51
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
52
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
53
|
Huang F, Gao T, Feng Y, Xie Y, Tai C, Huang Y, Ling L, Wang B. Bioinspired Collagen Scaffold Loaded with bFGF-Overexpressing Human Mesenchymal Stromal Cells Accelerating Diabetic Skin Wound Healing via HIF-1 Signal Pathway Regulated Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45989-46004. [PMID: 39165237 PMCID: PMC11378764 DOI: 10.1021/acsami.4c08174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The healing of severe chronic skin wounds in chronic diabetic patients is still a huge clinical challenge due to complex regeneration processes and control signals. Therefore, a single approach is difficult in obtaining satisfactory therapeutic efficacy for severe diabetic skin wounds. In this study, we adopted a composite strategy for diabetic skin wound healing. First, we fabricated a collagen-based biomimetic skin scaffold. The human basic fibroblast growth factor (bFGF) gene was electrically transduced into human umbilical cord mesenchymal stromal cells (UC-MSCs), and the stable bFGF-overexpressing UC-MSCs (bFGF-MSCs) clones were screened out. Then, an inspired collagen scaffold loaded with bFGF-MSCs was applied to treat full-thickness skin incision wounds in a streptozotocin-induced diabetic rat model. The mechanism of skin damage repair in diabetes mellitus was investigated using RNA-Seq and Western blot assays. The bioinspired collagen scaffold demonstrated good biocompatibility for skin-regeneration-associated cells such as human fibroblast (HFs) and endothelial cells (ECs). The bioinspired collagen scaffold loaded with bFGF-MSCs accelerated the diabetic full-thickness incision wound healing including cell proliferation enhancement, collagen deposition, and re-epithelialization, compared with other treatments. We also showed that the inspired skin scaffold could enhance the in vitro tube formation of ECs and the early angiogenesis process of the wound tissue in vivo. Further findings revealed enhanced angiogenic potential in ECs stimulated by bFGF-MSCs, evidenced by increased AKT phosphorylation and elevated HIF-1α and HIF-1β levels, indicating the activation of HIF-1 pathways in diabetic wound healing. Based on the superior biocompatibility and bioactivity, the novel bioinspired skin healing materials composed of the collagen scaffold and bFGF-MSCs will be promising for healing diabetic skin wounds and even other refractory tissue regenerations. The bioinspired collagen scaffold loaded with bFGF-MSCs could accelerate diabetic wound healing via neovascularization by activating HIF-1 pathways.
Collapse
Affiliation(s)
- Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Yirui Feng
- School of Life Science, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Yahong Huang
- School of Life Science, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Li Ling
- Department of Endocrinology, The Sixth Affiliated Hospital of Shenzhen University Medical School and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518020, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
54
|
Xiang Y, Gao Y, Cheng Q, Lei Z, Zhang X, Yang Y, Zhang J. Recombinant collagen coating 3D printed PEGDA hydrogel tube loading with differentiable BMSCs to repair bile duct injury. Colloids Surf B Biointerfaces 2024; 241:114064. [PMID: 38954937 DOI: 10.1016/j.colsurfb.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Qiuhua Cheng
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Zhongwen Lei
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| |
Collapse
|
55
|
Rafieezadeh D. Extracellular vesicles and their therapeutic applications: a review article (part 2). INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:81-88. [PMID: 39310738 PMCID: PMC11411249 DOI: 10.62347/aupq6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a fascinating area of research in molecular biology, with diverse therapeutic applications. These small membrane-bound structures, released by cells into the extracellular space, play a crucial role in intercellular communication and hold great potential for advancing medical treatments. The aim of this study is to have a narrative review on the use and therapeutic applications of EVs. Their unique characteristics, including stability, biocompatibility, and the ability to traverse biological barriers, make them promising tools for targeted drug delivery. By engineering EVs to encapsulate specific cargo molecules, such as therapeutic proteins, small interfering RNA (siRNA), or anti-cancer drugs, researchers can enhance drug stability and improve targeted delivery to desired cells or tissues. This approach can minimize off-target effects and improve therapeutic efficacy. Based on our literature search, we found that EVs can be used as biomarkers to predict diseases. Although much progress has been made in understanding the biology and function of exosomes, there are still unanswered questions that require further research. This includes identifying appropriate and safe techniques for producing exosomes in large quantities, determining which types of cells are suitable for exosome donor cells for therapeutic purposes, and investigating the safety of exosomes in human studies. Overall, the use of exosomes in clinical therapeutic applications requires a strong understanding of molecular signaling cascades and exosome profiles, as well as the specificity and sensitivity of biomarker and drug delivery methods.
Collapse
Affiliation(s)
- Diana Rafieezadeh
- Department of Cellular and Molecular Biology, Razi University Kermanshah, Iran
| |
Collapse
|
56
|
Chen B, Zhu X, Zhang D, Zhu Z, Ye Q, Guo J. Adipose-derived mesenchymal stem cells suppress fibroblast proliferation of hypertrophic scar through CCL5 and CXCL12. Arch Dermatol Res 2024; 316:527. [PMID: 39153095 DOI: 10.1007/s00403-024-03289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Adipose-derived mesenchymal stem cells (ADSCs) can accelerate wound healing, reduce scar formation, and inhibit hypertrophic scar (HTS). ADSCs can secrete a large amount of CCL5, and CCL5 has been proved to be pro-inflammatory and pro-fibrotic. CXCL12 (SDF-1) is a key chemokine that promotes stem cell migration and survival. Therefore, this study selected normal skin and HTS conditioned medium to simulate different microenvironments, and analyzed the effects of different microenvironments on the expression of CCL5 and CXCL12 in human ADSCs (hADSCs). MATERIALS AND METHODS hADSCs with silenced expression of CCL5 and CXCL12 were co-cultured with hypertrophic scar fibroblasts to verify the effects of CCL5 and CXCL12 in hADSCs on the proliferation ability of hypertrophic scar fibroblasts. A mouse model of hypertrophic scar was established to further confirm the effect of CCL5 and CXCL12 in hADSCs on hypertrophic scar formation. RESULTS CCL5 level was found to be significantly high in hADSCs cultured in HTS conditioned medium. CXCL12 in HTS group was prominently lowly expressed compared with the normal group. Inhibition of CCL5 in hADSCs enhanced the effects of untreated hADSCs on proliferation of HTS fibroblasts while CXCL12 knockdown exerted the opposite function. Inhibition of CCL5 in hADSCs increased the percentage of HTS fibroblasts in the G0/G1 phase while down-regulation of CXCL12 decreased those. Meanwhile, the down-regulated levels of fibroblast markers including collagen I, collagen III, and α-SMA induced by CCL5 knockdown were significantly up-regulated by CXCL12 inhibition. hADSCs alleviate the HTS of mice through CCL5 and CXCL12. CONCLUSION In summary, our results demonstrated that hADSCs efficiently cured HTS by suppressing proliferation of HTS fibroblasts, which may be related to the inhibition of CXCL12 and elevation of CCL5 in hADSCs, suggesting that hADSCs may provide an alternative therapeutic approach for the treatment of HTS.
