51
|
Wang J, Koo KM, Trau M. Tetraplex Immunophenotyping of Cell Surface Proteomes via Synthesized Plasmonic Nanotags and Portable Raman Spectroscopy. Anal Chem 2022; 94:14906-14916. [PMID: 36256869 DOI: 10.1021/acs.analchem.2c02262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiplex immunophenotyping of cell surface proteomes is useful for cell characterization as well as providing valuable information on a patient's physiological or pathological state. Current methods for multiplex immunophenotyping of cell surface proteomes still have associated technical pitfalls in terms of limited multiplexing capability, challenging result interpretation, and large equipment footprint limited to use in a laboratory setting. Herein, we presented a portable surface-enhanced Raman spectroscopy (SERS) assay for multiplex cell surface immunophenotyping. We synthesized and functionalized customizable SERS nanotags for cell labeling and subsequent signal measurement using a portable Raman spectrometer. We extensively evaluated and validated the analytical assay performance of the portable SERS immunophenotyping assay in two different cellular models (red blood cells and breast cancer cells). In terms of analytical specificity, the cell surface immunophenotyping of both red blood cells and breast cancer cells correlated well with flow cytometry. The portable SERS immunophenotyping assay also has comparable analytical repeatability to flow cytometry, with coefficient of variation values of 21.89-23.33% and 6.88-17.32% for detecting red blood cells and breast cancer cells, respectively. The analytical detection limits were 77 cells/mL for red blood cells and 1-17 cells/mL for breast cancer cells. As an alternative to flow cytometry, the portable SERS immunophenotyping assay demonstrated excellent analytical assay performance and possessed advantages such as quick sample-to-result turnaround time, multiplexing capability, and small equipment footprint.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China.,Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty Ltd, Sinnamon Park, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Herston, QLD 4029, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
52
|
Akinnusi PA, Olubode SO, Adebesin AO, Nana TA, Shodehinde SA. Discovery of Promising Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), Estrogen Receptor (ER), and Phosphatidylinositol-3-kinase a (PI3Ka) for Personalized Breast Cancer Treatment. Cancer Inform 2022; 21:11769351221127862. [PMID: 36213305 PMCID: PMC9536107 DOI: 10.1177/11769351221127862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the rapid developments and advancements to improve treatments, Breast cancer remains one of the deadliest health challenges and the most frequently diagnosed tumor. One of the major problems with treatment is the unique difference that each cancerous cell exhibits. As a result, treatment of breast cancer has now become more personalized based on the specific features of the tumor such as overexpression of growth factor receptors (Epidermal growth factor receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2)), hormone receptors (Human Estrogen receptor alpha (ER)) and kinases involved in pivotal signaling associated with growth (Phosphatidylinositol 3-kinase (PI3K)). Several chemotherapeutic agents have been developed to curb the menace, but the associated adverse drug effects cannot be overlooked. To this end, this study employed a molecular modeling approach to identify novel compounds of natural origin that can potentially antagonize the receptors (mentioned above) associated with the pathophysiology of breast cancer and at the same time pose very little or no side effects. The results of the molecular model of biological interactions between a library of 118 anthocyanins and the binding pockets of the protein targets identified 5 compounds (Pelargonin, Delphinidin 3-O-rutinoside, Malvin, Cyanidin-3-(6-acetylglucoside), and Peonidin 3-O-rutinoside) with good binding affinities to the protein targets. Further MM-GBSA calculations returned high binding energies. The specific molecular interactions between the compounds and the targets were analyzed and reported herein. Also, all the compounds exhibited good pharmacokinetic profiles and are therefore recommended for further analyses as they could be explored as new treatment options for a broad range and personalized breast cancer treatments.
Collapse
Affiliation(s)
- Precious A Akinnusi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria,Precious A Akinnusi, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo 342111, Nigeria.
| | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ayomide O Adebesin
- Department of Biochemistry, Cancer Genomics Lab, Covenant University, Ota, Nigeria
| | | | | |
Collapse
|
53
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
54
|
Sun Y, Yang H, Yang X, Yang S, Guo C, Chen H, Cui C, Xiang Y, Yang G, Huang J. A randomized, double-blind, parallel control study to evaluate the biosimilarity of QL1209 with Perjeta® in healthy male subjects. Front Pharmacol 2022; 13:953641. [PMID: 36081953 PMCID: PMC9445216 DOI: 10.3389/fphar.2022.953641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose: This is the first study to compare the pharmacokinetics, safety and, immunogenicity of QL1209, a biosimilar of Perjeta®. Methods: This study was a randomized, double-blind, parallel-controlled clinical trial evaluating the biosimilarity between QL1209 (specification: 420 mg:14 ml, single use via, manufacturer: Qilu Pharmaceutical Co., Ltd., batch number: 201808001KJL) and Perjeta® (specification: 420 mg: 14 ml, single use via, manufacturer: Roche Pharma AG, batch number: H0309H02). The trial period was 99 days (blood samples for PK were collected 99 days after infusion). Serum concentrations were determined using a validated assay. PK parameters were calculated using a non-compartmental model and analyzed statistically. Anti-drug antibody (ADA)-positive samples were further tested for the presence of neutralization antibody detection (NAb). Results: A total of 137 healthy subjects were administrated. The subjects were randomized 1:1 to receive QL1209 or Perjeta® 420 mg intravenously. The geometric mean ratio (GMRs) for QL1209 versus Perjeta® are 104.14%, 104.09%, and 110.59% for Cmax, AUC0-t, and AUC0-∞, respectively, and their 90% confidence interval (CIs) all fell within the predefined bioequivalence margin 80.00–125%. The incidence of drug-related adverse events was 95.6% and 95.5% in the QL1209 and Perjeta® groups, respectively, also comparable between the two groups. Conclusion: The results of this comparative clinical pharmacology study demonstrated the PK similarity of QL1209 (420 mg: 14 ml) and Perjeta® (420 mg: 14 ml) and there was no significant difference in safety and immunogenicity between QL1209 and Perjeta® manufactured by Roche Pharma AG.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Chen
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chang Cui
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxia Xiang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of Drug Clinical Evaluation of Central South University, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, China
- *Correspondence: Guoping Yang, ; Jie Huang,
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Guoping Yang, ; Jie Huang,
| |
Collapse
|
55
|
Eldehna WM, El Hassab MA, Elsayed ZM, Al-Warhi T, Elkady H, Abo-Ashour MF, Abourehab MAS, Eissa IH, Abdel-Aziz HA. Design, synthesis, in vitro biological assessment and molecular modeling insights for novel 3-(naphthalen-1-yl)-4,5-dihydropyrazoles as anticancer agents with potential EGFR inhibitory activity. Sci Rep 2022; 12:12821. [PMID: 35896557 PMCID: PMC9329325 DOI: 10.1038/s41598-022-15050-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/16/2022] [Indexed: 01/06/2023] Open
Abstract
Currently, the humanity is in a fierce battle against various health-related challenges especially those associated with human malignancies. This created the urge to develop potent and selective inhibitors for tumor cells through targeting specific oncogenic proteins possessing crucial roles in cancer progression and survive. In this respect, new series of pyrazole-thiazol-4-one hybrids (9a–p) were synthesized as potential anticancer agents. All the synthesized molecules exhibited potent antiproliferative actions against breast cancer (BC) T-47D and MDA-MB-231 cell lines with IC50 ranges 3.14–4.92 and 0.62–58.01, respectively. Moreover, the most potent anti-proliferative counterparts 9g and 9k were assessed against EGFR. They displayed nanomolar inhibitory activity, IC50 267 ± 12 and 395 ± 17 nM, respectively. Worth noting, both compounds 9g and 9k induced apoptosis in MDA-MB-231 cells, and resulted in a cell cycle arrest at G2/M phase. Furthermore, an in silico analysis including docking and molecular dynamic simulations was performed.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt. .,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sedr, South Sinai, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, El saleheya El Gadida University, El Saleheya El Gadida, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, P.O. Box 12622, Dokki, Giza, Egypt
| |
Collapse
|
56
|
Abstract
EGFR is a member of the ERBB family. It plays a significant role in cellular processes such as growth, survival and differentiation via the activation of various signaling pathways. EGFR deregulation is implicated in various human malignancies, and therefore EGFR has emerged as an attractive anticancer target. EGFR inhibition using strategies such as tyrosine kinase inhibitors and monoclonal antibodies hinders cellular proliferation and promotes apoptosis in cancer cells in vitro and in vivo. EGFR inhibition by tyrosine kinase inhibitors has been shown to be a better treatment option than chemotherapy for advanced-stage EGFR-driven non-small-cell lung cancer, yet de novo and acquired resistance limits the clinical benefit of these therapeutic molecules. This review discusses the cellular signaling pathways activated by EGFR. Further, current therapeutic strategies to target aberrant EGFR signaling in cancer and mechanisms of resistance to them are highlighted.
