive features of PC-3 cells. RESULTS 20-HETE (0.1 nM) promoted the acquisition of a mesenchymal phenotype by increasing EMT, the release of MMP-2, cell migration and invasion, actin stress fiber formation and anchorage-independent growth. Also, 20-HETE augmented the expression of HIC-5, the phosphorylation of EGFR, NF-κB, AKT and p-38 and the intracellular redistribution of p-AKT and PKCα. These effects were impaired by GPR75 antagonism and/or silencing. Accordingly, the inhibition of 20-HETE formation with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) elicited the opposite effects. CONCLUSIONS The present results show for the first time the involvement of the 20-HETE-GPR75 receptor in the activation of intracellular signaling known to be stimulated in cell malignant transformations leading to the differentiation of PC-3 cells towards a more aggressive phenotype. Targeting the 20-HETE/GPR75 pathway is a promising and novel approach to interfere with prostate tumor cell malignant progression.
Collapse
Affiliation(s)
- Sofia Cárdenas
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Cecilia Colombero
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Laura Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARN Buenos Aires, Argentina
| | - Rambabu Dakarapu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Monica A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARN Buenos Aires, Argentina
| | - Susana Nowicki
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
59
|
Zhang JQ, Hong B. miR520a-3p suppresses cell proliferation and metastasis by inhibiting the p65-NFκB pathway in glioblastoma. Onco Targets Ther 2019; 12:6503-6513. [PMID: 31616160 PMCID: PMC6699151 DOI: 10.2147/ott.s208889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background miR520a-3p has previously had its antitumorigenic role in various types of cancers revealed, and been predicted as a posttranscriptional regulator of the NFκB-subunit RELA gene. Thus, miR520a-3p could function in carcinogenesis through suppressing RELA. Methods Expression of miR520a-3p and RELA mRNA was quantified in glioma and normal tissue, and the correlation between them was analyzed statistically. Also, receiver-operating characteristic (ROC)–curve analysis was performed. Effects of miR520a-3p on cell viability, colony formation, migration, and invasion wereexplored in vitro. Whether RELA was a direct target of miR520a-3p or not was analyzed. Finally, restoration of RELA on the effect of miR520a-3p overexpression on proliferation of glioblastoma cells was detected. Results Data showed that miR520a-3p expression was aberrantly downregulated and associated with malignance in glioma tissue. Areas under ROC curves of miR520a-3p and RELA mRNA expression were 0.9483 and 0.5967, respectively. Also, miR520a-3p expression was statistically correlated with RELA mRNA level in grade III–IV glioma tissue. Transfection of miR520a-3p mimic significantly increased miR520a-3p expression, and resulted in significant suppression of proliferation, migration, and invasion of glioblastoma cells in vitro. miR520a-3p overexpression resulted in statistical downregulation of RELA, both in mRNA and protein levels. RELA was direct target of miR520a-3p. In addition, restoration of RELA significantly weakened the inhibitory effect of miR520a-3p overexpression on viability and EdU-labeled glioblastoma cells. Conclusion These findings suggest that miR520a-3p should be helpful in auxiliary glioma diagnosis and can attenuate the proliferation and metastasis of glioblastoma through suppressing RELA, and thus could be an attractive therapeutic target to eliminate glioblastoma.