Collapse
Affiliation(s)
- Bo Chen
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen, 518000, Guangdong, China
| | - Xiongxiang Zhu
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen, 518000, Guangdong, China
| | - Dongmei Zhang
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen, 518000, Guangdong, China
| | - Zhensen Zhu
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen, 518000, Guangdong, China
| | - Qian Ye
- Department of Orthopaedics, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jingdong Guo
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
57
|
Zia S, Pizzuti V, Paris F, Alviano F, Bonsi L, Zattoni A, Reschiglian P, Roda B, Marassi V. Emerging technologies for quality control of cell-based, advanced therapy medicinal products. J Pharm Biomed Anal 2024; 246:116182. [PMID: 38772202 DOI: 10.1016/j.jpba.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.
Collapse
Affiliation(s)
| | - Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DiBiNem), University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Zattoni
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Pierluigi Reschiglian
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Barbara Roda
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy.
| | - Valentina Marassi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
58
|
Tang H, Huang Z, Wang M, Luan X, Deng Z, Xu J, Fan W, He D, Zhou C, Wang L, Li J, Zeng F, Li D, Zhou J. Research progress of migrasomes: from genesis to formation, physiology to pathology. Front Cell Dev Biol 2024; 12:1420413. [PMID: 39206093 PMCID: PMC11349668 DOI: 10.3389/fcell.2024.1420413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Migrasomes are recently identified organelles that form at the ends or forks of retraction fibers (RFs) behind migrating cells and are expelled from the cell through cell migration. Migrasomes contain signaling molecules which are captured by surrounding cells along with migrasomes or released into the extracellular environment following the rupture of the migrasomes. Finally, through the action of these signaling molecules, migrasomes facilitate the entire process of information conveyance. In addition, migrasomes also serves as a "scavenger" by removing damaged mitochondria from the cell to ensure cellular viability. Thus, migrasomes play a pivotal role in the integration of temporal, spatial, specific chemical information and the clearance of cellular harmful substances, critical for grasping migrasomes' functions. This review delves into the latest advancements in migrasomes research, covering aspects such as migrasomes' discovery, distribution, structure and characteristics, genesis and regulation mechanisms, and their correlation with diseases. Additionally, we scrutinize the present investigational findings on migrasomes within the cancer domain, examining their potential impact on cancer and prospective research avenues.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zengfu Deng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jian Xu
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Wei Fan
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongsheng He
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Chong Zhou
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Liangbin Wang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jun Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Fanfeng Zeng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongbo Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
59
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
60
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
61
|
Bai G, Yang J, Liao W, Zhou X, He Y, Li N, Zhang L, Wang Y, Dong X, Zhang H, Pan J, Lai L, Yuan X, Wang X. MiR-106a targets ATG7 to inhibit autophagy and angiogenesis after myocardial infarction. Animal Model Exp Med 2024; 7:408-418. [PMID: 38807299 PMCID: PMC11369033 DOI: 10.1002/ame2.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.
Collapse
Affiliation(s)
- Guofeng Bai
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Huidong County Animal Quarantine and Inspection InstituteHuizhouGuangdongChina
| | - Jinghao Yang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Weili Liao
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Liuhong Zhang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaoli Dong
- Department of CardiologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Clinical Medicine Research InstitutionHaikouPeople's Republic of China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Jinchun Pan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| | - Liangxue Lai
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xilong Wang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| |
Collapse
|
62
|
Liu Y, Sun L, Li Y, Holmes C. Mesenchymal stromal/stem cell tissue source and in vitro expansion impact extracellular vesicle protein and miRNA compositions as well as angiogenic and immunomodulatory capacities. J Extracell Vesicles 2024; 13:e12472. [PMID: 39092563 PMCID: PMC11294870 DOI: 10.1002/jev2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
63
|
Humenik F, Vdoviaková K, Krešáková L, Danko J, Giretová M, Medvecký Ľ, Lengyel P, Babík J. The Combination of Chitosan-Based Biomaterial and Cellular Therapy for Successful Treatment of Diabetic Foot-Pilot Study. Int J Mol Sci 2024; 25:8388. [PMID: 39125958 PMCID: PMC11313444 DOI: 10.3390/ijms25158388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.