Collapse
|
57
|
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, Pon RA, Sulea T, Zhu Q, Weeratna RD. Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Front Immunol 2022; 13:864868. [PMID: 35935988 PMCID: PMC9354126 DOI: 10.3389/fimmu.2022.864868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Scott McComb,
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Alex Shepherd
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Susanne Maclean
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Robert A. Pon
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Qin Zhu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Risini D. Weeratna
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
58
|
Ghilardi AF, Yaaghubi E, Ferreira RB, Law ME, Yang Y, Davis BJ, Schilson CM, Ghiviriga I, Roitberg AE, Law BK, Castellano RK. Anticancer Agents Derived from Cyclic Thiosulfonates: Structure-Reactivity and Structure-Activity Relationships. ChemMedChem 2022; 17:e202200165. [PMID: 35491396 PMCID: PMC9308679 DOI: 10.1002/cmdc.202200165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Indexed: 11/09/2022]
Abstract
Reported are structure-property-function relationships associated with a class of cyclic thiosulfonate molecules-disulfide-bond disrupting agents (DDAs)-with the ability to downregulate the Epidermal Growth Factor Receptor (HER) family in parallel and selectively induce apoptosis of EGFR+ or HER2+ breast cancer cells. Recent findings have revealed that the DDA mechanism of action involves covalent binding to the thiol(ate) from the active site cysteine residue of members of the protein disulfide isomerase (PDI) family. Reported is how structural modifications to the pharmacophore can alter the anticancer activity of cyclic thiosulfonates by tuning the dynamics of thiol-thiosulfonate exchange reactions, and the studies reveal a correlation between the biological potency and thiol-reactivity. Specificity of the cyclic thiosulfonate ring-opening reaction by a nucleophilic attack can be modulated by substituent addition to a parent scaffold. Lead compound optimization efforts are also reported, and have resulted in a considerable decrease of the IC50 /IC90 values toward HER-family overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Yinuo Yang
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | |
Collapse
|
59
|
Green-Tripp G, Nattress C, Halldén G. Targeting Triple Negative Breast Cancer With Oncolytic Adenoviruses. Front Mol Biosci 2022; 9:901392. [PMID: 35813830 PMCID: PMC9263221 DOI: 10.3389/fmolb.2022.901392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer globally, accounting for 685,000 deaths in 2020. Triple-negative breast cancers (TNBC) lack oestrogen (ER) and progesterone (PR) hormone receptor expression and HER2 overexpression. TNBC represent 10–15% of all BC with high incidence in women under 50-years old that have BRCA mutations, and have a dismal prognosis. African American and Hispanic women are at higher risk partly due to the common occurrence of BRCA mutations. The standard treatment for TNBC includes surgery, radiotherapy, and chemotherapy although, resistance to all standard-of-care therapies eventually develops. It is crucial to identify and develop more efficacious therapeutics with different mechanisms of action to improve on survival in these women. Recent findings with oncolytic adenoviruses (OAds) may generate a new strategy to improve on the outcomes for women afflicted by TNBC and other types of BC. OAds are genetically engineered to selectively lyse, eliminate and recruit the host antitumour immune responses, leaving normal cells unharmed. The most common modifications are deletions in the early gene products including the E1B55 KDa protein, specific regions of the E1A protein, or insertion of tumour-specific promoters. Clinical trials using OAds for various adenocarcinomas have not yet been sufficiently evaluated in BC patients. Preclinical studies demonstrated efficacy in BC cell lines, including TNBC cells, with promising novel adenoviral mutants. Here we review the results reported for the most promising OAds in preclinical studies and clinical trials administered alone and in combination with current standard of care or with novel therapeutics. Combinations of OAds with small molecule drugs targeting the epidermal growth factor receptor (EGFR), androgen receptor (AR), and DNA damage repair by the novel PARP inhibitors are currently under investigation with reported enhanced efficacy. The combination of the PARP-inhibitor Olaparib with OAds showed an impressive anti-tumour effect. The most promising findings to date are with OAds in combination with antibodies towards the immune checkpoints or expression of cytokines from the viral backbone. Although safety and efficacy have been demonstrated in numerous clinical trials and preclinical studies with cancer-selective OAds, further developments are needed to eliminate metastatic lesions, increase immune activation and intratumoural viral spread. We discuss shortcomings of the OAds and potential solutions for improving on patient outcomes.
Collapse
Affiliation(s)
- Gabriela Green-Tripp
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Callum Nattress
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Gunnel Halldén
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Gunnel Halldén,
| |
Collapse
|
60
|
Piperigkou Z, Koutsandreas A, Franchi M, Zolota V, Kletsas D, Passi A, Karamanos NK. ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo. Front Oncol 2022; 12:917633. [PMID: 35719919 PMCID: PMC9203970 DOI: 10.3389/fonc.2022.917633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Estrogen receptors (ERs) have pivotal roles in the development and progression of triple-negative breast cancer (TNBC). Interactions among cancer cells and tumor microenvironment are orchestrated by the extracellular matrix that is rapidly emerging as prominent contributor of fundamental processes of breast cancer progression. Early studies have correlated ERβ expression in tumor sites with a more aggressive clinical outcome, however ERβ exact role in the progression of TNBC remains to be elucidated. Herein, we introduce the functional role of ERβ suppression following isolation of monoclonal cell populations of MDA-MB-231 breast cancer cells transfected with shRNA against human ESR2 that permanently resulted in 90% reduction of ERβ mRNA and protein levels. Further, we demonstrate that clone selection results in strongly reduced levels of the aggressive functional properties of MDA-MB-231 cells, by transforming their morphological characteristics, eliminating the mesenchymal-like traits of triple-negative breast cancer cells. Monoclonal populations of shERβ MDA-MB-231 cells undergo universal matrix reorganization and pass on a mesenchymal-to-epithelial transition state. These striking changes are encompassed by the total prevention of tumorigenesis in vivo following ERβ maximum suppression and isolation of monoclonal cell populations in TNBC cells. We propose that these novel findings highlight the promising role of ERβ targeting in future pharmaceutical approaches for managing the metastatic dynamics of TNBC breast cancer.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Anastasios Koutsandreas
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Dimitrios Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research (N.C.S.R). "Demokritos", Athens, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
61
|
Yang HH, Zhang FF. Magnetic Resonance Imaging Features in Diagnosis of Breast Cancer and Evaluation of Effect of Epidermal Growth Factor Receptor-Targeted Therapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3127058. [PMID: 35747502 PMCID: PMC9213179 DOI: 10.1155/2022/3127058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Breast cancer diagnosis and treatment are important healthcare issues in the Industrialized World. In this study, magnetic resonance imaging (MRI) images are used to diagnose breast cancer (BC) and analyze the application effect of epidermal factor receptor-targeted therapy in the treatment of BC. A total of 858 patients diagnosed with BC in Jincheng People's Hospital from 2019 to 2021 are included and randomly divided into an experimental group and a control group. The experimental group is treated with epidermal growth factor receptor- (EGFR-) targeted therapy, and the control group is treated with conventional chemotherapy according to subsequent treatment modalities. Experimental results show that compared with manual segmentation, machine automatic segmentation includes the local and edge information of the image with higher accuracy, compared with benign and malignant tumors. There are significant differences in the changes of Tpeak, SSmax, El, E2, and E5, P < 0.05, with SSmax and El having the greatest changes. After chemotherapy, the recorded maximum diameter of cancer foci in the control and the experimental groups are 26.4 ± 11.6 mm and 20.3 ± 13.5 mm, respectively, and the difference is statistically meaningful (P < 0.05). The ADC value (12.74 ± 2.08) in the experimental group is higher than that (9.7 ± 1.88) in the control group (P < 0.05). There is a significant difference in SSmax between the control group and experimental group (P < 0.05), the SImax, pH values of the control group are significantly higher than those of the experimental group (P < 0.05), and the SSmaxR value (7.82 ± 6.24) in the experimental group is lower than that in the control group (10.08 ± 6.25), but the difference is not significant, P > 0.05. The proposed MRI method has high sensitivity and accuracy in the diagnosis of BC, improving the detection rate of lesions, compared with conventional chemotherapy. In addition, epidermal factor receptor-targeted therapy has a better therapeutic effect, with significant changes in cancer foci, which has the value of clinical promotion.
