51
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:12063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
52
|
Lecoq I, Kopp KL, Chapellier M, Mantas P, Martinenaite E, Perez-Penco M, Rønn Olsen L, Zocca MB, Wakatsuki Pedersen A, Andersen MH. CCL22-based peptide vaccines induce anti-cancer immunity by modulating tumor microenvironment. Oncoimmunology 2022; 11:2115655. [PMID: 36052217 PMCID: PMC9427044 DOI: 10.1080/2162402x.2022.2115655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CCL22 is a macrophage-derived immunosuppressive chemokine that recruits regulatory T cells through the CCL22:CCR4 axis. CCL22 was shown to play a key role in suppressing anti-cancer immune responses in different cancer types. Recently, we showed that CCL22-specific T cells generated from cancer patients could kill CCL22-expressing tumor cells and directly influence the levels of CCL22 in vitro. The present study aimed to provide a rationale for developing a CCL22-targeting immunotherapy. Vaccination with CCL22-derived peptides induced CCL22-specific T-cell responses in both BALB/c and C57BL/6 mice, assessed by interferon-γ secretion ex vivo. Anti-tumor efficacy of the peptides was evaluated in mouse models engrafted with syngeneic tumor models showing a reduced tumor growth and prolonged survival of the treated mice. Vaccination induced changes in the cellular composition of immune cells that infiltrated the tumor microenvironment assessed with multicolor flow cytometry. In particular, the infiltration of CD8+ cells and M1 macrophages increased, which increased the CD8/Treg and the M1/M2 macrophage ratio. This study provided preclinical evidence that targeting CCL22 with CCL22 peptide vaccines modulated the immune milieu in the tumor microenvironment. This modulation led to an augmentation of anti-tumor responses. This study provided a rationale for developing a novel immunotherapeutic modality in cancer.
Collapse
Affiliation(s)
- Inés Lecoq
- Department of Research and Development, IO Biotech ApS, Copenhagen, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katharina L Kopp
- Department of Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Marion Chapellier
- Department of Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Panagiotis Mantas
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Evelina Martinenaite
- Department of Research and Development, IO Biotech ApS, Copenhagen, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mai-Britt Zocca
- Department of Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Gao Z, Zhang Q, Zhang X, Song Y. Advance of T regulatory cells in tumor microenvironment remodeling and immunotherapy in pancreatic cancer. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221092900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, deadly, and is rarely diagnosed early. Regulatory T cells (Treg) are a multifunctional class of immunosuppressive T cells that help maintain immunologic homeostasis and participate in autoimmune diseases, transplants, and tumors. This cell type mediates immune homeostasis, tolerance, and surveillance and is associated with poor outcomes in PDAC. Tregs remodel the tumor immune microenvironment, mediate tumor immune escape, and promote tumor invasion and metastasis. A promising area of research involves regulating Tregs to reduce their infiltration into tumor tissues. However, the complexity of the immune microenvironment has limited the efficacy of immunotherapy in PDAC. Treg modulation combined with other treatments is emerging. This review summarizes the mechanisms of Tregs activity in tumor immune microenvironments in PDAC and the latest developments in immunotherapy and clinical trials.
Collapse
Affiliation(s)
- Zetian Gao
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiubo Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
54
|
Loening F, Kleinwort A, Partecke LI, Schulze T, Menges P. Visceral Surgery Profoundly Affects the Cellular and Humoral Components of the Anti-Tumour Immune Response in a Murine Pancreatic Adenocarcinoma Model. Cancers (Basel) 2022; 14:cancers14163850. [PMID: 36010845 PMCID: PMC9406220 DOI: 10.3390/cancers14163850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Surgery is a fundamental part of the multimodal therapy concepts in oncological patients, especially in the early stage of pancreas tumour. There are numerous studies on the impact of primary tumour resection on the immune status, but to our knowledge, the impact of tumour-unrelated surgery on the anti-tumour immune response to the primary tumour it is not yet understood. Therefore, we used a murine model combining an orthotopically implanted adenocarcinoma of the pancreas and the model of surgically-induced immune dysfunction to assess the impact of postoperative immunosuppression on the growth of the primary tumour, on mortality and on the most important immune cell compartments in tumour defence. This knowledge might contribute to a basic understanding of the interaction of the primary tumour and the immune system and could guide new approaches to therapeutic strategies. Abstract (1) Background: Surgery is the most important element of multimodal treatment concepts in oncological patients, especially in the early stages of pancreatic tumours. While the influence of primary tumour resection on the immune status was analysed in several studies, the impact of tumour-unrelated visceral surgery on the tumour-bearing organism and on the primary tumour itself is not yet fully understood. (2) Methods: We combined a murine model of orthotopically implanted adenocarcinoma of the pancreas with the model of surgically-induced immune dysfunction (SID). Mortality and general condition including body weight were observed over a period of 28 days. Tumour growth was analysed by MRI scans on days 8 and 27 following tumour implantation. On day 28, the immune cell populations in the blood and spleen as well as the serum cytokines were quantified. (3) Results: SID results in a significant deterioration of the general condition and a reduced increase in the body weight of tumour-bearing mice compared to the control groups, while mortality and tumour growth rate were not influenced. The numbers of spleen macrophages and neutrophils were increased in tumour-bearing animals following SID. Furthermore, both macrophage and neutrophil levels were increased in the peripheral blood. (4) Conclusions: The presented results might contribute to the basic understanding of the interaction of tumour and immune system and could contribute to new approaches to immunotherapeutic strategies.
Collapse
Affiliation(s)
- Friederike Loening
- Division of General Surgery, Visceral, Thoracic and Vascular Surgery, Department of Surgery, University Medicine Greifswald, 17491 Greifswald, Germany
| | - Annabel Kleinwort
- Division of General Surgery, Visceral, Thoracic and Vascular Surgery, Department of Surgery, University Medicine Greifswald, 17491 Greifswald, Germany
| | - Lars Ivo Partecke
- Department of General, Visceral and Thoracic Surgery, Helios Clinic Schleswig, 24837 Schleswig, Germany
| | - Tobias Schulze
- Division of General Surgery, Visceral, Thoracic and Vascular Surgery, Department of Surgery, University Medicine Greifswald, 17491 Greifswald, Germany
| | - Pia Menges
- Division of General Surgery, Visceral, Thoracic and Vascular Surgery, Department of Surgery, University Medicine Greifswald, 17491 Greifswald, Germany
- Correspondence:
| |
Collapse
|
55
|
Dwivedi M, Tiwari S, Kemp EH, Begum R. Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 2022; 8:e10450. [PMID: 36082331 PMCID: PMC9445387 DOI: 10.1016/j.heliyon.2022.e10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) play an essential role in maintaining immune tolerance and suppressing inflammation. However, Tregs present major hurdle in eliciting potent anti-cancer immune responses. Therefore, curbing the activity of Tregs represents a novel and efficient way towards successful immunotherapy of cancer. Moreover, there is an emerging interest in harnessing Treg-based strategies for augmenting anti-cancer immunity in different types of the disease. This review summarises the crucial mechanisms of Tregs' mediated suppression of anti-cancer immunity and strategies to suppress or to alter such Tregs to improve the immune response against tumors. Highlighting important clinical studies, the review also describes current Treg-based therapeutic interventions in cancer, and discusses Treg-suppression by molecular targeting, which may emerge as an effective cancer immunotherapy and as an alternative to detrimental chemotherapeutic agents.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Tarsadi, Surat, Gujarat, 394350, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - E. Helen Kemp
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
56
|
Daley D. The Role of the Microbiome in Pancreatic Oncogenesis. Int Immunol 2022; 34:447-454. [PMID: 35863313 DOI: 10.1093/intimm/dxac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial dysbiosis is evolving as an advocate for carcinogenesis and has been associated with pancreatic cancer progression and survival outcomes. The gut and pancreas of cancer patients harbor a unique microbiome that differs significantly from that of healthy individuals. We believe that the pancreatic cancer microbiome regulates tumorigenesis by altering host cell function and modulating immune cells, skewing them towards an immunosuppressive phenotype. Moreover, altering this pathogenic microbiome may enhance the efficacy of current therapies in pancreatic cancer and improve survival outcomes. This review highlights the findings on microbial modulation across various pre-clinical and clinical studies and provides insight into the potential of targeting the microbiome for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Donnele Daley
- Department of Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
57
|
Wei Z, Zeng X, Lei Y, He H, Jamal M, Zhang C, Tan H, Xie S, Zhang Q. TTYH3, a potential prognosis biomarker associated with immune infiltration and immunotherapy response in lung cancer. Int Immunopharmacol 2022; 110:108999. [PMID: 35858518 DOI: 10.1016/j.intimp.2022.108999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The recognition of new diagnostic and prognostic biological markers for lung cancer is an essential and eager study. It's shown that ion channels play important roles in regulating various cellular processes and have been suggested to be associated with patient survival. However, tweety family member 3 (TTYH3), as a maxi-Cl- channel, its role in lung cancer remains elusive. METHODS The expression, diagnostic and prognostic efficacy of TTYH3 were analyzed by public databases and clinical samples. Cell functional experiments were used to explore the effects of TTYH3 on cell viability. GO and KEGG enrichment analysis revealed underlying pathways that TTYH3 and its co-expressed genes were enriched in. TIMER, TIDE and R language analyses were used to detect the correlation between TTYH3 and immune infiltration cell and immunotherapy response. RESULTS TTYH3 was up-regulated in lung cancer tissues compared to normal tissues and possessed a prominent diagnostic and prognostic value. TTYH3 knockdown significantly inhibited the proliferation of lung cancer cells. Enrichment analyses showed that TTYH3 and its co-expressed genes were mainly involved in immune related signaling pathways. Further investigation clarified that TTYH3 had a positive correlation with the infiltration of TAMs, Treg infiltration as well as T cell exhaustion and high TTYH3 expression indicated worse immunotherapy response and shorter survival after immune checkpoint blockade treatment. CONCLUSION This study not only revealed the diagnostic and prognostic value of TTYH3 but also provided TTYH3-based estimation of immunotherapy response for lung cancer patients, which might provide new strategies like anti-TTYH3 combined with immune therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.