Collapse
Affiliation(s)
- Filip Humenik
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Katarína Vdoviaková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Lenka Krešáková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Ján Danko
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Mária Giretová
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Ľubomír Medvecký
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Peter Lengyel
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| | - Ján Babík
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| |
Collapse
|
64
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
65
|
Epanomeritakis IE, Eleftheriou A, Economou A, Lu V, Khan W. Mesenchymal Stromal Cells for the Enhancement of Surgical Flexor Tendon Repair in Animal Models: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:656. [PMID: 39061739 PMCID: PMC11274147 DOI: 10.3390/bioengineering11070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Flexor tendon lacerations are primarily treated by surgical repair. Limited intrinsic healing ability means the repair site can remain weak. Furthermore, adhesion formation may reduce range of motion post-operatively. Mesenchymal stromal cells (MSCs) have been trialled for repair and regeneration of multiple musculoskeletal structures. Our goal was to determine the efficacy of MSCs in enhancing the biomechanical properties of surgically repaired flexor tendons. A PRISMA systematic review was conducted using four databases (PubMed, Ovid, Web of Science, and CINAHL) to identify studies using MSCs to augment surgical repair of flexor tendon injuries in animals compared to surgical repair alone. Nine studies were included, which investigated either bone marrow- or adipose-derived MSCs. Results of biomechanical testing were extracted and meta-analyses were performed regarding the maximum load, friction and properties relating to viscoelastic behaviour. There was no significant difference in maximum load at final follow-up. However, friction, a surrogate measure of adhesions, was significantly reduced following the application of MSCs (p = 0.04). Other properties showed variable results and dissipation of the therapeutic benefits of MSCs over time. In conclusion, MSCs reduce adhesion formation following tendon injury. This may result from their immunomodulatory function, dampening the inflammatory response. However, this may come at the cost of favourable healing which will restore the tendon's viscoelastic properties. The short duration of some improvements may reflect MSCs' limited survival or poor retention. Further investigation is needed to clarify the effect of MSC therapy and optimise its duration of action.
Collapse
Affiliation(s)
| | - Andreas Eleftheriou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Anna Economou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
66
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
67
|
Silina EV, Manturova NE, Ivanova OS, Baranchikov AE, Artyushkova EB, Medvedeva OA, Kryukov AA, Dodonova SA, Gladchenko MP, Vorsina ES, Kruglova MP, Kalyuzhin OV, Suzdaltseva YG, Stupin VA. Cerium Dioxide-Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics. Molecules 2024; 29:2853. [PMID: 38930918 PMCID: PMC11207082 DOI: 10.3390/molecules29122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE OF THE STUDY the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (N.E.M.); (V.A.S.)
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow 119071, Russia;
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Elena B. Artyushkova
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Olga A. Medvedeva
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Alexey A. Kryukov
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Svetlana A. Dodonova
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Mikhail P. Gladchenko
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Ekaterina S. Vorsina
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Oleg V. Kalyuzhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Yulia G. Suzdaltseva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str., 3, Moscow 119333, Russia;
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (N.E.M.); (V.A.S.)
| |
Collapse
|
68
|
Vuong CK, Fukushige M, Ngo NH, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Tsukada T, Hiramatsu Y, Ohneda O. Extracellular Vesicles Derived from Type 2 Diabetic Mesenchymal Stem Cells Induce Endothelial Mesenchymal Transition under High Glucose Conditions Through the TGFβ/Smad3 Signaling Pathway. Stem Cells Dev 2024; 33:262-275. [PMID: 38717965 DOI: 10.1089/scd.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-β/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.
Collapse
Affiliation(s)
- Cat-Khanh Vuong
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Nhat-Hoang Ngo
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | | | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Toru Tsukada
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
69
|
Jameel F, Irfan F, Salim A, Khan I, Khalil EA. Alpha terpineol preconditioning enhances regenerative potential of mesenchymal stem cells in full thickness acid burn wounds. Regen Ther 2024; 26:188-202. [PMID: 38948132 PMCID: PMC11214267 DOI: 10.1016/j.reth.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Regeneration of full thickness burn wounds is a significant clinical challenge. Direct stem cell transplantation at the wound site has a promising effect on wound regeneration. However, stem cell survival within the harsh wound environment is critically compromised. In this regard, preconditioning of stem cells with cytoprotective compounds can improve the efficiency of transplanted cells. This study evaluated the possible effect of alpha terpineol (αT) preconditioned mesenchymal stem cells (αT-MSCs) in full thickness acid burn wound. An optimized concentration of 10 μM αT was used for MSC preconditioning, followed by scratch assay analysis. A novel rat model of full thickness acid burn wound was developed and characterized via macroscopic and histological examinations. Treatment (normal and αT-MSCs) was given after 48 h of burn wound induction, and the healing pattern was examined till day 40. Skin tissues were harvested at the early (day 10) and late (day 40) wound healing phases and examined by histological grading, neovascularization, and gene expression profiling of healing mediators. In scratch assay, αT-MSCs exhibited enhanced cell migration and wound closure (scratch gap) compared to normal MSCs. In vivo findings revealed enhanced regeneration in the wound treated with αT-MSCs compared to normal MSCs and untreated control. Histology revealed enhanced collagen deposition with regenerated skin layers in normal MSC- and αT-MSC treated groups compared to the untreated control. These findings were correlated with enhanced expression of α-SMA as shown by immunohistochemistry. Additionally, αT-MSC group showed reduced inflammation and oxidative stress, and enhanced regeneration, as witnessed by a decrease in IL-1β, IL-6, TNF-α, and Bax and an increase in BCL-2, PRDX-4, GPX-7, SOD-1, VEGF, EGF, FGF, MMP-9, PDGF, and TGF-β gene expression levels at early and late phases, respectively. Overall findings demonstrated that αT exerts its therapeutic effect by mitigating excessive inflammation and oxidative stress while concurrently enhancing neovascularization. Thus, this study offers new perspectives on managing full thickness acid burn wounds in future clinical settings.