Collapse
Affiliation(s)
- Hao Hao Yang
- Department of Oncology, Jincheng People's Hospital, Jincheng, 048000 Shanxi, China
| | - Fang Fang Zhang
- Department of Oncology, Jincheng People's Hospital, Jincheng, 048000 Shanxi, China
| |
Collapse
|
62
|
Alsaad H, Kubba A, Tahtamouni LH, Hamzah AH. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e83158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of 1,2,4 triazole derivatives (H7-12) have been synthesized by reacting an excess of hydrazine hydrate with carbothioamide derivatives (H1-6). The final compounds (HB1-HB6) were synthesized by reacting the triazole derivatives with mefenamic acid using DCC as a coupling agent. The chemical structures were confirmed by FT-IR, 1H, and 13C-NMR spectra, and some physicochemical properties were determined. The cytotoxicity of the different compounds (HB1-HB6) was evaluated by the MTT assay against two human epithelial cancer cell lines, A549 lung carcinoma and Hep G2 hepatocyte carcinoma, and one normal human cell line WI-38 lung fibroblasts. The mode of cell killing (apoptosis versus necrosis), as well as the effect on cell cycle phases were evaluated via flow cytometry. Additionally, EGFR tyrosine kinase inhibition assay was performed. The results presented in the current study indicate that the six tested compounds exhibited cytotoxicity against both cancer cell lines, and the lowest IC50 was achieved with compound HB5 against Hep G2 cancer cells which was found to be highly selective against cancer cells. HB5-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Compound HB5 caused cell killing via apoptosis rather than necrosis, and this was achieved by inhibiting EGFR tyrosine kinase activity needed for cell proliferation, and cell cycle progression. In silico pre-ADMET studies confirmed all final compounds don’t cause CNS side effects, with little liver dysfunction effect.
Collapse
|
63
|
Jones GS, Hoadley KA, Benefield H, Olsson LT, Hamilton AM, Bhattacharya A, Kirk EL, Tipaldos HJ, Fleming JM, Williams KP, Love MI, Nichols HB, Olshan AF, Troester MA. Racial differences in breast cancer outcomes by hepatocyte growth factor pathway expression. Breast Cancer Res Treat 2022; 192:447-455. [PMID: 35034243 PMCID: PMC9380654 DOI: 10.1007/s10549-021-06497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Black women have a 40% increased risk of breast cancer-related mortality. These outcome disparities may reflect differences in tumor pathways and a lack of targetable therapies for specific subtypes that are more common in Black women. Hepatocyte growth factor (HGF) is a targetable pathway that promotes breast cancer tumorigenesis, is associated with basal-like breast cancer, and is differentially expressed by race. This study assessed whether a 38-gene HGF expression signature is associated with recurrence and survival in Black and non-Black women. METHODS Study participants included 1957 invasive breast cancer cases from the Carolina Breast Cancer Study. The HGF signature was evaluated in association with recurrence (n = 1251, 171 recurrences), overall, and breast cancer-specific mortality (n = 706, 190/328 breast cancer/overall deaths) using Cox proportional hazard models. RESULTS Women with HGF-positive tumors had higher recurrence rates [HR 1.88, 95% CI (1.19, 2.98)], breast cancer-specific mortality [HR 1.90, 95% CI (1.26, 2.85)], and overall mortality [HR 1.69; 95% CI (1.17, 2.43)]. Among Black women, HGF positivity was significantly associated with higher 5-year rate of recurrence [HR 1.73; 95% CI (1.01, 2.99)], but this association was not significant in non-Black women [HR 1.68; 95% CI (0.72, 3.90)]. Among Black women, HGF-positive tumors had elevated breast cancer-specific mortality [HR 1.80, 95% CI (1.05, 3.09)], which was not significant in non-Black women [HR 1.52; 95% CI (0.78, 2.99)]. CONCLUSION This multi-gene HGF signature is a poor-prognosis feature for breast cancer and may identify patients who could benefit from HGF-targeted treatments, an unmet need for Black and triple-negative patients.
Collapse
Affiliation(s)
- Gieira S Jones
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina-Chapel Hill-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Halei Benefield
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Arjun Bhattacharya
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Erin L Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Heather J Tipaldos
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Jodie M Fleming
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina-Chapel Hill-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Hazel B Nichols
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
64
|
Hamed ANE, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MSA. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFR wt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC Adv 2022; 12:9154-9162. [PMID: 35424860 PMCID: PMC8985094 DOI: 10.1039/d1ra07000b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
The phytochemical investigation of the hydromethanolic extract of Carica papaya Linn. leaves (Caricaceae) resulted in the isolation and characterization of ten compounds, namely; carpaine (1), methyl gallate (2), loliolide (3), rutin (4), clitorin (5), kaempferol-3-O-neohesperidoside (6), isoquercetin (7), nicotiflorin (8) and isorhamnetin-3-O-β-d-glucopyranoside (9). The compounds 2, 3, 5-7 and 9 were isolated for the first time from the genus Carica. An in vitro breast cancer cytotoxicity study was evaluated with an MCF-7 cell line using the MTT assay. Methyl gallate and clitorin demonstrated the most potent cytotoxic activities with an IC50 of 1.11 ± 0.06 and 2.47 ± 0.14 μM, respectively. Moreover, methyl gallate and nicotiflorin exhibited potential EGFRwt kinase inhibition activities with an IC50 of 37.3 ± 1.9 and 41.08 ± 2.1 nM, respectively, compared with the positive control erlotinib (IC50 = 35.94 ± 1.8 nM). On the other hand, clitorin and nicotiflorin displayed the strongest aromatase kinase inhibition activities with an IC50 of 77.41 ± 4.53 and 92.84 ± 5.44 nM, respectively. Clitorin was comparable to the efficacy of the standard drug letrozole (IC50 = 77.72 ± 4.55). Additionally, molecular docking simulations of the isolated compounds to EGFR and human placental aromatase cytochrome P450 (CYP19A1) were evaluated. Methyl gallate linked with the EGFR receptor through hydrogen bonding with a pose score of -4.5287 kcal mol-1 and RMSD value of 1.69 Å. Clitorin showed the strongest interaction with aromatase (CYP19A1) for the breast cancer receptor with a posing score of -14.2074 and RMSD value of 1.56 Å. Compounds (1-3) possessed a good bioavailability score with a 0.55 value.
Collapse
Affiliation(s)
- Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut-Branch Assiut 71524 Egypt
| | - Ahmed E El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg 40530 Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg 40530 Gothenburg Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University 44519 Egypt
| | - Mohamed M Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University Menoufia 32511 Egypt
| | | |
Collapse
|
65
|
Chilimoniuk Z, Rocka A, Stefaniak M, Tomczyk Ż, Jasielska F, Madras D, Filip A. Molecular methods for increasing the effectiveness of ovarian cancer treatment: a systematic review. Future Oncol 2022; 18:1627-1650. [PMID: 35129396 DOI: 10.2217/fon-2021-0565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The aim of the current study is to analyze and summarize the latest research on improving therapy in ovarian cancer. Materials & methods: Data analysis was based on a review of publications from 2011 to 2021 in the PubMed database with use of the search terms including 'EGFR ovarian cancer', 'folate receptor inhibitors ovarian cancer', 'VEGF ovarian cancer', 'PDGF ovarian cancer' and 'CTLA-4 ovarian cancer'. Results: 6643 articles were found; 238 clinical trials and randomized control trials were analyzed; 122 studies were rejected due to inconsistency with the topic of the work. Conclusion: Extensive research on the treatment of ovarian cancer increases the chance of developing the most effective therapy suited to the individual needs of the patient.
