51
|
Exploring New Drug Targets for Type 2 Diabetes: Success, Challenges and Opportunities. Biomedicines 2022; 10:biomedicines10020331. [PMID: 35203540 PMCID: PMC8869656 DOI: 10.3390/biomedicines10020331] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
There are substantial shortcomings in the drugs currently available for treatment of type 2 diabetes mellitus. The global diabetic crisis has not abated despite the introduction of new types of drugs and targets. Persistent unaddressed patient needs remain a significant factor in the quest for new leads in routine studies. Drug discovery methods in this area have followed developments in the market, contributing to a recent rise in the number of molecules. Nevertheless, troubling developments and fresh challenges are still evident. Recently, metformin, the most widely used first-line drug for diabetes, was found to contain a carcinogenic contaminant known as N-nitroso dimethylamine (NDMA). Therefore, purity and toxicity are also a big challenge for drug discovery and development. Moreover, newer drug classes against SGLT-2 illustrate both progress and difficulties. The same was true previously in the case of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Furthermore, researchers must study the importance of mechanistic characteristics of novel compounds, as well as exposure-related hazardous aspects of current and newly identified protein targets, in order to identify new pharmacological molecules with improved selectivity and specificity.
Collapse
|
52
|
Sakran N, Graham Y, Pintar T, Yang W, Kassir R, Willigendael EM, Singhal R, Kooreman ZE, Ramnarain D, Mahawar K, Parmar C, Madhok B, Pouwels S. The many faces of diabetes. Is there a need for re-classification? A narrative review. BMC Endocr Disord 2022; 22:9. [PMID: 34991585 PMCID: PMC8740476 DOI: 10.1186/s12902-021-00927-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
The alarming rise in the worldwide prevalence of obesity and associated type 2 diabetes mellitus (T2DM) have reached epidemic portions. Diabetes in its many forms and T2DM have different physiological backgrounds and are difficult to classify. Bariatric surgery (BS) is considered the most effective treatment for obesity in terms of weight loss and comorbidity resolution, improves diabetes, and has been proven superior to medical management for the treatment of diabetes. The term metabolic surgery (MS) describes bariatric surgical procedures used primarily to treat T2DM and related metabolic conditions. MS is the most effective means of obtaining substantial and durable weight loss in individuals with obesity. Originally, BS was used as an alternative weight-loss therapy for patients with severe obesity, but clinical data revealed its metabolic benefits in patients with T2DM. MS is more effective than lifestyle or medical management in achieving glycaemic control, sustained weight loss, and reducing diabetes comorbidities. New guidelines for T2DM expand the use of MS to patients with a lower body mass index.Evidence has shown that endocrine changes resulting from BS translate into metabolic benefits that improve the comorbid conditions associated with obesity, such as hypertension, dyslipidemia, and T2DM. Other changes include bacterial flora rearrangement, bile acids secretion, and adipose tissue effect.This review aims to examine the physiological mechanisms in diabetes, risks for complications, the effects of bariatric and metabolic surgery and will shed light on whether diabetes should be reclassified.
Collapse
Affiliation(s)
- Nasser Sakran
- Department of Surgery, Holy Family Hospital, Nazareth, Israel
- the Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yitka Graham
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Facultad de Psycologia, Universidad Anahuac Mexico, Mexico City, Mexico
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Center Ljubljana, Zaloška cesta, Ljubljana, Slovenia
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong Province, China
| | - Radwan Kassir
- CHU Félix Guyon, Allée des Topazes, Saint-Denis, France
| | - Edith M Willigendael
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Rishi Singhal
- Bariatric and Upper GI Unit, Birmingham Heartlands Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Zoë E Kooreman
- Department of Dermatology, Amphia Hospital, Breda, The Netherlands
| | - Dharmanand Ramnarain
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Kamal Mahawar
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Bariatric Unit, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Chetan Parmar
- Department of Surgery, Whittington Health NHS Trust, London, UK
| | - Brijesh Madhok
- East Midlands Bariatric and Metabolic Institute, University Hospital of Derby and Burton NHS Foundation Trust, Burton, UK
| | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.