| |
Collapse
|
58
|
Brouwer TP, de Vries NL, Abdelaal T, Krog RT, Li Z, Ruano D, Fariña A, Lelieveldt BPF, Morreau H, Bonsing BA, Vahrmeijer AL, Koning F, de Miranda NFCC. Local and systemic immune profiles of human pancreatic ductal adenocarcinoma revealed by single-cell mass cytometry. J Immunother Cancer 2022; 10:e004638. [PMID: 35793870 PMCID: PMC9260840 DOI: 10.1136/jitc-2022-004638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in need of effective (immuno)therapeutic treatment strategies. For the optimal application and development of cancer immunotherapies, a comprehensive understanding of local and systemic immune profiles in patients with PDAC is required. Here, our goal was to decipher the interplay between local and systemic immune profiles in treatment-naïve patients with PDAC. METHODS The immune composition of PDAC, matched non-malignant pancreatic tissue, regional lymph nodes, spleen, portal vein blood, and peripheral blood samples (collected before and after surgery) from 11 patients with PDAC was assessed by measuring 41 immune cell markers by single-cell mass cytometry. Furthermore, the activation potential of tumor-infiltrating lymphocytes as determined by their ability to produce cytokines was investigated by flow cytometry. In addition, the spatial localization of tumor-infiltrating innate lymphocytes in the tumor microenvironment was confirmed by multispectral immunofluorescence. RESULTS We found that CD103+CD8+ T cells with cytotoxic potential are infrequent in the PDAC immune microenvironment and lack the expression of activation markers and checkpoint blockade molecule programmed cell death protein-1 (PD-1). In contrast, PDAC tissues showed a remarkable increased relative frequency of B cells and regulatory T cells as compared with non-malignant pancreatic tissues. Besides, a previously unappreciated innate lymphocyte cell (ILC) population (CD127-CD103+CD39+CD45RO+ ILC1-like) was discovered in PDAC tissues. Strikingly, the increased relative frequency of B cells and regulatory T cells in pancreatic cancer samples was reflected in matched portal vein blood samples but not in peripheral blood, suggesting a regional enrichment of immune cells that infiltrate the PDAC microenvironment. After surgery, decreased frequencies of myeloid dendritic cells were found in peripheral blood. CONCLUSIONS Our work demonstrates an immunosuppressive landscape in PDAC tissues, generally deprived of cytotoxic T cells and enriched in regulatory T cells and B cells. The antitumor potential of ILC1-like cells in PDAC may be exploited in a therapeutic setting. Importantly, immune profiles detected in blood isolated from the portal vein reflected the immune cell composition of the PDAC microenvironment, suggesting that this anatomical location could be a source of tumor-associated immune cell subsets.
Collapse
Affiliation(s)
- Thomas P Brouwer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasja L de Vries
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tamim Abdelaal
- Pattern recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ricki T Krog
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zheng Li
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arantza Fariña
- Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Boudewijn P F Lelieveldt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Frits Koning
- Department of Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
59
|
Yu DD, Chen WK, Wu CY, Wu WT, Xin X, Jiang YL, Li P, Zhang MH. Cause of Death During Renal Cell Carcinoma Survivorship: A Contemporary, Population-Based Analysis. Front Oncol 2022; 12:864132. [PMID: 35719910 PMCID: PMC9201523 DOI: 10.3389/fonc.2022.864132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background As the survival rates of patients with renal cell carcinoma (RCC) continue to increase, noncancer causes of death cannot be ignored. The cause-specific mortality in patients with RCC is not well understood. Objective Our study aimed to explore the mortality patterns of contemporary RCC survivors. Methods We performed a retrospective cohort study involving patients with RCC from the Surveillance, Epidemiology, and End Results (SEER) database. We used standardized mortality ratios (SMRs) to compare the death rates in patients with RCC with those in the general population. Results A total of 106,118 patients with RCC, including 39,630 who died (27%), were included in our study. Overall, compared with the general US population, noncancer SMRs were increased 1.25-fold (95% confidence intervals [CI], 1.22 to 1.27; observed, 11,235), 1.19-fold (95% CI, 1.14 to 1.24; observed, 2,014), and 2.24-fold (95% CI, 2.11 to 2.38; observed, 1,110) for stage I/II, III, and IV RCC, respectively. The proportion of noncancer causes of death increased with the extension of survival time. A total of 4,273 men with stage I/II disease (23.13%) died of RCC; however, patients who died from other causes were 3.2 times more likely to die from RCC (n = 14,203 [76.87%]). Heart disease was the most common noncancer cause of death (n = 3,718 [20.12%]; SMR, 1.23; 95% CI, 1.19–1.27). In patients with stage III disease, 3,912 (25.98%) died from RCC, and 2,014 (13.37%) died from noncancer causes. Most patients (94.99%) with stage IV RCC died within 5 years of initial diagnosis. Although RCC was the leading cause of death (n = 12,310 [84.65%]), patients with stage IV RCC also had a higher risk of noncancer death than the general population (2.24; 95% CI, 2.11–2.38). Conclusions Non-RCC death causes account for more than 3/4 of RCC survivors among patients with stage I/II disease. Patients with stage IV are most likely to die of RCC; however, there is an increased risk of dying from septicemia, and suicide cannot be ignored. These data provide the latest and most comprehensive assessment of the causes of death in patients with RCC.
Collapse
Affiliation(s)
- Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wei-Kang Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Yu Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wan-Ting Wu
- Department of Clinical Medicine, Huzhou University, Huzhou, China
| | - Xiao Xin
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Yu-Li Jiang
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Peng Li
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Ming-Hua Zhang
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| |
Collapse
|
60
|
Smiline Girija AS. Protean role of epigenetic mechanisms and their impact in regulating the Tregs in TME. Cancer Gene Ther 2022; 29:661-664. [PMID: 34321625 DOI: 10.1038/s41417-021-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Constitutive expression of Foxp3+ Tregs in the tumor microenvironment (TME) specifically renders immune suppression in the tumor tissues. Being highly stable and self-tolerant, Tregs may be influenced by various epigenetic-associated mechanisms while exhibiting their functions. DNA methylation, histone acetylation, epigenetic silencing, alteration in chromatin networks, etc., are some of the main factors underlying the epigenetic-based Treg cell functional modulations in the TME. The possible reasons on why these epigenetic modulations should be specifically targeted are thus discussed, so that enhanced anti-tumor immunity in TME can be achieved.
