51
|
Fathy SS, Awad EI, Abd-El Aal SFA, Abdelfatah EN, Tahoun ABMB. Inhibitory effect of some probiotic strains and essential oils on the growth of some foodborne pathogens. Open Vet J 2024; 14:470-480. [PMID: 38633175 PMCID: PMC11018446 DOI: 10.5455/ovj.2024.v14.i1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Bacillus cereus and Yersinia enterocolitica are implicated in foodborne diseases that have major effects on human health; therefore, it is considered universal public health disorders. Essential oils and essential oils nano emulsions have a sufficient antibacterial performance against a variety of bacteria, especially multi-drug resistant bacteria. Probiotics showed several health benefits via moderating the GIT microbiota and their metabolites. Aim The study was designed to evaluate the biocontrol ability of cinnamon essential oil (CEO) nano emulsion and probiotics as natural antibacterial additives and reveal their bactericidal mechanism. Methods 250 random samples (50 raw milk, 50 rice pudding, 50 kariesh cheese, 50 yogurt, and 50 ice cream) were purchased separately from different areas in Mansoura city, Egypt, and exposed to bacteriological analysis. Results Bacillus cereus was found with the highest mean value of 66 × 107 ± 1.3 × 108 CFU/g in raw milk and the lowest mean value of 28 × 107 ± 2.6 × 107 CFU/g in kariesh cheese while Y. enterocolitica was found in 64% of the total inspected samples with the highest incidence (84%) in yogurt. The toxinogenic potential of the tested pathogens has been evaluated by multiplex PCR pointing nhe A and ces genes for B. cereus isolates while targeting in Y. enterocolitica 16s rRNA, and YST gene. Different concentrations (0.17%, 0.25%, 0.5%, 0.8%, 1%, 1.5%, and 2%) of cinnamon oil nano emulsion were employed in this study. CEO nano emulsion had the highest reduction rate at a concentration of 1.5% in the case of B. cereus and 2% in the case of Y. enterocolitica. Among different types of probiotics, the best one which showed inhibitory potential against B. cereus and Y. enterocolitica was L. plantarum. Conclusion Lactobacillus plantarum and CEO nano emulsion at a concentration of 2% have the highest reduction rate against Y. enterocolitica, while L. plantarum and CEO nano emulsion at a concentration of 1.5% has the best antibacterial effect against B. cereus. In conclusion, more attention is required for both safety and quality in dairy products through the application of natural additives such as essential oils and probiotics.
Collapse
Affiliation(s)
- Sally S. Fathy
- Directorate of Veterinary Medicine in Dakahlia, Ministry of Agriculture, Egypt
| | - Esmat I. Awad
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Salah F. A. Abd-El Aal
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Eman N. Abdelfatah
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Asmaa B. M. B. Tahoun
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
52
|
Kyrylenko A, Eijlander RT, Alliney G, de Bos ELV, Wells-Bennik MHJ. Levels and types of microbial contaminants in different plant-based ingredients used in dairy alternatives. Int J Food Microbiol 2023; 407:110392. [PMID: 37729802 DOI: 10.1016/j.ijfoodmicro.2023.110392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
In this study levels and types of microbial contaminants were investigated in 88 different plant-based ingredients including many that are used to manufacture dairy alternatives. Studied ingredients encompassed samples of pulses (pea, faba bean, chickpea, and mung bean), cereals/pseudocereals (oat, rice, amaranth and quinoa) and drupes (coconut, almond and cashew). The microbial analysis included: i) total viable count (TVC), ii) total aerobic mesophilic spore count (TMS), iii) heat resistant aerobic thermophilic spore count (HRTS), iv) anaerobic sulfite reducing Clostridium spore count (SRCS), and v) Bacillus cereus spore count (BCES). Microorganisms isolated from the counting plates with the highest sample dilutions were identified using 16S rRNA and MALDI-TOF MS analyses. Many of the investigated ingredients showed a high proportion of spores as part of their total aerobic mesophilic counts. In 63 % of the samples, the difference between TVC and TMS counts was 1 Log10 unit or less. This was particularly the case for the majority of pea isolates and concentrates, faba bean isolates, oat kernels and flakes, and for single samples of chickpea isolate, almond, amaranth, rice, quinoa, and coconut flours. Concentrations of TVC ranged between <1.0 and 5.3 Log10 CFU/g in different samples, and TMS varied between <1.0 and 4.1 Log10 CFU/g. Levels of HTRS, BCES and SRCS were generally low, typically around or below the LOD of 1.0 Log10 CFU/g. In total, 845 individual bacterial colonies were isolated belonging to 33 different genera. Bacillus licheniformis and B. cereus group strains were most frequently detected among Bacillus isolates, and these species originated primarily from pea and oat samples. Geobacillus stearothermophilus was the main species encountered as part of the HRTS. Among the Clostridium isolates, Clostridum sporogenes/tepidum were predominant species, which were mostly found in pea and almond samples. Strains with potential to cause foodborne infection or intoxication were typed using the PCR-based method for toxin genes detection. In the B. cereus group, 9 % of isolates contained the ces gene, 28 % contained hbl, 42 % cytK, and 69 % were positive for the nhe gene. Absence of the boNT-A and -B genes was confirmed for all isolated C. sporogenes/tepidum strains. Nearly all (98 %) B. licheniformis isolates were positive for the lchAA gene. Insight into the occurrence of microbial contaminants in plant-based ingredients, combined with knowledge of their key inactivation and growth characteristics, can be used for the microbial risk assessment and effective design of plant-based food processing conditions and formulations to ensure food safety and prevent spoilage.
Collapse
Affiliation(s)
- Alina Kyrylenko
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands; Wageningen University and Research, Food Microbiology, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | | | - Giovanni Alliney
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands; Wageningen University and Research, Food Microbiology, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | | | | |
Collapse
|
53
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
54
|
Xiao Z, Cheng M, Hu X, Xue M, Jiang N, Liu W, Fan Y, Meng Y, Xu C, Zhou Y. Pathological changes of highly pathogenic Bacillus cereus on Pelodiscus sinensis. Vet Q 2023; 43:1-10. [PMID: 38010068 PMCID: PMC11003482 DOI: 10.1080/01652176.2023.2287191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
An outbreak of a disease with a high mortality rate occurred in a Chinese Softshell Turtle (Pelodiscus sinensis) farm in Hubei Province. This study isolated a highly pathogenic Bacillus cereus strain (Y271) from diseased P. sinensis. Y271 has β hemolysis, containing both Hemolysin BL (hblA, hblC, and hblD), Non-hemolytic enterotoxin, NHE (nheA, nheB, and nheC), and Enterotoxin FM (entFM) genes. Y271 is highly pathogenic against P. sinensis with an LD50 = 6.80 × 103 CFU/g weight. B. cereus was detected in multiple tissues of the infected P. sinensis. Among them, spleen tissue showed the highest copy number density (1.54 ± 0.12 × 104 copies/mg). Multiple tissues and organs of diseased P. sinensis exhibited significant pathological damage, especially the spleen, liver, kidney, and intestine. It showed obvious tissue structure destruction, lesions, necrosis, red blood cells, and inflammatory cell infiltration. B. cereus proliferating in the spleen, liver, and other tissues was observed. The intestinal microbiota of the diseased P. sinensis was altered, with a greater abundance of Firmicutes, Fusobacterium, and Actinomyces than in the healthy group. Allobaculum, Rothia, Aeromonas, and Clostridium abundance were higher in the diseased group than in the healthy group. The number of unique microbial taxa (472) in the disease group was lower than that of the healthy group (705). Y271 was sensitive to multiple drugs, including florfenicol, enrofloxacin, neomycin, and doxycycline. B. cereus is the etiological agent responsible for the massive death of P. sinensis and reveals its potential risks during P. sinensis cultivation.
