51
|
Nikolov LA. Brassicaceae flowers: diversity amid uniformity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2623-2635. [PMID: 30824938 DOI: 10.1093/jxb/erz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The mustard family Brassicaceae, which includes the model plant Arabidopsis thaliana, exhibits morphological stasis and significant uniformity of floral plan. Nonetheless, there is untapped diversity in almost every aspect of floral morphology in the family that lends itself to comparative study, including organ number, shape, form, and color. Studies on the genetic basis of morphological diversity, enabled by extensive genetic tools and genomic resources and the close phylogenetic distance among mustards, have revealed a mosaic of conservation and divergence in numerous floral traits. Here I review the morphological diversity of the flowers of Brassicaceae and discuss studies addressing the underlying genetic and developmental mechanisms shaping floral diversity. To put flowers in the context of the floral display, I describe diversity in inflorescence morphology and the variation that exists in the structures preceding the floral organs. Reconstructing the floral morphospace in Brassicaceae coupled with next-generation sequencing data and unbiased approaches to interrogate gene function in species throughout the mustard phylogeny offers promising ways to understand how developmental mechanisms originate and diversify.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
52
|
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. THE NEW PHYTOLOGIST 2019; 222:1638-1651. [PMID: 30735246 DOI: 10.1111/nph.15732] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 05/03/2023]
Abstract
The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ihsan A Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St Louis, MO, 63110, USA
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
53
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
54
|
Abstract
The field of taxonomy is critically important for the identification, conservation, and ecology of biological species. Modern taxonomists increasingly need to employ advanced imaging techniques to classify organisms according to their observed morphological features. Moreover, the generation of three-dimensional datasets is of growing interest; moving beyond qualitative analysis to true quantitative classification. Unfortunately, biological samples are highly vulnerable to degradation under the energetic probes often used to generate these datasets. Neutral atom beam microscopes avoid such damage due to the gentle nature of their low energy probe, but to date have not been capable of producing three-dimensional data. Here we demonstrate a means to recover the height information for samples imaged in the scanning helium microscope (SHeM) via the process of stereophotogrammetry. The extended capabilities, namely sparse three-dimensional reconstructions of features, were showcased via taxonomic studies of both flora (Arabidopsis thaliana) and fauna (Heterodontus portusjacksoni). In concert with the delicate nature of neutral helium atom beam microscopy, the stereophotogrammetry technique provides the means to derive comprehensive taxonomical data without the risk of sample degradation due to the imaging process.
Collapse
|
55
|
Cardinal-McTeague WM, Wurdack KJ, Sigel EM, Gillespie LJ. Seed size evolution and biogeography of Plukenetia (Euphorbiaceae), a pantropical genus with traditionally cultivated oilseed species. BMC Evol Biol 2019; 19:29. [PMID: 30670006 PMCID: PMC6341577 DOI: 10.1186/s12862-018-1308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/23/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Plukenetia is a small pantropical genus of lianas and vines with variably sized edible oil-rich seeds that presents an ideal system to investigate neotropical and pantropical diversification patterns and seed size evolution. We assessed the biogeography and seed evolution of Plukenetia through phylogenetic analyses of a 5069 character molecular dataset comprising five nuclear and two plastid markers for 86 terminals in subtribe Plukenetiinae (representing 20 of ~ 23 Plukenetia species). Two nuclear genes, KEA1 and TEB, were used for phylogenetic reconstruction for the first time. Our goals were: (1) produce a robust, time-dependent evolutionary framework for Plukenetia using BEAST; (2) reconstruct its biogeographical history with ancestral range estimation in BIOGEOBEARS; (3) define seed size categories; (4) identify patterns of seed size evolution using ancestral state estimation; and (5) conduct regression analyses with putative drivers of seed size using the threshold model. RESULTS Plukenetia was resolved into two major groups, which we refer to as the pinnately- and palmately-veined clades. Our analyses suggest Plukenetia originated in the Amazon or Atlantic Forest of Brazil during the Oligocene (28.7 Mya) and migrated/dispersed between those regions and Central America/Mexico throughout the Miocene. Trans-oceanic dispersals explain the pantropical distribution of Plukenetia, including from the Amazon to Africa in the Early Miocene (17.4 Mya), followed by Africa to Madagascar and Africa to Southeast Asia in the Late Miocene (9.4 Mya) and Pliocene (4.5 Mya), respectively. We infer a single origin of large seeds in the ancestor of Plukenetia. Seed size fits a Brownian motion model of trait evolution and is moderately to strongly associated with plant size, fruit type/dispersal syndrome, and seedling ecology. Biome shifts were not drivers of seed size, although there was a weak association with a transition to fire prone semi-arid savannas. CONCLUSIONS The major relationships among the species of Plukenetia are now well-resolved. Our biogeographical analyses support growing evidence that many pantropical distributions developed by periodic trans-oceanic dispersals throughout the Miocene and Pliocene. Selection on a combination of traits contributed to seed size variation, while movement between forest edge/light gap and canopy niches likely contributed to the seed size extremes in Plukenetia.
Collapse
Affiliation(s)
- Warren M. Cardinal-McTeague
- Department of Biology, University of Ottawa, Gendron Hall, Room 160, 30 Marie Curie, Ottawa, Ontario K1N 6N5 Canada
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4 Canada
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012 USA
| | - Kenneth J. Wurdack
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012 USA
| | - Erin M. Sigel
- Department of Biology, University of Louisiana at Lafayette, Billeaud Hall, Room 108, 410 E. St. Mary Blvd, Lafayette, LA 70503 USA
| | - Lynn J. Gillespie
- Department of Biology, University of Ottawa, Gendron Hall, Room 160, 30 Marie Curie, Ottawa, Ontario K1N 6N5 Canada
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4 Canada
| |
Collapse
|
56
|
Lohani N, Golicz AA, Singh MB, Bhalla PL. Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Funct Integr Genomics 2019; 19:515-531. [DOI: 10.1007/s10142-018-0649-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023]
|
57
|
Salmerón-Sánchez E, Fuertes-Aguilar J, Španiel S, Pérez-García FJ, Merlo E, Garrido-Becerra JA, Mota J. Plant evolution in alkaline magnesium-rich soils: A phylogenetic study of the Mediterranean genus Hormathophylla (Cruciferae: Alysseae) based on nuclear and plastid sequences. PLoS One 2018; 13:e0208307. [PMID: 30576314 PMCID: PMC6303028 DOI: 10.1371/journal.pone.0208307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Habitats with alkaline edaphic substrates are often associated with plant speciation and diversification. The tribe Alysseae, in the family Brassicaceae, epitomizes this evolutionary trend. In this lineage, some genera, like Hormathophylla, can serve as a good case for testing the evolutionary framework. This genus is centered in the western Mediterranean. It grows on different substrates, but mostly on alkaline soils. It has been suggested that diversification in many lineages of the tribe Alysseae and in the genus Hormathophylla is linked to a tolerance for high levels of Mg+2 in xeric environments. In this study, we investigated the controversial phylogenetic placement of Hormathophylla in the tribe, the generic limits and the evolutionary relationships between the species using ribosomal and plastid DNA sequences. We also examined the putative association between the evolution of different ploidy levels, trichome morphology and the type of substrates. Our analyses demonstrated the monophyly of the genus Hormathophylla including all previously described species. Nuclear sequences revealed two lineages that differ in basic chromosome numbers (x = 7 and x = 8 or derived 11, 15) and in their trichome morphology. Contrasting results with plastid genes indicates more complex relationships between these two lineages involving recent hybridization processes. We also found an association between chloroplast haplotypes and substrate, especially in populations growing on dolomites. Finally, our dated phylogeny demonstrates that the origin of the genus took place in the mid-Miocene, during the establishment of temporal land bridges between the Tethys and Paratethys seas, with a later diversification during the upper Pliocene.