Collapse
Affiliation(s)
- Fatima Jameel
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Irfan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Enam A. Khalil
- Department of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
70
|
Hughes AM, Kuek V, Oommen J, Kotecha RS, Cheung LC. Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in culture. Sci Rep 2024; 14:12396. [PMID: 38811646 PMCID: PMC11137146 DOI: 10.1038/s41598-024-63009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties. Additionally, early passage primary MSCs in culture are often assumed to represent the primary MSC population in situ, however, little research has been done to support this. Here, we compared the transcriptomic profiles of murine MSCs freshly isolated from the bone marrow to those that had been expanded in culture for 10 days. We identified that a single passage in culture extensively altered MSC molecular signatures associated with cell cycling, differentiation and immune response. These findings indicate the critical importance of the MSC source, highlighting the need for optimization of culture conditions to minimize the impact on MSC biology and a transition towards in vivo methodologies for the study of MSC function.
Collapse
Affiliation(s)
- Anastasia M Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA, 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, 6009, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
71
|
Fan W, Yang X, Hu X, Huang R, Shi H, Liu G. A novel conductive microtubule hydrogel for electrical stimulation of chronic wounds based on biological electrical wires. J Nanobiotechnology 2024; 22:258. [PMID: 38755644 PMCID: PMC11097419 DOI: 10.1186/s12951-024-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Electrical stimulation (ES) is considered a promising therapy for chronic wounds via conductive dressing. However, the lack of a clinically suitable conductive dressing is a serious challenge. In this study, a suitable conductive biomaterial with favorable biocompatibility and conductivity was screened by means of an inherent structure derived from the body based on electrical conduction in vivo. Ions condensed around the surface of the microtubules (MTs) derived from the cell's cytoskeleton are allowed to flow in the presence of potential differences, effectively forming a network of biological electrical wires, which is essential to the bioelectrical communication of cells. We hypothesized that MT dressing could improve chronic wound healing via the conductivity of MTs applied by ES. We first developed an MT-MAA hydrogel by a double cross-linking method using UV and calcium chloride to improve chronic wound healing by ES. In vitro studies showed good conductivity, mechanical properties, biocompatibility, and biodegradability of the MT-MAA hydrogel, as well as an elevated secretion of growth factors with enhanced cell proliferation and migration ability in response to ES. The in vivo experimental results from a full-thickness diabetic wound model revealed rapid wound closure within 7d in C57BL/6J mice, and the wound bed dressed by the MT-MAA hydrogel was shown to have promoted re-epithelization, enhanced angiogenesis, accelerated nerve growth, limited inflammation phases, and improved antibacterial effect under the ES treatment. These preclinical findings suggest that the MT-MAA hydrogel may be an ideal conductive dressing for chronic wound healing. Furthermore, biomaterials based on MTs may be also promising for treating other diseases.
Collapse
Affiliation(s)
- Weijing Fan
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Xiao Yang
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| | - Xiaoming Hu
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Renyan Huang
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Hongshuo Shi
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| | - Guobin Liu
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| |
Collapse
|
72
|
Zhu F, Ye Y, Shao Y, Xue C. MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts. J Gene Med 2024; 26:e3688. [PMID: 38686583 DOI: 10.1002/jgm.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.
Collapse
Affiliation(s)
- Feibin Zhu
- Department of Burn Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Yuanjian Ye
- Hand and Foot Microsurgery & Wound Repair Department, Huizhou First Hospital, Huizhou, China
| | - Ying Shao
- Department of Tumor Radiotherapy, Huizhou Central People's Hospital, Huizhou, China
| | - Chunli Xue
- Department of Burn Surgery, Huizhou Central People's Hospital, Huizhou, China
| |
Collapse
|
73
|
Périco LL, Vegso AJ, Baggio CH, MacNaughton WK. Protease-activated receptor 2 drives migration in a colon cancer cell line but not in noncancerous human epithelial cells. Am J Physiol Gastrointest Liver Physiol 2024; 326:G525-G542. [PMID: 38440826 DOI: 10.1152/ajpgi.00284.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.
Collapse
Affiliation(s)
- Larissa Lucena Périco
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Vegso
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H Baggio
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
74
|
Yuan J, Wang S, Yang J, Schneider KH, Xie M, Chen Y, Zheng Z, Wang X, Zhao Z, Yu J, Li G, Kaplan DL. Recent advances in harnessing biological macromolecules for wound management: A review. Int J Biol Macromol 2024; 266:130989. [PMID: 38508560 DOI: 10.1016/j.ijbiomac.2024.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Shuo Wang
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China
| | - Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 23 Spitalgasse, Austria
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong.
| | - Jia Yu
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
75
|
Zheng J, Yang B, Liu S, Xu Z, Ding Z, Mo M. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024; 14:459. [PMID: 38672475 PMCID: PMC11048182 DOI: 10.3390/biom14040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the outer layer of the human body, and it is crucial in defending against injuries and damage. The regenerative capacity of aging and damaged skin caused by exposure to external stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern population's aesthetic standards have sparked a desire for stem-cell-based therapies that can address skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have provided a promising and effective alternative for managing skin regeneration and rejuvenation, attributing to their healing capacities that can be applied to damaged and aged skin. However, it has been established that the therapeutic effects of MSC may be primarily mediated by paracrine mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by different types of cells. They influence the physiological and pathological processes of recipient cells by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important role in intercellular communication and activating signaling pathways in target cells. Among them, miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting multiple genes and regulating various biological processes, such as participating in inflammatory responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This review can provide new clues for the diagnosis and treatment of skin damage and aging, as well as assist investigators in exploring innovative therapeutic strategies for treating a multitude of skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining healthy skin.