Collapse
Affiliation(s)
- Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mengmeng Cheng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaowei Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Fisheries Development, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
55
|
Coburn PS, Miller FC, LaGrow AL, Mursalin H, Gregory A, Parrott A, Astley D, Callegan MC. Virulence-related genotypic differences among Bacillus cereus ocular and gastrointestinal isolates and the relationship to endophthalmitis pathogenesis. Front Cell Infect Microbiol 2023; 13:1304677. [PMID: 38106476 PMCID: PMC10722173 DOI: 10.3389/fcimb.2023.1304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023] Open
Abstract
Background Bacillus cereus (Bc) can cause self-limiting gastrointestinal infections, but when infecting the eye, can cause rapid and irreversible blindness. This study investigated whether clinical ocular and gastrointestinal Bc isolates differed in terms of virulence-related genotypes and endophthalmitis virulence. Methods Twenty-eight Bc ocular, gastrointestinal, and laboratory reference isolates were evaluated. Hemolysis assays were performed to assess potential differences in hemolytic activity. The presence of twenty Bc virulence-related genes was assessed by PCR. A subset of ocular and gastrointestinal isolates differing in PCR positivity for 5 virulence genes was compared to strain ATCC14579 in an experimental murine model of endophthalmitis. At 8 hours post infection, retinal function was evaluated by electroretinography, and intraocular bacterial concentrations were determined by plate counts. Results Gastrointestinal Bc isolates were more hemolytic than the Bc ocular isolates and ATCC14579 (p < 0.0001). Bc ocular isolates were more frequently PCR-positive for capK, cytK, hblA, hblC, and plcR compared to the gastrointestinal isolates (p ≤ 0.0002). In the endophthalmitis model, mean A-wave retention did not differ significantly between eyes infected with ATCC14579 and eyes infected with the selected ocular or gastrointestinal isolates (p ≥ 0.3528). Similar results were observed for mean B-wave retention (p ≥ 0.0640). Only one diarrheal isolate showed significantly greater B-wave retention when compared to ATCC14579 (p = 0.0303). No significant differences in mean A-wave (p ≥ 0.1535) or B-wave (p ≥ 0.0727) retention between the selected ocular and gastrointestinal isolates were observed. Intraocular concentrations of ATCC14579 were significantly higher than the selected ocular isolate and 3 of the gastrointestinal isolates (p ≤ 0.0303). Intraocular concentrations of the selected ocular isolate were not significantly different from the gastrointestinal isolates (p ≥ 0.1923). Conclusions Among the subset of virulence-related genes assessed, 5 were significantly enriched among the ocular isolates compared to gastrointestinal isolates. While hemolytic activity was higher among gastrointestinal isolates, retinal function retention and intraocular growth was not significantly different between the selected ocular and gastrointestinal isolates. These results suggest that Bc strains causing gastrointestinal infections, while differing from ocular isolates in hemolytic activity and virulence-related gene profile, are similarly virulent in endophthalmitis.
Collapse
Affiliation(s)
- Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Gregory
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Aaron Parrott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
56
|
Abdelli M, Falaise C, Morineaux-Hilaire V, Cumont A, Taysse L, Raynaud F, Ramisse V. Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms 2023; 11:2721. [PMID: 38004733 PMCID: PMC10673079 DOI: 10.3390/microorganisms11112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 tool was used for assignation to genomospecies B. mosaicus (34), B. cereus s.s (29) and B. toyonensis (2), as well as virulence factors and toxin profiling. None of them carried any capsule or anthrax-toxin genes. All harbored the non-hemolytic toxin nheABC and sphygomyelinase spH genes, whereas 41 (63%), 30 (46%), 11 (17%) and 6 (9%) isolates harbored cytK-2, hblABCD, cesABCD and at least one insecticidal toxin gene, respectively. Matrix-assisted laser desorption ionization-time of flight mass spectrometry confirmed the production of cereulide (ces genes). Phylogeny inferred from single-nucleotide polymorphisms positioned isolates relative to the B. anthracis lineage. One isolate (BC38B) was of particular interest as it appeared to be the closest B. anthracis neighbor described so far. It harbored a large plasmid similar to other previously described B. cereus s.l. megaplasmids and at a lower extent to pXO1. Whereas bacterial collection is enriched, these high-quality public genetic data offer additional knowledge for better risk assessment using future NGS-based technologies of detection.
Collapse
Affiliation(s)
- Mehdi Abdelli
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charlotte Falaise
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Valérie Morineaux-Hilaire
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Amélie Cumont
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Laurent Taysse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Françoise Raynaud
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Vincent Ramisse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| |
Collapse
|
57
|
Oliveira M, Carvalho M, Teixeira P. Characterization of the Toxigenic Potential of Bacillus cereus sensu lato Isolated from Raw Berries and Their Products. Foods 2023; 12:4021. [PMID: 37959140 PMCID: PMC10648475 DOI: 10.3390/foods12214021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Bacillus cereus is estimated to be responsible for 1.4-12% of all food poisoning outbreaks worldwide. The objective of this study was to investigate the toxigenic potential of 181 isolates of B. cereus previously recovered from different types of berries and berry products (strawberries, raspberries, blackberries, and blueberries) by assessing the presence of enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, and cytK) and an emetic toxin cereulide synthetase gene (ces). The cytotoxic activity on Caco-2 cells was also evaluated for the two isolates containing the gene cytK. Twenty-three toxigenic profiles were found. The nheABC (91.7%) and hblACD (89.0%) complexes were the most prevalent among the isolates, while the cytK and ces genes were detected in low percentages, 1.1% and 3.3%, respectively. In addition, the nheABC/hblACD complex and ces genes were detected in isolates recovered throughout the production process of blackberries and strawberries. The cytotoxic activity on Caco-2 cells was also observed to be greater than 60% for isolates containing the cytK gene.
Collapse
Affiliation(s)
- Márcia Oliveira
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain;
| | - Marta Carvalho
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Paula Teixeira
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
58
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
59
|
Jugert CS, Didier A, Jessberger N. Lactoferrin-based food supplements trigger toxin production of enteropathogenic Bacillus cereus. Front Microbiol 2023; 14:1284473. [PMID: 38029127 PMCID: PMC10646309 DOI: 10.3389/fmicb.2023.1284473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein exhibiting antibacterial, antiviral, antifungal, antiparasitic, antiinflammatory, antianaemic and anticarcinogenic properties. While its inhibitory effects against bacterial pathogens are well investigated, little is known about its influence on the production and/or mode of action of bacterial toxins. Thus, the present study aimed to determine the impact of food supplements based on bovine lactoferrin on Bacillus cereus enterotoxin production. First, strain-specific growth inhibition of three representative isolates was observed in minimal medium with 1 or 10 mg/mL of a lactoferrin-based food supplement, designated as product no. 1. Growth inhibition did not result from iron deficiency. In contrast to that, all three strains showed increased amounts of enterotoxin component NheB in the supernatant, which corresponded with cytotoxicity. Moreover, lactoferrin product no. 1 enhanced NheB production of further 20 out of 28 B. cereus and Bacillus thuringiensis strains. These findings again suggested a strain-specific response toward lactoferrin. Product-specific differences also became apparent comparing the influence of further six products on highly responsive strain INRA C3. Highest toxin titres were detected after exposure to products no. 7, 1 and 2, containing no ingredients except pure bovine lactoferrin. INRA C3 was also used to determine the transcriptional response toward lactoferrin exposure via RNA sequencing. As control, iron-free medium was also included, which resulted in down-regulation of eight genes, mainly involved in amino acid metabolism, and in up-regulation of 52 genes, mainly involved in iron transport, uptake and utilization. In contrast to that, 153 genes were down-regulated in the presence of lactoferrin, including genes involved in flagellar assembly, motility, chemotaxis and sporulation as well as genes encoding regulatory proteins, transporters, heat and cold shock proteins and virulence factors. Furthermore, 125 genes were up-regulated in the presence of lactoferrin, comprising genes involved in sporulation and germination, nutrient uptake, iron transport and utilization, and resistance. In summary, lactoferrin exposure of B. cereus strain-specifically triggers an extensive transcriptional response that considerably exceeds the response toward iron deficiency and, despite down-regulation of various genes belonging to the PlcR-regulon, ultimately leads to an increased level of secreted enterotoxin by a mechanism, which has yet to be elucidated.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
60
|
Vater J, Tam LTT, Jähne J, Herfort S, Blumenscheit C, Schneider A, Luong PT, Thao LTP, Blom J, Klee SR, Schweder T, Lasch P, Borriss R. Plant-Associated Representatives of the Bacillus cereus Group Are a Rich Source of Antimicrobial Compounds. Microorganisms 2023; 11:2677. [PMID: 38004689 PMCID: PMC10672896 DOI: 10.3390/microorganisms11112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Seventeen bacterial strains able to suppress plant pathogens have been isolated from healthy Vietnamese crop plants and taxonomically assigned as members of the Bacillus cereus group. In order to prove their potential as biocontrol agents, we perform a comprehensive analysis that included the whole-genome sequencing of selected strains and the mining for genes and gene clusters involved in the synthesis of endo- and exotoxins and secondary metabolites, such as antimicrobial peptides (AMPs). Kurstakin, thumolycin, and other AMPs were detected and characterized by different mass spectrometric methods, such as MALDI-TOF-MS and LIFT-MALDI-TOF/TOF fragment analysis. Based on their whole-genome sequences, the plant-associated isolates were assigned to the following species and subspecies: B. cereus subsp. cereus (6), B. cereus subsp. bombysepticus (5), Bacillus tropicus (2), and Bacillus pacificus. These three isolates represent novel genomospecies. Genes encoding entomopathogenic crystal and vegetative proteins were detected in B. cereus subsp. bombysepticus TK1. The in vitro assays revealed that many plant-associated isolates enhanced plant growth and suppressed plant pathogens. Our findings indicate that the plant-associated representatives of the B. cereus group are a rich source of putative antimicrobial compounds with potential in sustainable agriculture. However, the presence of virulence genes might restrict their application as biologicals in agriculture.