Collapse
Affiliation(s)
- Esteban Salmerón-Sánchez
- Departamento de Biología y Geología, CEI.MAR and CECOUAL, Universidad de Almería, Almería, Spain
- Departamento de Botánica, Unidad de Conservación Vegetal, Universidad de Granada, Granada, Spain
| | | | - Stanislav Španiel
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Encarna Merlo
- Departamento de Biología y Geología, CEI.MAR and CECOUAL, Universidad de Almería, Almería, Spain
| | | | - Juan Mota
- Departamento de Biología y Geología, CEI.MAR and CECOUAL, Universidad de Almería, Almería, Spain
| |
Collapse
|
58
|
Liu T, Yu H, Xiong X, Yu Y, Yue X, Liu J, Cao J. Genome-Wide Identification and Characterization of Pectin Methylesterase Inhibitor Genes in Brassica oleracea. Int J Mol Sci 2018; 19:ijms19113338. [PMID: 30373125 PMCID: PMC6274938 DOI: 10.3390/ijms19113338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
The activities of pectin methylesterases (PMEs) are regulated by pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. However, the role of PMEI genes in Brassica oleracea, an economically important vegetable crop, is poorly understood. In this study, 95 B. oleracea PMEI (BoPMEI) genes were identified. A total of 77 syntenic ortholog pairs and 10 tandemly duplicated clusters were detected, suggesting that the expansion of BoPMEI genes was mainly attributed to whole-genome triplication (WGT) and tandem duplication (TD). During diploidization after WGT, BoPMEI genes were preferentially retained in accordance with the gene balance hypothesis. Most homologous gene pairs experienced purifying selection with ω (Ka/Ks) ratios lower than 1 in evolution. Five stamen-specific BoPMEI genes were identified by expression pattern analysis. By combining the analyses of expression and evolution, we speculated that nonfunctionalization, subfunctionalization, neofunctionalization, and functional conservation can occur in the long evolutionary process. This work provides insights into the characterization of PMEI genes in B. oleracea and contributes to the further functional studies of BoPMEI genes.
Collapse
Affiliation(s)
- Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Hui Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China.
| | - Xiaoyan Yue
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Jinlong Liu
- Laboratory of Molecular Biology and Gene Engineering, School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
59
|
Brock JR, Dönmez AA, Beilstein MA, Olsen KM. Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Mol Phylogenet Evol 2018; 127:834-842. [DOI: 10.1016/j.ympev.2018.06.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022]
|
60
|
Xi X, Wei K, Gao B, Liu J, Liang J, Cheng F, Wang X, Wu J. BrFLC5: a weak regulator of flowering time in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2107-2116. [PMID: 30008108 DOI: 10.1007/s00122-018-3139-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/28/2018] [Indexed: 05/08/2023]
Abstract
A splicing site mutation in BrFLC5, a non-syntenic paralogue of FLOWERING LOCUS C, was demonstrated to be related to flowering time variation in Brassica rapa. Flowering time regulation in Brassica rapa is more complex than in Arabidopsis, as there are multiple paralogues of flowering time genes in B. rapa. Brassica rapa contains four FLOWERING LOCUS C (FLC) genes, three of which are syntenic orthologues of AtFLC, while BrFLC5 is not. BrFLC1, BrFLC2, and BrFLC3 have been reported to be involved in flowering time regulation. However, BrFLC5 has thus far been deemed a pseudogene. We detected two alternative splicing patterns of BrFLC5 resulting from a nucleotide mutation (G/A) at the first nucleotide of intron 3 (named as Pi3+1(G/A)). Genotyping of BrFLC5Pi3 + 1(G/A) for 301 B. rapa accessions showed that this single nucleotide polymorphism was significantly related to flowering time variation (p < 0.001). In the collection, the frequency of the functional G allele (35.2%) was much lower than that of the nonfunctional A allele (59.1%); however, the frequency of the G allele was very high among the turnips (83.6%). An F2 population segregating at this locus was developed to analyze the genetic effect of BrFLC5. The result showed that the G allele individuals began to bolt two days later than the A allele individuals, indicating that BrFLC5 is a weak regulator of flowering time. BrFLC5 was expressed at the lowest level among the three analyzed BrFLCs. The late allele (G allele) was dominant to the early allele (A allele) at the BrFLC5 locus, which was in contrast to that of BrFLC1 and BrFLC2. This characteristic suggests that BrFLC5 would be more efficient for breeding premature bolting resistance in B. rapa.
Collapse
Affiliation(s)
- Xi Xi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Keyun Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Baozhen Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jiahe Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China.
| |
Collapse
|
61
|
Theißen G, Rümpler F, Gramzow L. Array of MADS-Box Genes: Facilitator for Rapid Adaptation? TRENDS IN PLANT SCIENCE 2018; 23:563-576. [PMID: 29802068 DOI: 10.1016/j.tplants.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
In a world of global warming, the question emerges whether all plants have suitable mechanisms to keep pace with the rapidly changing environment. Most previous studies have focused on either the ability of plants to rapidly acclimatize via physiological and developmental plasticity, or long-term adaptation over thousands of years. However, we wonder whether plants can also adapt to changes in the environment within only a few generations. We hypothesize that rapidly evolving clusters of tandemly duplicated developmental control genes represent a source for fast adaptation. Specifically, we propose that a tandem cluster of FLC-like MADS-box genes involved in the transition to flowering in Arabidopsis functions as a facilitator for rapid adaptation to changes in ambient temperature.
Collapse
Affiliation(s)
- Günter Theißen
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany.
| | - Florian Rümpler
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| | - Lydia Gramzow
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
62
|
Chen H, Al-Shehbaz IA, Yue J, Sun H. New insights into the taxonomy of tribe Euclidieae (Brassicaceae), evidence from nrITS sequence data. PHYTOKEYS 2018; 100:125-139. [PMID: 29962892 PMCID: PMC6023952 DOI: 10.3897/phytokeys.100.24756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 05/16/2023]
Abstract
As currently delimitated, the species-rich mustard tribe Euclidieae DC. (Brassicaceae) comprises 28 genera and 152 species distributed primarily in Asia. To date, no tribe-wide comprehensive phylogenetic analysis has been conducted. In this study, sequence data from the nuclear ribosomal internal transcribed spacer (nrITS) region of 82 species in all 28 genera of Euclidieae were used to test its monophyly and infer inter- and intra-generic relationships within. Phylogenetic analyses revealed that Rhammatophyllum and Sisymbriopsis are embedded within Solms-laubachia s.l., and Solms-laubachia lanuginosa (Eurycarpus lanuginosus) fell outside the tribe. Therefore, Solms-laubachia s.l. as currently recognized is not monophyletic and its generic delimitation needed further study. Besides, our results suggest that the genera Lepidostemon, Neotorularia, and Tetracme are polyphyletic.