Collapse
Affiliation(s)
- A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India.
| |
Collapse
|
61
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
62
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
63
|
Abstract
The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
64
|
Ansorge N, Dannecker C, Jeschke U, Schmoeckel E, Heidegger HH, Vattai A, Burgmann M, Czogalla B, Mahner S, Fuerst S. Regulatory T Cells with Additional COX-2 Expression Are Independent Negative Prognosticators for Vulvar Cancer Patients. Int J Mol Sci 2022; 23:4662. [PMID: 35563052 PMCID: PMC9099805 DOI: 10.3390/ijms23094662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Vulvar cancer incidence numbers have been steadily rising over the past decades. In particular, the number of young patients with vulvar cancer has recently increased. Therefore, the need to identify new prognostic factors and, in addition, therapeutic options for vulvar carcinoma is more apparent. The aim of this study was to analyze the influx of COX-2 positive tumor-infiltrating lymphocytes and monocytes and their influence on prognosis. Using subtyping by immunofluorescence, the majority of COX-2 expressing immune cells were identified as FOXP3-positive regulatory T cells. In addition, peri- and intra-tumoral macrophages in the same tumor tissue were detected simultaneously as M2-polarized macrophages. COX-2 positive immune cells were independent negative prognostic markers in long-term overall survival of patients with vulvar cancer. These results show an influence of immune cell infiltration for vulvar carcinoma patients. Immune cell infiltration and immune checkpoint expression may, therefore, become interesting targets for further research on new vulvar cancer treatment strategies.
Collapse
Affiliation(s)
- Nadine Ansorge
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 36, 80337 Munich, Germany;
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Maximiliane Burgmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Sophie Fuerst
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| |
Collapse
|
65
|
Dong J, Huang Y, Zhou Z, Sun M. Breaking Immunosuppressive Barriers by Engineered Nanoplatforms for Turning Cold Tumor to Hot. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingwen Dong
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ying Huang
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 P. R. China
| | - Zhanwei Zhou
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 P. R. China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
66
|
Enhancement of CD70-specific CAR T treatment by IFN-γ released from oHSV-1-infected glioblastoma. Cancer Immunol Immunother 2022; 71:2433-2448. [PMID: 35249119 DOI: 10.1007/s00262-022-03172-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Even with progressive combination treatments, the prognosis of patients with glioblastoma (GBM) remains extremely poor. OV is one of the new promising therapeutic strategies to treat human GBM. OVs stimulate immune cells to release cytokines such as IFN-γ during oncolysis, further improve tumor microenvironment (TME) and enhance therapeutic efficacy. IFN-γ plays vital role in the apoptosis of tumor cells and recruitment of tumor-infiltrating T cells. We hypothesized that oncolytic herpes simplex virus-1 (oHSV-1) enhanced the antitumor efficacy of novel CD70-specific chimeric antigen receptor (CAR) T cells by T cell infiltration and IFN-γ release. In this study, oHSV-1 has the potential to stimulate IFN-γ secretion of tumor cells rather than T cell secretion and lead to an increase of T cell activity, as well as CD70-specific CAR T cells can specifically recognize and kill tumor cells in vitro. Specifically, combinational therapy with CD70-specific CAR T and oHSV-1 promotes tumor degradation by enhancing pro-inflammatory circumstances and reducing anti-inflammatory factors in vitro. More importantly, combined therapy generated potent antitumor efficacy, increased the proportion of T cells and natural killer cells in TME, and reduced regulatory T cells and transformed growth factor-β1 expression in orthotopic xenotransplanted animal model of GBM. In summary, we reveal that oHSV-1 enhance the therapeutic efficacy of CD70-spefific CAR T cells by intratumoral T cell infiltration and IFN-γ release, supporting the use of CAR T therapy in GBM therapeutic strategies.
Collapse
|
67
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
68
|
Kos K, Aslam MA, van de Ven R, Wellenstein MD, Pieters W, van Weverwijk A, Duits DEM, van Pul K, Hau CS, Vrijland K, Kaldenbach D, Raeven EAM, Quezada SA, Beyaert R, Jacobs H, de Gruijl TD, de Visser KE. Tumor-educated T regs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche. Cell Rep 2022; 38:110447. [PMID: 35235800 DOI: 10.1016/j.celrep.2022.110447] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is accompanied by systemic immunosuppression, which facilitates metastasis formation, but how this shapes organotropism of metastasis is poorly understood. Here, we investigate the impact of mammary tumorigenesis on regulatory T cells (Tregs) in distant organs and how this affects multi-organ metastatic disease. Using a preclinical mouse mammary tumor model that recapitulates human metastatic breast cancer, we observe systemic accumulation of activated, highly immunosuppressive Tregs during primary tumor growth. Tumor-educated Tregs show tissue-specific transcriptional rewiring in response to mammary tumorigenesis. This has functional consequences for organotropism of metastasis, as Treg depletion reduces metastasis to tumor-draining lymph nodes, but not to lungs. Mechanistically, we find that Tregs control natural killer (NK) cell activation in lymph nodes, thereby facilitating lymph node metastasis. In line, an increased Treg/NK cell ratio is observed in sentinel lymph nodes of breast cancer patients compared with healthy controls. This study highlights that immune regulation of metastatic disease is highly organ dependent.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Muhammad A Aslam
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rieneke van de Ven
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Max D Wellenstein
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Wietske Pieters
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Antoinette van Weverwijk
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Danique E M Duits
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim van Pul
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim Vrijland
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elisabeth A M Raeven
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, WC1E 6DD London, UK
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
69
|
Piper M, Van Court B, Mueller A, Watanabe S, Bickett T, Bhatia S, Darragh LB, Mayeda M, Nguyen D, Gadwa J, Knitz M, Corbo S, Morgan R, Lee JJ, Dent A, Goodman K, Messersmith W, Schulick R, Del Chiaro M, Zhu Y, Kedl RM, Lenz L, Karam SD. Targeting Treg-Expressed STAT3 Enhances NK-Mediated Surveillance of Metastasis and Improves Therapeutic Response in Pancreatic Adenocarcinoma. Clin Cancer Res 2022; 28:1013-1026. [PMID: 34862244 PMCID: PMC8898296 DOI: 10.1158/1078-0432.ccr-21-2767] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastasis remains a major hurdle in treating aggressive malignancies such as pancreatic ductal adenocarcinoma (PDAC). Improving response to treatment, therefore, requires a more detailed characterization of the cellular populations involved in controlling metastatic burden. EXPERIMENTAL DESIGN PDAC patient tissue samples were subjected to RNA sequencing analysis to identify changes in immune infiltration following radiotherapy. Genetically engineered mouse strains in combination with orthotopic tumor models of PDAC were used to characterize disease progression. Flow cytometry was used to analyze tumor infiltrating, circulating, and nodal immune populations. RESULTS We demonstrate that although radiotherapy increases the infiltration and activation of dendritic cells (DC), it also increases the infiltration of regulatory T cells (Treg) while failing to recruit natural killer (NK) and CD8 T cells in PDAC patient tissue samples. In murine orthotopic tumor models, we show that genetic and pharmacologic depletion of Tregs and NK cells enhances and attenuates response to radiotherapy, respectively. We further demonstrate that targeted inhibition of STAT3 on Tregs results in improved control of local and distant disease progression and enhanced NK-mediated immunosurveillance of metastasis. Moreover, combination treatment of STAT3 antisense oligonucleotide (ASO) and radiotherapy invigorated systemic immune activation and conferred a survival advantage in orthotopic and metastatic tumor models. Finally, we show the response to STAT3 ASO + radiotherapy treatment is dependent on NK and DC subsets. CONCLUSIONS Our results suggest targeting Treg-mediated immunosuppression is a critical step in mediating a response to treatment, and identifying NK cells as not only a prognostic marker of improved survival, but also as an effector population that functions to combat metastasis.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Adam Mueller
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Shuichi Watanabe
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Thomas Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Max Mayeda
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Michael Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rustain Morgan
- Department of Radiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Jung-Jae Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Karyn Goodman
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Radiation Oncology, Mount Sinai Hospital, New York, NY
| | - Wells Messersmith
- Department of Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rich Schulick
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Yuwen Zhu
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Ross M. Kedl
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Laurel Lenz
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
70
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
71
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
72
|
Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers (Basel) 2022; 14:cancers14040985. [PMID: 35205732 PMCID: PMC8870068 DOI: 10.3390/cancers14040985] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review article presents a synopsis of the key clinical developments, their limitations, and future perspectives in the treatment of pancreatic cancer. In the first part, we summarize the available treatments for pancreatic cancer patients according to tumor stage, as well as the most relevant clinical trials over the past two decades. Despite this progress, there is still much to be improved in terms of patient survival. Therefore, in the second part, we consider various components of the tumor microenvironment in pancreatic cancer, looking for the key drivers of therapy resistance and tumor progression, which may lead to the discovery of new potential targets. We also discuss the most prominent molecules targeting the stroma and immune compartment that are being investigated in either preclinical or clinical trials. Finally, we also outline interesting venues for further research, such as possible combinations of therapies that may have the potential for clinical application. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, largely due to its aggressive development. Consequently, treatment options are often palliative, as only one-fifth of patients present with potentially curable tumors. The only available treatment with curative intent is surgery followed by adjuvant chemotherapy. However, even for patients that are eligible for surgery, the 5-year OS remains below 10%. Hence, there is an urgent need to find new therapeutic regimens. In the first part of this review, we discuss the tumor staging method and its impact on the corresponding current standard-of-care treatments for PDAC. We also consider the key clinical trials over the last 20 years that have improved patient survival. In the second part, we provide an overview of the major components and cell types involved in PDAC, as well as their respective roles and interactions with each other. A deeper knowledge of the interactions taking place in the TME may lead to the discovery of potential new therapeutic targets. Finally, we discuss promising treatment strategies targeting specific components of the TME and potential combinations thereof. Overall, this review provides an overview of the current challenges and future perspectives in the treatment of pancreatic cancer.
