51
|
Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett 2022; 62:128629. [PMID: 35182772 PMCID: PMC8856729 DOI: 10.1016/j.bmcl.2022.128629] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic continues to be a public health threat. Multiple mutations in the spike protein of emerging variants of SARS-CoV-2 appear to impact on the effectiveness of available vaccines. Specific antiviral agents are keenly anticipated but their efficacy may also be compromised in emerging variants. One of the most attractive coronaviral drug targets is the main protease (Mpro). A promising Mpro inhibitor of clinical relevance is the peptidomimetic nirmatrelvir (PF-07321332). We expressed Mpro of six SARS-CoV-2 lineages (C.37 Lambda, B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omicron, P.2 Zeta), each of which carries a strongly prevalent missense mutation (G15S, T21I, L89F, K90R, P132H, L205V). Enzyme kinetics reveal that these Mpro variants are catalytically competent to a similar degree as the wildtype. We show that nirmatrelvir has similar potency against the variants as the wildtype. Our in vitro data suggest that the efficacy of the specific Mpro inhibitor nirmatrelvir is not compromised in current COVID-19 variants.
Collapse
|
52
|
Shivalkar S, Pingali MS, Verma A, Singh A, Singh V, Paital B, Das D, Varadwaj PK, Samanta SK. Outbreak of COVID-19: A Detailed Overview and Its Consequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1353:23-45. [PMID: 35137366 DOI: 10.1007/978-3-030-85113-2_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION After the outbreak from Wuhan City of China, COVID-19, caused by SARS-CoV-2, has become a pandemic worldwide in a very short span of time. The high transmission rate and pathogenicity of this virus have made COVID-19 a major public health concern globally. Basically, the emergence of SARS-CoV-2 is the third introduction of a highly infectious human epidemic coronavirus in the twenty-first century. Various research groups have claimed bats to be the natural host of SARS-CoV-2. However, the intermediate host and mode of transmission from bat to humans are not revealed yet. The COVID-19 cost hundreds and thousands of lives and millions are facing the consequences. The objective of this chapter was to analyze the outbreak of COVID-19 and problems faced globally. METHODS All published relevant literature from scientific sources and reputed news channels are considered to write the current review. RESULTS Generally, elder persons and more particularly people with underlying medical conditions are found to be highly vulnerable to severe infection and prone to fatal outcomes. Unfortunately, there is no specific treatment with clinically approved drugs or vaccines to treat this disease. Several research groups have been investigating the efficacies of several antiviral and repurposed drugs. Currently, most of the SARS-COV-2 vaccines are at the preclinical or clinical stage of development. The latest research progress on the epidemiology, clinical characteristics, pathogenesis, diagnosis, and current status of therapeutic intervention indicates that still a specific drug or vaccine needs to come up for the effective treatment of the pandemic COVID-19. It is observed that various aspects of social life, economic status, and healthcare systems are majorly affected by this pandemic. CONCLUSION It is concluded that the outbreak of COVID-19 has severely affected each and every field, such as social, scientific, industrial, transport, and medical sectors. Irrespective of tremendous efforts globally, few vaccines are now available for the prevention of the disease. Specific drug is not available publicly for the treatment of COVID-19. Prevention of air pollution that can aggravate COVID-19 has been suggested. Therefore, as of now, social distancing and sanitization practices are the only options available for the prevention of the disease for many.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - M Shivapriya Pingali
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Arushi Verma
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Biswaranjan Paital
- Reodx Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| | - Debashis Das
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India.
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India.
| |
Collapse
|
53
|
Carta M, Marinello I, Cappelletti A, Rodolfi A, Cerrito E, Bernasconi C, Gottardo M, Dal Lago F, Rizzetto D, Barzon E, Giavarina D. Comparison of Anti-SARS-CoV-2 S1 Receptor-Binding Domain Antibody Immunoassays in Health Care Workers Before and After the BNT162b2 mRNA Vaccine. Am J Clin Pathol 2022; 157:212-218. [PMID: 34463321 PMCID: PMC8499837 DOI: 10.1093/ajcp/aqab107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The Pfizer-BioNTech BNT162b2 vaccine against SARS-CoV-2 infection is now available. This vaccine induces antibody production against the receptor-binding domain (RBD) of the spike glycoprotein S1 (S1-RBD). This study evaluated the performance of new immunoassays to measure this type of antibody. METHODS Blood samples were collected at t0 (prime dose), after 21 days (t1, booster dose), and then after another 15 days (t2) from 70 health care professionals who had tested negative for previous SARS-CoV-2 infection and underwent vaccination with BNT162b2. RESULTS Antibodies against S1-RBD were measured using 4 commercial assays. At t0, t1, and t2, the median antibody concentrations (interquartile range) were, respectively, 0.2 (0.1-0.4), 49.5 (19.1-95.7), and 888.0 (603.6-1,345.8) U/mL by Maglumi SARS-CoV-2 S-RBD immunoglobulin G (IgG) (Shenzen New Industries Biomedical Engineering, Snibe Diagnostics); 0.0 (0.0-0.0), 7.9 (4.2-15.6), and 112.3 (76.4-205.6) U/mL by Atellica IM SARS-CoV-2 IgG assay (Siemens Healthineers); 0.0 (0.0-0.0), 59.9 (18.3-122.0), and 2,646.0 (1,351.2-4,124.0) U/mL by Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics); and 1.8 (1.8-1.8), 184 (94-294), and 1,841.0 (1,080.0-2,900.0) AU/mL by LIAISON SARS-CoV-2 TrimericS IgG assay (DiaSorin). The differences between medians at t0, t1, and t2 were all statistically significant (P < .001). CONCLUSIONS Antibodies against nucleocapsid proteins (N) were also measured using Maglumi 2019-nCoV IgG assay, which showed all negative results. All the considered anti-RBD methods detected response to the vaccine, while the method directed against anti-N failed to show response.
Collapse
Affiliation(s)
- Mariarosa Carta
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Irene Marinello
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Anna Cappelletti
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Alessandra Rodolfi
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Erica Cerrito
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Camilla Bernasconi
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Marlene Gottardo
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Francesca Dal Lago
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Daniele Rizzetto
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Elena Barzon
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| | - Davide Giavarina
- Laboratory Medicine Department, St Bortolo Hospital, AULSS 8 Berica, Vicenza, Italy
| |
Collapse
|
54
|
Dhanda S, Osborne V, Lynn E, Shakir S. Postmarketing studies: can they provide a safety net for COVID-19 vaccines in the UK? BMJ Evid Based Med 2022; 27:1-6. [PMID: 33087452 PMCID: PMC8785063 DOI: 10.1136/bmjebm-2020-111507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
In the current era of the COVID-19 pandemic, the world has never been more interested in the process of vaccine development. While researchers across the globe race to find an effective yet safe vaccine to protect populations from the newly emergent SARS-CoV-2 virus, more than one-third of the world has been subjected to either full or partial lockdown measures. With communities having felt the burden of prolonged isolation, finding a safe and efficacious vaccine will yield direct beneficial effects on protecting against COVID-19 morbidity and mortality and help relieve the psychological and economic load on communities living with COVID-19. There is hope that with the extraordinary efforts of scientists a vaccine will become available. However, given the global public health crisis, development of a COVID-19 vaccine will need to be fast tracked through the usual prelicensing development stages and introduced with limited clinical trial data compared with those vaccines that are developed conventionally over more than a decade. In this scenario, surveillance of the vaccine in the real world becomes even more paramount. This responsibility falls to observational researchers who can provide an essential safety net by continuing to monitor the effectiveness and safety of a COVID-19 vaccine after licensing. Postauthorisation observational studies for safety and effectiveness are complementary to prelaunch clinical trials and not a replacement. In this paper, we highlight the importance of postmarketing studies for future newly licensed COVID-19 vaccines and the key epidemiological considerations.