Collapse
Affiliation(s)
- Jinmei Zheng
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Beibei Yang
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Siqi Liu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhenfeng Xu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhimeng Ding
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Miaohua Mo
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
76
|
Fan J, Xie J, Liao Y, Lai B, Zhou G, Lian W, Xiong J. Human umbilical cord-derived mesenchymal stem cells and auto-crosslinked hyaluronic acid gel complex for treatment of intrauterine adhesion. Aging (Albany NY) 2024; 16:6273-6289. [PMID: 38568100 PMCID: PMC11042966 DOI: 10.18632/aging.205704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE The purpose of this study was to explore the therapeutic characteristics of mesenchymal stem cells generated from human umbilical cord (hUC-MSCs) when utilized in conjunction with auto-crosslinked hyaluronic acid gel (HA-gel) for the management of intrauterine adhesion (IUA). The goal was to see how this novel therapy could enhance healing and improve outcomes for IUA patients. METHODS In this study, models of intrauterine adhesion (IUA) were established in Sprague-Dawley (SD) rats, which were then organized and divided into hUC-MSCs groups. The groups involved: hUC-MSCs/HA-gel group, control group, and HA-gel group. Following treatment, the researchers examined the uterine cavities and performed detailed analyses of the endometrial tissues to determine the effectiveness of the interventions. RESULTS The results indicated that in comparison with to the control group, both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel groups showed partial repair of IUA. However, in a more notable fashion transplantation of hUC-MSCs/HA-gel complex demonstrated significant dual repair effects. Significant outcomes were observed in the group treated with hUC-MSCs and HA-gel, they showed thicker endometrial layers, less fibrotic tissue, and a higher number of endometrial glands. This treatment strategy also resulted in a significant improvement in fertility restoration, indicating a profound therapeutic effect. CONCLUSIONS The findings of this study suggest that both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel complexes have the potential for partial repair of IUA and fertility restoration caused by endometrium mechanical injury. Nonetheless, the transplantation of the hUC-MSCs/HA-gel complex displayed exceptional dual healing effects, combining effective anti-adhesive properties with endometrial regeneration stimuli.
Collapse
Affiliation(s)
- Jiaying Fan
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jingying Xie
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yunsheng Liao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Baoyu Lai
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guixin Zhou
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wenqin Lian
- Department of Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
77
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
78
|
Liu Y, Liu XY. [Cell therapy and wound repair]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:221-229. [PMID: 38548392 DOI: 10.3760/cma.j.cn501225-20240108-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell therapy includes living cell-based therapy and cell-derivative therapy that is based on extracellular vesicles and bioactive molecules. As a research hotspot in recent years, cell therapy is a potential strategy to solve the clinical problem of refractory wound repair. The rapid development of material science and cell biology has opened a new prelude to cell therapy, and at the same time, puts forward a new proposition on how to further optimize and apply cell therapy to wound repair. This article reviewed the cell types used for wound treatment, summarized the application and exploration of cell therapy-based new technologies, sorted out the difficulties in the clinical application of existing cell therapies, and looked into the future development trend of cell therapy for wound repair, in order to promote the development of innovative cell therapy system and further improve the clinical wound treatment effect.
Collapse
Affiliation(s)
- Y Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - X Y Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
79
|
Grosu-Bularda A, Hodea FV, Cretu A, Lita FF, Bordeanu-Diaconescu EM, Vancea CV, Lascar I, Popescu SA. Reconstructive Paradigms: A Problem-Solving Approach in Complex Tissue Defects. J Clin Med 2024; 13:1728. [PMID: 38541953 PMCID: PMC10971357 DOI: 10.3390/jcm13061728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025] Open
Abstract
The field of plastic surgery is continuously evolving, with faster-emerging technologies and therapeutic approaches, leading to the necessity of establishing novel protocols and solving models. Surgical decision-making in reconstructive surgery is significantly impacted by various factors, including the etiopathology of the defect, the need to restore form and function, the patient's characteristics, compliance and expectations, and the surgeon's expertise. A broad surgical armamentarium is currently available, comprising well-established surgical procedures, as well as emerging techniques and technologies. Reconstructive surgery paradigms guide therapeutic strategies in order to reduce morbidity, mortality and risks while maximizing safety, patient satisfaction and properly restoring form and function. The paradigms provide researchers with formulation and solving models for each unique problem, assembling complex entities composed of theoretical, practical, methodological and instrumental elements.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Florin-Vlad Hodea
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Andrei Cretu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Flavia-Francesca Lita
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Central Military Universitary Emergency Hospital “Carol Davila”, 010825 București, Romania
| | | | - Cristian-Vladimir Vancea
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Ioan Lascar
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Serban Arghir Popescu
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| |
Collapse
|
80
|
Li S, Zhang J, Liu X, Wang N, Sun L, Liu J, Liu X, Masoudi A, Wang H, Li C, Guo C, Liu X. Proteomic characterization of hUC-MSC extracellular vesicles and evaluation of its therapeutic potential to treat Alzheimer's disease. Sci Rep 2024; 14:5959. [PMID: 38472335 PMCID: PMC10933327 DOI: 10.1038/s41598-024-56549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.
Collapse
Affiliation(s)
- Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinxing Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Luyao Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianling Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
- Cancer Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Xingliang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunxia Li
- Obstetrics and Gynaecology, The Fifth Hospital of Zhangjiakou, Zhangjiakou, 075000, China
| | - Chunyan Guo
- Hebei Key Laboratory of Neuropharmacology; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
81
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
82
|
Behrangi E, Feizollahi M, Zare S, Goodarzi A, Ghasemi MR, Sadeghzadeh-Bazargan A, Dehghani A, Nouri M, Zeinali R, Roohaninasab M, Nilforoushzadeh MA. Evaluation of the efficacy of mesenchymal stem cells derived conditioned medium in the treatment of striae distensae: a double blind randomized clinical trial. Stem Cell Res Ther 2024; 15:62. [PMID: 38439103 PMCID: PMC10913631 DOI: 10.1186/s13287-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Striae distensae is a disfiguring atrophic skin condition that impairs the body's aesthetic image. Despite the variety of conducted studies, there is controversy regarding the best modalities. Human mesenchymal stem cells are considered a rich source for scar treatment. Skin needling is among the most efficient and safe aesthetic and therapeutic devices. This study aimed to evaluate the efficacy of the combination of needling and intradermal injection of mesenchymal stem cells compared to skin needling alone for treating striae distensae. METHOD This study was a randomized, double-blind clinical trial involving 10 women aged 18-60. Each striae lesion was divided into two parts, with one side receiving needling and intradermal injection of conditioned medium, while the other side received needling and intradermal injection of normal saline. This treatment was administered in three sessions with three-week intervals. Patients were evaluated before the first intervention and three months after the final session. Three months after the completion of the intervention, patients' lesions were evaluated using biometric criteria, physician evaluation, and patient self-assessment. RESULTS The results demonstrated a significant improvement in dermal and complete thickness and skin density in patients treated with microneedling. All skin ultrasound parameters improved significantly in patients receiving the combination of needling and conditioned medium. When comparing the two groups, significantly higher physician and patient satisfaction was observed in the combination group. However, the comparison of biometric indices improvement wasn't significant between these groups. CONCLUSION The combination of human mesenchymal stem cells with microneedling could be considered a novel effective option for stretch marks.