Collapse
Affiliation(s)
- Jing-Quan Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
60
|
Miao Y, Medeiros LJ, Li Y, Li J, Young KH. Genetic alterations and their clinical implications in DLBCL. Nat Rev Clin Oncol 2019; 16:634-652. [PMID: 31127191 DOI: 10.1038/s41571-019-0225-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm with variations in gene expression profiles and genetic alterations, which lead to substantial variations in clinical course and response to therapy. The advent of high-throughput genome sequencing platforms, and especially whole-exome sequencing, has helped to define the genetic landscape of DLBCL. In the past 10 years, these studies have identified many genetic alterations in DLBCL, some of which are specific to B cell lymphomas, whereas others can also be observed in other types of cancer. These aberrations result in altered activation of a wide range of signalling pathways and other cellular processes, including those involved in B cell differentiation, B cell receptor signalling, activation of the NF-κB pathway, apoptosis and epigenetic regulation. Further elaboration of the genetics of DLBCL will not only improve our understanding of disease pathogenesis but also provide further insight into disease classification, prognostication and therapeutic targets. In this Review, we describe the current understanding of the prevalence and causes of specific genetic alterations in DLBCL and their role in disease development and progression. We also summarize the available clinical data on therapies designed to target the aberrant pathways driven by these alterations.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
61
|
Beaussant-Cohen S, Jaber F, Massaad MJ, Weeks S, Jones J, Alosaimi MF, Wallace J, Al-Herz W, Geha RS, Chou J. Combined immunodeficiency in a patient with c-Rel deficiency. J Allergy Clin Immunol 2019; 144:606-608.e4. [PMID: 31103457 PMCID: PMC6688935 DOI: 10.1016/j.jaci.2019.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022]
Abstract
This study reports a homozygous mutation in REL abrogating c-Rel protein expression in a patient with combined immunodeficiency characterized by susceptibility to Mycobacterium tuberculosis , Salmonella , Cryptosporidium , and cytomegalovirus.
Collapse
Affiliation(s)
- Sarah Beaussant-Cohen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Faris Jaber
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sabrina Weeks
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jennifer Jones
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Mohammed F Alosaimi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Jacqueline Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, and Allergy and Clinical Immunology Unit, Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
62
|
Liang Y, Yu Z, Song Y, Wang T, Xiao B. Indoleamine 2,3-Dioxygenase Activation by Interferon Gamma in Vascular Endothelial Rat Cells Requires Noncanonical NF-κB Signaling. Transplant Proc 2019; 51:2141-2145. [PMID: 31307771 DOI: 10.1016/j.transproceed.2019.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an important enzyme in immune response regulation; cells that express IDO can suppress T-cell responses. Endothelial cells (ECs) play an important role in graft rejection. Therefore, we investigated the role of IDO expression by vascular ECs in immunoregulation. We demonstrated that interferon gamma can upregulate IDO expression in cultured ECs. Moreover, IDO induction by interferon gamma required IKKα activation, a part of the noncanonical NF-κB signaling pathway. In addition, IκB kinase α (IKKα) silencing resulted in significantly reduced IPO expression, demonstrating an essential role of NF-κB signaling pathway in IDO activation in vitro. These results may have an implication for regulating the immune response to alloantigens. The results obtained are important not only in understanding the role of ECs in the regulation of the transplantation immune response, but also in determining a potential therapeutic target for inhibiting allograft rejection.
Collapse
Affiliation(s)
- Yingzi Liang
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Xiao
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
63
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
64
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
65
|
Abstract
BACKGROUND Recent advances in DNA sequencing technology have enabled researchers to identify the genetic background underlying human illness. In addition, the latest genome editing technology, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9), provides great potential to edit genomic DNA sequences precisely with high efficiency. This technology has been evaluated for treatment of genetic diseases in recently published preclinical studies. Since many such genetic disorders can affect functional structures in the head and neck area, the technology bears high therapeutic potential in otorhinolaryngology. OBJECTIVE In this article, we summarize the concept of CRISPR-Cas9-based therapies, recent achievements in preclinical applications, and future challenges for the implementation of this technology in otolaryngology. MATERIALS AND METHODS Genetic targeting strategies were analyzed or established using genome sequencing data derived from online databases and literature. RESULTS Recent research on animal models has shown that genome editing can be used to treat genetic diseases by specifically targeting mutant genomic loci. For example, one preclinical study in the field of otolaryngology has demonstrated that inherited autosomal dominant deafness in mice can be treated using CRISPR-Cas9. Moreover, the same strategies can be used to establish applications for the treatment of head and neck cancer. The greatest challenge appears to be establishment of a system for the safe and efficient delivery of therapeutic nucleotides in clinics. CONCLUSIONS In theory, genome editing could be used in otolaryngology to target disease-causing genomic loci specifically. However, various challenges have to be overcome until applications can be used clinically.