Collapse
Affiliation(s)
- Hongliang Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ihsan A. Al-Shehbaz
- Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA
| | - Jipei Yue
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| |
Collapse
|
63
|
Ullah R, Alsaid MS, Shahat AA, Naser AA, Al-Mishari AA, Adnan M, Tariq A. Antioxidant and Hepatoprotective Effects of Methanolic Extracts of Zilla spinosa and Hammada elegans Against Carbon Tetrachlorideinduced Hepatotoxicity in Rats. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe detoxification, metabolism, and excretion of various endogenous and exogenous materials occur mainly in the liver. Liver diseases are a global concern, and classified as chronic hepatitis, cirrhosis, and hepatosis. The development of safe hepatoprotective agents remains an unmet need. Therefore, we investigated the antioxidant effects of methanolic and n-hexane fractions of Zilla spinosa (ZSM and ZSH, respectively) and Hammada elegans (HEM and HEH, respectively) against carbon tetrachloride (CCl4)-induced liver toxicity in rats. Antioxidant activity was studied by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The rats were divided into 11 groups (n=6)–group, 1 (control), group 2 (CCl4 only), group 3 (CCl4+silymarin 10 mg/kg), group 4 (CCl4+HEM 250 mg/kg), group 5 (CC14+HEM 500 mg/kg), group 6 (CCl4+HEH 250 mg/kg), group, 7 (CCl4+HEH 500 mg/kg), group, 8 (CCl4+ZSM 250 mg/kg), group 9 (CCl4+ZSM 500 mg/kg), group 10 (CCl4+ZSH 250 mg/kg), and group 11 (CCl4+ZSH 500 mg/kg). Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transferase, and total bilirubin were measured. The extent of hepatic injury was histopathologically assessed. Treatment with ZSM and ZSH at 250 and 500 mg/kg did not significantly affect biochemical results compared with the CCl4 only group. However, treatment with both HEM and HEH at 250 and 500 mg/kg provided significant (p<0.001) results compared with the CCl4 only group. These results were consistent with histological findings. HEM and HEH at 250 μg/mL significantly inhibited DPPH radical formation by 38.E6 and 35.65%, rerpectively. However antioxidant effects of ZSM and ZSH were insignificant.
Collapse
Affiliation(s)
- Riaz Ullah
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Department of Chemistry, Government College Ara Khel FR, Kohat KPK, Pakistan
| | - Mansour S. Alsaid
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Phytochemistry Department, National Research Centre, 33 El Bohouth st. P.O. Box 12622, Dokki, Giza, Egypt
| | - Almoqbil Abdulaziz Naser
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah A. Al-Mishari
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Muhammad Adnan
- Department of Botany, Kohat University of Sciecne and Technology KUST KPK, Kohat, Pakistan
| | - Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Ozseyhan ME, Kang J, Mu X, Lu C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:1-7. [PMID: 29216494 DOI: 10.1016/j.plaphy.2017.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/08/2017] [Accepted: 11/30/2017] [Indexed: 05/20/2023]
Abstract
Camelina sativa is a re-emerging low-input oilseed crop that has great potentials. It is necessary to ameliorate camelina oils for optimized fatty acid composition that can meet different application requirements. Camelina seed contains significant amounts of C20-C24 very long-chain fatty acids (VLCFAs) that may not be desirable. We demonstrated that these VLCFAs can be effectively reduced by deactivating the Fatty Acid Elongase1 (FAE1) in camelina. The allohexaploid camelina contains three alleles of FAE1 genes. Ethyl methanesulfonate (EMS) induced mutation at the FAE1-B gene caused over 60% reduction of VLCFAs in seed. Homozygous knockout mutants were successfully created in a single generation by simultaneously targeting three FAE1 alleles using the CRISPR technology with an egg cell-specific Cas9 expression. VLCFAs were reduced to less than 2% of total fatty acids compared to over 22% in the wild type, and the C18 unsaturated fatty acids were concomitantly increased. The fae1 mutants were indistinguishable from wild type in seed physiology and plant growth. This study demonstrated that the CRISPR/Cas9 technology can be effectively applied to the polyploid crop camelina to rapidly obtain desired traits such as optimal fatty acid composition in its seed oil. Knocking out FAE1 also provides a means to increase the levels of oleic acid or α-linolenic acid in camelina oils that are desirable for industrial or food/feed uses.
Collapse
Affiliation(s)
- Mehmet E Ozseyhan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Jinling Kang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Xiaopeng Mu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
65
|
Mandáková T, Pouch M, Harmanová K, Zhan SH, Mayrose I, Lysak MA. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol Ecol 2017; 26:6445-6462. [PMID: 29024107 DOI: 10.1111/mec.14379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023]
Abstract
Hybridization and genome doubling (allopolyploidy) have led to evolutionary novelties as well as to the origin of new clades and species. Despite the importance of allopolyploidization, the dynamics of postpolyploid diploidization (PPD) at the genome level has been only sparsely studied. The Microlepidieae (MICR) is a crucifer tribe of 17 genera and c. 56 species endemic to Australia and New Zealand. Our phylogenetic and cytogenomic analyses revealed that MICR originated via an intertribal hybridization between ancestors of Crucihimalayeae (n = 8; maternal genome) and Smelowskieae (n = 7; paternal genome), both native to the Northern Hemisphere. The reconstructed ancestral allopolyploid genome (n = 15) originated probably in northeastern Asia or western North America during the Late Miocene (c. 10.6-7 million years ago) and reached the Australian mainland via long-distance dispersal. In Australia, the allotetraploid genome diverged into at least three main subclades exhibiting different levels of PPD and diversity: 1.25-fold descending dysploidy (DD) of n = 15 → n = 12 (autopolyploidy → 24) in perennial Arabidella (3 species), 1.5-fold DD of n = 15 → n = 10 in the perennial Pachycladon (11 spp.) and 2.1-3.75-fold DD of n = 15 → n = 7-4 in the largely annual crown-group genera (42 spp. in 15 genera). These results are among the first to demonstrate multispeed genome evolution in taxa descending from a common allopolyploid ancestor. It is suggested that clade-specific PPD can operate at different rates and efficacies and can be tentatively linked to life histories and the extent of taxonomic diversity.