Collapse
Affiliation(s)
- Elham Behrangi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Feizollahi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ghasemi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Dehghani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Zeinali
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| |
Collapse
|
83
|
Jacho D, Yildirim-Ayan E. Mechanome-Guided Strategies in Regenerative Rehabilitation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 29:100516. [PMID: 38586151 PMCID: PMC10993906 DOI: 10.1016/j.cobme.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regenerative Rehabilitation represents a multifaceted approach that merges mechanobiology with therapeutic intervention to harness the body's intrinsic tissue repair and regeneration capacity. This review delves into the intricate interplay between mechanical loading and cellular responses in the context of musculoskeletal tissue healing. It emphasizes the importance of understanding the phases involved in translating mechanical forces into biochemical responses at the cellular level. The review paper also covers the mechanosensitivity of macrophages, fibroblasts, and mesenchymal stem cells, which play a crucial role during regenerative rehabilitation since these cells exhibit unique mechanoresponsiveness during different stages of the tissue healing process. Understanding how mechanical loading amplitude and frequency applied during regenerative rehabilitation influences macrophage polarization, fibroblast-to-myofibroblast transition (FMT), and mesenchymal stem cell differentiation is crucial for developing effective therapies for musculoskeletal tissues. In conclusion, this review underscores the significance of mechanome-guided strategies in regenerative rehabilitation. By exploring the mechanosensitivity of different cell types and their responses to mechanical loading, this field offers promising avenues for accelerating tissue healing and functional recovery, ultimately enhancing the quality of life for individuals with musculoskeletal injuries and degenerative diseases.
Collapse
Affiliation(s)
- Diego Jacho
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| |
Collapse
|
84
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
85
|
Guo W, Ding X, Zhang H, Liu Z, Han Y, Wei Q, Okoro OV, Shavandi A, Nie L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024; 10:175. [PMID: 38534593 DOI: 10.3390/gels10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix. This article first summarizes an overview of the main chemical modifications of chitosan for wound dressings and then reviews the desired properties of chitosan-based hydrogel dressings. The applications of chitosan-based hydrogels in wound healing, including burn wounds, surgical wounds, infected wounds, and diabetic wounds are then discussed. Finally, future prospects for chitosan-based hydrogels as wound dressings are discussed. It is anticipated that this review will form a basis for the development of a range of chitosan-based hydrogel dressings for clinical treatment.
Collapse
Affiliation(s)
- Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Han Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
86
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
87
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
88
|
Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, Lei S, Zhang Z, Zhang L, Wang S. Porous Collagen Sponge Loaded with Large Efficacy-Potentiated Exosome-Mimicking Nanovesicles for Diabetic Skin Wound Healing. ACS Biomater Sci Eng 2024; 10:975-986. [PMID: 38236143 DOI: 10.1021/acsbiomaterials.3c01282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Diabetic skin wounds are difficult to heal quickly due to insufficient angiogenesis and prolonged inflammation, which is an urgent clinical problem. To address this clinical problem, it becomes imperative to develop a dressing that can promote revascularization and reduce inflammation during diabetic skin healing. Herein, a multifunctional collagen dressing (CTM) was constructed by loading large efficacy-potentiated exosome-mimicking nanovesicles (L-Meseomes) into a porous collagen sponge with transglutaminase (TGase). L-Meseomes were constructed in previous research with the function of promoting cell proliferation, migration, and angiogenesis and inhibiting inflammation. CTM has a three-dimensional porous network structure with good biocompatibility, swelling properties, and degradability and could release L-Meseome slowly. In vitro experiments showed that CTM could promote the proliferation of fibroblasts and the polarization of macrophages to the anti-inflammatory phenotype. For in vivo experiments, on the 21st day after surgery, the wound healing rates of the control and CTM were 83.026 ± 4.17% and 93.12 ± 2.16%, respectively; the epidermal maturation and dermal differentiation scores in CTM were approximately four times that of the control group, and the skin epidermal thickness of the CTM group was approximately 20 μm, which was closest to that of normal rats. CTM could significantly improve wound healing in diabetic rats by promoting anti-inflammation, angiogenesis, epidermal recovery, and dermal collagen deposition. In summary, the multifunctional collagen dressing CTM could significantly promote the healing of diabetic skin wounds, which provides a new strategy for diabetic wound healing in the clinic.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Lin Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong 250022, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Binglang Road 3#, Futian District, Shenzhen 518045, China
| |
Collapse
|
89
|
Li W, Xiang Z, Yu W, Huang X, Jiang Q, Abumansour A, Yang Y, Chen C. Natural compounds and mesenchymal stem cells: implications for inflammatory-impaired tissue regeneration. Stem Cell Res Ther 2024; 15:34. [PMID: 38321524 PMCID: PMC10848428 DOI: 10.1186/s13287-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Inflammation is a common and important pathological process occurring in any part of the body and relating to a variety of diseases. Effective tissue repair is critical for the survival of impaired organisms. Considering the side effects of the currently used anti-inflammatory medications, new therapeutic agents are urgently needed for the improvement of regenerative capacities of inflammatory-impaired tissues. Mesenchymal stromal stem/progenitor cells (MSCs) are characterized by the capabilities of self-renewal and multipotent differentiation and exhibit immunomodulatory capacity. Due to the ability to modulate inflammatory phenotypes and immune responses, MSCs have been considered as a potential alternative therapy for autoimmune and inflammatory diseases. Natural compounds (NCs) are complex small multiple-target molecules mostly derived from plants and microorganisms, exhibiting therapeutic effects in many disorders, such as osteoporosis, diabetes, cancer, and inflammatory/autoimmune diseases. Recently, increasing studies focused on the prominent effects of NCs on MSCs, including the regulation of cell survival and inflammatory response, as well as osteogenic/adipogenic differentiation capacities, which indicate the roles of NCs on MSC-based cytotherapy in several inflammatory diseases. Their therapeutic effects and fewer side effects in numerous physiological processes, compared to chemosynthetic drugs, made them to be a new therapeutic avenue combined with MSCs for impaired tissue regeneration. Here we summarize the current understanding of the influence of NCs on MSCs and related downstream signaling pathways, specifically in pathological inflammatory conditions. In addition, the emerging concepts through the combination of NCs and MSCs to expand the therapeutic perspectives are highlighted. A promising MSC source from oral/dental tissues is also discussed, with a remarkable potential for MSC-based therapy in future clinical applications.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zichao Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenjing Yu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Arwa Abumansour
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Yang
- Research and Innovation Oral Care, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA.