Collapse
Affiliation(s)
- Sandeep Dhanda
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Vicki Osborne
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Elizabeth Lynn
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Saad Shakir
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
55
|
Xu QY, Xue JH, Xiao Y, Jia ZJ, Wu MJ, Liu YY, Li WL, Liang XM, Yang TC. Response and Duration of Serum Anti-SARS-CoV-2 Antibodies After Inactivated Vaccination Within 160 Days. Front Immunol 2022; 12:786554. [PMID: 35003104 PMCID: PMC8733590 DOI: 10.3389/fimmu.2021.786554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background A vaccine against coronavirus disease 2019 (COVID-19) with highly effective protection is urgently needed. The anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody response and duration after vaccination are crucial predictive indicators. Objectives To evaluate the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies after vaccination and their predictive value for protection. Methods We determined the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies (neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA) in 61 volunteers within 160 days after the CoronaVac vaccine. A logistic regression model was used to determine the predictors of the persistence of neutralizing antibody persistence. Results The seropositivity rates of neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA were only 4.92%, 27.87%, 21.31%, 3.28% and 0.00%, respectively, at the end of the first dose (28 days). After the second dose, the seropositivity rates reached peaks of 95.08%, 100.00%, 100.00%, 59.02% and 31.15% in two weeks (42 days). Their decay was obvious and the seropositivity rate remained at 19.67%, 54.10%, 50.82%, 3.28% and 0.00% on day 160, respectively. The level of neutralizing antibody reached a peak of 149.40 (101.00-244.60) IU/mL two weeks after the second dose (42 days) and dropped to 14.23 (7.62-30.73) IU/mL at 160 days, with a half-life of 35.61(95% CI, 32.68 to 39.12) days. Younger participants (≤31 years) had 6.179 times more persistent neutralizing antibodies than older participants (>31 years) (P<0.05). Participants with anti-Spike IgA seropositivity had 4.314 times greater persistence of neutralizing antibodies than participants without anti-Spike IgA seroconversion (P<0.05). Conclusions Antibody response for the CoronaVac vaccine was intense and comprehensive with 95.08% neutralizing seropositivity rate, while decay was also obvious after 160 days. Therefore, booster doses should be considered in the vaccine strategies.
Collapse
Affiliation(s)
- Qiu-Yan Xu
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Hang Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yao Xiao
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Centre of Scientific Research and Experiment, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Zhi-Juan Jia
- R&D Center, Xiamen Boson Biotech Co., Ltd, Xiamen, China
| | - Meng-Juan Wu
- R&D Center, Xiamen Boson Biotech Co., Ltd, Xiamen, China
| | - Yan-Yun Liu
- R&D Center, Xiamen Boson Biotech Co., Ltd, Xiamen, China
| | - Wei-Li Li
- R&D Center, Autobio Diagnostic Co., Ltd, Zhengzhou, China
| | - Xian-Ming Liang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Simnani FZ, Singh D, Kaur R. COVID-19 phase 4 vaccine candidates, effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and nano-based vaccine platforms: a review. 3 Biotech 2022; 12:15. [PMID: 34926119 PMCID: PMC8665991 DOI: 10.1007/s13205-021-03076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has endangered world health and the economy. As the number of cases is increasing, different companies have started developing potential vaccines using both traditional and nano-based platforms to overcome the pandemic. Several countries have approved a few vaccine candidates for emergency use authorization (EUA), showing significant effectiveness and inducing a robust immune response. Oxford-AstraZeneca, Pfizer-BioNTech's BNT162, Moderna's mRNA-1273, Sinovac's CoronaVac, Johnson & Johnson, Sputnik-V, and Sinopharm's vaccine candidates are leading the race. However, the SARS-CoV-2 is constantly mutating, making the vaccines less effective, possibly by escaping immune response for some variants. Besides, some EUA vaccines have been reported to induce rare side effects such as blood clots, cardiac injury, anaphylaxis, and some neurological effects. Although the COVID-19 vaccine candidates promise to overcome the pandemic, a more significant and clear understanding is needed. In this review, we brief about the clinical trial of some leading candidates, their effectiveness, and their neutralizing effect on SARS-CoV-2 variants. Further, we have discussed the rare side effects, different traditional and nano-based platforms to understand the scope of future development.
Collapse
Affiliation(s)
| | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Ramneet Kaur
- Department of Life Sciences, RIMT University, Ludhiana, Punjab India
| |
Collapse
|
57
|
Rezaei A, Nazarian S, Samiei Abianeh H, Kordbacheh E, Alizadeh Z, Mousavi Gargari SL. Antibodies Produced Toward Recombinant RBD and Nucleocapsid Neutralize SARS-COV-2. Avicenna J Med Biotechnol 2022; 14:270-277. [PMID: 36504571 PMCID: PMC9706246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background The highly contagious SARS-COV-2 virus spread rapidly from China and formed a global pandemic. The virus has infected over 509 million people worldwide and killed about 6.32 million up to date. Up on invasion, the Receptor Binding Domain (RBD) of Spike protein plays a crucial role in the entry of the virus into the host cell. The virus N protein is another protein that has a critical role for genome packaging. Methods As bioinformatics approaches, the cassette design, codon adaptation, and protein stability were investigated in this study. Synthetic genes of RBD and N were cloned separately in pET28a + expression vector. They were transferred into Escherichia coli (E. coli) BL21 DE3 host cell, and expression of recombinant proteins was induced with IPTG. The recombinant proteins were purified by column chromatography and approved by Western blotting. Animal immunization was performed with each of the recombinant proteins individually and in combination of the two. The antibody titer of the blood serum from control and immunized mice groups was determined by ELISA technique. Finally, the anti-spike neutralization test was performed. Results The expression and purification of RBD protein were monitored on SDS-PAGE, two bands of about 28 and 45 kDa for RBD and N appeared on gel distinctly, which were further validated by Western blotting. According to ELISA results, related antibodies were traced to a dilution of 1/64000 in immunized sera. The neutralization test exhibited produced antibodies' potency to bind the virus proteins. Using SPSS software, statistical analysis was performed by Duncan's test and T-test. Conclusion According to the present study, recombinant proteins, either RBD alone or in combination with N adequately stimulated the immune response, and the raised antibodies could neutralize the virus in in vitro test.