- Department of Intensive Care Medicine, ETZ Elisabeth, Hilvarenbeekseweg 60, P.O. Box 90151, 5000 LC, Tilburg, The Netherlands.
| |
Collapse
|
53
|
Galuška D, Dlouhá L, Hubáček JA, Kaňová K. Genetics of T2DM and Its Chronic Complications: Are We Any Closer to the Individual Prediction of Genetic Risk? Folia Biol (Praha) 2022; 68:159-179. [PMID: 37256551 DOI: 10.14712/fb2022068050159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that has risen in global prevalence over recent decades, resulting in concomitant and enormous socio-economic impacts. In addition to the well-documented risk factors of obesity, poor dietary habits and sedentary lifestyles, genetic background plays a key role in the aetiopathogenesis of diabetes and the development of associated micro- and macrovascular complications. Recent advances in genomic research, notably next-generation sequencing and genome- wide association studies, have greatly improved the efficiency with which genetic backgrounds to complex diseases are analysed. To date, several hundred single-nucleotide polymorphisms have been associated with T2DM or its complications. Given the polygenic background to T2DM (and numerous other complex diseases), the degree of genetic predisposition can be treated as a "continuous trait" quantified by a genetic risk score. Focusing mainly on the Central European population, this review summarizes recent state-of-the-art methods that have enabled us to better determine the genetic architecture of T2DM and the utility of genetic risk scores in disease prediction.
Collapse
Affiliation(s)
- D Galuška
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - L Dlouhá
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - J A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 3rd Department of Medicine - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - K Kaňová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
54
|
Masierek M, Nabrdalik K, Janota O, Kwiendacz H, Macherski M, Gumprecht J. The Review of Insulin Pens-Past, Present, and Look to the Future. Front Endocrinol (Lausanne) 2022; 13:827484. [PMID: 35355552 PMCID: PMC8959107 DOI: 10.3389/fendo.2022.827484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022] Open
Abstract
Currently, there are about 150-200 million diabetic patients treated with insulin globally. The year 2021 is special because the 100th anniversary of the insulin discovery is being celebrated. It is a good occasion to sum up the insulin pen technology invention and improvement which are nowadays the leading mode of an insulin delivery. Even though so many years have passed, insulin is still administered subcutaneously, that is why devices to deliver it are of great importance. Insulin pens have evolved only through the last decades (the reusable, durable pens, and the disposable, prefilled pens) and modern smart insulin pens have been developed in the last few years, and both types of the devices compared to traditional syringes and vials are more convenient, discrete in use, have better dosing accuracy, and improve adherence. In this review, we will focus on the history of insulin pens and their improvement over the previous decades.
Collapse
Affiliation(s)
- Małgorzata Masierek
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- *Correspondence: Katarzyna Nabrdalik,
| | - Oliwia Janota
- Students’ Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Maksymilian Macherski
- Students’ Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
55
|
Smith TK. Racial and Social Impacts of Diabetes Mellitus: An Autobiographical Case Report. Cureus 2021; 13:e20211. [PMID: 35004031 PMCID: PMC8729318 DOI: 10.7759/cureus.20211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/05/2022] Open
Abstract
Type two diabetes mellitus is a chronic medical condition encountered by physicians providing medical care to adult and pediatric patients. This autobiographical case report discusses type two diabetes from the perspective of positive and negative interactions with the healthcare system in managing diabetes mellitus, especially for a physician of color and underrepresented in medicine. Bias and assumptions occur for some people diagnosed with diabetes mellitus or presumed to have the disease based on age, body habitus, comorbidities, lived environment, race, and ethnicity. I specifically address the social implications of bias experienced by persons of color strictly based on race and ethnicity. Intensified awareness about systemic and institutional racism in healthcare warrants eliminating the inequities and disparities in the medical management and treatment of diabetes mellitus.
Collapse
|
56
|
Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem J 2021; 478:3809-3826. [PMID: 34751699 DOI: 10.1042/bcj20210145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
While the etiology of type 2 diabetes is multifaceted, the induction of insulin resistance in skeletal muscle is a key phenomenon, and impairments in insulin signaling in this tissue directly contribute to hyperglycemia. Despite the lack of clarity regarding the specific mechanisms whereby insulin signaling is impaired, the key role of a high lipid environment within skeletal muscle has been recognized for decades. Many of the proposed mechanisms leading to the attenuation of insulin signaling - namely the accumulation of reactive lipids and the pathological production of reactive oxygen species (ROS), appear to rely on this high lipid environment. Mitochondrial biology is a central component to these processes, as these organelles are almost exclusively responsible for the oxidation and metabolism of lipids within skeletal muscle and are a primary source of ROS production. Classic studies have suggested that reductions in skeletal muscle mitochondrial content and/or function contribute to lipid-induced insulin resistance; however, in recent years the role of mitochondria in the pathophysiology of insulin resistance has been gradually re-evaluated to consider the biological effects of alterations in mitochondrial content. In this respect, while reductions in mitochondrial content are not required for the induction of insulin resistance, mechanisms that increase mitochondrial content are thought to enhance mitochondrial substrate sensitivity and submaximal adenosine diphosphate (ADP) kinetics. Thus, this review will describe the central role of a high lipid environment in the pathophysiology of insulin resistance, and present both classic and contemporary views of how mitochondrial biology contributes to insulin resistance in skeletal muscle.