Collapse
Affiliation(s)
- Terezie Mandáková
- RG Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milan Pouch
- RG Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Klára Harmanová
- RG Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Shing Hei Zhan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martin A Lysak
- RG Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
66
|
Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics 2017; 18:776. [PMID: 29025408 PMCID: PMC5639739 DOI: 10.1186/s12864-017-4176-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Background Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. Results In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome “Darmor-bzh” to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. Conclusion The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose. Electronic supplementary material The online version of this article (10.1186/s12864-017-4176-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China.
| |
Collapse
|
67
|
Seo MS, Kim JS. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 2017; 22:molecules22091549. [PMID: 28906468 PMCID: PMC6151624 DOI: 10.3390/molecules22091549] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Glucosinolates (GSLs) are widely known secondary metabolites that have anticarcinogenic and antioxidative activities in humans and defense roles in plants of the Brassicaceae family. Some R2R3-type MYB (myeloblastosis) transcription factors (TFs) control GSL biosynthesis in Arabidopsis. However, studies on the MYB TFs involved in GSL biosynthesis in Brassica species are limited because of the complexity of the genome, which includes an increased number of paralog genes as a result of genome duplication. The recent completion of the genome sequencing of the Brassica species permits the identification of MYB TFs involved in GSL biosynthesis by comparative genome analysis with A. thaliana. In this review, we describe various findings on the regulation of GSL biosynthesis in Brassicaceae. Furthermore, we identify 63 orthologous copies corresponding to five MYB TFs from Arabidopsis, except MYB76 in Brassica species. Fifty-five MYB TFs from the Brassica species possess a conserved amino acid sequence in their R2R3 MYB DNA-binding domain, and share close evolutionary relationships. Our analysis will provide useful information on the 55 MYB TFs involved in the regulation of GSL biosynthesis in Brassica species, which have a polyploid genome.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
68
|
Guo Y, Liu J, Zhang J, Liu S, Du J. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:34-44. [PMID: 28332757 DOI: 10.1111/tpj.13541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 05/18/2023]
Abstract
It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (Ka ) and the rates of synonymous substitution (Ks ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (Ka /Ks ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica.
Collapse
Affiliation(s)
- Yue Guo
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture of People's Republic of China, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture of People's Republic of China, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
69
|
Pedras MSC, To QH. Defense and signalling metabolites of the crucifer Erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins. PHYTOCHEMISTRY 2017; 139:18-24. [PMID: 28390240 DOI: 10.1016/j.phytochem.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Erucastrum canariense Webb & Berthel. (Brassicaceae) is a wild crucifer that grows in rocky soils, in salt and water stressed habitats, namely in the Canary Islands and similar environments. Abiotic stress induced by copper chloride triggered formation of a phytoalexin and galacto-oxylipins in E. canariense, whereas wounding induced galacto-oxylipins but not phytoalexins. Analysis of the metabolite profiles of leaves of E. canariense followed by isolation and structure determination afforded the phytoalexin erucalexin, the phytoanticipin indolyl-3-acetonitrile, the galacto-oxylipins arabidopsides A, C, and D, and the oxylipin 12-oxophytodienoic acid. In addition, arabidopsides A and D were also identified in extracts of leaves of Nasturtium officinale R. Br.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | - Q Huy To
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
70
|
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, Koch MA. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 2017; 18:176. [PMID: 28209119 PMCID: PMC5312533 DOI: 10.1186/s12864-017-3555-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Background The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Results Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Conclusions Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3555-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Jianquan Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.
| | - Guoqian Hao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.,Biodiversity Institute of Mount Emei, Mount Emei Scenic Area Management Committee, 614200, Leshan, Sichuan, People's Republic of China
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Xiaojuan Wang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Dan Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Tao Ma
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Quanjun Hu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | | | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
71
|
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, Koch MA. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 2017. [PMID: 28209119 DOI: 10.1186/s12864-017-3555-3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. RESULTS Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. CONCLUSIONS Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Jianquan Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.
| | - Guoqian Hao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
- Biodiversity Institute of Mount Emei, Mount Emei Scenic Area Management Committee, 614200, Leshan, Sichuan, People's Republic of China
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Xiaojuan Wang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Dan Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Tao Ma
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Quanjun Hu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | | | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
72
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, Nikolov LA, Song B, Hajheidari M, Briskine R, Kougioumoutzi E, Vlad D, Broholm S, Hein J, Meksem K, Lightfoot D, Shimizu KK, Shimizu-Inatsugi R, Imprialou M, Kudrna D, Wing R, Sato S, Huijser P, Filatov D, Mayer KFX, Mott R, Tsiantis M. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. NATURE PLANTS 2016; 2:16167. [PMID: 27797353 PMCID: PMC8826541 DOI: 10.1038/nplants.2016.167] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/30/2016] [Indexed: 05/18/2023]
Abstract
Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.
Collapse
Affiliation(s)
- Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Michiel Kwantes
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Zentrum Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Asis Hallab
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Raffaele Dello Ioio
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
- Present Address: †Present address: Department of Biology and Biotechnology, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy (R.D.I.). The Global Food Security, BBSRC, Polaris House, North Star Avenue, Swindon SN2 1UH, UK (E.K.). Institute of Biotechnology, Viikinkaari 1, 00014 University of Helsinki, Finland (S.B.),
| | - Hugo Hofhuis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Maria Cartolano
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Lachezar A. Nikolov
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Baoxing Song
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Mohsen Hajheidari
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Roman Briskine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Evangelia Kougioumoutzi
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford UK
- Present Address: †Present address: Department of Biology and Biotechnology, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy (R.D.I.). The Global Food Security, BBSRC, Polaris House, North Star Avenue, Swindon SN2 1UH, UK (E.K.). Institute of Biotechnology, Viikinkaari 1, 00014 University of Helsinki, Finland (S.B.),
| | - Daniela Vlad
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford UK
| | - Suvi Broholm
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford UK
- Present Address: †Present address: Department of Biology and Biotechnology, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy (R.D.I.). The Global Food Security, BBSRC, Polaris House, North Star Avenue, Swindon SN2 1UH, UK (E.K.). Institute of Biotechnology, Viikinkaari 1, 00014 University of Helsinki, Finland (S.B.),
| | - Jotun Hein
- Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG Oxford UK
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, 62901 Illinois USA
| | - David Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, 62901 Illinois USA
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martha Imprialou
- Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG Oxford UK
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, 1657 East Helen Street, Tucson, 85721 Arizona USA
| | - Rod Wing
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, 1657 East Helen Street, Tucson, 85721 Arizona USA
| | - Shusei Sato
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford UK
| | - Peter Huijser
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford UK
| | - Klaus F. X. Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Richard Mott
- UCL Genetics Institute, University College London, Gower Street, WC1E 6BT London UK
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| |
Collapse
|
74
|
Liu Z, Tavares R, Forsythe ES, André F, Lugan R, Jonasson G, Boutet-Mercey S, Tohge T, Beilstein MA, Werck-Reichhart D, Renault H. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism. Nat Commun 2016; 7:13026. [PMID: 27713409 PMCID: PMC5059761 DOI: 10.1038/ncomms13026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France
| | - Raquel Tavares
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 16 rue Raphael Dubois, 69622 Villeurbanne Cedex, France
| | - Evan S Forsythe
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - François André
- iBiTec-S/SB2SM, UMR 9198 CNRS, University Paris Sud, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Raphaël Lugan
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France
| | - Gabriella Jonasson
- iBiTec-S/SB2SM, UMR 9198 CNRS, University Paris Sud, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Saclay Plant Sciences RD10, 78026 Versailles, France
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France.,University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.,Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France.,University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.,Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
75
|
A Genomic Analysis of Factors Driving lincRNA Diversification: Lessons from Plants. G3-GENES GENOMES GENETICS 2016; 6:2881-91. [PMID: 27440919 PMCID: PMC5015945 DOI: 10.1534/g3.116.030338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcriptomic analyses from across eukaryotes indicate that most of the genome is transcribed at some point in the developmental trajectory of an organism. One class of these transcripts is termed long intergenic noncoding RNAs (lincRNAs). Recently, attention has focused on understanding the evolutionary dynamics of lincRNAs, particularly their conservation within genomes. Here, we take a comparative genomic and phylogenetic approach to uncover factors influencing lincRNA emergence and persistence in the plant family Brassicaceae, to which Arabidopsis thaliana belongs. We searched 10 genomes across the family for evidence of > 5000 lincRNA loci from A. thaliana. From loci conserved in the genomes of multiple species, we built alignments and inferred phylogeny. We then used gene tree/species tree reconciliation to examine the duplication history and timing of emergence of these loci. Emergence of lincRNA loci appears to be linked to local duplication events, but, surprisingly, not whole genome duplication events (WGD), or transposable elements. Interestingly, WGD events are associated with the loss of loci for species having undergone relatively recent polyploidy. Lastly, we identify 1180 loci of the 6480 previously annotated A. thaliana lincRNAs (18%) with elevated levels of conservation. These conserved lincRNAs show higher expression, and are enriched for stress-responsiveness and cis-regulatory motifs known as conserved noncoding sequences (CNSs). These data highlight potential functional pathways and suggest that CNSs may regulate neighboring genes at both the genomic and transcriptomic level. In sum, we provide insight into processes that may influence lincRNA diversification by providing an evolutionary context for previously annotated lincRNAs.