Collapse
Affiliation(s)
- Amir Rezaei
- Department of Biology, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Molecular Biotechnology Research Center and Department of Biology, Imam Hussein University, Tehran, Iran,Corresponding authors: Shahram Nazarian, Ph.D., Molecular Biotechnology Research Center and Department of Biology, Imam Hussein University, Tehran, Iran; Seyed Latif Mousavi Gargari, Ph.D., Department of Biology, Shahed University, Tehran, Iran, Tel: +98 21 51212232, Fax: +98 21 51212232, E-mail:,
| | | | - Emad Kordbacheh
- Department of Biology, Imam Hussein University, Tehran, Iran
| | | | | |
Collapse
|
58
|
Mubarak AS, Baabbad AS, Almalki NA, Alrbaiai GT, Alsufyani GA, Kabrah DK. Beliefs, barriers, and acceptance associated with COVID-19 vaccination among Taif University students in Saudi Arabia. J Family Med Prim Care 2022; 11:224-232. [PMID: 35309633 PMCID: PMC8930104 DOI: 10.4103/jfmpc.jfmpc_1255_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background COVID-19 was declared a public health emergency of global concern by the World Health Organization (WHO) on January 30, 2020. Vaccination is one of the most effective methods for halting the pandemic and preventing complications. Vaccine hesitancy is a possible threat to global public health. Understanding the key determinants that influence the community's preferences and demands for a future vaccine may aid in the development of strategies to improve the global vaccination program. The aim of this study was to assess the beliefs, barriers, and acceptance of COVID-19 vaccination among Taif University students in Saudi Arabia. Materials and Method This was a descriptive cross-sectional study, based study in Taif University, Saudi Arabia. Data was collected using a designed self-administered questionnaire that was shared as a link through social media. 332 students were considered eligible to participate voluntarily. Data were analyzed using the (SPSS) program version 25. Results Out of 332 participants, 278 (83.7%) were accepting to take the covid vaccine, while 54 (16.3%) refused. Believes in vaccine safety and effectiveness and trust in the ability of the vaccine to prevent the complication, were all associated with high acceptance rate. Fear about side effects is considered a major factor for vaccination refusal. Conclusion Most of the participants have the willingness to be vaccinated. The majority of students who agreed to take the vaccine were in the medical field, and that is mostly due to their high knowledge exposure. This indicates the importance of raising the awareness of the non-medical students.
Collapse
Affiliation(s)
- Ali S. Mubarak
- Consultant, Department of Family and Community Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ameera S. Baabbad
- Medical intern, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Nada A. Almalki
- Medical intern, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ghaida T. Alrbaiai
- Medical intern, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ghadi A. Alsufyani
- Medical intern, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Danah K. Kabrah
- Medical intern, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
59
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
60
|
Srivastava S, Chatziefthymiou SD, Kolbe M. Vaccines Targeting Numerous Coronavirus Antigens, Ensuring Broader Global Population Coverage: Multi-epitope and Multi-patch Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2410:149-175. [PMID: 34914046 DOI: 10.1007/978-1-0716-1884-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronaviruses are causative agents of different zoonosis including SARS, MERS, or COVID-19 in humans. The high transmission rate of coronaviruses, the time-consuming development of efficient anti-infectives and vaccines, the possible evolutionary adaptation of the virus to conventional vaccines, and the challenge to cover broad human population worldwide are the major reasons that made it challenging to avoid coronaviruses outbreaks. Although, a plethora of different approaches are being followed to design and develop vaccines against coronaviruses, most of them target subunits, full-length single, or only a very limited number of proteins. Vaccine targeting multiple proteins or even the entire proteome of the coronavirus is yet to come. In the present chapter, we will be discussing multi-epitope vaccine (MEV) and multi-patch vaccine (MPV) approaches to design and develop efficient and sustainably successful strategies against coronaviruses. MEV and MPV utilize highly conserved, potentially immunogenic epitopes and antigenic patches, respectively, and hence they have the potential to target large number of coronavirus proteins or even its entire proteome, allowing us to combat the challenge of its evolutionary adaptation. In addition, the large number of human leukocyte antigen (HLA) alleles targeted by the chosen specific epitopes enables MEV and MPV to cover broader global population.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection Biology Group, Indian Foundation for Fundamental Research, Raebareli, Uttar Pradesh, India.
| | - Spyros D Chatziefthymiou
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany
| | - Michael Kolbe
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany. .,MIN-Faculty University Hamburg, Hamburg, Germany.
| |
Collapse
|
61
|
Salimi-Jeda A, Abbassi S, Mousavizadeh A, Esghaie M, Bokharaei-Salim F, Jeddi F, Shafaati M, Abdoli A. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. Int Immunopharmacol 2021; 101:108232. [PMID: 34673335 PMCID: PMC8519814 DOI: 10.1016/j.intimp.2021.108232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
More than a year after the SARS-CoV-2 pandemic, the Coronavirus disease 19 (COVID-19) is still a major global challenge for scientists to understand the different dimensions of infection and find ways to prevent, treat, and develop a vaccine. On January 30, 2020, the world health organization (WHO) officially announced this new virus as an international health emergency. While many biological and mechanisms of pathogenicity of this virus are still unclear, it seems that cytokine storm resulting from an immune response against the virus is considered the main culprit of the severity of the disease. Despite many global efforts to control the SARS-CoV-2, several problems and challenges have been posed in controlling the COVID-19 infection. These problems include the various mutations, the emergence of variants with high transmissibility, the short period of immunity against the virus, the possibility of reinfection in people improved, lack of specific drugs, and problems in the development of highly sensitive and specific vaccines. In this review, we summarized the results of the current trend and the latest research studies on the characteristics of the structure and genome of the SARS-CoV- 2, new mutations and variants of SARS-CoV-2, pathogenicity, immune response, virus diagnostic tests, potential treatment, and vaccine candidate.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sina Abbassi
- Department of Anesthesiology, Faculty of Medical Science, Tehran University of Medical Science, Tehran, Iran
| | - Atieh Mousavizadeh
- Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Esghaie
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Jeddi
- Department of Medical Genetics and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Shafaati
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Fars, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
62
|
Velusamy P, Kiruba K, Su CH, Arun V, Anbu P, Gopinath SCB, Vaseeharan B. SARS-CoV-2 spike protein: Site-specific breakpoints for the development of COVID-19 vaccines. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2021; 33:101648. [PMID: 34690467 PMCID: PMC8523302 DOI: 10.1016/j.jksus.2021.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 05/08/2023]
Abstract
SARS-CoV2 is a member of human coronaviruses and is the causative agent of the present pandemic COVID-19 virus. In order to control COVID-19, studies on viral structure and mechanism of infectivity and pathogenicity are sorely needed. The spike (S) protein is comprised of S1 & S2 subunits. These spike protein subunits enable viral attachment by binding to the host cell via ACE-2 (angiotensin converting enzyme-2) receptor, thus facilitating the infection. During viral entry, one of the key steps is the cleavage of the S1-S2 spike protein subunits via surface TMPRSS2 (transmembrane protease serine 2) and results in viral infection. Hence, the S-protein is critical for the viral attachment and penetration into the host. The rapid advancement of our knowledge on the structural and functional aspects of the spike protein could lead to development of numerous candidate vaccines against SARS-CoV2. Here the authors discuss about the structure of spike protein and explore its related functions. Our aim is to provide a better understanding that may aid in fighting against CoVID-19 and its treatment.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Central Research Laboratory, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai- 600 044, TN, India
| | - Kannan Kiruba
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600 025, TN, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600 116, TN, India
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
63
|
Beddingfield BJ, Maness NJ, Fears AC, Rappaport J, Aye PP, Russell-Lodrigue K, Doyle-Meyers LA, Blair RV, Carias AM, Madden PJ, Redondo RL, Gao H, Montefiori D, Hope TJ, Roy CJ. Effective Prophylaxis of COVID-19 in Rhesus Macaques Using a Combination of Two Parenterally-Administered SARS-CoV-2 Neutralizing Antibodies. Front Cell Infect Microbiol 2021; 11:753444. [PMID: 34869063 PMCID: PMC8637877 DOI: 10.3389/fcimb.2021.753444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.