Collapse
Affiliation(s)
- Zuzanna Chilimoniuk
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Agata Rocka
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Martyna Stefaniak
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Żaklina Tomczyk
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Faustyna Jasielska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Dominika Madras
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, ul. Radziwiłłowska 11, Lublin, 20-080, Poland
| |
Collapse
|
66
|
Sing LC, Roy A, Hui LY, Mun CS, Rajak H, Karunakaran R, Ravichandran V. Multi-targeted molecular docking, drug-likeness and ADMET studies of derivatives of few quinoline- and acridine-based FDA-approved drugs for anti-breast cancer activity. Struct Chem 2022. [DOI: 10.1007/s11224-022-01878-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
Lapatinib as first-line treatment for muscle-invasive urothelial carcinoma in dogs. Sci Rep 2022; 12:4. [PMID: 35027594 PMCID: PMC8758709 DOI: 10.1038/s41598-021-04229-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 01/22/2023] Open
Abstract
Epidermal growth factor receptors 1 and 2 (EGFR and HER2) are frequently overexpressed in various malignancies. Lapatinib is a dual tyrosine kinase inhibitor that inhibits both EGFR and HER2. Although a phase III trial failed to show the survival benefits of lapatinib treatment after first-line chemotherapy in patients with EGFR/HER2-positive metastatic urothelial carcinoma, the efficacy of lapatinib for untreated urothelial carcinoma is not well defined. Here, we describe the therapeutic efficacy of lapatinib as a first-line treatment in a canine model of muscle-invasive urothelial carcinoma. In this non-randomized clinical trial, we compared 44 dogs with naturally occurring urothelial carcinoma who received lapatinib and piroxicam, with 42 age-, sex-, and tumor stage-matched dogs that received piroxicam alone. Compared to the dogs treated with piroxicam alone, those administered the lapatinib/piroxicam treatment had a greater reduction in the size of the primary tumor and improved survival. Exploratory analyses showed that HER2 overexpression was associated with response and survival in dogs treated with lapatinib. Our study suggests that lapatinib showed encouraging durable response rates, survival, and tolerability, supporting its therapeutic use for untreated advanced urothelial carcinoma in dogs. The use of lapatinib as a first-line treatment may be investigated further in human patients with urothelial carcinoma.
Collapse
|
68
|
Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, Sudhakar K, Alharbi KS, Al-Malki WH, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Fuloria NK. A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2022; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India
| | - Darnal Hari Kumar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selngor, 47500, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Malaysia
| | - Kathiresan V Sathasivam
- Faculty of Applied Science & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar, 144411, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam BinAbdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia.
| |
Collapse
|
69
|
Saad MA, Xavierselvan M, Sharif HA, Selfridge S, Pawle R, Varvares M, Mallidi S, Hasan T. Dual Function Antibody Conjugates for Multimodal Imaging and Photoimmunotherapy of Cancer Cells. Photochem Photobiol 2022; 98:220-231. [PMID: 34379796 PMCID: PMC10038131 DOI: 10.1111/php.13501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Precision imaging, utilizing molecular targeted agents, is an important tool in cancer diagnostics and guiding therapies. While there are limitations associated with single mode imaging probes, multimodal molecular imaging probes enabling target visualization through complementary imaging technologies provides an attractive alternative. However, there are several challenges associated with designing molecular probes carrying contrast agents for complementary multimodal imaging. Here, we propose a dual function antibody conjugate (DFAC) comprising an FDA approved photosensitizer Benzoporphyrin derivative (BPD) and a naphthalocyanine-based photoacoustic dye (SiNc(OH)) for multimodal infrared (IR) imaging. While fluorescence imaging, through BPD, provides sensitivity, complementing it with photoacoustic imaging, through SiNc(OH), provides a depth-resolved spatial resolution much beyond the optical diffusion limits of fluorescence measurements. Through a series of in vitro experiments, we demonstrate the development and utilization of DFACs for multimodal imaging and photodynamic treatment of squamous cell carcinoma (A431) cell line. The proposed DFACs have potential use in precision imaging applications such as guiding tumor resection surgeries and photodynamic treatment of residual microscopic disease thereby minimizing local recurrence. The data demonstrated in this study merits further investigation for its preclinical and clinical translation.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA
| | | | | | | | - Mark Varvares
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, The Massachusetts Eye and Ear, Boston, MA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
70
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
71
|
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|
72
|
Chen L, Kong X, Fang Y, Paunikar S, Wang X, Brown JAL, Bourke E, Li X, Wang J. Recent Advances in the Role of Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian Cancer. Front Cell Dev Biol 2021; 9:747314. [PMID: 34805157 PMCID: PMC8595330 DOI: 10.3389/fcell.2021.747314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor tyrosine kinases (DDRs) are a class of receptor tyrosine kinases (RTKs), and their dysregulation is associated with multiple diseases (including cancer, chronic inflammatory conditions, and fibrosis). The DDR family members (DDR1a-e and DDR2) are widely expressed, with predominant expression of DDR1 in epithelial cells and DDR2 in mesenchymal cells. Structurally, DDRs consist of three regions (an extracellular ligand binding domain, a transmembrane domain, and an intracellular region containing a kinase domain), with their kinase activity induced by receptor-specific ligand binding. Collagen binding to DDRs stimulates DDR phosphorylation activating kinase activity, signaling to MAPK, integrin, TGF-β, insulin receptor, and Notch signaling pathways. Abnormal DDR expression is detected in a range of solid tumors (including breast, ovarian, cervical liver, gastric, colorectal, lung, and brain). During tumorigenesis, abnormal activation of DDRs leads to invasion and metastasis, via dysregulation of cell adhesion, migration, proliferation, secretion of cytokines, and extracellular matrix remodeling. Differential expression or mutation of DDRs correlates with pathological classification, clinical characteristics, treatment response, and prognosis. Here, we discuss the discovery, structural characteristics, organizational distribution, and DDR-dependent signaling. Importantly, we highlight the key role of DDRs in the development and progression of breast and ovarian cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shishir Paunikar
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Emer Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
73
|
Wang L, Gao Y, Tong D, Wang X, Guo C, Guo B, Yang Y, Zhao L, Zhang J, Yang J, Qin Y, Liu L, Huang C. MeCP2 drives hepatocellular carcinoma progression via enforcing HOXD3 promoter methylation and expression through the HB-EGF/EGFR pathway. Mol Oncol 2021; 15:3147-3163. [PMID: 34028973 PMCID: PMC8564637 DOI: 10.1002/1878-0261.13019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Homeobox D3 (HOXD3), a member of the homeobox family, was described to regulate tumorigenesis, invasion, metastasis, and angiogenesis in various tumor types. However, the molecular mechanisms regulating HOXD3 during hepatocellular carcinoma (HCC) migration, invasion, and angiogenesis remain elusive. In this study, we demonstrated that HOXD3 expression is enhanced by the binding of methyl-CpG-binding protein 2 (MeCP2), a methyl-CpG binding protein, together with CREB1to the hypermethylated promoter of HOXD3. Inhibition of HOXD3 eliminated the tumorigenic effects of MeCP2 on HCC cells. Furthermore, HOXD3 directly targeted the promoter region of heparin-binding epidermal growth factor (HB-EGF) via the EGFR-ERK1/2 cell signaling pathway and promoted invasion, metastasis, and angiogenesis of HCC in vitro and in vivo. Additionally, elevated expression of MeCP2, CREB1, and HB-EGF in HCC correlated with a poor survival rate. Our findings reveal the function of the MeCP2/HOXD3/HB-EGF regulatory axis in HCC, rendering it an attractive candidate for the development of targeted therapeutics and as a potential biomarker in patients with HCC.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Digestive Diseases in Precision Medicine Institutethe Second Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Yi Gao
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Yan'an Key Laboratory of Chronic Disease Prevention and ResearchChina
| | - Dongdong Tong
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Xiaofei Wang
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Chen Guo
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Bo Guo
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Yang Yang
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Lingyu Zhao
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Jing Zhang
- Yan'an Key Laboratory of Chronic Disease Prevention and ResearchChina
| | - Juan Yang
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Yannan Qin
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
| | - Chen Huang
- Department of cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterChina
- Institute of Genetics and Developmental BiologyTranslational Medicine InstituteSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterChina
- Cardiovascular Research CenterXi'an Jiaotong University Health Science CenterChina
| |
Collapse
|
74
|
Drug-Induced Resistance and Phenotypic Switch in Triple-Negative Breast Cancer Can Be Controlled via Resolution and Targeting of Individualized Signaling Signatures. Cancers (Basel) 2021; 13:cancers13195009. [PMID: 34638492 PMCID: PMC8507629 DOI: 10.3390/cancers13195009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Patients with Triple Negative Breast Cancer (TNBC) have a poor prognosis due to high inter-tumor heterogeneity and absence of effective targeted treatments. Through quantification of ongoing processes in each individual with TNBC, we propose an explanation on why certain previously suggested monotherapies, such as anti-EGFR, are not effective. We experimentally demonstrate that monotherapies or drug combinations that are not adjusted accurately to the patient-specific ongoing processes may create an evolutionary pressure on a tumor leading to the emergence of previously undetected or untargeted cellular subpopulations. We show for example that certain TNBC tumors may benefit from therapies targeting estrogen receptors (ER), similarly to ER positive cancers. When untargeted, those tumors may develop large ER positive subpopulations. We propose that anti-TNBC therapy should be accurately tailored to the personalized molecular processes and that incomplete or “wrong” treatments may generate diverse evolutionary routes of TNBC tumors leading to drug resistance. Abstract Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancers which is treated mainly with chemotherapy and radiotherapy. Epidermal growth factor receptor (EGFR) was considered to be frequently expressed in TNBC, and therefore was suggested as a therapeutic target. However, clinical trials of EGFR inhibitors have failed. In this study, we examine the relationship between the patient-specific TNBC network structures and possible mechanisms of resistance to anti-EGFR therapy. Using an information-theoretical analysis of 747 breast tumors from the TCGA dataset, we resolved individualized protein network structures, namely patient-specific signaling signatures (PaSSS) for each tumor. Each PaSSS was characterized by a set of 1–4 altered protein–protein subnetworks. Thirty-one percent of TNBC PaSSSs were found to harbor EGFR as a part of the network and were predicted to benefit from anti-EGFR therapy as long as it is combined with anti-estrogen receptor (ER) therapy. Using a series of single-cell experiments, followed by in vivo support, we show that drug combinations which are not tailored accurately to each PaSSS may generate evolutionary pressure in malignancies leading to an expansion of the previously undetected or untargeted subpopulations, such as ER+ populations. This corresponds to the PaSSS-based predictions suggesting to incorporate anti-ER drugs in certain anti-TNBC treatments. These findings highlight the need to tailor anti-TNBC targeted therapy to each PaSSS to prevent diverse evolutions of TNBC tumors and drug resistance development.