Collapse
Affiliation(s)
- Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, 35392 Giessen, Germany;
| | - Silke R. Klee
- Highly Pathogenic Microorganisms Unit (ZBS2), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany;
- Pharmaceutical Biotechnology, University of Greifswald, 17489 Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany;
- Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
61
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
62
|
Sokolov S, Brovko F, Solonin A, Nikanova D, Fursova K, Artyemieva O, Kolodina E, Sorokin A, Shchannikova M, Dzhelyadin T, Ermakov A, Boziev K, Zinovieva N. Genomic analysis and assessment of pathogenic (toxicogenic) potential of Staphylococcus haemolyticus and Bacillus paranthracis consortia isolated from bovine mastitis in Russia. Sci Rep 2023; 13:18646. [PMID: 37903798 PMCID: PMC10616132 DOI: 10.1038/s41598-023-45643-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
Three stable microbial consortia, each composed of Bacillus paranthracis and Staphylococcus haemolyticus strains, were isolated from milk of cows diagnosed with mastitis in three geographically remote regions of Russia. The composition of these consortia remained stable following multiple passages on culture media. Apparently, this stability is due to the structure of the microbial biofilms formed by the communities. The virulence of the consortia depended on the B. paranthracis strains. It seems plausible that the ability of the consortia to cause mastitis in cattle was affected by mutations of the cytK gene of B. paranthracis.
Collapse
Affiliation(s)
- Sergei Sokolov
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia.
- Laboratory of Plasmid Biology, Federal Research Center "Pushchino Scientific Center for Biological Researches", G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Fedor Brovko
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Alexander Solonin
- Laboratory of Plasmid Biology, Federal Research Center "Pushchino Scientific Center for Biological Researches", G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Daria Nikanova
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Ksenia Fursova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Olga Artyemieva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Evgenia Kolodina
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Anatoly Sorokin
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Margarita Shchannikova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Timur Dzhelyadin
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Artem Ermakov
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Khanafy Boziev
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Natalia Zinovieva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| |
Collapse
|
63
|
Li T, Zou Q, Chen C, Li Q, Luo S, Li Z, Yang C, Yang D, Huang Z, Zhang H, Tang W, Qi L. A foodborne outbreak linked to Bacillus cereus at two middle schools in a rural area of Chongqing, China, 2021. PLoS One 2023; 18:e0293114. [PMID: 37856478 PMCID: PMC10586640 DOI: 10.1371/journal.pone.0293114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Bacillus cereus (B. cereus) is a common cause of foodborne illness. An outbreak of acute gastrointestinal illness occurred at two middle schools in a rural region of Chongqing, China, in 2021. This study aimed to elucidate the outbreak's characteristics, identify risk factors, and determine the source of contamination. A retrospective cohort study and an environmental investigation were conducted. Vomit samples, anal swabs, and food samples were collected and tested by RT-PCR for 18 species of bacteria and viruses, including B. cereus. Positive samples of B. cereus underwent biochemical experiments and bacterial quantification. A total of 198 cases were reported in this outbreak, with an attack rate of 24.63%. The main symptoms were vomiting (100%), bellyache (83.33%), and dizziness (62.63%). The retrospective cohort study showed a significant association between the outbreak and rice noodles provided by a nearby food manufacturer (RR = 39.63, p < 0.001). B. cereus was detected in 20 vomit samples, three anal swabs, and seven rice noodles samples, with a count exceeding 103 CFU/g. These findings strongly suggested that the outbreak was linked to B. cereus-contaminated rice noodles. Enhancing food safety surveillance and promoting health measures among schools and food manufacturers in rural areas is crucial to prevent similar incidents in the future in Chongqing, China.
Collapse
Affiliation(s)
- Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Qinpei Zou
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Cheng Chen
- Jiulongpo District Center for Disease Control and Prevention, Chongqing, China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Shuquan Luo
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Zhifeng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Chuan Yang
- Xiushan County Center for Disease Control and Prevention, Chongqing, China
| | - Di Yang
- Xiushan County Center for Disease Control and Prevention, Chongqing, China
| | - Zhi Huang
- Xiushan County Center for Disease Control and Prevention, Chongqing, China
| | - Huadong Zhang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| |
Collapse
|
64
|
Ki J, Kwon IH, Lee J, Lim J, Jang S, Son SU, Seo SB, Oh SY, Kang T, Jung J, Lee KG, Hwang J, Lim EK. A portable smartphone-based colorimetric sensor that utilizes dual amplification for the on-site detection of airborne bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132398. [PMID: 37639787 DOI: 10.1016/j.jhazmat.2023.132398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes. Furthermore, we have developed a smartphone application that can distinguish colors under different illumination conditions based on the HSV model and detect three types of disease-causing bacteria. Even synthetic oligomers of a few picomoles of concentration and genomic DNA of airborne bacteria smaller than several nanograms can be detected with the naked eye and using color analysis systems. Furthermore, in the air capture model system, the bacterial sample generated approximately a 2-fold signal difference compared with that in the control group. This colorimetric detection method can be widely applied for public safety because it is easy to use and does not require complex equipment.
Collapse
Affiliation(s)
- Jisun Ki
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Medical Device Development Center, Osong Medical innovation foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seo Yeong Oh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
65
|
Niu Y, Sun Y, Yang Y, Niu B, Wang Y, Qiao S. Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles. Molecules 2023; 28:6946. [PMID: 37836789 PMCID: PMC10574271 DOI: 10.3390/molecules28196946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Bacillus cereus (B. cereus) is a common foodborne pathogen causing food poisoning incidents. This study aimed to evaluate the antibacterial activity and underlying mechanism of rhamnolipids (RLs) against B. cereus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of RLs for B. cereus were determined to be 16.0 mg/L and 32.0 mg/L, respectively. Scanning electron microscopy and fluorescence microscope images, as well as data of membrane potential, relative electric conductivity, and leakage of intracellular components revealed that RLs disrupted the integrity of the cell membrane. Furthermore, the reactive oxygen species content, catalase (CAT) and superoxide dismutase (SOD) activity indicated that RLs activated the oxidative stress response of B. cereus in response to RLs. Fresh wet noodles (FWN) were used as a food model, and RLs showed a significant killing effect on B. cereus with a sustained inhibitory effect at the concentrations ranging from 128.0 to 1024.0 mg/kg. Additionally, RLs promoted the conversion of free water to bound water in FWN, which improved the storage of FWN and made the taste more resilient and chewy. These results suggest that RLs could be a potential alternative to antimicrobial agents and preservatives for applications in food processing.
Collapse
Affiliation(s)
- Yongwu Niu
- National Engineering Research Center for Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiming Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanxiao Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ben Niu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuchen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Qiao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
66
|
Jugert CS, Didier A, Plötz M, Jessberger N. Strain-specific Antimicrobial Activity of Lactoferrin-based Food Supplements. J Food Prot 2023; 86:100153. [PMID: 37640158 DOI: 10.1016/j.jfp.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The iron-binding glycoprotein lactoferrin is well known for its wide range of antibacterial effects. However, the aim of this study was to show that its antibacterial activity is not generally applicable to a bacterial species as a whole. In disk diffusion assays performed with 112 isolates from 13 bacterial species (including the foodborne pathogens Bacillus cereus and Staphylococcus aureus), a lactoferrin-based food supplement showed no inhibition of growth on 24%, moderate inhibition on 31%, and strong inhibition on 45% of all tested isolates. Minimal inhibitory concentrations against B. cereus and Bacillus thuringiensis strain-specifically ranged from 0.31 mg/mL to no impairment at all. Further 11 commercially available lactoferrin-based food supplements and purified bovine lactoferrin showed strain- as well as product-specific growth inhibition. In comparison to bovine lactoferrin, human lactoferrin showed no inhibitory effects. In summary, purified lactoferrin and lactoferrin-based food supplements inhibit bacterial growth in a dose-, strain-, and product-dependent manner. Thus, a general antimicrobial effect of lactoferrin against a specific bacterial species cannot be assumed.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| |
Collapse
|
67
|
Kazantseva OA, Skorynina AV, Piligrimova EG, Ryabova NA, Shadrin AM. A Genomic Analysis of the Bacillus Bacteriophage Kirovirus kirovense Kirov and Its Ability to Preserve Milk. Int J Mol Sci 2023; 24:12584. [PMID: 37628765 PMCID: PMC10454425 DOI: 10.3390/ijms241612584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Anna V. Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Emma G. Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Natalya A. Ryabova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
- Institute of Protein Research RAS, Institutskaya St., 4, 142290 Pushchino, Russia
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| |
Collapse
|
68
|
Anand Singh T, Nongthombam G, Goksen G, Singh HB, Rajauria G, Kumar Sarangi P. Hawaijar - An ethnic vegan fermented soybean food of Manipur, India: A comprehensive review. Food Res Int 2023; 170:112983. [PMID: 37316061 DOI: 10.1016/j.foodres.2023.112983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Hawaijar, ethnic vegan fermented soybean food of Manipur, India is culturally and gastronomically important indigenously produced food. It is alkaline, sticky, mucilaginous and slightly pungent and bears similar properties with many fermented soybean foods of Southeast Asia like natto of Japan, douchi of China, thua nao of Thailand, choongkook jang of Korea. The functional microorganism is Bacillus and has numerous health benefits like fibrinolytic enzyme, antioxidant, antidiabetic, and ACE inhibitory activities. It is also very rich in nutrients but unscrupulous production method and sale lead to food safety issues. Huge potential pathogen population upto the level of 107-10 cfu/g Bacillus cereus and Proteus mirabilis were detected. Recent studies revealed presence of enterotoxic and urease gene in microorganisms originated from hawaijar. Improved and regulated food chain will result in hygienic and safe hawaijar. It has scope for functional food and nutraceutical global market and hold potential to provide employment to enhance the overall socioeconomic status of the region. Scientific production of fermented soybean over the traditional methods is summarized in this paper along with food safety and health benefits. Microbiological aspects on fermented soybean along with nutritive values are critically explained inside the paper.