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
90
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
91
|
Flemming JP, Wermuth PJ, Mahoney MG. Extracellular Vesicles in the Skin Microenvironment: Emerging Roles as Biomarkers and Therapeutic Tools in Dermatologic Health and Disease. J Invest Dermatol 2024; 144:225-233. [PMID: 37877931 DOI: 10.1016/j.jid.2023.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/26/2023]
Abstract
The recent discovery of extracellular vesicles (EVs) carrying cargo consisting of various bioactive macromolecules that can modulate the phenotype of recipient target cells has revealed an important new mechanism through which cells can signal their neighbors and regulate their microenvironment. Because EV cargo and composition correlate with the physiologic state of their cell of origin, investigations into the role of EVs in disease pathogenesis and progression have become an area of intense study. The physiologic and pathologic effects of EVs on their microenvironment are incredibly diverse and include the modulation of molecular pathways involved in angiogenesis, inflammation, wound healing, epithelial-mesenchymal transition, proliferation, and immune escape. This review examines recent studies on the role of EVs in diseases of the skin and on how differences in EV composition and cargo can alter cell states and the surrounding microenvironment. We also discuss the potential clinical applications of EVs in skin disease diagnosis and management. We examine their value as an easily isolated source of biomarkers to predict disease prognosis or to monitor patient response to treatment. Given the ability of EVs to modulate disease-specific signaling pathways, we also assess their potential to serve as novel personalized precision therapeutic tools for dermatological diseases.
Collapse
Affiliation(s)
- Joseph P Flemming
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Peter J Wermuth
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Mỹ G Mahoney
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
92
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2024; 161:95-97. [PMID: 38265669 DOI: 10.1007/s00418-024-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
93
|
Yuan Z, Xiong B, Liu L, Lu Y, Liu Y, Wang G, Qian Y, Diao B, Tu M. Exosomal circ_0037104 derived from Hu-MSCs inhibits cholangiocarcinoma progression by sponging miR-620 and targeting AFAP1. J Biochem Mol Toxicol 2024; 38:e23656. [PMID: 38348717 DOI: 10.1002/jbt.23656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Exosomes are membrane-enclosed nanovesicles that shuttle active cargoes, such as circular RNAs (circRNAs) and microRNAs (miRNAs), between different cells. Human umbilical cord-derived mesenchymal stem cells (Hu-MSCs) can migrate to tumor sites and exert complex functions throughout tumor progression. In this study, we successfully isolated Hu-MSCs from human umbilical cords based on their surface marker expression. Hu-MSC-derived exosomes significantly reduced the invasion, migration, and proliferation of cholangiocarcinoma (CCA) cells. Furthermore, circ_0037104 was downregulated in CCA and inhibited the proliferation and metastasis of CCA cells. Then, we investigated the effect of Hu-MSC-derived exosomal circ_0037104 on CCA. Circ_0037104 mainly regulates miR-620 and enhances APAF1 expression, inhibiting CCA cell proliferation and metastasis. Overall, Hu-MSC exosomal circ_0037104 contributes to the progression and stemness of CCA cells via miR-620/APAF1. In conclusion, Hu-MSC-derived exosomal circ_0037104 sponges miR-620 directly and negatively targets APAF1 to suppress CCA.