Collapse
Affiliation(s)
- Brandon J. Beddingfield
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Nicholas J. Maness
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| | - Alyssa C. Fears
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jay Rappaport
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Pyone Pyone Aye
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Kasi Russell-Lodrigue
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Lara A. Doyle-Meyers
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Robert V. Blair
- Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Ann M. Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick J. Madden
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ramon Lorenzo Redondo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hongmei Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chad J. Roy
- Divisions of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| |
Collapse
|
64
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
65
|
Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, Abdullah I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem Biol Drug Des 2021; 98:604-619. [PMID: 34148292 PMCID: PMC8444677 DOI: 10.1111/cbdd.13914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 11/27/2022]
Abstract
3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | | | - Lee Yean Kee
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | - Mamoona Nazir
- Department of PharmacyThe University of LahoreLahorePakistan
| | - Noorsaadah Abdul Rahman
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | - John F. Trant
- Department of Chemistry and BiochemistryUniversity of WindsorWindsorONCanada
| | - Iskandar Abdullah
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| |
Collapse
|
66
|
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, Xiao H. Functionalized Masks: Powerful Materials against COVID-19 and Future Pandemics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102453. [PMID: 34319644 PMCID: PMC8420174 DOI: 10.1002/smll.202102453] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of COVID-19 revealed the vulnerability of commercially available face masks. Without having antibacterial/antiviral activities, the current masks act only as filtering materials of the aerosols containing microorganisms. Meanwhile, in surgical masks, the viral and bacterial filtration highly depends on the electrostatic charges of masks. These electrostatic charges disappear after 8 h, which leads to a significant decline in filtration efficiency. Therefore, to enhance the masks' protection performance, fabrication of innovative masks with more advanced functions is in urgent demand. This review summarizes the various functionalizing agents which can endow four important functions in the masks including i) boosting the antimicrobial and self-disinfectant characteristics via incorporating metal nanoparticles or photosensitizers, ii) increasing the self-cleaning by inserting superhydrophobic materials such as graphenes and alkyl silanes, iii) creating photo/electrothermal properties by forming graphene and metal thin films within the masks, and iv) incorporating triboelectric nanogenerators among the friction layers of masks to stabilize the electrostatic charges and facilitating the recharging of masks. The strategies for creating these properties toward the functionalized masks are discussed in detail. The effectiveness and limitation of each method in generating the desired properties are well-explained along with addressing the prospects for the future development of masks.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chao Deng
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yajie Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yuqian Liu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yang Huang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chengcheng Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New BrunswickFrederictonNew BrunswickE3B 5A3Canada
| |
Collapse
|
67
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
68
|
Alamri SS, Alluhaybi KA, Alhabbab RY, Basabrain M, Algaissi A, Almahboub S, Alfaleh MA, Abujamel TS, Abdulaal WH, ElAssouli MZ, Alharbi RH, Hassanain M, Hashem AM. Synthetic SARS-CoV-2 Spike-Based DNA Vaccine Elicits Robust and Long-Lasting Th1 Humoral and Cellular Immunity in Mice. Front Microbiol 2021; 12:727455. [PMID: 34557174 PMCID: PMC8454412 DOI: 10.3389/fmicb.2021.727455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 μg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.
Collapse
Affiliation(s)
- Sawsan S. Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A. Alluhaybi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Sarah Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,SaudiVax Ltd., Thuwal, Saudi Arabia
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M-Zaki ElAssouli
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf H. Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazen Hassanain
- SaudiVax Ltd., Thuwal, Saudi Arabia,Department of Surgery, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Anwar M. Hashem,
| |
Collapse
|
69
|
Baral PK, Yin J, James MNG. Treatment and prevention strategies for the COVID 19 pandemic: A review of immunotherapeutic approaches for neutralizing SARS-CoV-2. Int J Biol Macromol 2021; 186:490-500. [PMID: 34237371 PMCID: PMC8256663 DOI: 10.1016/j.ijbiomac.2021.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Researchers from the world over are working to create prophylactic and therapeutic interventions to combat the COVID-19 global healthcare crisis. The current therapeutic options against the COVID-19 include repurposed drugs aimed at targets other than virus-specific proteins. Antibody-based therapeutics carry a lot of promise, and there are several of these candidates for COVID-19 treatment currently being investigated in the preclinical and clinical research stages around the world. The viral spike protein (S protein) appears to be the main target of antibody development candidates, with the majority being monoclonal antibodies. Several antibody candidates targeting the SARS-CoV-2 S protein include LY-CoV555, REGN-COV2, JS016, TY027, CT-P59, BRII-196, BRII-198 and SCTA01. These neutralizing antibodies will treat COVID-19 and possibly future coronavirus infections. Future studies should focus on effective immune-therapeutics and immunomodulators with the purpose of developing specific, affordable, and cost-effective prophylactic and treatment regimens to fight the COVID-19 globally.
Collapse
Affiliation(s)
- Pravas Kumar Baral
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael N G James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
70
|
Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabol Open 2021; 11:100103. [PMID: 34222852 PMCID: PMC8239316 DOI: 10.1016/j.metop.2021.100103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin-like protease
- AAK1, adaptor-associated kinase 1
- ACE-2, Angiotensin-Converting Enzyme-2
- CEF, Cepharanthine
- COVID-19
- COVID-19, coronavirus disease-2019
- Existing drug
- GAK, cyclin G-associated kinase
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Management
- Nsp, non-structure protein
- ORF, open reading frame
- PLpro, papain-like protease
- RdRp, RNA-dependence RNA-polymerase
- SARS-COV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane Serine Protease 2
- TPC2, two-pore channel 2
- Therapeutic target
Collapse
Affiliation(s)
- Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Engidaw Fentahun Enyew
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
71
|
Abstract
The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost. The results indicate that adenoviral vector vaccines can be practically manufactured at large scale and low cost.
Collapse
|
72
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
73
|
Alluhaybi KA, Alharbi RH, Alhabbab RY, Aljehani ND, Alamri SS, Basabrain M, Alharbi R, Abdulaal WH, Alfaleh MA, Tamming L, Zhang W, Hassanain M, Algaissi A, Abuzenadah AM, Li X, Hashem AM. Cellular and Humoral Immunogenicity of a Candidate DNA Vaccine Expressing SARS-CoV-2 Spike Subunit 1. Vaccines (Basel) 2021; 9:852. [PMID: 34451977 PMCID: PMC8402341 DOI: 10.3390/vaccines9080852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Khalid A. Alluhaybi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rahaf H. Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
| | - Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia;
| | - Najwa D. Aljehani
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia;
| | - Sawsan S. Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia;
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
| | - Rehaf Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia;
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Levi Tamming
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (L.T.); (W.Z.); (X.L.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Wanyue Zhang
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (L.T.); (W.Z.); (X.L.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mazen Hassanain
- Department of Surgery, Faculty of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Adel M. Abuzenadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia;
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (L.T.); (W.Z.); (X.L.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia; (K.A.A.); (R.H.A.); (R.Y.A.); (N.D.A.); (S.S.A.); (M.B.); (R.A.); (M.A.A.)