Collapse
|
66
|
Peluso JJ, Pru CA, Liu X, Kelp NC, Pru JK. Progesterone receptor membrane component 1 and 2 regulate granulosa cell mitosis and survival through a NFΚB-dependent mechanism†. Biol Reprod 2019; 100:1571-1580. [PMID: 30877763 PMCID: PMC6561858 DOI: 10.1093/biolre/ioz043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) interacts with PGRMC2, and disrupting this interaction in spontaneously immortalized granulosa cells (SIGCS) leads to an inappropriate entry into the cell cycle, mitotic arrest, and ultimately cell death. The present study revealed that PGRMC1 and PGRMC2 localize to the cytoplasm of murine granulosa cells of nonatretric follicles with their staining intensity being somewhat diminished in granulosa cells of atretic follicles. Compared to controls (Pgrmc1fl/fl), the rate at which granulosa cells entered the cell cycle increased in nonatretic and atretic follicles of mice in which Pgrmc1 was conditionally deleted (Pgrmc1d/d) from granulosa cells. This increased rate of entry into the cell cycle was associated with a ≥ 2-fold increase in follicular atresia and the nuclear localization of nuclear factor-kappa-B transcription factor P65; (NFΚB/p65, or RELA). GTPase activating protein binding protein 2 (G3BP2) binds NFΚB/p65 through an interaction with NFΚB inhibitor alpha (IκBα), thereby maintaining NFΚB/p65's cytoplasmic localization and restricting its transcriptional activity. Since PGRMC1 and PGRMC2 bind G3BP2, studies were designed to assess the functional relationship between PGRMC1, PGRMC2, and NFΚB/p65 in SIGCs. In these studies, disrupting the interaction between PGRMC1 and PGRMC2 increased the nuclear localization of NFΚB/p65, and depleting PGRMC1, PGRMC2, or G3BP2 increased NFΚB transcriptional activity and the progression into the cell cycle. Taken together, these studies suggest that PGRMC1 and 2 regulate granulosa cell cycle entry in follicles by precisely controlling the localization and thereby the transcriptional activity of NFΚB/p65.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
67
|
A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11050655. [PMID: 31083587 PMCID: PMC6563002 DOI: 10.3390/cancers11050655] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) account for tumor initiation, invasiveness, metastasis, and recurrence in a broad range of human cancers. Although being a key player in cancer development and progression by stimulating proliferation and metastasis and preventing apoptosis, the role of the transcription factor NF-κB in cancer stem cells is still underestimated. In the present review, we will evaluate the role of NF-κB in CSCs of glioblastoma multiforme, ovarian cancer, multiple myeloma, lung cancer, colon cancer, prostate cancer, as well as cancer of the bone. Next to summarizing current knowledge regarding the presence and contribution of CSCs to the respective types of cancer, we will emphasize NF-κB-mediated signaling pathways directly involved in maintaining characteristics of cancer stem cells associated to tumor progression. Here, we will also focus on the status of NF-κB-activity predominantly in CSC populations and the tumor mass. Genetic alterations leading to NF-κB activity in glioblastoma, ependymoma, and multiple myeloma will be discussed.
Collapse
|
68
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|
69
|
Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression. Cell Death Dis 2019; 10:30. [PMID: 30631039 PMCID: PMC6328617 DOI: 10.1038/s41419-018-1265-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane glycoprotein. When the CD44 gene is expressed, its pre-messenger RNA (mRNA) can be alternatively spliced into mature mRNAs that encode several CD44 isoforms. The mRNA assembles with ten standard exons, and the sixth variant exon encodes CD44v6, which engages in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. Mechanistically, CD44v6 interacts with hyaluronic acid (HA) or osteopontin, or it acts as a coreceptor for various cytokines, such as epidermal growth factor, vascular endothelial growth factor, hepatocyte growth factor, and C-X-C motif chemokine 12. In this context, the receptor tyrosine kinase or G protein-coupled receptor-associated signaling pathways, including mitogen-activated protein kinase/extracellular-signal-regulated kinase and phosphoinositide-3-kinase/Akt, are activated. Using these actions, homeostasis or regeneration can be facilitated among normal tissues. However, overexpression of the mature mRNA encoding CD44v6 can induce cancer progression. For example, CD44v6 assists colorectal cancer stem cells in colonization, invasion, and metastasis. Overexpression of CD44v6 predicts poor prognosis in patients with colorectal cancer, as patients with a large number of CD44v6-positive cells in their tumors are generally diagnosed at late stages. Thus, the clinical significance of CD44v6 in colorectal cancer deserves consideration. Preclinical results have indicated satisfactory efficacies of anti-CD44 therapy among several cancers, including prostate cancer, pancreatic cancer, and gastric cancer. Moreover, clinical trials aiming to evaluate the pharmacokinetics, pharmacodynamics, efficacy, and toxicity of a commercialized anti-CD44 monoclonal antibody developed by Roche (RO5429083) have been conducted among patients with CD44-expressing malignant tumors, and a clinical trial focusing on the dose escalation of this antibody is ongoing. Thus, we are hopeful that anti-CD44 therapy will be applied in the treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| | - Pengyu Chang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
70
|
Ochoa B, Chico Y, Martínez MJ. Insights Into SND1 Oncogene Promoter Regulation. Front Oncol 2018; 8:606. [PMID: 30619748 PMCID: PMC6297716 DOI: 10.3389/fonc.2018.00606] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.