Collapse
Affiliation(s)
| | | | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Gaurav Rajauria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92CX88, Ireland
| | | |
Collapse
|
69
|
Calvigioni M, Panattoni A, Biagini F, Donati L, Mazzantini D, Massimino M, Daddi C, Celandroni F, Vozzi G, Ghelardi E. Impact of Bacillus cereus on the Human Gut Microbiota in a 3D In Vitro Model. Microorganisms 2023; 11:1826. [PMID: 37512998 PMCID: PMC10385275 DOI: 10.3390/microorganisms11071826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro models for culturing complex microbial communities are progressively being used to study the effects of different factors on the modeling of in vitro-cultured microorganisms. In previous work, we validated a 3D in vitro model of the human gut microbiota based on electrospun gelatin scaffolds covered with mucins. The aim of this study was to evaluate the effect of Bacillus cereus, a pathogen responsible for food poisoning diseases in humans, on the gut microbiota grown in the model. Real-time quantitative PCR and 16S ribosomal RNA-gene sequencing were performed to obtain information on microbiota composition after introducing B. cereus ATCC 14579 vegetative cells or culture supernatants. The adhesion of B. cereus to intestinal mucins was also tested. The presence of B. cereus induced important modifications in the intestinal communities. Notably, levels of Proteobacteria (particularly Escherichia coli), Lactobacillus, and Akkermansia were reduced, while abundances of Bifidobacterium and Mitsuokella increased. In addition, B. cereus was able to adhere to mucins. The results obtained from our in vitro model stress the hypothesis that B. cereus is able to colonize the intestinal mucosa by stably adhering to mucins and impacting intestinal microbial communities as an additional pathogenetic mechanism during gastrointestinal infection.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Francesco Biagini
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Leonardo Donati
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Costanza Daddi
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
70
|
Pokorski P, Trząskowska M. In Situ Inactivation of Selected Bacillus Strains in Brewer's Spent Grain during Fermentation by Lactococcus lactis ATCC 11454-The Possibility of Post-Production Residues Management. Foods 2023; 12:2279. [PMID: 37372490 DOI: 10.3390/foods12122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The safety and quality of post-production residues is essential before they can be reused. Both to explore the possibility of reuse as a fermentation medium and the context of pathogens' inactivation, the research aimed to characterize the fermentation system of L. lactis ATCC 11454 and brewer's spent grain, malt and barley, especially to in situ inactivation of selected Bacillus strains during the fermentation and storage. Barley products were milled, autoclaved, hydrated and fermented with L. lactis ATCC 11454. Then, the co-fermentation with Bacillus strains was carried out. The amount of polyphenols in the samples ranged from 483.5 to 718.4 ug GAE g-1 and increased after 24 h fermentation with L. lactis ATCC 11454. The high viability of LAB in the fermented samples and after 7 days of storage at 4 °C (8 log CFU g-1) indicates the high nutrients bioavailability during the storage. Also, this co-fermentation on different barley products indicated a high reduction level (2 to 4 logs) of Bacillus due to the biosuppression effect of the LAB strain in this fermentation system. Brewer's spent grain (BSG) fermented with L. lactis ATCC 25 11454 produces a highly effective cell-free supernatant (CFS) for suppressing Bacillus strains. This was evident in both the inhibition zone and fluorescence analysis of bacteria viability. In conclusion, the obtained results justify the use of brewer's spent grain in selected food products, increasing their safety and nutritional value. This finding is highly beneficial in the sustainable management of post-production residues when current waste material can still serve as a source of food.
Collapse
Affiliation(s)
- Patryk Pokorski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
71
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
72
|
Xu N, Du LH, Chen YC, Zhang JH, Zhu QF, Chen R, Peng GP, Wang QM, Yu HZ, Rao LQ. Lonicera japonica Thunb. as a promising antibacterial agent for Bacillus cereus ATCC14579 based on network pharmacology, metabolomics, and in vitro experiments. RSC Adv 2023; 13:15379-15390. [PMID: 37223411 PMCID: PMC10201548 DOI: 10.1039/d3ra00802a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Lonicera japonica Thunb. has attracted much attention for its treatment of bacterial and viral infectious diseases, while its active ingredients and potential mechanisms of action have not been fully elucidated. Here, we combined metabolomics, and network pharmacology to explore the molecular mechanism of Bacillus cereus ATCC14579 inhibition by Lonicera japonica Thunb. In vitro inhibition experiments showed that the Lonicera japonica Thunb.'s water extracts, ethanolic extract, luteolin, quercetin, and kaempferol strongly inhibited Bacillus cereus ATCC14579. In contrast, chlorogenic acid and macranthoidin B had no inhibitory effect on Bacillus cereus ATCC14579. Meanwhile, the minimum inhibitory concentrations of luteolin, quercetin, and kaempferol against Bacillus cereus ATCC14579 were 15.625 μg mL-1, 31.25 μg mL-1, and 15.625 μg mL-1. Based on the previous experimental basis, the metabolomic analysis showed the presence of 16 active ingredients in Lonicera japonica Thunb.'s water extracts and ethanol extracts, with differences in the luteolin, quercetin, and kaempferol contents between the water extracts and ethanol extracts. Network pharmacology studies indicated that fabZ, tig, glmU, secA, deoD, nagB, pgi, rpmB, recA, and upp were potential key targets. Active ingredients of Lonicera japonica Thunb. may exert their inhibitory effects by inhibiting ribosome assembly, the peptidoglycan biosynthesis process, and the phospholipid biosynthesis process of Bacillus cereus ATCC14579. An alkaline phosphatase activity assay, peptidoglycan concentration assay, and protein concentration assay showed that luteolin, quercetin, and kaempferol disrupted the Bacillus cereus ATCC14579 cell wall and cell membrane integrity. Transmission electron microscopy results showed significant changes in the morphology and ultrastructure of the cell wall and cell membrane of Bacillus cereus ATCC14579, further confirming the disruption of the cell wall and cell membrane integrity of Bacillus cereus ATCC14579 by luteolin, quercetin, and kaempferol. In conclusion, Lonicera japonica Thunb. can be used as a potential antibacterial agent for Bacillus cereus ATCC14579, which may exert its antibacterial activity by destroying the integrity of the cell wall and membrane.
Collapse
Affiliation(s)
- Nan Xu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Li-Hua Du
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Yan-Chao Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Jin-Hao Zhang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qian-Feng Zhu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Rong Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Guo-Ping Peng
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qi-Ming Wang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Hua-Zhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University Jishou China
| | - Li-Qun Rao
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| |
Collapse
|
73
|
Wang Y, Shen J, Meng F, Lu Z, Lv F, Zhou L, Zhao H. Effects of monolauroyl-galactosylglycerol on membrane fatty acids and properties of Bacillus cereus. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12567-4. [PMID: 37204449 DOI: 10.1007/s00253-023-12567-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to provide new ideas for the antibacterial mechanism of monolauroyl-galactosylglycerol (MLGG) from the perspective of cell membranes. The changes in cell membrane properties of Bacillus cereus (B. cereus) CMCC 66,301 exposed to different concentrations (1 × MIC (minimum inhibitory concentration), 2 × MIC, 1 × MBC (minimum bacterial concentration)) of MLGG were evaluated. It was found that the lag phase of B. cereus cells was prolonged at low concentration MLGG (1 × MIC and 2 × MIC), while about 2 log CFU/mL reduction in B. cereus populations were observed when exposed to high concentration MLGG (1 × MBC). MLGG treated B. cereus displayed obvious membrane depolarization, while membrane permeability had no change using PI (propidium iodide) staining. Significant increase in the membrane fluidity in response to MLGG exposure occurred, which was consistent with the modification of membrane fatty acids compositions, where the relative content of straight-chain fatty acids (SCFAs) and unsaturated fatty acids (UFAs) increased, while branched-chain fatty acids (BCFAs) decreased significantly. The decreased transition Tm value and cell surface hydrophobicity was also observed. Additionally, effect of MLGG on bacterial membrane compositions were explored at the submolecular level by infrared spectroscopy. Resistance tests of B. cereus to MLGG had demonstrated the advantages of MLGG as a bacteriostatic agent. Collectively, these studies indicate that modifying the fatty acid composition and properties of cellular membranes through MLGG exposure is crucial for inhibiting bacteria growth, providing new insights into the antimicrobial mechanisms of MLGG. KEY POINTS: • Monolauroyl-galactosylglycerol inserted into B. cereus lipid bilayer membrane • Monolauroyl-galactosylglycerol treatment caused B. cereus membrane depolarization • Monolauroyl-galactosylglycerol resulted in B. cereus membrane fatty acids alteration.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
74
|
Buchacher T, Digruber A, Kranzler M, Del Favero G, Ehling-Schulz M. Bacillus cereus extracellular vesicles act as shuttles for biologically active multicomponent enterotoxins. Cell Commun Signal 2023; 21:112. [PMID: 37189133 PMCID: PMC10184354 DOI: 10.1186/s12964-023-01132-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.