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
74
|
Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1841. [PMID: 34361227 PMCID: PMC8308419 DOI: 10.3390/nano11071841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 outbreak is the COVID-19 disease, which has caused massive health devastation, prompting the World Health Organization to declare a worldwide health emergency. The corona virus infected millions of people worldwide, and many died as a result of a lack of particular medications. The current emergency necessitates extensive therapy in order to stop the spread of the coronavirus. There are various vaccinations available, but no validated COVID-19 treatments. Since its outbreak, many therapeutics have been tested, including the use of repurposed medications, nucleoside inhibitors, protease inhibitors, broad spectrum antivirals, convalescence plasma therapies, immune-modulators, and monoclonal antibodies. However, these approaches have not yielded any outcomes and are mostly used to alleviate symptoms associated with potentially fatal adverse drug reactions. Nanoparticles, on the other hand, may prove to be an effective treatment for COVID-19. They can be designed to boost the efficacy of currently available antiviral medications or to trigger a rapid immune response against COVID-19. In the last decade, there has been significant progress in nanotechnology. This review focuses on the virus's basic structure, pathogenesis, and current treatment options for COVID-19. This study addresses nanotechnology and its applications in diagnosis, prevention, treatment, and targeted vaccine delivery, laying the groundwork for a successful pandemic fight.
Collapse
Affiliation(s)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, Tripura (W), India;
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Tirna Paul
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Bhargab Deka
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Joshi Vijaya
- Department of Pharmaceutics, Government College of Pharmacy, Bangalore 560027, Karnataka, India;
| | - Mohammed Al mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
75
|
Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol 2021; 96:107763. [PMID: 34162141 PMCID: PMC8101866 DOI: 10.1016/j.intimp.2021.107763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
76
|
Mohammadi M, Shayestehpour M, Mirzaei H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz J Infect Dis 2021; 25:101606. [PMID: 34428473 PMCID: PMC8367756 DOI: 10.1016/j.bjid.2021.101606] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 10/27/2022] Open
Abstract
Since the first described human infection with SARS-CoV-2 in December of 2019 many subunit protein vaccines have been proposed for use in humans. Subunit vaccines use one or more antigens suitable for eliciting a robust immune response. However, the major concern is the efficacy of subunit vaccines and elicited antibodies to neutralize the variants of SARS-CoV-2 like B.1.1.7 (Alpha), B.1.351 (Beta) and P1 (Gamma), B.1.617 (Delta) and C.37 (Lambda). The Spike protein (S) is a potential fragment for use as an antigen in vaccine development. This protein plays a crucial role in the first step of the infection process, as it binds to Angiotensin-Converting Enzyme 2 (ACE2) receptor and enters the host cell after binding. Immunization-induced specific antibodies against the receptor binding domain (RBD) may block and effectively prevent virus invasion. The focus of this review is the impact of spike mutated variants of SARS-CoV2 (Alpha, Beta, Gamma, Delta, and Lambda) on the efficacy of subunit recombinant vaccines. To date, a low or no significant impact on vaccine efficacy against Alpha and Delta variants has been reported. Such an impact on vaccine efficacy for Beta, Delta, Gamma, and Lambda variants may be even greater compared to the Alpha variant. Nonetheless, more comprehensive analyses are needed to assess the real impact on vaccine efficacy brought about by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran; Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
77
|
Khan S, Attar F, Bloukh SH, Sharifi M, Nabi F, Bai Q, Khan RH, Falahati M. A review on the interaction of nucleoside analogues with SARS-CoV-2 RNA dependent RNA polymerase. Int J Biol Macromol 2021; 181:605-611. [PMID: 33766591 PMCID: PMC7982646 DOI: 10.1016/j.ijbiomac.2021.03.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The outbreaks of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in 2019, have highlighted the concerns about the lack of potential vaccines or antivirals approved for inhibition of CoVs infection. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) which is almost preserved across different viral species can be a potential target for development of antiviral drugs, including nucleoside analogues (NA). However, ExoN proofreading activity of CoVs leads to their protection from several NAs. Therefore, potential platforms based on the development of efficient NAs with broad-spectrum efficacy against human CoVs should be explored. This study was then aimed to present an overview on the development of NAs-based drug repurposing for targeting SARS-CoV-2 RdRp by computational analysis. Afterwards, the clinical development of some NAs including Favipiravir, Sofosbuvir, Ribavirin, Tenofovir, and Remdesivir as potential inhibitors of RdRp, were surveyed. Overall, exploring broad-spectrum NAs as promising inhibitors of RdRp may provide useful information about the identification of potential antiviral repurposed drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Faisal Nabi
- Biotechnology Unit, Aligarh Muslim University, India
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
78
|
Fernandes HS, Sousa SF, Cerqueira NMFSA. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Mol Divers 2021; 26:1373-1381. [PMID: 34169450 PMCID: PMC8224256 DOI: 10.1007/s11030-021-10259-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
SARS-CoV-2 Mpro, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of Mpro was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
79
|
Sandor AM, Sturdivant MS, Ting JPY. Influenza Virus and SARS-CoV-2 Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2509-2520. [PMID: 34021048 PMCID: PMC8722349 DOI: 10.4049/jimmunol.2001287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Seasonal influenza and the current COVID-19 pandemic represent looming global health challenges. Efficacious and safe vaccines remain the frontline tools for mitigating both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced diseases. This review will discuss the existing strategies for influenza vaccines and how these strategies have informed SARS-CoV-2 vaccines. It will also discuss new vaccine platforms and potential challenges for both viruses.
Collapse
Affiliation(s)
- Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC; and
| | - Michael S Sturdivant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
80
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
81
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
82
|
Patel SP, Patel GS, Suthar JV. Inside the story about the research and development of COVID-19 vaccines. Clin Exp Vaccine Res 2021; 10:154-170. [PMID: 34222129 PMCID: PMC8217575 DOI: 10.7774/cevr.2021.10.2.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
The ongoing coronavirus threat from China has spread rapidly to other nations and has been declared a global health emergency by the World Health Organization (WHO). The pandemic has resulted in over half of the world's population living under conditions of lockdown. Several academic institutions and pharmaceutical companies that are in different stages of development have plunged into the vaccine development race against coronavirus disease 2019 (COVID-19). The demand for immediate therapy and potential prevention of COVID-19 is growing with the increase in the number of individuals affected due to the seriousness of the disease, global dissemination, lack of prophylactics, and therapeutics. The challenging part is a need for vigorous testing for immunogenicity, safety, efficacy, and level of protection conferred in the hosts for the vaccines. As the world responds to the COVID-19 pandemic, we face the challenge of an overabundance of information related to the virus. Inaccurate information and myths spread widely and at speed, making it more difficult for the public to identify verified facts and advice from trusted sources, such as their local health authority or WHO. This review focuses on types of vaccine candidates against COVID-19 in clinical as well as in the preclinical development platform.