Collapse
|
75
|
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2579. [PMID: 34685018 PMCID: PMC8539690 DOI: 10.3390/nano11102579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state-of-the-art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.
Collapse
Affiliation(s)
- Lucas F. Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Aryel H. Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
- MackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Velaphi C. Thipe
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Caroline S. A. Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Jorge G. S. Batista
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Fabiane N. Riello
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Kamila Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Giovanna O. A. Mendes
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Adriana S. Rodrigues
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Thayna S. Sousa
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Victoria M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| |
Collapse
|
76
|
Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021; 22:166-179. [PMID: 34514097 PMCID: PMC8416972 DOI: 10.1016/j.omto.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy has been well regarded as one of the safer and antigen-specific anti-cancer treatments compared to first-generation chemotherapy. Since Coley's discovery, researchers focused on engineering novel antibody-based therapies. Including artificial and modified antibodies, such as antibody fragments, antibody-drug conjugates, and synthetic mimetics, the variety of immunotherapy has been rapidly expanding in the last few decades. Genetic and chemical modifications to monoclonal antibody have been brought into academia, in vivo trials, and clinical applications. Here, we have looked around antibodies overall. First, we elucidate the antibody structure and its cytotoxicity mechanisms. Second, types of therapeutic antibodies are presented. Additionally, there is a summarized list of US Food and Drug Administration (FDA)-approved therapeutic antibodies and recent clinical trials. This review provides a comprehensive overview of both the general function of therapeutic antibodies and a few main variations in development, including recent advent with the proposed mechanism of actions, and we introduce types of therapeutic antibodies, clinical trials, and approved commercial immunotherapeutic drugs.
Collapse
Affiliation(s)
- Charles Shin
- Chadwick International, Incheon 22002, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
77
|
Al-Matouq J, Al-Haj L, Al-Saif M, Khabar KSA. Post-transcriptional screen of cancer amplified genes identifies ERBB2/Her2 signaling as AU-rich mRNA stability-promoting pathway. Oncogenesis 2021; 10:61. [PMID: 34535639 PMCID: PMC8448767 DOI: 10.1038/s41389-021-00351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Amplification of specific cancer genes leads to their over-expression contributing to tumor growth, spread, and drug resistance. Little is known about the ability of these amplified oncogenes to augment the expression of cancer genes through post-transcriptional control. The AU-rich elements (ARE)-mediated mRNA decay is compromised for many key cancer genes leading to their increased abundance and effects. Here, we performed a post-transcriptional screen for frequently amplified cancer genes demonstrating that ERBB2/Her2 overexpression was able to augment the post-transcriptional effects. The ERBB1/2 inhibitor, lapatinib, led to the reversal of the aberrant ARE-mediated process in ERBB2-amplified breast cancer cells. The intersection of overexpressed genes associated with ERBB2 amplification in TCGA datasets with ARE database (ARED) identified ERBB2-associated gene cluster. Many of these genes were over-expressed in the ERBB2-positive SKBR3 cells compared to MCF10A normal-like cells, and were under-expressed due to ERBB2 siRNA treatment. Lapatinib accelerated the ARE-mRNA decay for several ERBB2-regulated genes. The ERBB2 inhibitor decreased both the abundance and stability of the phosphorylated inactive form of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). The ERBB2 siRNA was also able to reduce the phosphorylated ZFP36/TTP form. In contrast, ectopic expression of ERBB2 in MCF10A or HEK293 cells led to increased abundance of the phosphorylated ZFP36/TTP. The effect of ERBB2 on TTP phosphorylation appeared to be mediated via the MAPK-MK2 pathway. Screening for the impact of other amplified cancer genes in HEK293 cells also demonstrated that EGFR, AKT2, CCND1, CCNE1, SKP2, and FGFR3 caused both increased abundance of phosphorylated ZFP36/TTP and ARE-post-transcriptional reporter activity. Thus, specific amplified oncogenes dysregulate post-transcriptional ARE-mediated effects, and targeting the ARE-mediated pathway itself may provide alternative therapeutic approaches.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia ,Present Address: Mohammed Al-Mana College for Medical Science, Dammam, Saudi Arabia
| | - Latifa Al-Haj
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Maher Al-Saif
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Khalid S. A. Khabar
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
78
|
Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, Rahmati M. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int 2021; 21:470. [PMID: 34488747 PMCID: PMC8422749 DOI: 10.1186/s12935-021-02182-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samaneh Siapoush
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
79
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
80
|
Molavipordanjani S, Hosseinimehr SJ. The Radiolabeled HER3 Targeting Molecules for Tumor Imaging. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:141-152. [PMID: 34400948 PMCID: PMC8170765 DOI: 10.22037/ijpr.2021.114677.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human epidermal growth factor receptor (HER) family plays pivotal roles in physiologic and pathologic conditions (such as tumor growth, proliferation, and progression in multiple epithelial malignancies). All the family members are considered tyrosine kinase, while HER3 as a member of this family shows no intrinsic tyrosine kinase. HER3 is called ‘pseudokinase’ because it undergoes heterodimerization and forms dimers such as HER2-HER3 and HER1 (EGFR)-HER3. The exact role of HER3 in cancer is still unclear; however, the overexpression of this receptor is involved in the poor prognosis of malignancies. To that end, different studies investigated the development of radiotracers for imaging of HER3. The main focus of this review is to gather all the studies on developing new radiotracers for imaging of HER3.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
81
|
Smith MP, Ferguson HR, Ferguson J, Zindy E, Kowalczyk KM, Kedward T, Bates C, Parsons J, Watson J, Chandler S, Fullwood P, Warwood S, Knight D, Clarke RB, Francavilla C. Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO J 2021; 40:e107182. [PMID: 34086370 PMCID: PMC8447605 DOI: 10.15252/embj.2020107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.
Collapse
Affiliation(s)
- Michael P Smith
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Harriet R Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Jennifer Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Egor Zindy
- Division of Cell Matrix and Regenerative MedicineSchool of Biological Science, FBMHThe University of ManchesterManchesterUK
- Present address:
Center for Microscopy and Molecular ImagingUniversité Libre de Bruxelles (ULB)GosseliesBelgium
| | - Katarzyna M Kowalczyk
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Thomas Kedward
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Christian Bates
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Joseph Parsons
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Joanne Watson
- Division of Evolution and Genomic SciencesSchool of Biological ScienceFBMHThe University of ManchesterManchesterUK
| | - Sarah Chandler
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Paul Fullwood
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Stacey Warwood
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - David Knight
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - Robert B Clarke
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| | - Chiara Francavilla
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| |
Collapse
|
82
|
Interplay of Epidermal Growth Factor Receptor and Signal Transducer and Activator of Transcription 3 in Prostate Cancer: Beyond Androgen Receptor Transactivation. Cancers (Basel) 2021; 13:cancers13143452. [PMID: 34298665 PMCID: PMC8307975 DOI: 10.3390/cancers13143452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in the world and causes thousands of deaths every year. Conventional therapy for PCa includes surgery and androgen deprivation therapy (ADT). However, about 10-20% of all PCa cases relapse; there is also the further development of castration resistant adenocarcinoma (CRPC-Adeno) or neuroendocrine (NE) PCa (CRPC-NE). Due to their androgen-insensitive properties, both CRPC-Adeno and CRPC-NE have limited therapeutic options. Accordingly, this study reveals the inductive mechanisms of CRPC (for both CRPC-Adeno and CRPC-NE) and fulfils an urgent need for the treatment of PCa patients. Although previous studies have illustrated the emerging roles of epidermal growth factor receptors (EGFR), signal transducer, and activator of transcription 3 (STAT3) signaling in the development of CRPC, the regulatory mechanisms of this interaction between EGFR and STAT3 is still unclear. Our recent studies have shown that crosstalk between EGFR and STAT3 is critical for NE differentiation of PCa. In this review, we have collected recent findings with regard to the involvement of EGFR and STAT3 in malignancy progression and discussed their interactions during the development of therapeutic resistance for PCa.