Collapse
|
57
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
58
|
Jahan S, Mahmud MH, Khan Z, Alam A, Khalil AA, Rauf A, Tareq AM, Nainu F, Tareq SM, Emran TB, Khan M, Khan IN, Wilairatana P, Mubarak MS. Health promoting benefits of pongamol: An overview. Biomed Pharmacother 2021; 142:112109. [PMID: 34470730 DOI: 10.1016/j.biopha.2021.112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Plant-derived chemicals are a source of novel chemotherapeutic agents. Throughout the human civilization, these novel chemicals have led to the discovery of new pharmacological active agents. Research on herbal medicine is of great importance, as most of the active agents used for treating numerous diseases are from natural sources, while other agents are either semisynthetic or synthetic. Pongamol, a flavonoid, which is the main constituent of Pongamia pinnata, is one such active agents, which exhibits diverse pharmacological activities. Various in vivo and in vitro studies revealed that pongamol is a potentially active agent, as it exerts anticancer, anti-inflammatory, antioxidant, antimicrobial, and anti-diabetic activities. Accordingly, the aim of the present review was to give an up-to-date overview on the chemistry, isolation, bioavailability, pharmacological activity, and health benefits of pongamol. This review focuses on the medicinal and health promoting activities of pongamol, along with possible mechanisms of action. For this purpose, this review summarizes the most recent literature pertaining to pongamol as a therapeutic agent against several diseases. In addition, the review covers information related to the toxicological assessment and safety of this phytochemical, and highlights the medicinal and folk values of this compound against various diseases and ailments.
Collapse
Affiliation(s)
- Shamima Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Md Hasan Mahmud
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Ashraful Alam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia.
| | - Syed Mohammed Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University Lahore, Pakistan.
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
59
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
60
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
61
|
POINT: Artificial Sweeteners and Obesity-Not the Solution and Potentially a Problem. Endocr Pract 2021; 27:1052-1055. [PMID: 34389515 DOI: 10.1016/j.eprac.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Nonnutritive sweeteners (NNS) have been widely implemented as replacements for naturally occurring sugars in a wide array of foods, beverages, and non-consumables for the sake of reducing calories. The use of these products, whether naturally occurring or manufactured, have become commonplace and accepted as de facto beneficial. This point argues that rigorous analysis of the available data do not confirm benefit and indeed suggest harm. METHODS A literature review was conducted on all the available NNS supplements that are commonly used in all types of products. There was a focus on studies that evaluated the long-term as well as neurohormonal effects of NNS products. Key words used in the search included artificial sweeteners, nonnutritive sweeteners, saccharin, aspartame, acesulfame, sucralose, stevia, xylitol, and erythritol. RESULTS There was a consistent trend of no to minimal benefit when NNS were used instead of calorie-containing sweeteners particularly in persons with obesity or pre-diabetes risks. There was a consistent finding of detriment to the neurohormonal regulation of satiety, weight, and energy regulation. The only studies that were neutral to positive were biased studies funded by the large food and beverage corporations or done in healthy weight individuals without any underlying health concerns and for a very short time frame. CONCLUSION Although NNS usage has become ubiquitous, there has been very little in the way of rigorous review of the neurohormonal and physiologic effects. The arguments for NNS are purely thermodynamic in nature despite the overwhelming evidence that obesity and adiposity-related diseases are not that simplistic in their pathophysiology. Given that there are differences in how individuals process nutrition signals, very few studies focus on gender or disease predisposition differences and how they affect the outcomes when NNS are used. Studies that controlled these variables showed worsening outcomes when NNS products are used in the fight against adiposity-related diseases, such as hypertension, dyslipidemia, and diabetes. Alterations in the gut microbiome towards a more inflammatory pattern of gut microbiota is a disturbing finding in acute as well as chronic users of NNS regardless of baseline weight or disease. Most importantly, there were numerous studies that found long-term damage to the neurohormonal control of satiety in chronic users of NNS. In the fight against obesity and adiposity-related diseases, we cannot afford to blindly accept their usage based on a broken paradigm of thermodynamics and false assumptions that we are all created equal biologically.