Collapse
Affiliation(s)
| | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
71
|
Zhou X, Shan Z, Yang H, Xu J, Li W, Guo F. RelB plays an oncogenic role and conveys chemo-resistance to DLD-1 colon cancer cells. Cancer Cell Int 2018; 18:181. [PMID: 30473630 PMCID: PMC6234565 DOI: 10.1186/s12935-018-0677-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background Nuclear transcription factor kappa B (NF-κB) subunits exhibit crucial roles in tumorigenesis and chemo-sensitivity. Recent studies suggest that RelB, the key subunit of the alternative NF-κB pathway, plays a critical role in the progression of diverse human malignancies. However, the significance of RelB in colorectal cancer (CRC) remains unclear. Here, we systematically explored the functions of the alternative NF-κB subunit RelB in colon cancer cells and its underlying mechanism. Methods Stably transfected RelB-shRNA DLD-1 cells were established using Lipofectamine 2000. NF-κB DNA-binding capability was quantified using an ELISA-based NF-κB activity assay. Cell growth was monitored by an x-Celligence system. Cell proliferation was analyzed by a CCK-8 and a Brdu proliferation assay. Response to 5-FU was assessed by an x-Celligence system. Cell apoptosis and cell cycle was detected using flow cytometry analyses. Cell migration and invasion abilities were detected by an x-Celligence system, Transwell inserts, and wound-healing assays. RelB expression and its clinical significance were analyzed using the CRC tissue microarray. The expression of NF-κB signaling subunits, AKT/mTOR signaling molecules, cell cycle related proteins, MMP2, MMP9, and Integrin β-1 were measured by Western blotting analyses. Results The RelB-silencing inhibited cell growth of DLD-1 cells. The RelB-silencing exerted the anti-proliferative by downregulation of AKT/mTOR signaling. The RelB-silencing caused G0–G1 cell cycle arrested likely due to decreasing the expression of Cyclin D1 and CDK4, concomitant with increased expression of p27Kip1. The RelB-silencing enhanced cytotoxic effect of 5-FU and induced cell accumulation in S-phase. The RelB-silencing impaired the migration and invasion potential of DLD-1 cells, which was related to downregulation of MMP2, MMP9, and Integrin β-1. Importantly, the RelB expression was correlated with depth of tumor invasion, lymph node metastasis, metastasis stage, and pTNM stage. High-RelB expression was significantly correlated with poor overall survival in CRC patients. Conclusion Our studies here provided evidence that RelB plays an oncogenic role and conveys chemo-resistance to 5-FU. RelB can be considered as an independent indicator of prognosis in CRC.