Collapse
|
73
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Čelešnik H, Potočnik U. Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:591. [PMID: 35158858 PMCID: PMC8833511 DOI: 10.3390/cancers14030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Transcriptome studies of peripheral blood cells can advance our understanding of the systemic immune response to the presence of cancer and the mechanisms underlying cancer onset and progression. This enables the identification of novel minimally invasive immune biomarkers for early cancer detection and personalized cancer management and may bring forward new immunotherapy options. Recent blood gene expression analyses in breast cancer (BC) identified distinct patient subtypes that differed in the immune reaction to cancer and were distinct from the clinical BC subtypes, which are categorized based on expression of specific receptors on tumor cells. Introducing new BC subtypes based on peripheral blood gene expression profiles may be appropriate, since it may assist in BC prognosis, the identification of patients likely to benefit from immunotherapy, and treatment efficacy monitoring. Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous, and difficult-to-treat disease, and identification of novel biomarkers for this BC is crucial for clinical decision-making. A few studies have reported TNBC-enriched blood transcriptional signatures, mostly related to strong inflammation and augmentation of altered immune signaling, that can differentiate TNBC from other classical BC subtypes and facilitate diagnosis. Future research is geared toward transitioning from expression signatures in unfractionated blood cells to those in immune cell subpopulations.
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
75
|
The Clinical, Pathological, and Prognostic Value of High PD-1 Expression and the Presence of Epstein–Barr Virus Reactivation in Patients with Laryngeal Cancer. Cancers (Basel) 2022; 14:cancers14030480. [PMID: 35158748 PMCID: PMC8833734 DOI: 10.3390/cancers14030480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Our immune reaction depends on some ‘immune checkpoints’, such as PD-1, PD-L1 and CTLA4, that maintain homeostasis and define new pathways in the fight against carcinogenesis. Viral infections, including EBV (Epstein-Barr Virus) are one of the risk factors for laryngeal cancer. The aim of our study was to evaluate the level of PD-1 receptor in blood, tumor and lymph node samples collected from 45 laryngeal cancer patients and 20 healthy volunteers from control group. We detected the presence of EBV molecules in cancer samples and show the relationship between tumor progression and the level of PD-1 receptor. We confirmed, that EBV infection may affect the PD-1/PD-L1 pathway and develop the laryngeal cancer. What is important, the level of PD-1 on CD4+ T cells in lymph nodes increased the risk of death, so it can be an important prognostic factor (marker) for laryngeal cancer patients’ treatment and their prognosis. Abstract Due to the development of molecular diagnostic techniques, the latest research in the diagnosis of cancer diseases, including laryngeal cancer, has been focused on the occurrence of specific types of molecular patterns, including markers expressed on cells of the immune system (e.g., PD-1, PD-L1, and CTLA-4), which may be directly or indirectly involved in the development of neoplastic diseases. Laryngeal cancer is one of the diseases that is diagnosed more often in men than in women, and many factors are involved in its development, including environmental and lifestyle factors, viral infections (e.g., HPV, HHV-1, and EBV), and disorders of the immune system. In this study, we determined the level of PD-1 receptor expression on T and B lymphocytes and their relationships based on the classification of the grade and TNM scale, in turn based on blood, tumor, and lymph node samples from patients diagnosed with laryngeal cancer. In addition, we determined the presence of EBV genetic material in the tested biological materials as well as the degree of cancer advancement and its correlation with the level of PD-1 receptor expression. The results suggested that the level of PD-1 expression on T and B lymphocytes was significantly higher in the tumor samples as compared to the lymph node samples, and their comparison with the immunophenotype results from the blood samples provided statistically significant data on changes in the incidence of individual subpopulations of T and B lymphocytes and the level of PD-1 receptor expression. The analysis of the individual parameters of the TNM scale also showed significant changes between the PD-1 expression and the tested biological material in individual subgroups of the scale. We also found that the expression of PD-1 on the CD4+ T cells from the lymph node samples caused an almost 1.5-fold increase in the risk of death. In the analyses of the presence of EBV, the highest concentration was recorded in the tumor samples, then for the lymph node samples, and followed by the blood samples. Furthermore, we showed that the presence of EBV genetic material was positively correlated with the level of PD-1 expression in the tested biological materials.
Collapse
|
76
|
Zarezadeh Mehrabadi A, Roozbahani F, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Esmaeili Gouvarchin Ghaleh H. Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World J Surg Oncol 2022; 20:16. [PMID: 35027068 PMCID: PMC8756705 DOI: 10.1186/s12957-021-02486-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cancer is one of the critical issues of the global health system with a high mortality rate even with the available therapies, so using novel therapeutic approaches to reduce the mortality rate and increase the quality of life is sensed more than ever. Main body CAR-T cell therapy and oncolytic viruses are innovative cancer therapeutic approaches with fewer complications than common treatments such as chemotherapy and radiotherapy and significantly improve the quality of life. Oncolytic viruses can selectively proliferate in the cancer cells and destroy them. The specificity of oncolytic viruses potentially maintains the normal cells and tissues intact. T-cells are genetically manipulated and armed against the specific antigens of the tumor cells in CAR-T cell therapy. Eventually, they are returned to the body and act against the tumor cells. Nowadays, virology and oncology researchers intend to improve the efficacy of immunotherapy by utilizing CAR-T cells in combination with oncolytic viruses. Conclusion Using CAR-T cells along with oncolytic viruses can enhance the efficacy of CAR-T cell therapy in destroying the solid tumors, increasing the permeability of the tumor cells for T-cells, reducing the disturbing effects of the immune system, and increasing the success chance in the treatment of this hazardous disease. In recent years, significant progress has been achieved in using oncolytic viruses alone and in combination with other therapeutic approaches such as CAR-T cell therapy in pre-clinical and clinical investigations. This principle necessitates a deeper consideration of these treatment strategies. This review intends to curtly investigate each of these therapeutic methods, lonely and in combination form. We will also point to the pre-clinical and clinical studies about the use of CAR-T cell therapy combined with oncolytic viruses.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
77
|
Bitsouni V, Tsilidis V. Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response. J Theor Biol 2022; 539:111001. [PMID: 34998860 DOI: 10.1016/j.jtbi.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathematical and computational approach to investigate the complex interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as experimental dosages, are administered.