Collapse
Affiliation(s)
- Tanja Buchacher
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Astrid Digruber
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Markus Kranzler
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
75
|
Outurquin G, Obin O, Petit A, Weiss R, Léké A, Adjidé C, Mullié C. Bacillus cereus strains from donor human milk and hospital environment: uncovering a putative common origin using comparative analysis of toxin and infra-red spectroscopy profiles. AIMS Microbiol 2023; 9:419-430. [PMID: 37649803 PMCID: PMC10462457 DOI: 10.3934/microbiol.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 09/01/2023] Open
Abstract
Bacillus cereus is reported as a common cause of toxin-induced food poisoning and of contamination in pasteurized human milk donations. As various toxins can be produced by B. cereus, the aim of this work was first to investigate the toxigenic potential and profiles of 63 B. cereus isolates from Amiens Picardie human milk bank. A comparison to the toxigenic profiles of 27 environmental B. cereus isolates harvested in the hospital in which this human milk bank is situated was performed. Toxin gene prevalences were the highest for nhe (ABC) and entFM followed by cytK and hbl(ACD). A 27% prevalence was found for ces human milk isolates, which is higher than previous works reporting on pasteurized milk and dairy products. No significant differences could be found between human milk and environmental isolates regarding toxin gene prevalences and/or toxin gene profiles. The second aim was to establish whether a B. cereus cross-contamination between human milk and the environment could occur. This was achieved with the help of Fourrier-transform infra-red spectroscopy which enabled the discrimination of 2 main clusters of 11 and 8 isolates, each containing human milk and Amiens Picardie human milk bank environmental isolates. For these two clusters, the time sequence showed that human milk isolates were the first to occur and might have contaminated the milk bank environment as well as other human milk donations. Routinely used on B. cereus isolates, Fourrier-transform infra-red spectroscopy could help in rapidly detecting such clusters and in limiting the spread of a B. cereus strain that might generate rejection of pasteurized donation by the human milk bank.
Collapse
Affiliation(s)
- Gaëtan Outurquin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Odile Obin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Anaïs Petit
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Roxane Weiss
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - André Léké
- Lactarium–Biberonnerie, Unité des soins intensifs de néonatologie et de médecine néonatale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Crespin Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Catherine Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
- Laboratoire AGIR UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
76
|
Qiao B, Liu J, Deng N, Cai Y, Bian Y, Wu Y, Tan Z. Gut content microbiota dysbiosis and dysregulated lipid metabolism in diarrhea caused by high-fat diet in a fatigued state. Food Funct 2023; 14:3880-3892. [PMID: 37038883 DOI: 10.1039/d3fo00378g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Previous evidence has indicated that fatigue and a high-fat diet (HFD) cause the adaptive organism responses to be dysregulated, resulting in gastrointestinal (GI) disorders. Generally, gut microbiota plays a crucial role in GI disorders. However, the impact of fatigue and an HFD on the microbiome and GI disorders remains to be fully explored. Mice were randomly divided into the control group (CCN), standing group (CSD), lard group (CLD), and standing + lard group (CSLD). Mice in the CSD and CSLD groups stood on the multiple-platform apparatus for four h per day for 14 consecutive days. From the eighth day, mice in the CLD and CSLD groups were fed intragastric lard and the CCN and CSD groups were subjected to intragastric treatment with sterile water, 0.4 mL per each, twice a day for seven days. Subsequently, we analyzed the characteristics and interaction relationship of gut content microbiota (GCM), brain-gut peptides, and lipid metabolism. Mice in the CSLD group were in a fatigued state and had diarrhea. Compared with the CCN group, high-density lipoproteins were significantly lower, and the lipid droplet optical density value was substantially higher in the CSLD group (p < 0.05). CSLD mice presented significant structural damage to the small intestine and considerably higher β-endorphin, cholecystokinin, and somatostatin (p < 0.05). Bacillus, Gemella, and Bosea were the characteristic bacteria of the CSLD group, and Gemella was significantly negatively correlated with total cholesterol. Gut microbiota dysbiosis and dysregulated lipid metabolism contribute to diarrhea caused by an HFD diet in a fatigued state.
Collapse
Affiliation(s)
- Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Jing Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Ying Cai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Yao Bian
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China.
| | - Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China.
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
77
|
Adamski P, Byczkowska-Rostkowska Z, Gajewska J, Zakrzewski AJ, Kłębukowska L. Prevalence and Antibiotic Resistance of Bacillus sp. Isolated from Raw Milk. Microorganisms 2023; 11:microorganisms11041065. [PMID: 37110488 PMCID: PMC10143217 DOI: 10.3390/microorganisms11041065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Milk, due to its diversity in terms of its nutritional content, is an important element of the human diet, as well as a good medium for the development of bacteria. The genus Bacillus contains ubiquitous aerobic, rod-shaped, endospore-producing gram-positive bacteria. Representatives of the Bacillus cereus group and the Bacillus subtilis group contribute to shortening the shelf life of milk and dairy products by degrading milk components and its additives. They also produce a number of heat-stable toxins and can cause a number of ailments, mainly in the digestive system. The aim of this research was to identify Bacillus sp. strains isolated from raw milk and to determine their antibiotic resistance. Strains isolated from raw milk samples (n = 45) were identified by MALDI-TOF MS. Ninety strains of Bacillus sp. were identified, for which the antibiotic resistance phenotype was determined. A total of 90 strains of Bacillus were classified in five groups (the Bacillus cereus group (n = 35), B. licheniformis (n = 7), the B. subtilis group (n = 29), B. pumilus (n = 16), and Bacillus sp. (n = 3). All isolates were susceptible to chloramphenicol and meropenem. The antibiotic resistance profiles of the tested groups of Bacillus spp. differed from each other, which is of particular concern in relation to multidrug-resistant representatives of the B. cereus group resistant to cefotaxime (94.29%), ampicillin (88.57%), rifampicin (80%), and norfloxacin (65.71%). Our study provides data on the prevalence and antibiotic sensitivity of Bacillus sp. In raw milk, suggesting a potential risk to health and the dairy industry.
Collapse
Affiliation(s)
- Patryk Adamski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Zuzanna Byczkowska-Rostkowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Lucyna Kłębukowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
78
|
Nagel AS, Rudenko NV, Luchkina PN, Karatovskaya AP, Zamyatina AV, Andreeva-Kovalevskaya ZI, Siunov AV, Brovko FA, Solonin AS. Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells. Molecules 2023; 28:molecules28083581. [PMID: 37110815 PMCID: PMC10140989 DOI: 10.3390/molecules28083581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Hemolysin II (HlyII) is one of the virulence factors of the opportunistic bacterium Bacillus cereus belonging to the group of β-pore-forming toxins. This work created a genetic construct encoding a large C-terminal fragment of the toxin (HlyIILCTD, M225-I412 according to the numbering of amino acid residues in HlyII). A soluble form of HlyIILCTD was obtained using the SlyD chaperone protein. HlyIILCTD was first shown to be capable of agglutinating rabbit erythrocytes. Monoclonal antibodies against HlyIILCTD were obtained by hybridoma technology. We also proposed a mode of rabbit erythrocyte agglutination by HlyIILCTD and selected three anti-HlyIILCTD monoclonal antibodies that inhibited the agglutination.