Collapse
|
76
|
Chen H, Deng T, Yue J, Al-Shehbaz IA, Sun H. Molecular phylogeny reveals the non-monophyly of tribe Yinshanieae (Brassicaceae) and description of a new tribe, Hillielleae. PLANT DIVERSITY 2016; 38:171-182. [PMID: 30159462 PMCID: PMC6112204 DOI: 10.1016/j.pld.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/14/2016] [Indexed: 05/14/2023]
Abstract
The taxonomic treatment within the unigeneric tribe Yinshanieae (Brassicaceae) is controversial, owing to differences in generic delimitation applied to its species. In this study, sequences from nuclear ITS and chloroplast trnL-F regions were used to test the monophyly of Yinshanieae, while two nuclear markers (ITS, ETS) and four chloroplast markers (trnL-F, trnH-psbA, rps16, rpL32-trnL) were used to elucidate the phylogenetic relationships within the tribe. Using maximum parsimony, maximum likelihood, and Bayesian inference methods, we reconstructed the phylogeny of Brassicaceae and Yinshanieae. The results show that Yinshanieae is not a monophyletic group, with the taxa splitting into two distantly related clades: one clade contains four taxa and falls in Lineage I, whereas the other includes all species previously placed in Hilliella and is embedded in the Expanded Lineage II. The tribe Yinshanieae is redefined, and a new tribe, Hillielleae, is proposed based on combined evidence from molecular phylogeny, morphology, and cytology.
Collapse
Affiliation(s)
- Hongliang Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jipei Yue
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author.
| |
Collapse
|
77
|
Jeong YM, Kim N, Ahn BO, Oh M, Chung WH, Chung H, Jeong S, Lim KB, Hwang YJ, Kim GB, Baek S, Choi SB, Hyung DJ, Lee SW, Sohn SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1357-1372. [PMID: 27038817 DOI: 10.1007/s00122-016-2708-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 05/03/2023]
Abstract
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Namshin Kim
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Byung Ohg Ahn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mijin Oh
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won-Hyong Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hee Chung
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Seongmun Jeong
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Korea
| | - Yoon-Jung Hwang
- Department of Life Science, Sahmyook University, Seoul, 139-800, Korea
| | - Goon-Bo Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Seunghoon Baek
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Sang-Bong Choi
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | | | | | - Seong-Han Sohn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Soo-Jin Kwon
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mina Jin
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Young-Joo Seol
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won Byoung Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Keun Jin Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Beom-Seok Park
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea.
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea.
| |
Collapse
|
78
|
Ginko E, Dobeš C, Saukel J. Suitability of Root and Rhizome Anatomy for Taxonomic Classification and Reconstruction of Phylogenetic Relationships in the Tribes Cardueae and Cichorieae (Asteraceae). Sci Pharm 2016; 84:585-602. [PMID: 28656938 PMCID: PMC5198019 DOI: 10.3390/scipharm84040585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
The value of root and rhizome anatomy for the taxonomic characterisation of 59 species classified into 34 genera and 12 subtribes from the Asteraceae tribes Cardueae and Cichorieae was assessed. In addition, the evolutionary history of anatomical characters was reconstructed using a nuclear ribosomal DNA sequence-based phylogeny of the Cichorieae. Taxa were selected with a focus on pharmaceutically relevant species. A binary decision tree was constructed and discriminant function analyses were performed to extract taxonomically relevant anatomical characters and to infer the separability of infratribal taxa, respectively. The binary decision tree distinguished 33 species and two subspecies, but only five of the genera (sampled for at least two species) by a unique combination of hierarchically arranged characters. Accessions were discriminated-except for one sample worthy of discussion-according to their subtribal affiliation in the discriminant function analyses (DFA). However, constantly expressed subtribe-specific characters were almost missing and even in combination, did not discriminate the subtribes. Most anatomical characters showed at least some degree of homoplasious evolution limiting their suitability as phylogenetically informative characters.
Collapse
Affiliation(s)
- Elisabeth Ginko
- Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
| | - Christoph Dobeš
- Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
- Department of Forest Genetics, Research Centre for Forests, Seckendorff-Gudent-Weg 8, Vienna A-1131, Austria.
| | - Johannes Saukel
- Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
| |
Collapse
|
79
|
Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:322-348. [PMID: 26991237 DOI: 10.1111/tpj.13163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jinjie Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | | | - Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas A Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Matt Larson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Ana P Alonso
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
80
|
Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:108-15. [PMID: 26945766 DOI: 10.1016/j.pbi.2016.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
A decade ago the concept of the Ancestral Crucifer Karyotype (ACK) and the definition of 24 conserved genomic blocks was presented. Subsequently, 35 cytogenetic reconstructions and/or draft genome sequences of crucifer species (members of the Brassicaceae family) have been analyzed in the context of this system; placing crucifers at the forefront of plant phylogenomics. In this review, we highlight how the ACK and genomic blocks have facilitated and guided genomic analysis of crucifers in the last 10 years and provide an update of this robust model.