Collapse
Affiliation(s)
- Vasiliki Bitsouni
- Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece; School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| | - Vasilis Tsilidis
- School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| |
Collapse
|
78
|
Huang Y, Liu Y, Mo G, Zhou T, Hou Q, Shi C, Jiang Q, Lv Y. Inflammation Markers Have Important Value in Predicting Relapse in Patients with papillary thyroid carcinoma: A Long-Term Follow-Up Retrospective Study. Cancer Control 2022; 29:10732748221115236. [PMID: 35833862 PMCID: PMC9290143 DOI: 10.1177/10732748221115236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Many markers of inflammation are increasingly found to have prognostic significance in some cancers. This study investigated the prognostic value of albumin/globulin (AGR), lymphocyte/monocyte ratio (LMR), and other inflammatory markers, including neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR), in patients with papillary thyroid carcinoma (PTC). Methods We retrospectively analyzed the data of 764 patients newly diagnosed with PTC (608 women, 156 men) aged 10-83 years. Univariate and multivariate analyses were used to analyze recurrence rates and assess potential prognostic factors. Furthermore, we used random survival forests to construct a random survival forest score (RSFscore). The correlations between various inflammatory factors and traditional prognostic factors were analyzed. We also compared the areas under the curve (AUCs) of the RSFscore and 4 inflammation-based markers. Results AGR, NLR, PLR, and LMR were strongly associated with invasive clinicopathological features (tumor size, lesions, lymph node metastasis, and lymph node metastasis rate) and postoperative recurrence. In the multivariate analysis, AGR and LMR were independent prognostic markers for recurrent PTC. Higher NLR and PLR values indicated a higher risk of recurrence, while higher LMR and AGR values suggested a lower recurrence risk. The predictive power of the combined indicators was stronger than that of single indicators alone. Conclusion Compared to the analysis of a single indicator, the combination of inflammatory markers was more helpful in determining the risk of PTC recurrence, which has an important impact on predicting patients’ cancer-free survival and quality of life.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China.,The Second Clinical Medicine College, Medical Department, Nanchang University, Nanchang, China
| | - Yushu Liu
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China.,The Second Clinical Medicine College, Medical Department, Nanchang University, Nanchang, China
| | - Guoheng Mo
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China.,The Queen of Mary College, Medical Department, Nanchang University, Nanchang, China
| | - Tao Zhou
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Hou
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoqun Shi
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunxia Lv
- Department of Thyroid Surgery, 196534Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
79
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
80
|
Ramirez MF, Cata JP. Anesthesia Techniques and Long-Term Oncological Outcomes. Front Oncol 2021; 11:788918. [PMID: 34956903 PMCID: PMC8692375 DOI: 10.3389/fonc.2021.788918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite advances in cancer treatments, surgery remains one of the most important therapies for solid tumors. Unfortunately, surgery promotes angiogenesis, shedding of cancer cells into the circulation and suppresses anti-tumor immunity. Together this increases the risk of tumor metastasis, accelerated growth of pre-existing micro-metastasis and cancer recurrence. It was theorized that regional anesthesia could influence long-term outcomes after cancer surgery, however new clinical evidence demonstrates that the anesthesia technique has little influence in oncologic outcomes. Several randomized controlled trials are in progress and may provide a better understanding on how volatile and intravenous hypnotics impact cancer progression. The purpose of this review is to summarize the effect of the anesthesia techniques on the immune system and tumor microenvironment (TME) as well as to summarize the clinical evidence of anesthesia techniques on cancer outcomes.
Collapse
Affiliation(s)
- Maria F Ramirez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| |
Collapse
|
81
|
Peng H, James CA, Cullinan DR, Hogg GD, Mudd JL, Zuo C, Takchi R, Caldwell KE, Liu J, DeNardo DG, Fields RC, Gillanders WE, Goedegebuure SP, Hawkins WG. Neoadjuvant FOLFIRINOX Therapy Is Associated with Increased Effector T Cells and Reduced Suppressor Cells in Patients with Pancreatic Cancer. Clin Cancer Res 2021; 27:6761-6771. [PMID: 34593529 PMCID: PMC8678309 DOI: 10.1158/1078-0432.ccr-21-0998] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE FOLFIRINOX has demonstrated promising results for patients with pancreatic ductal adenocarcinoma (PDAC). Chemotherapy-induced immunogenic cell death can prime antitumor immune responses. We therefore performed high-dimensional profiling of immune cell subsets in peripheral blood to evaluate the impact of FOLFIRINOX on the immune system. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells (PBMC) were obtained from treatment-naïve (n = 20) and FOLFIRINOX-treated patients (n = 19) with primary PDAC tumors at the time of resection. PBMCs were characterized by 36 markers using mass cytometry by time of flight (CyTOF). RESULTS Compared with treatment-naïve patients, FOLFIRINOX-treated patients showed distinct immune profiles, including significantly decreased inflammatory monocytes and regulatory T cells (Treg), increased Th1 cells, and decreased Th2 cells. Notably, both monocytes and Treg expressed high levels of immune suppression-associated CD39, and the total CD39+ cell population was significantly lower in FOLFIRINOX-treated patients compared with untreated patients. Cellular alterations observed in responders to FOLFIRINOX included a significantly decreased frequency of Treg, an increased frequency of total CD8 T cells, and an increased frequency of CD27-Tbet+ effector/effector memory subsets of CD4 and CD8 T cells. CONCLUSIONS Our study reveals that neoadjuvant chemotherapy with FOLFIRINOX enhances effector T cells and downregulates suppressor cells. These data indicate that FOLFIRINOX neoadjuvant therapy may improve immune therapy and clinical outcome in patients with PDAC.
Collapse
Affiliation(s)
- Hui Peng
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - C Alston James
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Darren R Cullinan
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, Misoouri
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, Misoouri
| | - Rony Takchi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Katharine E Caldwell
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jingxia Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, Misoouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
82
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
83
|
Chuckran CA, Cillo AR, Moskovitz J, Overacre-Delgoffe A, Somasundaram AS, Shan F, Magnon GC, Kunning SR, Abecassis I, Zureikat AH, Luketich J, Pennathur A, Sembrat J, Rojas M, Merrick DT, Taylor SE, Orr B, Modugno F, Buckanovich R, Schoen RE, Kim S, Duvvuri U, Zeh H, Edwards R, Kirkwood JM, Coffman L, Ferris RL, Bruno TC, Vignali DAA. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Sci Transl Med 2021; 13:eabf8495. [PMID: 34878821 PMCID: PMC9022491 DOI: 10.1126/scitranslmed.abf8495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the success of immune checkpoint blockade therapy, few strategies sufficiently overcome immunosuppression within the tumor microenvironment (TME). Targeting regulatory T cells (Tregs) is challenging, because perturbing intratumoral Treg function must be specific enough to avoid systemic inflammatory side effects. Thus, no Treg-targeted agents have proven both safe and efficacious in patients with cancer. Neuropilin-1 (NRP1) is recognized for its role in supporting intratumoral Treg function while being dispensable for peripheral homeostasis. Nonetheless, little is known about the biology of human NRP1+ Tregs and the signals that regulate NRP1 expression. Here, we report that NRP1 is preferentially expressed on intratumoral Tregs across six distinct cancer types compared to healthy donor peripheral blood [peripheral blood lymphocyte (PBL)] and site-matched, noncancer tissue. Furthermore, NRP1+ Treg prevalence is associated with reduced progression-free survival in head and neck cancer. Human NRP1+ Tregs have broad activation programs and elevated suppressive function. Unlike mouse Tregs, we demonstrate that NRP1 identifies a transient activation state of human Tregs driven by continuous T cell receptor (TCR) signaling through the mitogen-activated protein kinase pathway and interleukin-2 exposure. The prevalence of NRP1+ Tregs in patient PBL correlates with the intratumoral abundance of NRP1+ Tregs and may indicate higher disease burden. These findings support further clinical evaluation of NRP1 as a suitable therapeutic target to enhance antitumor immunity by inhibiting Treg function in the TME.