Collapse
Affiliation(s)
- Alexey S Nagel
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Natalia V Rudenko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Polina N Luchkina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna P Karatovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna V Zamyatina
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander V Siunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Fedor A Brovko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander S Solonin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
79
|
Kim KM, Cho ES, Ahn SB, Kang EO, Bae JM. Epidemiological investigation of a food-borne outbreak in a kindergarten, Jeju Province, Korea. Epidemiol Health 2023; 45:e2023047. [PMID: 37080726 PMCID: PMC10593584 DOI: 10.4178/epih.e2023047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVES On Monday, September 6, 2021, at a kindergarten in Jeju Province, a large number of children vomited and developed food poisoning symptoms, and this necessitated an epidemiological investigation. METHODS The team surveyed symptoms and food intake history of kindergarten children, teachers, and workers who ate lunch between September 2 (Thursday) and September 6 (Monday), excluding weekends. In addition to rectal swabs, environmental samples from preserved foods, cooking utensils, drinking water, and refrigerator handles were collected. Pulsed field gel electrophoresis (PFGE) for genetic fingerprint analysis was also performed. RESULTS There were 19 cases among 176 subjects, which indicated an attack rate of 10.8%. The epidemic curve showed a unimodal shape, and the average incubation period was 2.6 hours. While no food was statistically significant in food intake history, the analysis of 35 rectal smear samples detected Bacillus cereus in 7 children, 4 teachers, and 1 cooking staff. Enterotoxins were also detected in 12 samples. Out of 38 environmental samples, B. cereus and enterotoxins were detected in the morning snack cereal, lunch bean sprouts, and afternoon snack steamed potatoes on Monday, September 6th. The result of the PFGE test on 10 isolates of B. cereus showed that there was no genetic homology. CONCLUSIONS Our results indicated that this outbreak was simultaneously caused by various strains of B. cereus from the environment.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Jeju Center for Infectious Diseases Control and Prevention, Jeju, Korea
| | - Eun Suk Cho
- Jeju Center for Infectious Diseases Control and Prevention, Jeju, Korea
| | | | - Eun Ok Kang
- Jeju Special Self-Governing Province Institute of Health and Environment Research, Jeju, Korea
| | - Jong-Myon Bae
- Jeju Center for Infectious Diseases Control and Prevention, Jeju, Korea
- Department of Preventive Medicine, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
80
|
Hu R, Hu A, Lu Z, Zhou H, Wei W, Lu F, Zhao H, Bie X. Construction and optimization of a multiplex PMAxx-qPCR assay for viable Bacillus cereus and development of a detection kit. J Microbiol Methods 2023; 207:106705. [PMID: 36914099 DOI: 10.1016/j.mimet.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
In this study, a PMAxx-qPCR method for the detection and quantification of viable Bacillus cereus (B. cereus) was established based on the cesA gene that is involved in cereulide synthesis, enterotoxin gene bceT and hemolytic enterotoxin gene hblD combined with modified propidium monoazide (PMAxx). The sensitivity detection limit of the method was as follows: the DNA extracted by the kit reached 140 fg/μL, and the bacterial suspension without enrichment reached 2.24 × 101 CFU/mL; 14 nonB. cereus strains of the 17 tested strains all tested as negative, whereas the 2 strains of B. cereus carrying the target virulence gene(s) could be accurately detected. In terms of application, we assembled the constructed PMAxx-qPCR reaction into a detection kit and evaluated its application performance. The results showed that the detection kit has high sensitivity, strong anti-interference capability, and has good application potential. The purpose of this study is to provide a reliable detection method for the prevention and traceability of B. cereus infections.
Collapse
Affiliation(s)
- Ruirui Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Wanqing Wei
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing, Jiangsu, China.
| |
Collapse
|
81
|
Inactivation of Bacillus cereus endospores on black pepper by pulsed superheated steam system. Food Res Int 2023; 167:112649. [PMID: 37087238 DOI: 10.1016/j.foodres.2023.112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/09/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
In this study, a superheated steam (SHS) system was constructed to inactivate Bacillus cereus endospores on the surface of black pepper, and continuous and pulsed treatment was applied to compare sporicidal effects. Additionally, inactivation mechanisms were analyzed to investigate the differences between pulsed and continuous SHS treatments. SHS at 250 °C and 300 °C for 1 min achieved more than a 3 log reduction, whereas SHS at 200 °C for 1 min achieved less than 2 log reduction in the number of endospores. In addition, higher microbicidal effects were confirmed with pulsed SHS treatment with a shorter duty ratio. To elucidate the inactivation mechanisms, inner membrane damage (dipicolinic acid release), intracellular enzyme activities, and DNA integrity were measured after 300 °C SHS pulsed or continuous treatments. After pulsed SHS treatment for up to 20 s, intracellular enzymes were inactivated more rapidly than after continuous treatment, and more DPA was released after 40 s of treatment, indicating that enzyme inactivation occurred prior to inner membrane damage, and pulsed treatment accelerated this mode of action. DNA integrity was significantly lower after 60 s of pulsed or continuous treatment; however, there was no difference in between pulsed and continuous treatments. Our results provide fundamental insights for the sterilization of black pepper by SHS treatment in food industries.
Collapse
|
82
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
83
|
Li Y, Wang M, Li Y, Hong B, Kang D, Ma Y, Wang J. Two novel antimicrobial peptides against vegetative cells, spores and biofilm of Bacillus cereus. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
84
|
Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222:106989. [PMID: 36509264 DOI: 10.1016/j.toxicon.2022.106989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Despite the abundance of promising studies, developments, and improvements about the elimination of microbial toxins from food matrices, they are still considered as one of the major food safety problems due to the lack of their complete avoidance even today. Every year, many crops and foodstuffs have to be discarded due to unconstrained contamination and/or production of microbial toxins. Furthermore, the difficulty for the detection of toxin presence and determination of its level in foods may lead to acute or chronic health problems in many individuals. On the other hand, phenolic compounds might be considered as microbial toxin detoxification agents because of their inhibition effect on the toxin synthesis of microorganisms or exhibiting protective effects against varying damaging mechanisms caused by toxins. In this study, the effect of phenolic compounds on the synthesis of bacterial toxins and mycotoxins is comprehensively reviewed. The potential curing effect of phenolic compounds against toxin-induced damages has also been discussed. Consequently, phenolic compounds are indicated as promising, and considerable natural preservatives against toxin damages and their detoxification potentials are pronounced.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Hafik Kamer Ornek Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia nº 4, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
85
|
Kim SH, Yehuala GA, Bang WY, Yang J, Jung YH, Park MK. Safety Evaluation of Bacillus subtilis IDCC1101, Newly Isolated from Cheonggukjang, for Industrial Applications. Microorganisms 2022; 10:microorganisms10122494. [PMID: 36557747 PMCID: PMC9784242 DOI: 10.3390/microorganisms10122494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate the safety of Bacillus subtilis (BS) IDCC1101, newly isolated from Cheonggukjang in Korea. Genome sequencing of BS IDCC1101 was performed to investigate the presence of secondary metabolites, virulence, antibiotic resistance, and mobile elements. Its phenotypic safety analyses included antibiotic susceptibility, enzyme activity, carbohydrate utilization, production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and toxicities in HaCaT cells and rats. The genome of BS IDCC1101 consisted of 4,118,950 bp with 3077 functional genes. Among them, antimicrobial and antifungal secondary metabolites were found, such as fengycin, bacillibactin, and bacilysin. Antibiotic resistance and virulence genes did not exhibit transferability since they did not overlap with mobile elements in the genome. BS IDCC1101 was susceptible to almost all antibiotics suggested for assessment of BS's antibiotic susceptibility by EFSA guidelines, except for streptomycin. BS IDCC1101 showed the utilization of a wide range of 27 carbohydrates, as well as enzyme activities such as alkaline phosphatase, esterase, esterase lipase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, and β-glucosidase activities. Additionally, BS IDCC1101 did not exhibit the production of D-/L-lactate and hemolytic activities. Its toxicity in HaCaT cells and rats was also not detected. Thus, these genotypic and phenotypic findings indicate that BS IDCC1101 can be safely used for industrial applications.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gashaw Assefa Yehuala
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Food Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-5776
| |
Collapse
|
86
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
87
|
Zhao X, Zervas A, Hendriks M, Rajkovic A, van Overbeek L, Hendriksen NB, Uyttendaele M. Identification and characterization of Bacillus thuringiensis and other Bacillus cereus group isolates from spinach by whole genome sequencing. Front Microbiol 2022; 13:1030921. [PMID: 36569082 PMCID: PMC9771606 DOI: 10.3389/fmicb.2022.1030921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Bacillus thuringiensis (Bt), used as a biological control agent (BCA), can persist on plants, and from there can be introduced into the final food product. In routine food safety diagnostics, these Bt residues cannot be distinguished from natural populations of Bacillus cereus present in plants and all are enumerated as "presumptive B. cereus." In this study, information on eventual use of Bt biopesticides, brand, application times and intervals provided by three food processing companies in Belgium, were integrated with quantitative data on presumptive B. cereus measured from fresh to frozen food products. This information together with data on genomic similarity obtained via whole genome sequencing (WGS) and cry gene profiling using a quantitative real-time PCR (qPCR) assay, confirmed that six out of 11 Bt isolates originated from the applied Bt biocontrol products. These identified Bt strains were shown to carry enterotoxin genes (nhe, hbl, cytK-2) and express Hbl enterotoxin in vitro. It was also noted that these Bt biopesticide strains showed no growth at standard refrigeration temperatures and a low or moderate biofilm-forming ability and cytotoxic activity. Our results also showed that the use of Bt as a BCA on spinach plants in the field led to higher residual counts of Bt in spinach (fresh or frozen) in the food supply chain, but the residual counts exceeding at present commonly assumed safety limit of 105 CFU/g was only found in one fresh spinach sample. It is therefore recommended to establish a pre-harvest interval for Bt biopesticide application in the field to lower the likelihood of noncompliance to the generic B. cereus safety limit. Furthermore, WGS was found to be the best way to identify Bt biopesticide isolates at the strain level for foodborne outbreaks and clinical surveillance. The developed qPCR assay for screening on the presence of cry genes in presumptive B. cereus can be applied as a rapid routine test as an amendment to the already existing test on Bt crystal proteins determined via phase-contrast microscopy.