Collapse
Affiliation(s)
- Martin A Lysak
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| |
Collapse
|
81
|
Clade-specific positive selection on a developmental gene: BRANCHLESS TRICHOME and the evolution of stellate trichomes in Physaria (Brassicaceae). Mol Phylogenet Evol 2016; 100:31-40. [PMID: 27015897 DOI: 10.1016/j.ympev.2016.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
Abstract
Positive selection is known to drive the evolution of genes involved in evolutionary arms races, but what role does it play in the evolution of genes involved in developmental processes? We used the single-celled epidermal trichomes of Brassicaceae as a model to uncover the molecular evolutionary processes that contributed to the transition from dendritic trichomes, as seen in most species of Brassicaceae, to the distinctive stellate trichomes of the genus Physaria. We explored the role of positive selection on the evolution of BRANCHLESS TRICHOME (BLT), a candidate gene for changes in trichome branching pattern. Maximum likelihood models of codon evolution point to a shift in selective pressure affecting the evolution of BLT across the entire Physaria clade, and we found strong evidence that positive selection has acted on a subset of Physaria BLT codons. Almost all of the 10 codon sites with the highest probability of having evolved under positive selection are clustered in a predicted coiled-coil domain, pointing to changes in protein-protein interactions. Thus, our findings suggest that selection acted on BLT to modify its interactions with other proteins. The fact that positive selection occurred throughout the radiation of Physaria could reflect selection to stabilize development in response to an abrupt switch from the dendritic form to the stellate form, divergent selection for diversification of the stellate form, or both. These results point to the need for evolutionary developmental studies of BLT and its interacting proteins in Physaria.
Collapse
|
82
|
Biogeography and diversification of Brassicales: A 103million year tale. Mol Phylogenet Evol 2016; 99:204-224. [PMID: 26993763 DOI: 10.1016/j.ympev.2016.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/23/2022]
Abstract
Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier member, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed plastid and mitochondrial sequence data from five gene regions (>8000bp) across 151 taxa to: (1) produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales began 103Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land bridge migration events. North America appears to be a significant area for early stem lineages in the order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged 68.5Mya (HPD=75.6-62.0). This estimated age combined with fossil evidence, indicates that some New World clades embedded amongst Old World relatives (e.g., New World capparoids) are the result of different long distance dispersal events, whereas others may be best explained by land bridge migration (e.g., Forchhammeria). Based on these analyses, the Brassicaceae crown group diverged in Europe/Northern Africa in the Eocene, circa 43.4Mya (HPD=46.6-40.3) and Arabidopsis separated from close congeners circa 10.4Mya. These ages fall between divergent dates that were previously published, suggesting we are slowly converging on a robust age estimate for the family. Three significant shifts in species diversification are observed in the order: (1) 58Mya at the crown of Capparaceae, Cleomaceae and Brassicaceae, (2) 38Mya at the crown of Resedaceae+Stixis clade, and (3) 21Mya at the crown of the tribes Brassiceae and Sisymbrieae within Brassicaceae.
Collapse
|
83
|
Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IAP, Chalhoub B, Meng J. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics 2016; 17:18. [PMID: 26728943 PMCID: PMC4700566 DOI: 10.1186/s12864-015-2343-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023] Open
Abstract
Background There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, ArAr; B. nigra, BniBni; B. oleracea, CoCo) and the derived allotetraploid species (i.e.: B. juncea, AjAjBjBj; B. napus, AnAnCnCn; B. carinata, BcBcCcCc). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). Results A dense genetic linkage map of B. juncea was constructed using an F2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing Aj-An than between An-Ar and Aj-Ar subgenome pairs. Conclusions The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the Ar, and AnCn genomes allowed us to compare the A subgenome structure of B. juncea (Aj) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (Ar, An and Aj) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2343-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057, Evry cedex, France.
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
84
|
Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Roest Crollius H, Salse J. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 2015; 16:262. [PMID: 26653025 PMCID: PMC4675067 DOI: 10.1186/s13059-015-0814-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Brassicaceae is a family of green plants of high scientific and economic interest, including thale cress (Arabidopsis thaliana), cruciferous vegetables (cabbages) and rapeseed. RESULTS We reconstruct an evolutionary framework of Brassicaceae composed of high-resolution ancestral karyotypes using the genomes of modern A. thaliana, Arabidopsis lyrata, Capsella rubella, Brassica rapa and Thellungiella parvula. The ancestral Brassicaceae karyotype (Brassicaceae lineages I and II) is composed of eight protochromosomes and 20,037 ordered and oriented protogenes. After speciation, it evolved into the ancestral Camelineae karyotype (eight protochromosomes and 22,085 ordered protogenes) and the proto-Calepineae karyotype (seven protochromosomes and 21,035 ordered protogenes) genomes. CONCLUSIONS The three inferred ancestral karyotype genomes are shown here to be powerful tools to unravel the reticulated evolutionary history of extant Brassicaceae genomes regarding the fate of ancestral genes and genomic compartments, particularly centromeres and evolutionary breakpoints. This new resource should accelerate research in comparative genomics and translational research by facilitating the transfer of genomic information from model systems to species of agronomic interest.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 5 Chemin de Beaulieu, 63100, Clermont Ferrand, France
| | - Alexandra Louis
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005, France.,Inserm, U1024, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France
| | - Florian Maumus
- INRA UMR 1164 URGI Route de Saint Cyr, Versailles, 78026, France
| | - Alix Armero
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 5 Chemin de Beaulieu, 63100, Clermont Ferrand, France
| | - Richard Cooke
- CNRS/UPVD UMR 5096 LGDP, 58 avenue P. Alduy, 66860, Perpignan, Cedex, France
| | - Hadi Quesneville
- INRA UMR 1164 URGI Route de Saint Cyr, Versailles, 78026, France
| | - Hugues Roest Crollius
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005, France.,Inserm, U1024, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France
| | - Jerome Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 5 Chemin de Beaulieu, 63100, Clermont Ferrand, France.