Collapse
Affiliation(s)
- Christopher A. Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jessica Moskovitz
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ashwin S. Somasundaram
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grant C. Magnon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Irina Abecassis
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Amer H. Zureikat
- Department of Surgery, Division of Surgical Oncology, UPMC Hillman Cancer Center and UPMC Pancreatic Cancer Program, Pittsburgh, PA 15213, USA
| | - James Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mauricio Rojas
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Daniel T. Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Orr
- Department Obstetrics and Gynecology, Gynecologic Oncology Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Women’s Cancer Research Center, Magee-Women’s Research Institute and Foundation and Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ron Buckanovich
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert E. Schoen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Seungwon Kim
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Herbert Zeh
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern, Dallas, TX 75390, USA
| | - Robert Edwards
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - John M. Kirkwood
- Departments of Medicine, Dermatology, and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert L. Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
84
|
Waibl Polania J, Lerner EC, Wilkinson DS, Hoyt-Miggelbrink A, Fecci PE. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:777073. [PMID: 34868044 PMCID: PMC8636733 DOI: 10.3389/fimmu.2021.777073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Successful cancer immunotherapies rely on a replete and functional immune compartment. Within the immune compartment, T cells are often the effector arm of immune-based strategies due to their potent cytotoxic capabilities. However, many tumors have evolved a variety of mechanisms to evade T cell-mediated killing. Thus, while many T cell-based immunotherapies, such as immune checkpoint inhibition (ICI) and chimeric antigen receptor (CAR) T cells, have achieved considerable success in some solid cancers and hematological malignancies, these therapies often fail in solid tumors due to tumor-imposed T cell dysfunctions. These dysfunctional mechanisms broadly include reduced T cell access into and identification of tumors, as well as an overall immunosuppressive tumor microenvironment that elicits T cell exhaustion. Therefore, novel, rational approaches are necessary to overcome the barriers to T cell function elicited by solid tumors. In this review, we will provide an overview of conventional immunotherapeutic strategies and the various barriers to T cell anti-tumor function encountered in solid tumors that lead to resistance. We will also explore a sampling of emerging strategies specifically aimed to bypass these tumor-imposed boundaries to T cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | | | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
85
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
86
|
Two novel human anti-CD25 antibodies with antitumor activity inversely related to their affinity and in vitro activity. Sci Rep 2021; 11:22966. [PMID: 34824364 PMCID: PMC8617198 DOI: 10.1038/s41598-021-02449-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
High tumor regulatory T (Treg) cell infiltration is associated with poor prognosis of many cancers. CD25 is highly expressed on tumor Treg cells and is a potential target for Treg deletion. Previously characterized anti-CD25 antibodies appear to have limited efficacy in tumor inhibition. Here we identified two human anti-CD25 antibodies, BA9 and BT942, which did not prevent the activation of IL-2R signaling pathway by IL-2. BT942 had weaker binding and cytotoxic activity to human CD25-expressing cell lines than BA9. But both demonstrated significant tumor growth inhibition in early and late-stage animal cancer models. BT942 resulted in a higher expansion of CD8+ T cells and CD4+ T cells in tumor microenvironment in mouse MC38 model compared to BA9. BT942 also demonstrated significant higher tumor growth inhibition and higher expansion of CD8+ T cells and CD4+ T cells in combination with an anti-PD1 antibody. Pharmacokinetic study of BT942 in cynomolgus monkeys demonstrated a half-life of 206.97 ± 19.03 h. Structural analysis by cryo-EM revealed that BT942 recognizes an epitope on opposite side of the CD25-IL-2 binding site, consistent with no IL-2 signaling blockade in vitro. BT942 appears to be an excellent candidate for cancer immunotherapy.
Collapse
|
87
|
Kuchroo JR, Hafler DA, Sharpe AH, Lucca LE. The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Sci Immunol 2021; 6:eabf4034. [PMID: 34739340 DOI: 10.1126/sciimmunol.abf4034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade has demonstrated success in treating cancer but can lead to immune-related adverse events (irAEs), illustrating the centrality of these pathways in tolerance. Here, we describe programmed cell death protein 1 (PD-1) control of T cell responses, focusing on its unique restraint of regulatory T cell function. We examine successes and limitations of checkpoint blockade immunotherapy and review clinical and mechanistic features of irAEs. Last, we discuss strategies to modulate PD-1 blockade to enhance antitumor immunity while limiting autoimmunity.
Collapse
Affiliation(s)
- Juhi R Kuchroo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
88
|
Morales E, Olson M, Iglesias F, Luetkens T, Atanackovic D. Targeting the tumor microenvironment of Ewing sarcoma. Immunotherapy 2021; 13:1439-1451. [PMID: 34670399 DOI: 10.2217/imt-2020-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ewing sarcoma is an aggressive tumor type with an age peak in adolescence. Despite the use of dose-intensified chemotherapy as well as radiation and surgery for local control, patients with upfront metastatic disease or relapsed disease have a dismal prognosis, highlighting the need for additional therapeutic options. Different types of immunotherapies have been investigated with only very limited clinical success, which may be due to the presence of immunosuppressive factors in the tumor microenvironment. Here we provide an overview on different factors contributing to Ewing sarcoma immune escape. We demonstrate ways to target these factors in order to make current and future immunotherapies more effective and achieve deeper and more durable responses in patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Hematology/Oncology Department, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Olson
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.,Hematology & Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Fiorella Iglesias
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tim Luetkens
- Department of Microbiology & Immunology, School of Medicine, University of Maryland Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine & Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Djordje Atanackovic
- Department of Microbiology & Immunology, School of Medicine, University of Maryland Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine & Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
89
|
Kos K, de Visser KE. The Multifaceted Role of Regulatory T Cells in Breast Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021; 5:291-310. [PMID: 34632244 PMCID: PMC7611782 DOI: 10.1146/annurev-cancerbio-042920-104912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
90
|
Li L, Chen L, Huang L, Ye X, Lin Z, Wei X, Yang X, Yang Z. Biodegradable mesoporous manganese carbonate nanocomposites for LED light-driven cancer therapy via enhancing photodynamic therapy and attenuating survivin expression. J Nanobiotechnology 2021; 19:310. [PMID: 34627276 PMCID: PMC8502371 DOI: 10.1186/s12951-021-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most daunting diseases, low toxicity and efficient approaches are in urgent demand. Herein, we developed degradable mesoporous manganese carbonate nanocubes (MnCO3 NCs), incorporated with survivin shRNA-expressing plasmid DNA (iSur-pDNA) and riboflavin (Rf), namely MRp NCs, for synergistic TNBC therapy. The MnCO3, itself, could generate O2 and CO2 under H2O2 and thus relieve the hypoxia and acidic tumor microenvironment (TME). Furthermore, the MnCO3 NCs exhibited high Rf loading capacity and iSur-pDNA delivery ability after polyethyleneimine modification. Specifically, MRp NCs decompose in TME, meanwhile they deprived the endogenous expression of survivin gene and significantly amplified the generation of reactive oxygen species after exposure to LED light, resulting in serious tumor destruction. The multifunctional MRp NCs with LED light-driven characters are able to provide a high efficiency, low toxicity and promising strategy for TNBC therapy. ![]()
Collapse
Affiliation(s)
- Lihua Li
- The State Key Laboratory of Luminescent Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ling Huang
- The State Key Laboratory of Luminescent Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoming Wei
- The State Key Laboratory of Luminescent Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xianfeng Yang
- The State Key Laboratory of Luminescent Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Zhongmin Yang
- The State Key Laboratory of Luminescent Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
91
|
Hadjiaggelidou C, Katodritou E. Regulatory T-Cells and Multiple Myeloma: Implications in Tumor Immune Biology and Treatment. J Clin Med 2021; 10:4588. [PMID: 34640606 PMCID: PMC8509132 DOI: 10.3390/jcm10194588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and, despite significant advances in treatment, remains an incurable disease. Regulatory T-cells (Tregs) represent a critical subset of CD4 T-cells, characterized by CD4 + CD25+ Forkhead box P3+ (FoxP3+) phenotype, able to control peripheral tolerance and responses to foreign and tumor antigens. Tregs are elevated in various types of cancer, including hematological malignancies; in MM, data regarding Tregs function and numbers and their correlation with survival parameters are controversial. Advances in cancer biology have shown that the tumor microenvironment plays an important role in tumor progression. In MM, the highly immunosuppressive nature of the bone marrow microenvironment has been significantly elucidated in the past decade and it is now well acknowledged that targeting only the tumor clone may not be able to cure MM. Tregs within the tumor microenvironment might play a significant role in the suppression of antitumor immune responses against cancer cells and are considered to predict poor outcome in cancer patients; nonetheless the exact prognostic significance of this cell subpopulation in malignancies is still a matter of debate. In this review, we discuss the role of Tregs as an essential cell population of the MM immune microenvironment.