Collapse
Affiliation(s)
- Xingchen Zhao
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium,*Correspondence: Xingchen Zhao,
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Marc Hendriks
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Andreja Rajkovic
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leo van Overbeek
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
An allergist's approach to food poisoning. Ann Allergy Asthma Immunol 2022; 130:444-451. [PMID: 36334721 DOI: 10.1016/j.anai.2022.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Foodborne illnesses represent a significant global health concern. These preventable diseases lead to substantial mortality and morbidity worldwide. Substantial overlap with food allergy exists with similar clinical presentations and symptom onset. Knowledge of the typically implicated microorganisms and toxins can help properly identify these diseases. A thorough history is essential to differentiate between these 2 disorders. The types of food implicated may be similar including milk, egg, fish, and shellfish. The timing of symptom onset may overlap and lead to misdiagnosis of disorders such as food protein-induced enterocolitis syndrome. Classically, histamine-related food poisoning is also typically confused with true food allergy and may be seen as related to fish and cheese. Knowledge of epidemiology, patterns, and etiology of allergic conditions and foodborne illness may help the allergist differentiate among these common diseases.
Collapse
|
89
|
Oba S, Yildirim T, Karataş ŞM. Probiotics Safety Aspect of Functional Foods. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sirin Oba
- Department of Food Processing, Suluova Vocational School, Amasya University, Amasya, Turkey
| | - Tugce Yildirim
- Department of Biotechnology, Institution of Science, Amasya University, Amasya, Turkey
| | | |
Collapse
|
90
|
Díaz N, Aqueveque PM, Vallejos-Almirall A, Radrigán R, Zúñiga-López MC, Folch-Cano C. Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants (Basel) 2022; 11:antiox11102017. [PMID: 36290740 PMCID: PMC9598612 DOI: 10.3390/antiox11102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Grape pomace (GP) is a by-product resulting from the winemaking process and its potential use as a source of bioactive compounds is well known. The GP bioactive compounds can be retained in the well-known polyvinylpolypyrrolidone (PVPP), industrially used in the clarification and stabilization of wine and other drinks. Thus, the polyphenolic compounds (PC) from the Chilean Carménère, Cabernet Sauvignon, and Merlot GP were extracted, and their compositions and antioxidant capacities (ORAC-FL) were determined. In addition, the retention capacity of the PC on PVPP (PC-PVPP) was evaluated. The bioactivities of GP extracts and PC-PVPP were estimated by the agar plate inhibition assay against pathogenic microorganisms. Results showed a high amount of TPC and antioxidant capacity in the three ethanolic GPs extracts. Anthocyanins, flavan-3-ol, and flavonols were the most abundant compounds in the GP extract, with retentions between 70 and 99% on PVPP. The GP extracts showed inhibition activity against B. cereus and P. syringae pv. actinidiae but the GP-PVPP had no antimicrobial activity. The high affinity of the identified PCs from GPs on PVPP polymer could allow the design of new processes and by-products for the food or cosmeceutical industry, promoting a circular economy by reducing and reusing wastes (GPs and PVPP) and organic solvents.
Collapse
Affiliation(s)
- Nelson Díaz
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Pedro M. Aqueveque
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Edmundo Larenas 64, Concepción 4070386, Chile
| | - Rudi Radrigán
- Centro de Desarrollo Tecnológico Agroindustrial (CDTA), Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - María C. Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Folch-Cano
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
- Correspondence: ; Tel.: +56-42-2207578
| |
Collapse
|
91
|
Impact of a Novel PagR-like Transcriptional Regulator on Cereulide Toxin Synthesis in Emetic Bacillus cereus. Int J Mol Sci 2022; 23:ijms231911479. [PMID: 36232797 PMCID: PMC9570423 DOI: 10.3390/ijms231911479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The emetic type of foodborne disease caused by Bacillus cereus is produced by the small peptide toxin cereulide. The genetic locus encoding the Ces nonribosomal peptide synthetase (CesNRPS) multienzyme machinery is located on a 270 kb megaplasmid, designated pCER270, which shares its backbone with the Bacillus anthracis toxin plasmid pXO1. Although the ces genes are plasmid-borne, the chromosomally encoded pleiotropic transcriptional factors CodY and AbrB are key players in the control of ces transcription. Since these proteins only repress cereulide synthesis during earlier growth phases, other factors must be involved in the strict control of ces expression and its embedment in the bacterial life cycle. In silico genome analysis revealed that pCER270 carries a putative ArsR/SmtB family transcription factor showing high homology to PagR from B. anthracis. As PagR plays a crucial role in the regulation of the protective antigen gene pagA, which forms part of anthrax toxin, we used a gene-inactivation approach, combined with electrophoretic mobility shift assays and a bacterial two-hybrid system for dissecting the role of the PagR homologue PagRBc in the regulation of cereulide synthesis. Our results highlight that the plasmid-encoded transcriptional regulator PagRBc plays an important role in the complex and multilayered process of cereulide synthesis.
Collapse
|
92
|
Pacher N, Burtscher J, Johler S, Etter D, Bender D, Fieseler L, Domig KJ. Ropiness in Bread-A Re-Emerging Spoilage Phenomenon. Foods 2022; 11:3021. [PMID: 36230100 PMCID: PMC9564316 DOI: 10.3390/foods11193021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
As bread is a very important staple food, its spoilage threatens global food security. Ropy bread spoilage manifests in sticky and stringy degradation of the crumb, slime formation, discoloration, and an odor reminiscent of rotting fruit. Increasing consumer demand for preservative-free products and global warming may increase the occurrence of ropy spoilage. Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, the B. cereus group, B. pumilus, B. sonorensis, Cytobacillus firmus, Niallia circulans, Paenibacillus polymyxa, and Priestia megaterium were reported to cause ropiness in bread. Process hygiene does not prevent ropy spoilage, as contamination of flour with these Bacillus species is unavoidable due to their occurrence as a part of the endophytic commensal microbiota of wheat and the formation of heat-stable endospores that are not inactivated during processing, baking, or storage. To date, the underlying mechanisms behind ropy bread spoilage remain unclear, high-throughput screening tools to identify rope-forming bacteria are missing, and only a limited number of strategies to reduce rope spoilage were described. This review provides a current overview on (i) routes of entry of Bacillus endospores into bread, (ii) bacterial species implicated in rope spoilage, (iii) factors influencing rope development, and (iv) methods used to assess bacterial rope-forming potential. Finally, we pinpoint key gaps in knowledge and related challenges, as well as future research questions.
Collapse
Affiliation(s)
- Nicola Pacher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Denisse Bender
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
93
|
Jung J, Jin H, Seo S, Jeong M, Kim B, Ryu K, Oh K. Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12159. [PMID: 36231461 PMCID: PMC9564537 DOI: 10.3390/ijerph191912159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
This study aims to investigate the enterotoxin profiles and antibiotic susceptibility of Bacillus cereus isolated from garlic chives and environmental samples. A total of 103 B. cereus isolates were used to identify enterotoxin genes, including hblA, hblC, hblD, nheA, nheB, and nheC. The hemolysin BL enterotoxin complex (hblACD) was detected in 38 isolates (36.9%), and the non-hemolytic enterotoxin complex (nheABC) was detected in 8 (7.8%) isolates. Forty-five isolates (43.7%) had hblACD and nheABC genes. B. cereus was resistant to β-lactam antibiotics and susceptible to non-β-lactam antibiotics. However, some B. cereus strains showed intermediate resistance to β-lactam and non-β-lactam antibiotics. B. cereus isolated from garlic chives showed intermediate resistance to cefotaxime (7.7%), rifampin (15.4%), clindamycin (30.8%), erythromycin (7.7%), and tetracycline (7.7%). B. cereus isolates from the agricultural environment were moderately resistant to cefotaxime (18.9%), rifampin (15.6%), clindamycin (12.2%), erythromycin (4.4%), and tetracycline (5.6%). Moreover, B. cereus isolates from garlic chives and cultivation environments could change their antibiotic resistance profile from susceptible to intermediate-resistant to rifampin, clindamycin, erythromycin, and tetracycline and exhibit multidrug resistance. These results indicate that continuous monitoring of B. cereus contamination in the produce and agricultural environment might be needed to ensure the safety of consuming fresh vegetables.