| |
Collapse
|
85
|
Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol Biol Evol 2015; 33:394-412. [PMID: 26516094 PMCID: PMC4866547 DOI: 10.1093/molbev/msv226] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Renran Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, The Huck Institute of the Life Sciences, Pennsylvania State University
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC
| | - Liming Cai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia
| | - Dun-Yan Tan
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Yang Zhong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Zhang J, Liu Z, Liang J, Wu J, Cheng F, Wang X. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6205-18. [PMID: 26188204 PMCID: PMC4588880 DOI: 10.1093/jxb/erv331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The glucosinolate biosynthetic gene AOP2 encodes an enzyme that plays a crucial role in catalysing the conversion of beneficial glucosinolates into anti-nutritional ones. In Brassica rapa, three copies of BrAOP2 have been identified, but their function in establishing the glucosinolate content of B. rapa is poorly understood. Here, we used phylogenetic and gene structure analyses to show that BrAOP2 proteins have evolved via a duplication process retaining two highly conserved domains at the N-terminal and C-terminal regions, while the middle part has experienced structural divergence. Heterologous expression and in vitro enzyme assays and Arabidopsis mutant complementation studies showed that all three BrAOP2 genes encode functional BrAOP2 proteins that convert the precursor methylsulfinyl alkyl glucosinolate to the alkenyl form. Site-directed mutagenesis showed that His356, Asp310, and Arg376 residues are required for the catalytic activity of one of the BrAOP2 proteins (BrAOP2.1). Promoter-β-glucuronidase lines revealed that the BrAOP2.3 gene displayed an overlapping but distinct tissue- and cell-specific expression profile compared with that of the BrAOP2.1 and BrAOP2.2 genes. Quantitative real-time reverse transcription-PCR assays demonstrated that BrAOP2.1 showed a slightly different pattern of expression in below-ground tissue at the seedling stage and in the silique at the reproductive stage compared with BrAOP2.2 and BrAOP2.3 genes in B. rapa. Taken together, our results revealed that all three BrAOP2 paralogues are active in B. rapa but have functionally diverged.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| |
Collapse
|
87
|
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:785-93. [PMID: 25864414 DOI: 10.1111/tpj.12849] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 05/19/2023]
Abstract
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes - the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - M Eric Schranz
- Plant Systematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | - Hans de Jong
- Laboratory of Genetics, Wageningen UR PSG, P.O. Box 16, Wageningen, 6700 AA, The Netherlands
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| |
Collapse
|
88
|
Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid Redox Signal 2015; 22:1382-424. [PMID: 25364882 PMCID: PMC4432495 DOI: 10.1089/ars.2014.6097] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. CRITICAL ISSUES In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. FUTURE DIRECTIONS Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
89
|
Iljinska A. Spectra of morphological features of Brassicaceae s. l.: vegetative organs. UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
90
|
Zhang J, Wang X, Cheng F, Wu J, Liang J, Yang W, Wang X. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis. FRONTIERS IN PLANT SCIENCE 2015; 6:18. [PMID: 25691886 PMCID: PMC4315028 DOI: 10.3389/fpls.2015.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/09/2015] [Indexed: 05/23/2023]
Abstract
Methylthioalkylmalate synthases (MAMs) encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| | - Xiaobo Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiaowu Wang, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No.12, Haidian District, Beijing 100081, China e-mail:
| |
Collapse
|
91
|
Frisch T, Motawia MS, Olsen CE, Agerbirk N, Møller BL, Bjarnholt N. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. FRONTIERS IN PLANT SCIENCE 2015; 6:926. [PMID: 26583022 PMCID: PMC4628127 DOI: 10.3389/fpls.2015.00926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/13/2015] [Indexed: 05/06/2023]
Abstract
Alliaria petiolata (garlic mustard, Brassicaceae) contains the glucosinolate sinigrin as well as alliarinoside, a γ-hydroxynitrile glucoside structurally related to cyanogenic glucosides. Sinigrin may defend this plant against a broad range of enemies, while alliarinoside confers resistance to specialized (glucosinolate-adapted) herbivores. Hydroxynitrile glucosides and glucosinolates are two classes of specialized metabolites, which generally do not occur in the same plant species. Administration of [UL-(14)C]-methionine to excised leaves of A. petiolata showed that both alliarinoside and sinigrin were biosynthesized from methionine. The biosynthesis of alliarinoside was shown not to bifurcate from sinigrin biosynthesis at the oxime level in contrast to the general scheme for hydroxynitrile glucoside biosynthesis. Instead, the aglucon of alliarinoside was formed from metabolism of sinigrin in experiments with crude extracts, suggesting a possible biosynthetic pathway in intact cells. Hence, the alliarinoside pathway may represent a route to hydroxynitrile glucoside biosynthesis resulting from convergent evolution. Metabolite profiling by LC-MS showed no evidence of the presence of cyanogenic glucosides in A. petiolata. However, we detected hydrogen cyanide (HCN) release from sinigrin and added thiocyanate ion and benzyl thiocyanate in A. petiolata indicating an enzymatic pathway from glucosinolates via allyl thiocyanate and indole glucosinolate derived thiocyanate ion to HCN. Alliarinoside biosynthesis and HCN release from glucosinolate-derived metabolites expand the range of glucosinolate-related defenses and can be viewed as a third line of defense, with glucosinolates and thiocyanate forming protein being the first and second lines, respectively.
Collapse
Affiliation(s)
- Tina Frisch
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Mohammed S. Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Carl E. Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Niels Agerbirk
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Birger L. Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
- *Correspondence: Nanna Bjarnholt
| |
Collapse
|
92
|
Fortuna TM, Eckert S, Harvey JA, Vet LEM, Müller C, Gols R. Variation in plant defences among populations of a range-expanding plant: consequences for trophic interactions. THE NEW PHYTOLOGIST 2014; 204:989-999. [PMID: 25138432 DOI: 10.1111/nph.12983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
Although plant-herbivore-enemy interactions have been studied extensively in cross-continental plant invasions, little is known about intra-continental range expanders, despite their rapid spread globally. Using an ecological and metabolomics approach, we compared the insect performance of a generalist and specialist herbivore and a parasitoid, as well as plant defence traits, among native, exotic invasive and exotic non-invasive populations of the Turkish rocket, Bunias orientalis, a range-expanding species across parts of Eurasia. In the glasshouse, the generalist herbivore, Mamestra brassicae, and its parasitoid, Microplitis mediator, performed better on non-native than on native plant populations. Insect performance did not differ between the two non-native origins. By contrast, the specialist herbivore, Pieris brassicae, developed poorly on all populations. Differences in trichome densities and in the metabolome, particularly in the family-specific secondary metabolites (i.e. glucosinolates), may explain population-related variation in the performance of the generalist herbivore and its parasitoid. Total glucosinolate concentrations were significantly induced by herbivory, particularly in native populations. Native populations of B. orientalis are generally better defended than non-native populations. The role of insect herbivores and dietary specialization as a selection force on defence traits in the range-expanding B. orientalis is discussed.
Collapse
Affiliation(s)
- Taiadjana M Fortuna
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
93
|
Dun X, Shen W, Hu K, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T, Lagercrantz U. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. PLANT PHYSIOLOGY 2014; 166:1403-19. [PMID: 25185122 PMCID: PMC4226349 DOI: 10.1104/pp.114.246470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes.
Collapse
Affiliation(s)
- Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Zhengfu Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Ulf Lagercrantz
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| |
Collapse
|
94
|
Salariato DL, Zuloaga FO, Cano A, Al-Shehbaz IA. Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Mol Phylogenet Evol 2014; 82 Pt A:43-59. [PMID: 25451804 DOI: 10.1016/j.ympev.2014.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
Tribe Eudemeae comprises a morphologically heterogeneous group of genera distributed along the Andes of South America from Colombia southward into southern Chile and Argentina. The tribe currently includes seven genera: Aschersoniodoxa, Brayopsis, Dactylocardamum, Delpinophytum, Eudema, Onuris, and Xerodraba, and exhibits a wide morphological diversification in growth habit, inflorescences, and fruits. However, little is known about the phylogenetic relationships and evolution of the tribe. We present here a molecular phylogeny of representative sampling of all genera, utilizing sequence data from the nuclear ribosomal ITS region and chloroplast regions trnL-F, trnH-psbA, and rps16. Additionally, climatic niches of the tribe and its main lineages, along with the evolution of diagnostic morphological characters, were studied. All analyses confirmed the monophyly of Eudemeae, with the exception of Delpinophytum that was included with genera of the lineage I of Brassicaceae. Eudemeae is divided into two main lineages differentiated by their geographical distribution and climatic niche: the primarily north-central Andean lineage included Aschersoniodoxa, Brayopsis, Dactylocardamum, and Eudema, and the Patagonian and southern Andean lineage included Onuris and Xerodraba. Finally, ancestral-state reconstructions in the tribe generally reveal multiple and independent gains or losses of diagnostic morphological characters, such as growth form, inflorescence reduction, and fruit type. Relevant taxonomic implications stemming from the results are also discussed.