Collapse
|
92
|
Hatzioannou A, Boumpas A, Papadopoulou M, Papafragkos I, Varveri A, Alissafi T, Verginis P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front Immunol 2021; 12:731947. [PMID: 34539668 PMCID: PMC8446642 DOI: 10.3389/fimmu.2021.731947] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athina Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iosif Papafragkos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
93
|
Jørgensen N, Lænkholm AV, Sækmose SG, Hansen LB, Hviid TVF. Peripheral blood immune markers in breast cancer: Differences in regulatory T cell abundance are related to clinical parameters. Clin Immunol 2021; 232:108847. [PMID: 34506945 DOI: 10.1016/j.clim.2021.108847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer development is among other factors driven by tumor immune escape and tumor-mediated changes in the immune response. Investigating systemic immune changes may provide important knowledge for the improvement of patient prognosis and treatment opportunities. METHODS The systemic immune profile of patients with ER-positive breast cancer (n = 22) and healthy controls (n = 30) was investigated based on complete blood counts, flow cytometric analysis of T cell subsets including regulatory T cells (Tregs), and immune assays investigating soluble (s)HLA-G and the cytokine profile in plasma. We further examined the correlation between the immune markers and clinical parameters including tumor size, tumor grade and lymph node involvement. RESULTS Results indicated that breast cancer patients possessed a higher amount of neutrophils and monocytes and fewer lymphocytes and eosinophils compared with healthy controls. Breast cancer patients had significantly more CD25+CD127low Tregs than controls, and both lymphocyte and Treg numbers were negatively correlated with tumor size. Furthermore, Treg numbers were elevated in grade I tumors compared with grade II tumors and with healthy controls. No difference in sHLA-G levels was observed between patients and controls. Higher levels of IL-6 and TNF-α were observed in breast cancer patients. Cytokine and sHLA-G levels were not associated with clinical parameters. CONCLUSION The results of this exploratory study contribute to the elucidation of the systemic immune response in breast cancer indicating a potential use of peripheral immune cell counts and Tregs to distinguish patients from healthy controls and as potential diagnostic and prognostic biomarkers to be investigated in future studies.
Collapse
Affiliation(s)
- Nanna Jørgensen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Pathology, Zealand University Hospital, Sygehusvej 9, 4000 Roskilde, Denmark
| | - Susanne Gjørup Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77, 4700 Næstved, Denmark
| | - Lone Bak Hansen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Plastic and Breast Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
94
|
Li X, Liu Z, Zhou W, Liu X, Cao W. Downregulation of CCL22 and mutated NOTCH1 in tongue and mouth floor squamous cell carcinoma results in decreased Th2 cell recruitment and expression, predicting poor clinical outcome. BMC Cancer 2021; 21:922. [PMID: 34391381 PMCID: PMC8364714 DOI: 10.1186/s12885-021-08671-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Tongue and mouth floor squamous cell carcinoma (T/MF SCC) exhibits a high rate of local recurrence and cervical lymph node metastasis. The effect of the tumor microenvironment on T/MF SCC remains unclear. MATERIALS AND METHODS Transcriptome and somatic mutation data of patients with T/MF SCC were obtained from HNSC projects of the Cancer Genome Atlas. Immune infiltration quantification in early- (clinical stage I-II) and advanced-stage (clinical stage III-IV) T/MF SCC was performed using single sample Gene Set Enrichment Analysis and MCPcounter. Differentially expressed gene data were filtered, and their function was assessed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Kaplan-Meier survival curve analysis and Cox regression model were conducted to evaluate the survival of patients with the CCL22 signature. Maftools was used to present the overview of somatic mutations. RESULTS In T/MF SCC, T helper (Th)2 cell counts were significantly increased in patients with early-stage disease compared to those with advanced-stage disease. Expression of the Th2 cell-related chemokine, CCL22, was downregulated in patients with advanced-stage T/MF SCC. Univariate and multivariate Cox analyses revealed that CCL22 was a good prognostic factor in T/MF SCC. A nomogram based on the expression of CCL22 was constructed to serve as a prognostic indicator for T/MF SCC. NOTCH1 mutations were found at a higher rate in patients with advanced-stage T/MF SCC than in those with early-stage T/MF SCC, resulting in the inhibition of the activation of the NOTCH1-Th2 cell differentiation pathway. The expression levels of CCL22, GATA-3, and IL4 were higher in patients with early-stage T/MF SCC than in those with advanced-stage T/MF SCC. CONCLUSION In T/MF SCC, high expression of CCL22 may promote the recruitment of Th2 cells and help predict a better survival. Mutations in NOTCH1 inhibit the differentiation of Th2 cells, facilitating tumor progression through a decrease in Th2 cell recruitment and differentiation.
Collapse
Affiliation(s)
- Xuejie Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zheqi Liu
- Department of Oral and Maxillofacial & Head and Neck, Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- National Center for stomatology, National Clinical Research Center For Oral diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial & Head and Neck, Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- National Center for stomatology, National Clinical Research Center For Oral diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xiaofang Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck, Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- National Center for stomatology, National Clinical Research Center For Oral diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
95
|
Amens JN, Bahçecioglu G, Zorlutuna P. Immune System Effects on Breast Cancer. Cell Mol Bioeng 2021; 14:279-292. [PMID: 34295441 PMCID: PMC8280260 DOI: 10.1007/s12195-021-00679-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers in women, with the ability to metastasize to secondary organs, which is the main cause of cancer-related deaths. Understanding how breast tumors progress is essential for developing better treatment strategies against breast cancer. Until recently, it has been considered that breast cancer elicits a small immune response. However, it is now clear that breast tumor progression is either prevented by the action of antitumor immunity or exacerbated by proinflammatory cytokines released mainly by the immune cells. In this comprehensive review we first explain antitumor immunity, then continue with how the tumor suppresses and evades the immune response, and next, outline the role of inflammation in breast tumor initiation and progression. We finally review the current immunotherapeutic and immunoengineering strategies against breast cancer as a promising emerging approach for the discovery and design of immune system-based strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Jensen N. Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gökhan Bahçecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
96
|
Targeting immunosuppression by TGF-β1 for cancer immunotherapy. Biochem Pharmacol 2021; 192:114697. [PMID: 34302795 PMCID: PMC8484859 DOI: 10.1016/j.bcp.2021.114697] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The TGF-β1 cytokine is a key mediator of many biological processes. Complex regulatory mechanisms are in place that allow one single molecule to exert so many distinct indispensable activities. The complexity of TGF-β1 biology is further illustrated by the opposing dual roles it plays during cancer progression. Risks of toxicities combined with lack of convincing therapeutical efficacy explain at least in part why therapies targeting TGF-β1 have lagged behind in past decades. However, recent successes of immunostimulatory antibodies for the immunotherapy of cancer and findings that TGF-β1 activity associates with resistance to immunotherapeutic drugs have revived the field. In this review, we discuss the biology of TGF-β1 with a special focus on its roles in regulating immune responses in the context of cancer. We describe the various therapeutic approaches available to inhibit TGF-β signalling, and more recent findings that allow selective targeting of specific sources of TGF-β activity, which may prove relevant to increase the efficacy and reduce the toxicity of cancer immunotherapy.