Collapse
Affiliation(s)
- Jieun Jung
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeolloabuk-do, Korea
| | - Hyeonsuk Jin
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Seungmi Seo
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Myeongin Jeong
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Boeun Kim
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Kyoungyul Ryu
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Kwangkyo Oh
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| |
Collapse
|
94
|
Meng L, Zhang R, Dong L, Hu H, Liu H, Zheng N, Wang J, Cheng J. Characterization and spoilage potential of Bacillus cereus isolated from farm environment and raw milk. Front Microbiol 2022; 13:940611. [PMID: 36177462 PMCID: PMC9514233 DOI: 10.3389/fmicb.2022.940611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus sensu lato (B. cereus sl) is important spoilage bacteria causing milk structure and flavor changes and is ubiquitous in the environment. This study addresses the biodiversity, toxicity, and proteolytic activity of B. cereus sl from 82 environmental samples and 18 raw bovine milk samples from a dairy farm in the region of Tianjin. In sum, 47 B. cereus sl isolates were characterized through biochemical tests, 16S rRNA gene sequencing, and panC gene analysis. Fourteen sequence types (STs) of B. cereus sl were found in raw bovine milk samples, and five new STs (ST2749, ST2750, ST2751, ST2752, and ST2753) were identified in this study. ST1150 was the dominant ST, associated with fecal, air, drinking water, teat skin, teat cup, and teat dip cup. The results of toxin gene analyses showed that 12.77% and 8.51% of isolates carried hblACD and nheABC operons, respectively. In addition, the detection rate of emetic cesB gene was 21.28%. B. cereus sl demonstrated high spoilage potentials even at 7°C, which has the proteolytic activity of 14.32 ± 1.96 μmol of glycine equivalents per ml. Proteolytic activities were significantly (p < 0.05) decreased after the heat treatment. The residual activity of protease produced at 7°C was significantly higher than that produced at 25°C and 37°C after treatment at 121°C for 10 s and 135°C for 5 s (p < 0.01). Together, the results provide insights into the characteristics of B. cereus sl from farm environment and raw bovine milk and revealed that B. cereus sl contamination should also be monitored in raw milk for ultra-high temperature (UHT) products. This knowledge illustrates that strict cleaning management should be implemented to control B. cereus sl and assure high-quality milk products.
Collapse
Affiliation(s)
- Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruirui Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Haiyan Hu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiaqi Wang
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
95
|
Kowalska J, Maćkiw E, Korsak D, Postupolski J. Characteristic and Antimicrobial Resistance of <i>Bacillus cereus</i> Group Isolated from Food in Poland. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
96
|
Carter L, Huang MCJ, Han K, Gangiredla J, Yee J, Chase HR, Negrete F, Tall BD. Characterization and Genetic Diversity of Bacillus cereus Strains Isolated from Baby Wipes. Microorganisms 2022; 10:microorganisms10091779. [PMID: 36144383 PMCID: PMC9502454 DOI: 10.3390/microorganisms10091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus, a ubiquitous environmental microorganism known to cause foodborne illness, was isolated from samples taken from imported baby wipes from two different countries. These strains were characterized using a comprehensive molecular approach involving endpoint PCR, whole genome sequencing (WGS), comparative genomics, and biochemical analyses. A multiplex endpoint PCR assay was used to identify the enterotoxins: hemolysin BL, nonhemolytic enterotoxin, cytotoxin K, and enterotoxin FM toxin genes. Phylogenetically, the strains clustered into two major groups according to sequence type (ST) and singleton. We used the Center for Food Safety and Applied Nutrition (CFSAN) GalaxyTrakr BTyper computational tool to characterize the strains further. As an additional means of characterization, we investigated the possible role of carbohydrate transport systems and their role in nutrient uptake by performing a BLAST analysis of the 40 B. cereus genomes recovered from baby wipes. This study outlines a multifaceted workflow that uses the analysis of enterotoxigenic potential, bioinformatics, genomic diversity, genotype, phenotype, and carbohydrate utilization as a comprehensive strategy to characterize these B. cereus strains isolated from baby wipes and further our understanding of the phylogenetic relatedness of strains associated with baby wipe production facilities that could potentially pose an infection risk to a vulnerable infant population.
Collapse
Affiliation(s)
- Laurenda Carter
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
- Correspondence:
| | - Mei-Chiung J. Huang
- Office of Cosmetics and Color, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Kyuyoung Han
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jayanthi Gangiredla
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jenny Yee
- Office of Regulatory Affairs, San Francisco Laboratory, U.S. Food and Drug Administration, Alameda, CA 94502, USA
| | - Hannah R. Chase
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Flavia Negrete
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Ben D. Tall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
97
|
Guan Y, Huang Y, Li T. Applications of Gelatin in Biosensors: Recent Trends and Progress. BIOSENSORS 2022; 12:670. [PMID: 36140057 PMCID: PMC9496244 DOI: 10.3390/bios12090670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Gelatin is a natural protein from animal tissue with excellent biocompatibility, biodegradability, biosafety, low cost, and sol-gel property. By taking advantage of these properties, gelatin is considered to be an ideal component for the fabrication of biosensors. In recent years, biosensors with gelatin have been widely used for detecting various analytes, such as glucose, hydrogen peroxide, urea, amino acids, and pesticides, in the fields of medical diagnosis, food testing, and environmental monitoring. This perspective is an overview of the most recent trends and progress in the development of gelatin-based biosensors, which are classified by the function of gelatin as a matrix for immobilized biorecognition materials or as a biorecognition material for detecting target analytes.
Collapse
Affiliation(s)
- Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
98
|
Fluorescent on-site detection of multiple pathogens using smartphone-based portable device with paper-based isothermal amplification chip. Mikrochim Acta 2022; 189:333. [PMID: 35970978 PMCID: PMC9378262 DOI: 10.1007/s00604-022-05419-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
The development of cost-effective, portable, and ease-of-use sensing system for on-site genetic diagnostics is highly desirable for pathogen screening and infectious disease diagnosis. This study develops (1) a paper-based biochip which is able to integrate the loop-mediated isothermal amplification (LAMP) protocols for simultaneous detection of Escherichia coli O157:H7, Salmonella spp., and Staphylococcus aureus, and (2) a stand-alone smartphone-based portable device which can control exactly 65 °C for isothermal amplification as well as collect and analyze the thus generated fluorescence signals. The reported sensing system has been successfully demonstrated for foodborne pathogen detection with a limit of detection of 2.8 × 10-5 ng μL-1. Spiked milk samples with concentration as low as 10 CFU mL-1 were successfully determined within 4 h, demonstrating the practicality of the reported sensing system in the fields. The reported sensing system featuring simplicity and reliability is ideally suited for genetic diagnostics in low resource settings.
Collapse
|
99
|
Takahashi N, Nagai S, Tomimatsu Y, Saito A, Kaneta N, Tsujimoto Y, Tamura H. Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. J Food Prot 2022; 85:1192-1202. [PMID: 35687734 DOI: 10.4315/jfp-21-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
100
|
Adly E, Hegazy AA, Kamal M, Abu-Hussien SH. Midguts of Culex pipiens L. (Diptera: Culicidae) as a potential source of raw milk contamination with pathogens. Sci Rep 2022; 12:13183. [PMID: 35915127 PMCID: PMC9343664 DOI: 10.1038/s41598-022-16992-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite their importance, only few studies focused on the mosquitoes borne microbial diseases, especially bacterial and fungal diseases, their vectorial capacity toward microorganisms, and their important role in raw milk contamination with pathogens in some unsanitary dairy farms. In Egypt, where Culex pipiens is the historical main vector of lymphatic filariasis, only few studies discussed the isolation of pathogens from the midguts of different stages of C. pipiens. This study aims to isolate and identify the pathogenic symbiotic microorganisms inside the midgut of adult female C. pipiens as well as investigate its ability to transmit their midgut pathogens to raw milk. A total of 750 field strain C. pipiens larvae of the second and third larval instars were collected from ponds water around the livestock farms in Mariotteya, Giza, Egypt, for microbial pathogen isolation and identification. All collected larval instars were transported to the laboratory at the Research and Training Center on Vectors of Diseases (RTC), Ain Shams University, where they were maintained for further studies. Six groups of C. pipiens were tested for the incidence of various pathogenic microorganisms in their midguts and their possibility to contaminate commercial sterilized milk. Traditional PCR assays and sequencing method detected and identified 16srRNA genes of the predominant hemolytic isolates from milk and midguts of female C. pipiens. The phylogenetic analyses of the obtained isolates were performed based on NCBI data. Three strains of Bacillus anthracis strain CPMESA 2021, Staphylococcus warneri strain CPSAME 2021, and Bacillus cereus strain CPSEMA 2021, which represent most food pathogens, were found in the midguts of C. pipiens and were submitted to the GenBank database with the accession numbers OK585071, OK576651, and OK585052, respectively. The isolation of these strains from mosquitoes raises contemporary issues concerning milk safety, such as bacterial isolates, the degree of the vectorial capacity of mosquitoes, milk production and processing conditions, and human pathogenicity. Such serious issues need further investigation.
Collapse
Affiliation(s)
- Eslam Adly
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Aml A Hegazy
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Mahmoud Kamal
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| |
Collapse
|