Collapse
|
83
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
84
|
Yu F, Cai M, Shao L, Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front Chem 2021; 9:679120. [PMID: 34277564 PMCID: PMC8279777 DOI: 10.3389/fchem.2021.679120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Kinase dysregulation is greatly associated with cell proliferation, migration and survival, indicating the importance of kinases as therapeutic targets for anticancer drug development. However, traditional kinase inhibitors binding to catalytic or allosteric sites are associated with significant challenges. The emergence of resistance and targeting difficult-to-degrade and multi-domain proteins are significant limiting factors affecting the efficacy of targeted anticancer drugs. The next-generation treatment approaches seem to have overcome these concerns, and the use of proteolysis targeting chimera (PROTAC) technology is one such method. PROTACs bind to proteins of interest and recruit E3 ligase for degrading the whole target protein via the ubiquitin-proteasome pathway. This review provides a detailed summary of the most recent signs of progress in PROTACs targeting different kinases, primarily focusing on new chemical entities in medicinal chemistry.
Collapse
Affiliation(s)
- Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ming Cai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
85
|
Sun J, Wu K, Chen S, Jiang S, Chen Y, Duan C. UHRF2 promotes Hepatocellular Carcinoma Progression by Upregulating ErbB3/Ras/Raf Signaling Pathway. Int J Med Sci 2021; 18:3097-3105. [PMID: 34400880 PMCID: PMC8364466 DOI: 10.7150/ijms.60030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Emerging evidence revealed that UHRF2 was implicated in a variety of human diseases, especially in cancer. However, the biological function, clinical significance and underly mechanisms of UHRF2 in hepatocellular carcinoma (HCC) is largely unknown. We analyzed the expression of UHRF2 in 371 HCC tissues and 50 para-cancerous tissues of TCGA database. We found that UHRF2 was significantly upregulated in HCC tissues, which was further confirmed in HCC cells and tissues by western blot. More importantly, the level of UHRF2 was correlated with pathological grade and clinical stage, and the patients with high level of UHRF2 had lower overall survival, disease-free survival and higher recurrence rate than those with low UHRF2 level. Univariate and multivariate Cox regression analysis revealed that high level of UHRF2 might be an independent prognostic factor for HCC patients. Functional investigations suggested that ectopic expression of UHRF2 could promote the proliferation, migration and invasion of HCC cell lines, whereas knock down of UHRF2 exhibited an opposite effect. Additionally, gene set enrichment analysis indicated that ERBB signaling pathway was upregulated in patients with high level of UHRF2. Pearson correlation analysis indicated that the expression of UHRF2 was positively correlated with ErbB3 and its downstream targets SOS1, Ras and Raf-1. Furthermore, we found that overexpression of UHRF2 could upregulate the expression of ErbB3, SOS1, Ras and Raf-1. Our findings suggested that UHRF2 might accelerate HCC progression by upregulating ErbB3/Ras/Raf signaling pathway and it might serve as a diagnostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jingjie Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Kejia Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Siyuan Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Shiming Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| |
Collapse
|
86
|
Dong J, Cheng XD, Zhang WD, Qin JJ. Recent Update on Development of Small-Molecule STAT3 Inhibitors for Cancer Therapy: From Phosphorylation Inhibition to Protein Degradation. J Med Chem 2021; 64:8884-8915. [PMID: 34170703 DOI: 10.1021/acs.jmedchem.1c00629] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various biological processes, including proliferation, metastasis, angiogenesis, immune response, and chemoresistance. In normal cells, STAT3 is tightly regulated to maintain a transiently active state, while persistent STAT3 activation occurs frequently in cancers, associating with a poor prognosis and tumor progression. Targeting the STAT3 protein is a potentially promising therapeutic strategy for tumors. Although none of the STAT3 inhibitors has been marketed yet, a few of them have succeeded in entering clinical trials. This Review aims to systematically summarize the progress of the last 5 years in the discovery of directive STAT3 small-molecule inhibitors and degraders, focusing primarily on their structural features, design strategies, and bioactivities. We hope this Review will shed light on future drug design and inhibitor optimization to accelerate the discovery process of STAT3 inhibitors or degraders.
Collapse
Affiliation(s)
- Jinyun Dong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Xiang-Dong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiang-Jiang Qin
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
87
|
Du X, Yang B, An Q, Assaraf YG, Cao X, Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (N Y) 2021; 2:100103. [PMID: 34557754 PMCID: PMC8454558 DOI: 10.1016/j.xinn.2021.100103] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery that mutations in the EGFR gene are detected in up to 50% of lung adenocarcinoma patients, along with the development of highly efficacious epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has revolutionized the treatment of this frequently occurring lung malignancy. Indeed, the clinical success of these TKIs constitutes a critical milestone in targeted cancer therapy. Three generations of EGFR-TKIs are currently approved for the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). The first-generation TKIs include erlotinib, gefitinib, lapatinib, and icotinib; the second-generation ErbB family blockers include afatinib, neratinib, and dacomitinib; whereas osimertinib, approved by the FDA on 2015, is a third-generation TKI targeting EGFR harboring specific mutations. Compared with the first- and second-generation TKIs, third-generation EGFR inhibitors display a significant advantage in terms of patient survival. For example, the median overall survival in NSCLC patients receiving osimertinib reached 38.6 months. Unfortunately, however, like other targeted therapies, new EGFR mutations, as well as additional drug-resistance mechanisms emerge rapidly after treatment, posing formidable obstacles to cancer therapeutics aimed at surmounting this chemoresistance. In this review, we summarize the molecular mechanisms underlying resistance to third-generation EGFR inhibitors and the ongoing efforts to address and overcome this chemoresistance. We also discuss the current status of fourth-generation EGFR inhibitors, which are of great value in overcoming resistance to EGFR inhibitors that appear to have greater therapeutic benefits in the clinic. EGFR gene mutations are detected in about 50% of non-small cell lung cancer (NSCLC) patients worldwide The three generations of EGFR tyrosine kinase inhibitors (TKIs) are critical milestones for NSCLC patients Like other targeted therapies, new EGFR mutations and coupled drug resistances emerge rapidly after TKI treatment, posing formidable obstacles to cancer management The investigational fourth-generation EGFR inhibitors are of great promise, through a number of novel mechanisms, in overcoming these resistances after third-generation TKI treatment, and will bring more benefits to NSCLC patients
Collapse
Affiliation(s)
- Xiaojing Du
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
88
|
Li W, Hu X, Li Y, Song K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J Nat Med 2021; 75:854-870. [PMID: 34043154 DOI: 10.1007/s11418-021-01525-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Astragalus polysaccharide (APS) has been frequently used as an adjuvant agent responsible for its immunoregulatory activity to enhance efficacy and reduce toxicity of chemotherapy used in the management of breast cancer. However, the other synergism mechanism of APS remains unclear. This study was performed to evaluate the potential targets and possible mechanism behind APS in vivo direct anti-tumor activity on breast cancer. Multiple biological detections were conducted to investigate the protein and mRNA expression levels of key targets. In total, 116 down-regulated and 73 up-regulated differential expressed genes (DEGs) were examined from 7 gene expression datasets. Top ten hub genes were obtained in four typical protein-protein interaction (PPI) network of DEGs involved in each specific biological process (BP, cell cycle, cell proliferation, cell apoptosis and death) that was related to inhibitory activity of APS in vitro against breast cancer cell lines. Four common DEGs (EGFR, ANXA1, KIF14 and IGF1) were further identified in the above four BP-PPI networks, among which EGFR and ANXA1 were the hub genes that were potentially linked to the progression of breast cancer. The results of biological detections indicated that the expression of EGFR in breast cancer cells was down-regulated, while the expression of ANXA1 was markedly increased in response to APS. In conclusion, the present study may provide potential molecular therapeutic targets and a new insight into the mechanism of APS against breast cancer.