Collapse
Affiliation(s)
- Shrina P Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Gayatri S Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Jalpa V Suthar
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| |
Collapse
|
83
|
Kornguth SE, Hawley RJ. Autoimmune Processes Involved in Organ System Failure Following Infection with SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:355-368. [PMID: 33973189 DOI: 10.1007/978-3-030-63761-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the COVID-19 pandemic associated with high incidence, transmissibility, and mortality, this chapter focuses on three phases of the disease: initial exposure, initiation of the immune response to the agent, and finally, an inflammatory/autoimmune-like presentation with pulmonary, neurological, and renal failure and disseminated intravascular coagulation which occurs in a small proportion of the patients. The elegant demonstration of the site of interaction between the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of COVID-19, and the ACE (angiotensin-converting enzyme) 2 receptor of cells distributed throughout the body has enabled research efforts to develop pharmacological and immune countermeasures to the viral phase of the disease. This chapter rapidly reviews the molecular and structural organization of SARS-CoV-2 and its interaction with ACE2. It is followed by a discussion over the role of the major histocompatibility complex (MHC) in recognition of the virus. The importance of rapid compartmentation of the viral genome into the target cells as opposed to the binding constant of the virus for the ACE receptor is discussed. Host factors affecting the immune response to the virus are examined, and the subsequent inflammatory dysregulation enabling the cytokine storm leading to system organ failure is described. Finally, the similarities of the clinical effects of the murine hepatitis virus-JHM (a coronavirus) on multi-organ systems (liver, brain, clotting cascade) as described by Perlman and colleagues permit insights regarding the role of the interaction between the host and the virus in developing the clinical presentation of the inflammatory/autoimmune disorders that occur in multiple sclerosis, neuromyelitis optica, and more interestingly, during the third phase of COVID-19.
Collapse
Affiliation(s)
- Steven E Kornguth
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Biological Safety and Security, Frederick, MD, USA.
| | - Robert J Hawley
- Biological Safety and Security, Frederick, MD, USA
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
84
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
85
|
Baghdadi LR, Alghaihb SG, Abuhaimed AA, Alkelabi DM, Alqahtani RS. Healthcare Workers' Perspectives on the Upcoming COVID-19 Vaccine in Terms of Their Exposure to the Influenza Vaccine in Riyadh, Saudi Arabia: A Cross-Sectional Study. Vaccines (Basel) 2021; 9:465. [PMID: 34066397 PMCID: PMC8148208 DOI: 10.3390/vaccines9050465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 01/30/2023] Open
Abstract
In 2019, a novel severe acute respiratory syndrome (SARS-CoV-2 (COVID-19)) caused a global pandemic. There was an urgent need to develop a vaccine against COVID-19 to reduce its spread and economic burden. The main objective of this study was to understand the attitudes and concerns of healthcare workers (HCWs) towards the upcoming COVID-19 vaccine, whether their decision was influenced by their history of taking the seasonal influenza vaccine, and factors that influence the acceptance of the upcoming COVID-19 vaccine. This was a cross-sectional study conducted in Riyadh, Saudi Arabia. We selected and surveyed 356 HCWs via an electronic self-administered questionnaire. A total of 61.16% of HCWs were willing to receive the COVID-19 vaccine, and 55.9% of them had received the seasonal influenza vaccine in the preceding year (2019-2020). The strongest predictors for taking the COVID-19 vaccine were the HCWs' belief that the COVID-19 vaccine would be safe, needed even for healthy people, that all HCWs should be vaccinated against COVID-19, and that HCWs will have time to take the vaccine. Being female, being middle aged, having <5 years of work experience, having no fear of injections, and being a non-smoker were predictive factors for taking the upcoming COVID-19 vaccine. No associations were found between the intention to take the COVID-19 vaccine and a history of taking the seasonal influenza vaccine.
Collapse
Affiliation(s)
- Leena R. Baghdadi
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
| | - Shatha G. Alghaihb
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (S.G.A.); (A.A.A.); (D.M.A.); (R.S.A.)
| | - Alanoud A. Abuhaimed
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (S.G.A.); (A.A.A.); (D.M.A.); (R.S.A.)
| | - Dania M. Alkelabi
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (S.G.A.); (A.A.A.); (D.M.A.); (R.S.A.)
| | - Rawan S. Alqahtani
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (S.G.A.); (A.A.A.); (D.M.A.); (R.S.A.)
| |
Collapse
|
86
|
Coronavirus Disease 2019: An Overview of the Complications and Management. Pharmacol Ther 2021. [DOI: 10.36922/itps.v4i1.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Since the first report of COVID-19 emerging in Wuhan, China, authorities in 216 countries and territories have reported about 47.3 million COVID-19 cases and 1.2 million deaths. The WHO guidelines for the management of COVID-19 are very limited to recommendations for managing symptoms and advice on careful management of pediatric patients, pregnant women, and patients with underlying comorbidities. There is no approved treatment for COVID-19 and guidelines vary between countries. In this review, first, a brief overview is provided on the basic knowledge about the virus, clinical features of the disease, and different diagnostic methods. Then, the relationship between COVID-19, various body systems, and other complications is discussed. Finallly, different management strategies are discussed, including those drawn on computational chemistry analyses, pre-clinical investigations, and clinical trials which involve pharmacological and non-pharmacological interventions. In conclusion, despite the recent approval of different vaccine candidates, more virological characteristics of SARS-CoV-2 are required to be explored, which may result in the discovery of more potential therapeutic targets leading to safer and more effective treatment to COVID-19.
Collapse
|
87
|
Zoghi S, Khamirani HJ, Dastgheib SA, Dianatpour M, Ghaffarieh A. An analysis of inhibition of the severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase by zinc ion: an in silico approach. Future Virol 2021. [PMCID: PMC8074572 DOI: 10.2217/fvl-2020-0369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Coronavirus disease 2019 is caused by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was reported that Zn2+ is an inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV). We hypothesize that the same applies to the newly discovered SARS-CoV-2. Material & methods: We compared the structure of RNA-dependent RNA polymerase between SARS-CoV and SARS-CoV-2. The RdRp’s binding to Zn2+ was studied by metal ion-binding site prediction and docking server. Results: Several regions containing key residues were detected. The functional aspartic acid residues RdRp, 618D, 760D and 761D were among the predicted Zn2+-binding residues. Conclusion: The most probable mechanism of inhibition of RdRp by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. The most probable mechanism of inhibition of RNA polymerase by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. #Zinc #SARS_CoV_2 #COVID_19.