Collapse
Affiliation(s)
- Diego L Salariato
- Instituto de Botánica Darwinion (CONICET - ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina.
| | - Fernando O Zuloaga
- Instituto de Botánica Darwinion (CONICET - ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina
| | - Asunción Cano
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Lima 11, Peru; Instituto de Investigación de Ciencias Biológicas, Facultad de Ciencias Biológicas (UNMSM), Av. Venezuela s/n, Lima 1, Peru
| | | |
Collapse
|
95
|
Jang HY, Rhee J, Carlson JE, Ahn SJ. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1401-12. [PMID: 25046761 DOI: 10.1016/j.jplph.2014.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 05/08/2023]
Abstract
Aquaporin (AQP) proteins are involved in water homeostasis in cells at all taxonomic levels of life. Phosphorylation of some AQPs has been proposed to regulate water permeability via gating of the channel itself. We analyzed plasma membrane intrinsic proteins (PIP) from Camelina and characterized their biological functions under both stressful and favorable conditions. A three-dimensional theoretical model of the Camelina AQP proteins was built by homology modeling which could prove useful in further functional characterization of AQPs. CsPIP2;1 was strongly and constitutively expressed in roots and leaves of Camelina, suggesting that this gene is related to maintenance of homeostasis during salt and drought stresses. CsPIP2s exhibited water channel activity in Xenopus oocytes. We then examined the roles of CsPIP2;1 phosphorylation at Ser273 and Ser277 in the regulation of water permeability using phosphorylation mutants. A single deletion strain of CsPIP2;1 was generated to serve as the primary host for testing AQP expression constructs. A Ser277 to alanine mutation (to prevent phosphorylation) did not change CsPIP2;1 water permeability while a Ser273 mutation to alanine did affect water permeability. Furthermore, a CsPIP2;1 point mutation when ectopically expressed in yeast resulted in lower growth in salt and drought conditions compared with controls, and confirmation of Ser273 as the phosphorylation site. Our results support the idea that post-translational modifications in the Ser273 regulatory domains of the C-terminus fine tune water flux through CsPIP2;1.
Collapse
Affiliation(s)
- Ha-Young Jang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jiye Rhee
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic
| | - John E Carlson
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
96
|
Jeong YM, Chung WH, Chung H, Kim N, Park BS, Lim KB, Yu HJ, Mun JH. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1975-1989. [PMID: 25056003 DOI: 10.1007/s00122-014-2354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kang L, Du X, Zhou Y, Zhu B, Ge X, Li Z. Development of a complete set of monosomic alien addition lines between Brassica napus and Isatis indigotica (Chinese woad). PLANT CELL REPORTS 2014; 33:1355-64. [PMID: 24781060 DOI: 10.1007/s00299-014-1621-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/07/2014] [Accepted: 04/09/2014] [Indexed: 05/05/2023]
Abstract
A complete set of monosomic alien addition lines of Brassica napus with one of the seven chromosomes of Isatis indigotica and the recombinant mitochondria was developed and characterized. Monosomic alien addition lines (MAALs) are valuable for elucidating the genome structure and transferring the useful genes and traits in plant breeding. Isatis indigotica (Chinese woad, 2n = 14, II) in Isatideae tribe of Brassicaceae family has been widely cultivated as a medicinal and dye plant in China. Herein, the intertribal somatic hybrid (2n = 52, AACCII) between B. napus cv. Huashuang 3 (2n = 38, AACC) and I. indigotica produced previously was backcrossed recurrently to parental B. napus, and 32 MAAL plants were isolated. Based on their phenotype, 5S and 45S rDNA loci and chromosome-specific SSR markers, these MAALs were classified into seven groups corresponding to potential seven types of MAALs carrying one of the seven I. indigotica chromosomes. One of the MAALs could be distinguishable by expressing the brown anthers of I. indigotica, other two hosted the chromosome with 5S or 45S rDNA locus, but the remaining four were identifiable by SSR markers. The simultaneous detection of the same SSR maker and gene locus in different MAALs revealed the paralogs on the chromosomes involved. The recombinant mitochondrial genome in MAALs was likely related with their male sterility with carpellody stamens, while the MAAL with normal brown anthers probably carried the restoring gene for the male sterility. The complete set of MAALs should be useful for exploiting the I. indigotica genome and for promoting the introgression of valuable genes to B. napus.
Collapse
Affiliation(s)
- Lei Kang
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
98
|
One or three species in Megadenia (Brassicaceae): insight from molecular studies. Genetica 2014; 142:337-50. [PMID: 25027851 DOI: 10.1007/s10709-014-9778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Megadenia Maxim. is a small genus of the Brassicaceae endemic to East Asia with three disjunct areas of distribution: the eastern edge of the Qinghai-Tibetan Plateau, the Eastern Sayan Mountains in southern Siberia, and Chandalaz Ridge in the southern Sikhote-Alin Mountains. Although distinct species (M. pygmaea Maxim., M. bardunovii Popov, and M. speluncarum Vorob., Vorosch. and Gorovoj) have been described from each area, they have lately been reduced to synonymy with M. pygmaea due to high morphological similarity. Here, we present the first molecular study of Megadenia. Using the sequences of 11 noncoding regions from the cytoplasmic (chloroplast and mitochondrial) and nuclear genomes, we assessed divergence within the genus and explored the relationships between Megadenia and Biscutella L. Although M. bardunovii, M. speluncarum, and M. pygmaea were found to be indiscernible with regard to the nuclear and mitochondrial markers studied, our data on the plastid genome revealed their distinctness and a clear subdivision of the genus into three lineages matching the three described species. All of the phylogenetic analyses of the chloroplast DNA sequences provide strong support for the inclusion of Megadenia and Biscutella in the tribe Biscutelleae. A dating analysis shows that the genus Megadenia is of Miocene origin and diversification within the genus, which has led to the three extant lineages, most likely occurred during the Early-Middle Pleistocene, in agreement with the vicariance pattern. Given the present-day distribution, differences in habitat preferences and in some anatomical traits, and lack of a direct genealogical relationship, M. pygmaea, M. bardunovii, and M. speluncarum should be treated as distinct species or at least subspecies.
Collapse
|
99
|
Hauser MT. Molecular basis of natural variation and environmental control of trichome patterning. FRONTIERS IN PLANT SCIENCE 2014; 5:320. [PMID: 25071803 PMCID: PMC4080826 DOI: 10.3389/fpls.2014.00320] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/17/2014] [Indexed: 05/17/2023]
Abstract
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning.
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
100
|
Edger PP, Tang M, Bird KA, Mayfield DR, Conant G, Mummenhoff K, Koch MA, Pires JC. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards). PLoS One 2014; 9:e101341. [PMID: 24984034 PMCID: PMC4077792 DOI: 10.1371/journal.pone.0101341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 06/06/2014] [Indexed: 12/14/2022] Open
Abstract
The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.
Collapse
Affiliation(s)
- Patrick P. Edger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michelle Tang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Kevin A. Bird
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Dustin R. Mayfield
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Gavin Conant
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Klaus Mummenhoff
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|