Collapse
Affiliation(s)
- Xiaojun Zhou
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Zhili Shan
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hengying Yang
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jingjing Xu
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjing Li
- 3Department of Clinical Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215006 China
| | - Feng Guo
- 4Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|
72
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|
73
|
Aberrant Activation of NF-κB Signalling in Aggressive Lymphoid Malignancies. Cells 2018; 7:cells7110189. [PMID: 30380749 PMCID: PMC6262606 DOI: 10.3390/cells7110189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Lymphoid malignancies frequently harbor genetic mutations leading to aberrant activation of nuclear factor-κB (NF-κB) signaling; in normal cells, this pathway has important roles in the control of cell growth, survival, stress responses, and inflammation. Malignancies with mutations in NF-κB pathway components can derive from all cell stages of mature B-cell development; however, aberrant NF-κB activity is particularly prevalent in aggressive subtypes of non-Hodgkin lymphoma and myeloma. NF-κB activation is mediated by two separate pathways, the canonical and alternative pathway, and five downstream transcription factor subunits. Recent findings implicate a predominant role for distinct NF-κB pathways and subunits in certain lymphoma subtypes and myeloma; findings which are complemented by the realization that individual NF-κB subunits can have unique, non-redundant biological roles in the putative tumor precursor cells, including activated B cells, germinal center B cells and plasma cells. The knowledge gained from these studies may be exploited for the development of therapeutic strategies to inhibit aberrant NF-κB activity at the level of the transcription-factor subunits and their target genes, as global inhibition of the pathway is toxic. Here, we provide an overview on the role of aberrant NF-κB activation in aggressive lymphoid malignancies and discuss the potential importance of individual NF-κB subunits in the pathogenesis of tumor subtypes.
Collapse
|
74
|
Stupina T, Balakina A, Kondrat'eva T, Kozub G, Sanina N, Terent'ev A. NO-Donor Nitrosyl Iron Complex with 2-Aminophenolyl Ligand Induces Apoptosis and Inhibits NF-κB Function in HeLa Cells. Sci Pharm 2018; 86:scipharm86040046. [PMID: 30314357 DOI: 10.3390/scipharm86040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
NO donating iron nitrosyl complex with 2-aminothiophenyl ligand (2-AmPh complex) was studied for its ability to cause cell death and affect nuclear factor kappa B (NF-κB) signaling. The complex inhibited viability of HeLa cells and induced cell death that was accompanied by loss of mitochondrial membrane potential and characteristic for apoptosis phosphatidylserine externalization. At IC50, 2-AmPh caused decrease in nuclear content of NF-κB p65 polypeptide and mRNA expression of NF-κB target genes encoding interleukin-8 and anti-apoptotic protein BIRC3. mRNA levels of interleukin-6 and anti-apoptotic protein BIRC2 encoding genes were not affected. Our data demonstrate that NO donating iron nitrosyl complex 2-AmPh can inhibit tumor cell viability and induce apoptosis that is preceded by impairment of NF-κB function and suppression of a subset of NF-κB target genes.
Collapse
Affiliation(s)
- Tatiana Stupina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Anastasia Balakina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Tatiana Kondrat'eva
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Galina Kozub
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Natalia Sanina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| | - Alexei Terent'ev
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| |
Collapse
|
75
|
Tsai MH, Yang CM, Chang KT, Chuang CC, Lin WN, Jiang RS, Wu CH, Lee IT. Carbon monoxide ameliorates Staphylococcus aureus-elicited COX-2/IL-6/MMP-9-dependent human aortic endothelial cell migration and inflammatory responses. Immunol Lett 2018; 203:40-49. [PMID: 30236480 DOI: 10.1016/j.imlet.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus (S. aureus) can often lead to many life-threatening diseases. It has the ability to invade normal endovascular tissue. Acute inflammation and its resolution are important to ensure bacterial clearance and limit tissue injury. Carbon monoxide (CO) has been shown to exert anti-inflammatory effects in various tissues and organ systems. In our study, we investigated the effects and the mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on S. aureus-induced inflammatory responses in human aortic endothelial cells (HAECs). We proved that S. aureus induced cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2)/interleukin-6 (IL-6)/matrix metallopeptidase-9 (MMP-9) expression and cell migration, which were decreased by CORM-2. Moreover, CORM-2 had no effects on TLR2 mRNA levels in response to S. aureus. Interestingly, we proved that S. aureus decreased intracellular ROS generation, suggesting that the inhibition of ROS further promoted inflammatory responses. However, CORM-2 significantly inhibited S. aureus-induced inflammation by increasing intracellular ROS generation. S. aureus-induced NF-κB activation was also inhibited by CORM-2. Finally, we proved that S. aureus induced levels of the biomarkers of inflammation in cardiovascular diseases, which were inhibited by CORM-2. Taken together, these results suggest that CORM-2 inhibits S. aureus-induced COX-2/PGE2/IL-6/MMP-9 expression and aorta inflammatory responses by increasing the ROS generation and reducing the inflammatory molecules levels.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Ting Chang
- Translational Medicine Center, Taoyuan General Hospital, Ministry of Healthy and Welfare, Taoyuan, Taiwan
| | - Chu-Chun Chuang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Hsun Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - I-Ta Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan.