Collapse
Affiliation(s)
- Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanjie Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
89
|
Ramezani A, Asgari A, Kaviani E, Hosseini A, Ghaderi A. Tatibody, a recombinant antibody with higher internalization potency. Mol Immunol 2021; 135:320-328. [PMID: 33971510 DOI: 10.1016/j.molimm.2021.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Using antibody drug conjugates (ADC) which can exclusively bind to their target cells and upon internalization release their toxic agent, is one of the most effective methods for killing tumor cells. Therefore, increasing the internalization rate is an important factor for tumor treatment in this case. The aim of the present study was to develop a new variant of pertuzumab (an anti-ErbB2 humanized antibody) with higher internalization rate that can be a good candidate for the production of ADC. To this end, the Human Immunodeficiency Virus TAT Protein Transduction Domain (TAT-PTD) was replaced into the structure of the pertuzumab. At first, the best site in antibody heavy chain constant region for the replacement of TAT-PTD was predicted through computational methods. Then, the resulting recombinant antibody, of which TAT-PTD was located at amino acid position 130-140 and named Tatibody, was produced in CHO-S cell line. Finally, its physicochemical properties and biological activities were evaluated and compared with pertuzumab. Results showed that the binding ability of Tatibody to the ErbB2 receptor is similar to that of pertuzumab, but its internalization potency is 3.6 fold higher and can be used as a good candidate for ADC construction.
Collapse
Affiliation(s)
- Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Elina Kaviani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
90
|
Nakhjavani M, Smith E, Yeo K, Palethorpe HM, Tomita Y, Price TJ, Townsend AR, Hardingham JE. Anti-Angiogenic Properties of Ginsenoside Rg3 Epimers: In Vitro Assessment of Single and Combination Treatments. Cancers (Basel) 2021; 13:cancers13092223. [PMID: 34066403 PMCID: PMC8125638 DOI: 10.3390/cancers13092223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour angiogenesis plays a key role in tumour growth and progression. The application of current anti-angiogenic drugs is accompanied by adverse effects and drug resistance. Therefore, finding safer effective treatments is needed. Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-Rg3 (SRg3) and 20(R)-Rg3 (RRg3), with stereoselective activities. Using response surface methodology, we optimised a combination of these two epimers for the loop formation of human umbilical vein endothelial cell (HUVEC). The optimised combination (C3) was tested on HUVEC and two murine endothelial cell lines. C3 significantly inhibited the loop formation, migration, and proliferation of these cells, inducing apoptosis in HUVEC and cell cycle arrest in all of the cell lines tested. Using molecular docking and vascular endothelial growth factor (VEGF) bioassay, we showed that Rg3 has an allosteric modulatory effect on vascular endothelial growth factor receptor 2 (VEGFR2). C3 also decreased the VEGF expression in hypoxic conditions, decreased the expression of aquaporin 1 and affected AKT signaling. The proteins that were mostly affected after C3 treatment were those related to mammalian target of rapamycin (mTOR). Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) was one of the important targets of C3, which was affected in both hypoxic and normoxic conditions. In conclusion, these results show the potential of C3 as a novel anti-angiogenic drug.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Correspondence: ; Tel.: +61-8-8222-6142
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Helen M. Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia;
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Tim J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| |
Collapse
|
91
|
Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and Regulation of T H Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol 2021; 12:669474. [PMID: 34012451 PMCID: PMC8126720 DOI: 10.3389/fimmu.2021.669474] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Current success of immunotherapy in cancer has drawn attention to the subsets of TH cells in the tumor which are critical for activation of anti-tumor response either directly by themselves or by stimulating cytotoxic T cell activity. However, presence of immunosuppressive pro-tumorigenic TH subsets in the tumor milieu further contributes to the complexity of regulation of TH cell-mediated immune response. In this review, we present an overview of the multifaceted positive and negative effects of TH cells, with an emphasis on regulation of different TH cell subtypes by various immune cells, and how a delicate balance of contradictory signals can influence overall success of cancer immunotherapy. We focus on the regulatory network that encompasses dendritic cell-induced activation of CD4+ TH1 cells and subsequent priming of CD8+ cytotoxic T cells, along with intersecting anti-inflammatory and pro-tumorigenic TH2 cell activity. We further discuss how other tumor infiltrating immune cells such as immunostimulatory TH9 and Tfh cells, immunosuppressive Treg cells, and the duality of TH17 function contribute to tip the balance of anti- vs pro-tumorigenic TH responses in the tumor. We highlight the developing knowledge of CD4+ TH1 immune response against neoantigens/oncodrivers, impact of current immunotherapy strategies on CD4+ TH1 immunity, and how opposing action of TH cell subtypes can be explored further to amplify immunotherapy success in patients. Understanding the nuances of CD4+ TH cells regulation and the molecular framework undergirding the balancing act between anti- vs pro-tumorigenic TH subtypes is critical for rational designing of immunotherapies that can bypass therapeutic escape to maximize the potential of immunotherapy.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gabriella Albert
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Gary Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Oncological Sciences, University of South Florida, Tampa, FL, United States.,Department of Breast Cancer Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
92
|
Chuang TC, Wu K, Lin YY, Kuo HP, Kao MC, Wang V, Hsu SC, Lee SL. Dual down-regulation of EGFR and ErbB2 by berberine contributes to suppression of migration and invasion of human ovarian cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:737-747. [PMID: 33325633 DOI: 10.1002/tox.23076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The overexpression of EGFR and/or ErbB2 occurs frequently in ovarian cancers and is associated with poor prognosis. The purpose of this study was to examine the anticancer effects and molecular mechanisms of berberine on human ovarian cancer cells with different levels of EGFR and/or ErbB2. We found that berberine reduced the motility and invasiveness of ovarian cancer cells. Berberine depleted both EGFR and ErbB2 in ovarian cancer cells. Furthermore, berberine suppressed the activation of the EGFR and ErbB2 downstream targets cyclin D1, MMPs, and VEGF by down-regulating the EGFR-ErbB2/PI3K/Akt signaling pathway. The berberine-mediated inhibition of MMP-2 and MMP-9 activity could be rescued by co-treatment with EGF. Finally, we demonstrated that berberine induced ErbB2 depletion through ubiquitin-mediated proteasome degradation. In conclusion, the suppressive effects of berberine on the ovarian cancer cells that differ in the expression of EGFR and ErbB2 may be mediated by the dual depletion of EGFR and/or ErbB2.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Kuohui Wu
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Ying-Yu Lin
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Han-Peng Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
93
|
Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers (Basel) 2021; 13:cancers13092171. [PMID: 33946495 PMCID: PMC8125290 DOI: 10.3390/cancers13092171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.
Collapse
|
94
|
Ludwik KA, Sandusky ZM, Stauffer KM, Li Y, Boyd KL, O'Doherty GA, Stricker TP, Lannigan DA. RSK2 Maintains Adult Estrogen Homeostasis by Inhibiting ERK1/2-Mediated Degradation of Estrogen Receptor Alpha. Cell Rep 2021; 32:107931. [PMID: 32697984 PMCID: PMC7465694 DOI: 10.1016/j.celrep.2020.107931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/17/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
In response to estrogens, estrogen receptor alpha (ERα), a critical regulator of homeostasis, is degraded through the 26S proteasome. However, despite the continued presence of estrogen before menopause, ERα protein levels are maintained. We discovered that ERK1/2-RSK2 activity oscillates during the estrous cycle. In response to high estrogen levels, ERK1/2 is activated and phosphorylates ERα to drive ERα degradation and estrogen-responsive gene expression. Reduction of estrogen levels results in ERK1/2 deactivation. RSK2 maintains redox homeostasis, which prevents sustained ERK1/2 activation. In juveniles, ERK1/2-RSK2 activity is not required. Mammary gland regeneration demonstrates that ERK1/2-RSK2 regulation of ERα is intrinsic to the epithelium. Reduced RSK2 and enrichment in an estrogen-regulated gene signature occur in individuals taking oral contraceptives. RSK2 loss enhances DNA damage, which may account for the elevated breast cancer risk with the use of exogenous estrogens. These findings implicate RSK2 as a critical component for the preservation of estrogen homeostasis. Ludwik et al. find that ERK1/2-RSK2 activity oscillates with each reproductive cycle. The estrogen surge activates ERK1/2, which phosphorylates estrogen receptor alpha to drive estrogen responsiveness. Active RSK2 acts as a brake on the estrogen response by maintaining redox homeostasis. Oral contraceptive use correlates with disruption of ERK1/2-RSK2 regulation.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly M Stauffer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Thomas P Stricker
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
95
|
Fu D, Li C, Huang Y. Lipid-Polymer Hybrid Nanoparticle-Based Combination Treatment with Cisplatin and EGFR/HER2 Receptor-Targeting Afatinib to Enhance the Treatment of Nasopharyngeal Carcinoma. Onco Targets Ther 2021; 14:2449-2461. [PMID: 33859480 PMCID: PMC8044085 DOI: 10.2147/ott.s286813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is one of the most prevalent carcinomas among the Cantonese population of South China and Southeast Asia (responsible for 8% of all cancers in China alone). Although concurrent platinum-based chemotherapy and radiotherapy have been successful, metastatic NPC remains difficult to treat, and the failure rate is high. Methods Thus, we developed stable lipid–polymer hybrid nanoparticles (NPs) containing cisplatin (CDDP) and afatinib (AFT); these drugs act synergistically to counter NPC. The formulated nanoparticles were subjected to detailed in vitro and in vivo analysis. Results We found that CDDP and AFT exhibited synergistic anticancer efficacy at a specific molar ratio. NPs were more effective than a free drug cocktail (a combination) in reducing cell viability, enhancing apoptosis, inhibiting cell migration, and blocking cell cycling. Cell viability after CDDP monotherapy was as high as 85.1%, but CDDP+AFT (1/1 w/w) significantly reduced viability to 39.5%. At 1 µg/mL, AFT/CDDP-loaded lipid–polymer hybrid NPs (ACD-LP) were significantly more cytotoxic than the CDDP+AFT cocktail, indicating the superiority of the NP system. Conclusion The NPs significantly delayed tumor growth compared with either CDDP or AFT monotherapy and were not obviously toxic. Overall, the results suggest that AFT/CDDP-loaded lipid–polymer hybrid NPs exhibit great potential as a treatment for NPC.