Collapse
Affiliation(s)
- Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, Hubei, China
| | - Ba Xiong
- Oncology Department, Maoming Hospital of Traditional Chinese Medicine, Maoming, Guangdong, China
| | - Lie Liu
- Oncology Department, Maoming Hospital of Traditional Chinese Medicine, Maoming, Guangdong, China
| | - Yifan Lu
- Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, Hubei, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, Hubei, China
| | - Yang Qian
- Department of Medical Laboratory Center, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, Hubei, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, Hubei, China
| | - Mingzhong Tu
- Oncology Department, Maoming Hospital of Traditional Chinese Medicine, Maoming, Guangdong, China
| |
Collapse
|
94
|
Ozhava D, Bektas C, Lee K, Jackson A, Mao Y. Human Mesenchymal Stem Cells on Size-Sorted Gelatin Hydrogel Microparticles Show Enhanced In Vitro Wound Healing Activities. Gels 2024; 10:97. [PMID: 38391427 PMCID: PMC10887759 DOI: 10.3390/gels10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The demand for innovative therapeutic interventions to expedite wound healing, particularly in vulnerable populations such as aging and diabetic patients, has prompted the exploration of novel strategies. Mesenchymal stem cell (MSC)-based therapy emerges as a promising avenue for treating acute and chronic wounds. However, its clinical application faces persistent challenges, notably the low survivability and limited retention time of engraftment in wound environments. Addressing this, a strategy to sustain the viability and functionality of human MSCs (hMSCs) in a graft-able format has been identified as crucial for advanced wound care. Hydrogel microparticles (HMPs) emerge as promising entities in the field of wound healing, showcasing versatile capabilities in delivering both cells and bioactive molecules/drugs. In this study, gelatin HMPs (GelMPs) were synthesized via an optimized mild processing method. GelMPs with distinct diameter sizes were sorted and characterized. The growth of hMSCs on GelMPs with various sizes was evaluated. The release of wound healing promoting factors from hMSCs cultured on different GelMPs were assessed using scratch wound assays and gene expression analysis. GelMPs with a size smaller than 100 microns supported better cell growth and cell migration compared to larger sizes (100 microns or 200 microns). While encapsulation of hMSCs in hydrogels has been a common route for delivering viable hMSCs, we hypothesized that hMSCs cultured on GelMPs are more robust than those encapsulated in hydrogels. To test this hypothesis, hMSCs were cultured on GelMPs or in the cross-linked methacrylated gelatin hydrogel (GelMA). Comparative analysis of growth and wound healing effects revealed that hMSCs cultured on GelMPs exhibited higher viability and released more wound healing activities in vitro. This observation highlights the potential of GelMPs, especially those with a size smaller than 100 microns, as a promising carrier for delivering hMSCs in wound healing applications, providing valuable insights for the optimization of advanced therapeutic strategies.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Processing Technologies, Cumra Vocational School, Selcuk University, 42130 Konya, Turkey
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
95
|
Patenall BL, Carter KA, Ramsey MR. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int J Mol Sci 2024; 25:1304. [PMID: 38279304 PMCID: PMC10816820 DOI: 10.3390/ijms25021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.
Collapse
Affiliation(s)
| | | | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (K.A.C.)
| |
Collapse
|
96
|
Luo P, Chen X, Gao F, Xiang AP, Deng C, Xia K, Gao Y. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Rescue Testicular Aging. Biomedicines 2024; 12:98. [PMID: 38255205 PMCID: PMC10813320 DOI: 10.3390/biomedicines12010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Testicular aging is associated with diminished fertility and certain age-related ailments, and effective therapeutic interventions remain elusive. Here, we probed the therapeutic efficacy of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSC-Exos) in counteracting testicular aging. METHODS We employed a model of 22-month-old mice and administered intratesticular injections of hUMSC-Exos. Comprehensive analyses encompassing immunohistological, transcriptomic, and physiological assessments were conducted to evaluate the effects on testicular aging. Concurrently, we monitored alterations in macrophage polarization and the oxidative stress landscape within the testes. Finally, we performed bioinformatic analysis for miRNAs in hUMSC-Exos. RESULTS Our data reveal that hUMSC-Exos administration leads to a marked reduction in aging-associated markers and cellular apoptosis while promoting cellular proliferation in aged testis. Importantly, hUMSC-Exos facilitated the restoration of spermatogenesis and elevated testosterone synthesis in aged mice. Furthermore, hUMSC-Exos could attenuate inflammation by driving the phenotypic shift of macrophages from M1 to M2 and suppress oxidative stress by reduced ROS production. Mechanistically, these efficacies against testicular aging may be mediated by hUMSC-Exos miRNAs. CONCLUSIONS Our findings suggest that hUMSC-Exos therapy presents a viable strategy to ameliorate testicular aging, underscoring its potential therapeutic significance in managing testicular aging.
Collapse
Affiliation(s)
- Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuren Chen
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Feng Gao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
| | - Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
97
|
Fani N, Moradi M, Zavari R, Parvizpour F, Soltani A, Arabpour Z, Jafarian A. Current Advances in Wound Healing and Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:277-291. [PMID: 36856176 DOI: 10.2174/1574888x18666230301140659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023]
Abstract
Treating chronic wounds is a common and costly challenge worldwide. More advanced treatments are needed to improve wound healing and prevent severe complications such as infection and amputation. Like other medical fields, there have been advances in new technologies promoting wound healing potential. Regenerative medicine as a new method has aroused hope in treating chronic wounds. The technology improving wound healing includes using customizable matrices based on synthetic and natural polymers, different types of autologous and allogeneic cells at different differentiation phases, small molecules, peptides, and proteins as a growth factor, RNA interference, and gene therapy. In the last decade, various types of wound dressings have been designed. Emerging dressings include a variety of interactive/ bioactive dressings and tissue-engineering skin options. However, there is still no suitable and effective dressing to treat all chronic wounds. This article reviews different wounds and common treatments, advanced technologies and wound dressings, the advanced wound care market, and some interactive/bioactive wound dressings in the market.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moradi
- MD-MPH Iran University of Medical Sciences, Tehran, Iran
| | - Roxana Zavari
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Adele Soltani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Zohreh Arabpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
99
|
De Francesco F, Ogawa R. From Time to Timer in Wound Healing Through the Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:1-18. [PMID: 38842786 DOI: 10.1007/5584_2024_815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is "Regeneration", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy.
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
100
|
Kulebyakina M, Basalova N, Butuzova D, Arbatsky M, Chechekhin V, Kalinina N, Tyurin-Kuzmin P, Kulebyakin K, Klychnikov O, Efimenko A. Balance between Pro- and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int J Mol Sci 2023; 25:290. [PMID: 38203461 PMCID: PMC10779358 DOI: 10.3390/ijms25010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-β, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Daria Butuzova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Mikhail Arbatsky
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Oleg Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, 1-12, Leninskie Gory, Lomonosovskiy Av., 119991 Moscow, Russia;
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| |
Collapse
|