Collapse
Affiliation(s)
- Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ghaffarieh
- Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
88
|
Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi‐Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F, Shoja Z. Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol 2021; 31:e2183. [PMID: 33594794 PMCID: PMC7646037 DOI: 10.1002/rmv.2183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection. The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Genome, Viral/immunology
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics
- Patient Safety
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
Collapse
Affiliation(s)
- Arash Arashkia
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Somayeh Jalilvand
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nasir Mohajel
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Atefeh Afchangi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Mostafa Salehi‐Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | | | - Tahmineh Jalali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and DevelopmentProduction and Research ComplexPasteur Institute of IranTehranIran
| | - Farzin Roohvand
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Zabihollah Shoja
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
89
|
Sakr MM, Elsayed NS, El-Housseiny GS. Latest updates on SARS-CoV-2 genomic characterization, drug, and vaccine development; a comprehensive bioinformatics review. Microb Pathog 2021; 154:104809. [PMID: 33647446 PMCID: PMC7910145 DOI: 10.1016/j.micpath.2021.104809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Amid the COVID-19 outbreak, several bioinformatic analyses have been conducted on SARS-CoV-2 virus genome. Numerous studies rushed to fill the gap about this novel virus. Comparison with other related sequences, structural predictions of the produced proteins, determination of variations in amino acid residues and depiction of possible drug and vaccine targets have been the focus of scientific research from the beginning of this year. In addition to discussing the viral taxonomy, clinical features, life cycle, and genome organization, this review will focus on the recent updates in genome and viral proteins characterization and potential therapeutic and vaccine candidates developed so far. Comparative studies with related genomes and proteins provide understanding for the viral molecular mechanisms and suggest targets for therapeutics and vaccinology trials to stop the escalation of this new virus. This pandemic, with its resulting social and economic afflictions, will definitely have significant marks on our lives in the following years.
Collapse
Affiliation(s)
- Masarra M Sakr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt
| | - Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt.
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
90
|
AP205 VLPs Based on Dimerized Capsid Proteins Accommodate RBM Domain of SARS-CoV-2 and Serve as an Attractive Vaccine Candidate. Vaccines (Basel) 2021; 9:vaccines9040403. [PMID: 33921677 PMCID: PMC8073683 DOI: 10.3390/vaccines9040403] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a novel disease caused by SARS-CoV-2 which has conquered the world rapidly resulting in a pandemic that massively impacts our health, social activities, and economy. It is likely that vaccination is the only way to form “herd immunity” and restore the world to normal. Here we developed a vaccine candidate for COVID-19 based on the virus-like particle AP205 displaying the spike receptor binding motif (RBM), which is the major target of neutralizing antibodies in convalescent patients. To this end, we genetically fused the RBM domain of SARS-CoV-2 to the C terminus of AP205 of dimerized capsid proteins. The fused VLPs were expressed in E. coli, which resulted in insoluble aggregates. These aggregates were denatured in 8 M urea followed by refolding, which reconstituted VLP formation as confirmed by electron microscopy analysis. Importantly, immunized mice were able to generate high levels of IgG antibodies recognizing eukaryotically expressed receptor binding domain (RBD) as well as spike protein of SARS-CoV-2. Furthermore, induced antibodies were able to neutralize SARS-CoV-2/ABS/NL20. Additionally, this vaccine candidate has the potential to be produced at large scale for immunization programs.
Collapse
|
91
|
Bezbaruah R, Borah P, Kakoti BB, Al-Shar’I NA, Chandrasekaran B, Jaradat DMM, Al-Zeer MA, Abu-Romman S. Developmental Landscape of Potential Vaccine Candidates Based on Viral Vector for Prophylaxis of COVID-19. Front Mol Biosci 2021; 8:635337. [PMID: 33937326 PMCID: PMC8082173 DOI: 10.3389/fmolb.2021.635337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic. Following publication of genetic sequence of SARS-CoV-2, globally extensive research and development work has been in progress to develop a vaccine against the disease. The use of genetic engineering, recombinant technologies, and other computational tools has led to the expansion of several promising vaccine candidates. The range of technology platforms being evaluated, including virus-like particles, peptides, nucleic acid (DNA and RNA), recombinant proteins, inactivated virus, live attenuated viruses, and viral vectors (replicating and non-replicating) approaches, are striking features of the vaccine development strategies. Viral vectors, the next-generation vaccine platforms, provide a convenient method for delivering vaccine antigens into the host cell to induce antigenic proteins which can be tailored to arouse an assortment of immune responses, as evident from the success of smallpox vaccine and Ervebo vaccine against Ebola virus. As per the World Health Organization, till January 22, 2021, 14 viral vector vaccine candidates are under clinical development including 10 nonreplicating and four replicating types. Moreover, another 39 candidates based on viral vector platform are under preclinical evaluation. This review will outline the current developmental landscape and discuss issues that remain critical to the success or failure of viral vector vaccine candidates against COVID-19.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Bibhuti Bhushan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Nizar A. Al-Shar’I
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Munir A. Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Saeid Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
92
|
Chen J, Gao K, Wang R, Wei GW. Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies. Chem Sci 2021; 12:6929-6948. [PMID: 34123321 PMCID: PMC8153213 DOI: 10.1039/d1sc01203g] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Kaifu Gao
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Rui Wang
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University MI 48824 USA
- Department of Electrical and Computer Engineering, Michigan State University MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University MI 48824 USA
| |
Collapse
|
93
|
Abstract
To this day, the coronavirus disease 2019 (COVID-19) pandemic has not shown signs of abating. Moreover, the virus responsible for the pandemic, severe acute respiratory syndrome coronavirus 2, has evolved into three different variants. This phenomenon highlights an even greater need to develop drugs and vaccines to control the rate of infection and spread of the disease. As of July 7, 2020, at least 160 vaccine candidates, 21 of which have entered the clinical trial phase, have been developed. This article describes the latest advances in development, reliable platforms, strategies used, and challenges that remain in developing COVID-19 vaccines.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Pharmacist Profession Education, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Biotechnology Pharmacy Laboratory, Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa Intan Barliana
- Biotechnology Pharmacy Laboratory, Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
94
|
Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 89:104490. [PMID: 32745811 PMCID: PMC7395230 DOI: 10.1016/j.meegid.2020.104490] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
On-going pandemic pneumonia outbreak COVID-19 has raised an urgent public health issue worldwide impacting millions of people with a continuous increase in both morbidity and mortality. The causative agent of this disease is identified and named as SARS-CoV2 because of its genetic relatedness to SARS-CoV species that was responsible for the 2003 coronavirus outbreak. The immense spread of the disease in a very small period demands urgent development of therapeutic and prophylactic interventions for the treatment of SARS-CoV2 infected patients. A plethora of research is being conducted globally on this novel coronavirus strain to gain knowledge about its origin, evolutionary history, and phylogeny. This review is an effort to compare genetic similarities and diversifications among coronavirus strains, which can hint towards the susceptible antigen targets of SARS-CoV2 to come up with the potential therapeutic and prophylactic interventions for the prevention of this public threat.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Rimaljot Singh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Zahid Dar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
95
|
Almocera AES, Quiroz G, Hernandez-Vargas EA. Stability analysis in COVID-19 within-host model with immune response. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2021; 95:105584. [PMID: 33162723 PMCID: PMC7606083 DOI: 10.1016/j.cnsns.2020.105584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 10/23/2020] [Indexed: 05/07/2023]
Abstract
The 2019 coronavirus disease (COVID-19) is now a global pandemic. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative pathogen of COVID-19. Here, we study an in-host model that highlights the effector T cell response to SARS-CoV-2. The stability of a unique positive equilibrium point, with viral load V * , suggests that the virus may replicate fast enough to overcome T cell response and cause infection. This overcoming is the bifurcation point, near which the orders of magnitude for V * can be sensitive to numerical changes in the parameter values. Our work offers a mathematical insight into how SARS-CoV-2 causes the disease.