Collapse
Affiliation(s)
- Dehui Fu
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Chao Li
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yongwang Huang
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| |
Collapse
|
96
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
97
|
Palanivel S, Yli-Harja O, Kandhavelu M. Molecular interaction study of novel indoline derivatives with EGFR-kinase domain using multiple computational analysis. J Biomol Struct Dyn 2021; 40:7545-7554. [PMID: 33749517 DOI: 10.1080/07391102.2021.1900917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidermal growth factor receptors are constitutively overexpressed in breast cancer cells, which in turn stimulate many downstream signaling pathways that are involved in many carcinogenic processes. This makes EGFR a striking target for cancer therapy. This study focuses on the EGFR kinase domain inactivation by novel synthesized indoline derivatives. The compounds used are N-(2-hydroxy-5-nitrophenyl (4'-methyl phenyl) methyl) indoline (HNPMI), alkylaminophenols - 2-((3,4-Dihydroquinolin-1(2H)-yl) (p-tolyl) methyl) phenol (THTMP) and 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP). To get a clear insight into the molecular interaction of EGFR and the three compounds, we have used ADME/Tox prediction, Flexible docking analysis followed by MM/GB-SA, QM/MM analysis, E-pharmacophore mapping of the ligands and Molecular dynamic simulation of protein-ligand complexes. All three compounds showed good ADME/Tox properties obeying the rules of drug-likeliness and showed high human oral absorption. Molecular docking was performed with the compounds and EGFR using Glide Flexible docking mode. This showed that the HNPMI was best among the three compounds and had interactions with key residue Lys 721. The protein-ligand complexes were stable when simulated for 100 ns using Desmond software. The interactions were further substantiated using QM/MM analysis and MM-GB/SA analysis in which HNPMI was scored as the best molecule. All the analyses were carried out with a reference molecule-Gefitinib which is a known standard inhibitor of EGFR. Thus, the study elucidates the potential role of the indoline derivatives as an anti-cancer agent against breast cancer by effectively inhibiting EGFR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suresh Palanivel
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Olli Yli-Harja
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| |
Collapse
|
98
|
Caviglia GP, Abate ML, Rolle E, Carucci P, Armandi A, Rosso C, Olivero A, Ribaldone DG, Tandoi F, Saracco GM, Ciancio A, Bugianesi E, Gaia S. The Clinical Role of Serum Epidermal Growth Factor Receptor 3 in Hepatitis C Virus-Infected Patients with Early Hepatocellular Carcinoma. BIOLOGY 2021; 10:215. [PMID: 33799723 PMCID: PMC7999043 DOI: 10.3390/biology10030215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Epidermal growth factor receptor 3 (ERBB3) is a surface tyrosine kinase receptor belonging to the EGFR/ERBB family, involved in tumor development and progression. We evaluated the diagnostic and prognostic value of serum ERBB3 measurement in hepatitis C virus (HCV)-infected patients with early hepatocellular carcinoma (HCC). A total of 164 HCV-infected patients (82 with cirrhosis and 82 with early HCC) were included in the study. HCC was classified according to the Barcelona Clinic Liver Cancer (BCLC) staging system. Among patients with HCC, 23 (28%) had a diagnosis of very early tumor (BCLC = 0), while 59 (62%) had a diagnosis of early HCC (BCLC = A). Median overall survival (OS) in patients with HCC was 79.2 (95% CI 51.6-124.8) months. While ERBB3 serum values were similar between patients with cirrhosis and those with HCC (p = 0.993), in the latter, serum ERBB3 ≥ 2860 RU resulted significantly and independently associated with OS (Hazard Ratio = 2.24, 95% CI 1.16-4.35, p = 0.017). Consistently, the 1-, 3-, and 5-year OS rates in patients with serum ERBB3 ≥ 2860 RU were 90% (36/40), 53% (19/36), and 28% (8/29) in comparison to patients with serum ERBB3 < 2860 RU, which were 98% (40/41), 80% (32/40), and 74% (26/35) (Log-rank test; p = 0.014). In conclusion, serum ERBB3 values resulted an independent prognostic factor of patients with early HCC and might be useful to tailor more personalized treatment strategies.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Maria Lorena Abate
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Emanuela Rolle
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Patrizia Carucci
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Francesco Tandoi
- Liver Transplant Unit, General Surgery 2U, Department of Surgical Sciences, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy;
| | - Giorgio Maria Saracco
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Alessia Ciancio
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Silvia Gaia
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| |
Collapse
|
99
|
Horchani M, Della Sala G, Caso A, D’Aria F, Esposito G, Laurenzana I, Giancola C, Costantino V, Jannet HB, Romdhane A. Molecular Docking and Biophysical Studies for Antiproliferative Assessment of Synthetic Pyrazolo-Pyrimidinones Tethered with Hydrazide-Hydrazones. Int J Mol Sci 2021; 22:2742. [PMID: 33800505 PMCID: PMC7962976 DOI: 10.3390/ijms22052742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a-h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.
Collapse
Affiliation(s)
- Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| | - Gerardo Della Sala
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80125 Naples, Italy;
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Alessia Caso
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (C.G.)
| | - Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (C.G.)
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| |
Collapse
|
100
|
Jiang Y, Jiang H, Wang K, Liu C, Man X, Fu Q. Hypoxia enhances the production and antitumor effect of exosomes derived from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:473. [PMID: 33850870 PMCID: PMC8039676 DOI: 10.21037/atm-21-347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Exosomes are a subgroup of extracellular vesicles that are naturally released by almost all types of cells. However, the factors that promote the capacity of natural killer (NK) cells to release exosomes are unclear. In this study, we investigated whether hypoxia can enhance the yield of NK cell-derived exosomes and improve the immunotherapeutic effects of these cells. Methods Exosomes from NK92 or NK92-hIL-15 cells were isolated from culture medium under normoxic (NK92-Exo and NK92-hIL-15-Exo) or hypoxic (hypoxic NK92-Exo and hypoxic NK92-hIL-15-Exo) conditions. NK92-Exo and hypoxic NK92-Exo were characterized by transmission electron microscopy (TEM), nanoparticle-tracking analysis (NTA), and western blot. Real-time cell assay, wound healing assay, flow cytometry, and western blot were then performed to assess cytotoxicity, cell proliferation, cell migration, apoptosis, and the expression levels of cytotoxicity-associated proteins. Results After 48 hours of hypoxic treatment, NK92-Exo exhibited significantly increased cytotoxicity, enhanced inhibition of cell proliferation, and elevated levels of molecules associated with NK cell cytotoxicity. The hypoxia-treated NK92-Exo and NK92-hIL-15-Exo showed increased expression of three functional proteins of NK cells-specifically FasL, perforin, and granzyme B-as compared with their NK92-Exo counterparts exposed to normoxia. Conclusions As an approach that supports overproduction of exosomes, hypoxic treatment of NK cells may serve as a promising therapeutic option for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Immunology, Binzhou Medical University, Yantai, China
| | - Haiming Jiang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kun Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunling Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xuejing Man
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China.,School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA.,Shandong Cellogene Pharamaceutics Co. LTD, Yantai, China
| |
Collapse
|