| |
Collapse
|
76
|
Shirakami Y, Shimizu M. Possible Mechanisms of Green Tea and Its Constituents against Cancer. Molecules 2018; 23:molecules23092284. [PMID: 30205425 PMCID: PMC6225266 DOI: 10.3390/molecules23092284] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
A number of epidemiological, clinical, and experimental researches have indicated that administration of green tea appears to have anti-cancer activity. According to findings of laboratory cell culture studies, a diverse mechanism has been observed underlying the effects of green tea catechins against cancer. These mechanisms include anti-oxidant activity, cell cycle regulation, receptor tyrosine kinase pathway inhibition, immune system modulation, and epigenetic modification control. This review discusses the results of these studies to provide more insight into the effects of green tea administration on cancers observed to date in this research field.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
77
|
Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J Immunol Res 2018; 2018:2180373. [PMID: 30271792 PMCID: PMC6146775 DOI: 10.1155/2018/2180373] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.
Collapse
|
78
|
Wu AD, Wan LP, Qin YQ. Clinicopathologic significance of Cyr61 and NF-κB p65 expression in colorectal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:1056-1063. [DOI: 10.11569/wcjd.v26.i17.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of cysteine rich 61 (Cyr61) and nuclear factor-κB (NF-κB) p65 in colorectal adenocarcinoma, and to explore their relationship with clinicopathologic parameters and prognosis.
METHODS Ninety-two cases of colorectal adenocarcinoma treated at Hubei Huanggang Central Hospital from May 2010 to December 2012 were collected. Immunohistochemistry and Western blot were used to detect the expression of Cyr61 and NF-κB p65 in colorectal cancer and tumor adjacent tissues. The correlation between the expression of Cyr61 and NF-κB p65 and clinicopathological features and prognosis of colorectal adenocarcinoma was analyzed.
RESULTS Both immunohistochemical staining and Western blot showed that the expression of Cyr61 and NF-κB p65 proteins in colorectal cancer tissues was significantly higher than that in tumor adjacent tissues (t = 24.866, P <0.001; t = 45.508, P <0.001). The expression of Cyr61 and NF-κB p65 in colorectal cancer tissue was significantly correlated (χ2 = 14.087, P < 0.001). The expression of Cyr61 in colorectal cancer tissues was significantly correlated with tumor diameter, depth of invasion, vascular invasion, and TNM stage (P < 0.05). The expression of NF-κB p65 in colorectal cancer tissues was significantly correlated with tumor diameter, lymph node metastasis, and TNM stage (P < 0.05). The 5-year overall survival rates of patients with high expression of Cyr61 or NF-κB p65 were 41.30% and 45.65%, respectively, which were significantly lower than those of patients with low expression of Cyr61 or NF-κB p65 (76.09% and 71.74%, respectively; HR = 0.341, 95%CI: 0.179-0.649, P = 0.001; HR = 0.465, 95%CI: 0.245-0.881, P = 0.019).
CONCLUSION Cyr61 and NF-κB p65 proteins are highly expressed in colorectal cancer tissues, and high expression of Cyr61 and NF-κB p65 proteins is significantly associated with clinicopathologic parameters and prognosis in patients with colorectal cancer.
Collapse
Affiliation(s)
- An-Ding Wu
- Hubei Huanggang Central Hospital, Huanggang 4380002, Hubei Province, China
| | - Li-Peng Wan
- Hubei Huanggang Central Hospital, Huanggang 4380002, Hubei Province, China
| | - Yan-Qiong Qin
- Liyuan Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan 430077, Hubei Province, China
| |
Collapse
|