Collapse
Affiliation(s)
- Alexis Erich S Almocera
- Division of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Visayas, Philippines
| | - Griselda Quiroz
- Universidad Autónoma de Nuevo León, FIME, Av. Universidad S/N, Ciudad Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Esteban A Hernandez-Vargas
- Instituto de Matemáticas, Universidad Nacional Autonoma de Mexico, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro., 76230, México
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
96
|
Maghool F, Valiani A, Safari T, Emami MH, Mohammadzadeh S. Gastrointestinal and renal complications in SARS-CoV-2-infected patients: Role of immune system. Scand J Immunol 2021; 93:e12999. [PMID: 33190306 PMCID: PMC7744842 DOI: 10.1111/sji.12999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease has been accompanied by various gastrointestinal (GI) and renal manifestations in significant portion of infected patients. Beside studies on the respiratory complications of coronavirus infection, understanding the essential immunological processes underlying the different clinical manifestations of virus infection is crucial for the identification and development of effective therapies. In addition to the respiratory tract, the digestive and urinary systems are the major sources of virus transmission. Thus, knowledge about the invasion mechanisms of SARS-CoV-2 in these systems and the immune system responses is important for implementing the infection prevention strategies. This article presents an overview of the gut and renal complications in SARS-CoV-2 infection. We focus on how SARS-CoV-2 interacts with the immune system and the consequent contribution of immune system, gut, and renal dysfunctions in the development of disease.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Ali Valiani
- Department of Anatomical SciencesMedical SchoolIsfahan University of Medical SciencesIsfahanIran
| | - Tahereh Safari
- Department of PhysiologyZahedan University of Medical SciencesZahedanIran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
97
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
98
|
Chauhan N, Soni S, Gupta A, Aslam M, Jain U. Interpretative immune targets and contemporary position for vaccine development against SARS-CoV-2: A systematic review. J Med Virol 2021; 93:1967-1982. [PMID: 33270225 PMCID: PMC7753271 DOI: 10.1002/jmv.26709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
The year 2020 started with the emergence of novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19 infection. Soon after the first evidence was reported in Wuhan, China, the World Health Organization declared global public health emergency and imminent need to understand the pathogenicity of the virus was required in limited time. Once the genome sequence of the virus was delineated, scientists across the world started working on the development of vaccines. Although, some laboratories have been using previously developed vaccine platforms from severe acute respiratory syndrome coronavirus (SARS) and middle east respiratory syndrome-related coronavirus and apply them in COVID-19 vaccines due to genetic similarities between coronaviruses. We have conducted a literature review to assess the background and current status of COVID-19 vaccines. The worldwide implementation and strategies for COVID-19 vaccine development are summarized from studies reported in years 2015-2020. While discussing the vaccine candidates, we have also explained interpretative immune responses of SARS-CoV-2 infection. There are several vaccine candidates at preclinical and clinical stages; however, only 42 vaccines are under clinical trials. Therefore, more industry collaborations and financial supports to COVID-19 studies are needed for mass-scale vaccine development. To develop effective vaccine platforms against SARS-CoV-2, the genetic resemblance with other coronaviruses are being evaluated which may further promote fast-track trials on previously developed SARS-CoV vaccines.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Mohammad Aslam
- Rahat Hospital and Research Centre, Noor Mahal, AVAS VikasRampurIndia
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| |
Collapse
|
99
|
Almofti YA, Abd-Elrahman KA, Eltilib EEM. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol 2021; 22:22. [PMID: 33765919 PMCID: PMC7992937 DOI: 10.1186/s12865-021-00412-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The spread of a novel coronavirus termed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in China and other countries is of great concern worldwide with no effective vaccine. This study aimed to design a novel vaccine construct against SARS-CoV-2 from the spike S protein and orf1ab polyprotein using immunoinformatics tools. The vaccine was designed from conserved epitopes interacted against B and T lymphocytes by the combination of highly immunogenic epitopes with suitable adjuvant and linkers. RESULTS The proposed vaccine composed of 526 amino acids and was shown to be antigenic in Vaxigen server (0.6194) and nonallergenic in Allertop server. The physiochemical properties of the vaccine showed isoelectric point of 10.19. The instability index (II) was 31.25 classifying the vaccine as stable. Aliphatic index was 84.39 and the grand average of hydropathicity (GRAVY) was - 0.049 classifying the vaccine as hydrophilic. Vaccine tertiary structure was predicted, refined and validated to assess the stability of the vaccine via Ramachandran plot and ProSA-web servers. Moreover, solubility of the vaccine construct was greater than the average solubility provided by protein sol and SOLpro servers indicating the solubility of the vaccine construct. Disulfide engineering was performed to reduce the high mobile regions in the vaccine to enhance stability. Docking of the vaccine construct with TLR4 demonstrated efficient binding energy with attractive binding energy of - 338.68 kcal/mol and - 346.89 kcal/mol for TLR4 chain A and chain B respectively. Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells and INF-γ. Upon cloning, the vaccine protein was reverse transcribed into DNA sequence and cloned into pET28a(+) vector to ensure translational potency and microbial expression. CONCLUSION A unique vaccine construct from spike S protein and orf1ab polyprotein against B and T lymphocytes was generated with potential protection against the pandemic. The present study might assist in developing a suitable therapeutics protocol to combat SARSCoV-2 infection.
Collapse
Affiliation(s)
- Yassir A Almofti
- Department of Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan.
| | - Khoubieb Ali Abd-Elrahman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Medical Science and Technology (MUST), Khartoum, Sudan
| | - Elsideeq E M Eltilib
- Department of Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| |
Collapse
|
100
|
Arenas A, Borge C, Carbonero A, Garcia-Bocanegra I, Cano-Terriza D, Caballero J, Arenas-Montes A. Bovine Coronavirus Immune Milk Against COVID-19. Front Immunol 2021; 12:637152. [PMID: 33833758 PMCID: PMC8021920 DOI: 10.3389/fimmu.2021.637152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
After a year of evolution of the SARS-CoV-2 epidemic, there is still no specific effective treatment for the disease. Although the majority of infected people experience mild disease, some patients develop a serious disease, especially when other pathologies concur. For this reason, it would be very convenient to find pharmacological and immunological mechanisms that help control SARS-CoV-2 infection. Since the COVID-19 and BCoV viruses are very close phylogenetically, different studies demonstrate the existence of cross-immunity as they retain shared epitopes in their structure. As a possible control measure against COVID-19, we propose the use of cow's milk immune to BCoV. Thus, the antigenic recognition of some highly conserved structures of viral proteins, particularly M and S2, by anti-BCoV antibodies present in milk would cause a total or partial inactivation of SARS-COV-2 (acting as a particular vaccine) and be addressed more easily by GALT's highly specialized antigen-presenting cells, thus helping the specific immune response.
Collapse
Affiliation(s)
- Antonio Arenas
- Department of Animal Health, University of Cordoba, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|