Collapse
|
97
|
Kang DH, Chung C, Sun P, Lee DH, Lee SI, Park D, Koh JS, Kim Y, Yi HS, Lee JE. Circulating regulatory T cells predict efficacy and atypical responses in lung cancer patients treated with PD-1/PD-L1 inhibitors. Cancer Immunol Immunother 2021; 71:579-588. [PMID: 34278517 PMCID: PMC8854239 DOI: 10.1007/s00262-021-03018-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/11/2021] [Indexed: 11/06/2022]
Abstract
Background Immune checkpoint inhibitors (ICIs) have become the standard of care for a variety of cancers, including non-small cell lung cancer (NSCLC). In this study, we investigated the frequency of pseudoprogression and hyperprogression in lung cancer patients treated with ICIs in the real world and aimed to discover a novel candidate marker to distinguish pseudoprogression from hyperprogression soon after ICI treatment. Methods This study included 74 patients with advanced NSCLC who were treated with PD-1/PD-L1 inhibitors at Chungnam National University Hospital (CNUH) between January 2018 and August 2020. Chest X-rays were examined on day 7 after the first ICI dose to identify changes in the primary mass, and the response was assessed by computed tomography (CT). We evaluated circulating regulatory T (Treg) cells using flow cytometry and correlated the findings with clinical outcomes. Results The incidence of pseudoprogression was 13.5%, and that of hyperprogression was 8.1%. On day 7 after initiation of treatment, the frequency of CD4+CD25+CD127loFoxP3+ Treg cells was significantly decreased compared with baseline (P = 0.038) in patients who experienced pseudoprogression and significantly increased compared with baseline (P = 0.024) in patients who experienced hyperprogression. In the responder group, the frequencies of CD4+CD25+CD127loFoxP3+ Treg cells and PD-1+CD4+CD25+CD127loFoxP3+ Treg cells were significantly decreased 7 days after commencement of treatment compared with baseline (P = 0.034 and P < 0.001, respectively). Conclusion Circulating Treg cells represent a promising potential dynamic biomarker to predict efficacy and differentiate atypical responses, including pseudoprogression and hyperprogression, after immunotherapy in patients with NSCLC. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03018-y.
Collapse
Affiliation(s)
- Da Hyun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Chaeuk Chung
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Pureum Sun
- College of Medicine, Research Institute for Medical Sciences, Chungnam National University, Daejeon, Korea
| | - Da Hye Lee
- College of Medicine, Research Institute for Medical Sciences, Chungnam National University, Daejeon, Korea
| | - Song-I Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Dongil Park
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Jeong Suk Koh
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Yoonjoo Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea.
| |
Collapse
|
98
|
Curcumin Promotes the Expression of IL-35 by Regulating Regulatory T Cell Differentiation and Restrains Uncontrolled Inflammation and Lung Injury in Mice. Inflammation 2021; 43:1913-1924. [PMID: 32535666 DOI: 10.1007/s10753-020-01265-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interleukin (IL)-35, which has an anti-inflammatory role in acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), is relatively promising as a drug target. Studies have shown that curcumin may play a therapeutic role in ALI and enhance the suppressive function of regulatory T cells (Tregs). To illustrate the effect of curcumin on the regulation of Treg cell differentiation and expression of IL-35, we built a cecal ligation and puncture (CLP)-induced acute lung injury mouse mode with curcumin pretreatment. The expression of IL-35 in serum, severity of lung injury, IL-17A in lung tissue, survival rate, Treg-related cytokines levels in serum, nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue, and splenic CD4+CD25+FOXP3+ Tregs were assessed. Furthermore, the proportion of Tregs, STAT5, and IL-35 expression during naïve CD4+ T cell differentiation in vitro was measured. Compared with the CLP group, the increased IL-35 expression in CLP with the curcumin pretreatment (CLP + Cur) group was consistent with the decreased severity of lung injury, IL-17A protein levels in lung tissue, and Treg-related cytokines levels. Pretreatment with curcumin, the survival rate climbed to 50%, while the mortality rate was 100% in the CLP group. In addition, splenic CD4+CD25+FOXP3+ Treg cells increased in the CLP + Cur group. In vitro, CD4+CD25+FOXP3+ Treg cells from naïve CD4+ T cells, STAT5 proportion, and IL-35 expression increased after curcumin treatment. These findings showed that curcumin might regulate IL-35 by activating the differentiation of Treg cells to control the inflammation in acute lung injury.
Collapse
|
99
|
Palazón-Carrión N, Jiménez-Cortegana C, Sánchez-León ML, Henao-Carrasco F, Nogales-Fernández E, Chiesa M, Caballero R, Rojo F, Nieto-García MA, Sánchez-Margalet V, de la Cruz-Merino L. Circulating immune biomarkers in peripheral blood correlate with clinical outcomes in advanced breast cancer. Sci Rep 2021; 11:14426. [PMID: 34257359 PMCID: PMC8277895 DOI: 10.1038/s41598-021-93838-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of the different elements intervening at the tumor microenvironment seems key to explain clinical evolution in several tumor types. In this study, a set of immune biomarkers (myeloid derived suppressor cells, regulatory T cells, and OX40 + and PD-1 + T lymphocytes counts) in peripheral blood of patients diagnosed with advanced breast cancer were analyzed along of first line antineoplastic therapy. Subsequently, a comparison between groups with clinical benefit versus progression of disease and with a healthy women cohort was executed. Results reflected that patients showed higher basal levels of myeloid derived suppressor cells (35.43, IR = 180.73 vs 17.53, IR = 16.96 cells/μl; p = 0.001) and regulatory T cells (32.05, IR = 29.84 vs 22.61, IR = 13.57 cells/μl; p = 0.001) in comparison with healthy women. Furthermore, an increase in the number of activated T lymphocytes (expressing OX40), a decrease of immune inhibitory cells (MDSCs and Tregs) and inhibited T lymphocytes (expressing PD-1) were observed along the treatment in patients with clinical benefit (p ≤ 0.001). The opposite trend was observed in the case of disease progression. These findings suggest that some critical immune elements can be easily detected and measured in peripheral blood, which open a new opportunity for translational research, as they seem to be correlated with clinical evolution, at least in ABC.
Collapse
Affiliation(s)
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - M Luisa Sánchez-León
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain
| | | | | | - Massimo Chiesa
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jimenez Diaz-CIBERONC, Madrid, Spain
| | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain.
| | - Luis de la Cruz-Merino
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain.
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain.
- Medicine Department, University of Seville, Seville, Spain.
| |
Collapse
|
100
|
Raja R, Wu C, Limbeck F, Butler K, Acharya AP, Curtis M. Instruction of Immunometabolism by Adipose Tissue: Implications for Cancer Progression. Cancers (Basel) 2021; 13:cancers13133327. [PMID: 34283042 PMCID: PMC8267940 DOI: 10.3390/cancers13133327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metabolism is the process by which living organisms and cells generate energy to sustain life. At the organismal level, metabolic homeostasis is a tightly controlled balance between energy consumption and energy expenditure. Many studies have shown that disruption of this homeostasis leads to an inflammatory phenotype within adipose tissue. The aim of this review is to provide an overview of the dynamic metabolic interplay within adipose tissue and its implications for cancer progression and metastasis. Abstract Disruption of metabolic homeostasis at the organismal level can cause metabolic syndrome associated with obesity. The role of adipose tissue in cancer has been investigated over the last several decades with many studies implicating obesity as a risk factor for the development of cancer. Adipose tissue contains a diverse array of immune cell populations that promote metabolic homeostasis through a tightly controlled balance of pro- and anti-inflammatory signals. During obesity, pro-inflammatory cell types infiltrate and expand within the adipose tissue, exacerbating metabolic dysfunction. Some studies have now shown that the intracellular metabolism of immune cells is also deregulated by the lipid-rich environment in obesity. What is not fully understood, is how this may influence cancer progression, metastasis, and anti-tumor immunity. This review seeks to highlight our current understanding of the effect of adipose tissue on immune cell function and discuss how recent results offer new insight into the role that adipose tissue plays in cancer progression and anti-tumor immunity.
Collapse
Affiliation(s)
- Remya Raja
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Christopher Wu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Francesca Limbeck
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Kristina Butler
- Division of Gynecologic Surgery, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Abhinav P. Acharya
- Department of Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA;
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
- College of Medicine and Science, Mayo Clinic, Scottsdale, AZ 85259, USA
- Correspondence:
| |
Collapse
|