Collapse
|
62
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
63
|
Shaikh F, shah T, Madkhali NAB, Gaber A, Alsanie WF, Ali S, Ansari S, Rafiq M, Sayyed R, Rind NA, Rind KH, Shar AH, Asdaq SMB. Frequency distribution and association of Fat-mass and obesity (FTO) gene SNP rs-9939609 variant with Diabetes Mellitus Type-II population of Hyderabad, Sindh, Pakistan. Saudi J Biol Sci 2021; 28:4183-4190. [PMID: 34354398 PMCID: PMC8325002 DOI: 10.1016/j.sjbs.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIM Diabetes Mellitus (DM) is one of the important public health issues worldwide. The Fat mass obesity (FTO) gene rs-9939609 variant identified single nucleotide polymorphism (SNP) with the T to A missense mutation, and has a strong association with T2DM. FTO gene is present on chromosome "16q12.2" comprising of nine exons. FTO gene rs-9939609 a variant is commonly found in the Pakistani Population. The purpose of the study was to alert the population about the rs-9939609 variant SNP, having a strong association with T2DM. MATERIAL AND METHODS Total of 190 participants were included in the present cross-sectional study. To collect the samples non-probability convenience technique was used. subjects were recruited and divided into three groups, normal healthy subjects, obese and T2DM. The patients were selected from the Medicine department Jamshoro/Hyderabad by filling the pre-designed proforma, as well as verbal and written consent taken from study participants. To analysed the data ANOVA Post hoc (Tukey-test) was applied for comparison among groups (P < 0.05) and "SNP-STAT" online software was used for frequencies. RESULTS The BMI, neck circumference, waist circumference and lipid profile, fasting blood sugar and HbA1c was found significant (p < 0.001) in both genders as compared to control. Homozygous and heterozygous distribution of allelic and genotyping frequency was found in study participants. 37.9 %T/A, 57.4% T/T, and A/A were 4.7%. The FTO gene rs-9939609 variant amplified and have an increased risk of developing T2DM in the Sindh population. Codominant model odd ratio of T/A showed 2.42 (CI)1.23-3.84, with significant p < 0.032. CONCLUSION The present study concluded that the FTO gene SNP rs-9939609 variant was found in the population of Hyderabad, Sindh and having strong association with T2DM and obese individuals. Increase BMI, neck and waist circumference are the biomarkers of obesity and causative factors of T2DM.
Collapse
Affiliation(s)
- Farheen Shaikh
- Department of Biochemistry, Peoples University of Medical and Health Sciences for Women, Shaheed Benazir Abad, Sindh, Pakistan
| | - Tazeen shah
- Department of Physiology, Liaquat University of Medical and Health Sciences, Jamshoro, (LUMHS) Sindh, Pakistan
| | | | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box, 11099, Taif 21944, Saudi Arabia
| | - Walaa F. Alsanie
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box, 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sanum Ali
- Department of Anatomy, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Shafaq Ansari
- Department of Physiology, Muhammad Medical College, Mirpurkhas, Sindh, Pakistan
| | - Muhammad Rafiq
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - R.Z. Sayyed
- Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL 36830, USA
| | - Nadir Ali Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Akhtar Hussain Shar
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | | |
Collapse
|
64
|
Adler A, Bennett P, Colagiuri Chair S, Gregg E, Narayan KMV, Inês Schmidt M, Sobngwi E, Tajima N, Tandon N, Unwin N, Wild S, Yudkin J, Levitt N, Mohan V, Montgomery S, Nyirenda MJ, Tuomilehto J, Den Boon S, Hocking S. REPRINT OF: CLASSIFICATION OF DIABETES MELLITUS. Diabetes Res Clin Pract 2021:108972. [PMID: 34343595 DOI: 10.1016/j.diabres.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Executive Summary This document updates the 1999 World Health Organization (WHO) classification of diabetes. It prioritizes clinical care and guides health professionals in choosing appropriate treatments at the time of diabetes diagnosis, and provides practical guidance to clinicians in assigning a type of diabetes to individuals at the time of diagnosis. It is a compromise between clinical and aetiological classification because there remain gaps in knowledge of the aetiology and pathophysiology of diabetes. While acknowledging the progress that is being made towards a more precise categorization of diabetes subtypes, the aim of this document is to recommend a classification that is feasible to implement in different settings throughout the world. The revised classification is presented in Table 1. Unlike the previous classification, this classification does not recognize subtypes of type 1 diabetes and type 2 diabetes and includes new types of diabetes ("hybrid types of diabetes" and "unclassified diabetes").
Collapse
Affiliation(s)
| | - Peter Bennett
- Phoenix Epidemiology & Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, USA
| | | | - Edward Gregg
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | - Eugene Sobngwi
- Faculté de Medecine et des Sciences Biomedicales et Centre de Biotechnologie, Université de Yaounde 1, Cameroon
| | - Naoko Tajima
- Jikei University School of Medicine, Tokyo, Japan
| | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - Nigel Unwin
- Chronic Disease Research Centre, The University of the West Indies, Bridgetown, Barbados, and MRC Epidemiology Unit, University of Cambridge, UK
| | | | | | - Naomi Levitt
- Diabetic Medicine and Endocrinology, Department of Medicine at Groote Schuur Hospital and University of Cape Town, South Africa
| | | | | | - Moffat J Nyirenda
- Medical Research Council/Uganda Virus Research Institute/London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | | | |
Collapse
|
65
|
Kinter LB, DeHaven R, Johnson DK, DeGeorge JJ. A Brief History of Use of Animals in Biomedical Research and Perspective on Non-Animal Alternatives. ILAR J 2021; 62:7-16. [PMID: 34181728 DOI: 10.1093/ilar/ilab020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Animals have been closely observed by humans for at least 17 000 years to gain critical knowledge for human and later animal survival. Routine scientific observations of animals as human surrogates began in the late 19th century driven by increases in new compounds resulting from synthetic chemistry and requiring characterization for potential therapeutic utility and safety. Statistics collected by the United States Department of Agriculture's Animal and Plant Health Inspection Service and United Kingdom Home Office show that animal usage in biomedical research and teaching activities peaked after the mid-20th century and thereafter fell precipitously until the early 21st century, when annual increases (in the UK) were again observed, this time driven by expansion of genetically modified animal technologies. The statistics also show a dramatic transfer of research burden in the 20th and 21st centuries away from traditional larger and more publicly sensitive species (dogs, cats, non-human primates, etc) towards smaller, less publicly sensitive mice, rats, and fish. These data show that new technology can produce multi-faceted outcomes to reduce and/or to increase annual animal usage and to redistribute species burden in biomedical research. From these data, it is estimated that annual total vertebrate animal usage in biomedical research and teaching in the United States was 15 to 25 million per year during 2001-2018. Finally, whereas identification and incorporation of non-animal alternatives are products of, but not an integral component of, the animal research cycle, they replace further use of animals for specific research and product development purposes and create their own scientific research cycles, but are not necessarily a substitute for animals or humans for discovery, acquisition, and application of new (eg, previously unknown and/or unsuspected) knowledge critical to further advance human and veterinary medicine and global species survival.
Collapse
Affiliation(s)
- Lewis B Kinter
- GLP Scientific Consulting, Unionville, Pennsylvania, USA
| | - Ron DeHaven
- DeHaven Veterinary Solutions, LLC, El Dorado Hills, California, USA
| | | | | |
Collapse
|
66
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
67
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
68
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
69
|
Franco NH, Miranda SB, Kovács N, Nagy A, Thiện BQ, Reis F, Varga O. Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:155. [PMID: 33669354 PMCID: PMC7920304 DOI: 10.3390/biology10020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
Although there is a wide range of animal models of type 2 diabetes mellitus (T2DM) used in research; we have limited evidence on their translation value. This paper provides a) a comparison of preclinical animal and clinical results on the effect of five dipeptidyl peptidase-4 (DPP4) inhibitors by comparing the pharmaceutical caused glucose changes, and b) an evaluation of methodological and reporting standards in T2DM preclinical animal studies. DPP4 inhibitors play an important role in the clinical management of T2DM: if metformin alone is not sufficient enough to control the blood sugar levels, DPP4 inhibitors are often used as second-line therapy; additionally, DPP-4 inhibitors are also used in triple therapies with metformin and sodium-glucose co-transporter-2 (SGLT-2) inhibitors or with metformin and insulin. In our analysis of 124 preclinical studies and 47 clinical trials, (1) we found no evidence of species differences in glucose change response to DPP4 inhibitors, which may suggest that, for this drug class, studies in mice and rats may be equally predictive of how well a drug will work in humans; and (2) there is good reporting of group size, sex, age, euthanasia method and self-reported compliance with animal welfare regulations in animal studies but poor reporting of justification of group size, along with a strong bias towards the use of male animals and young animals. Instead of the common non-transparent model selection, we call for a reflective and evidenced-based assessment of predictive validity of the animal models currently available.
Collapse
Affiliation(s)
- Nuno Henrique Franco
- Laboratory Animal Science Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (N.H.F.); (S.B.M.)
- Instituto de Investigação e Inovação da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sonia Batista Miranda
- Laboratory Animal Science Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (N.H.F.); (S.B.M.)
- Instituto de Investigação e Inovação da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nóra Kovács
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary;
| | - Attila Nagy
- Faculty of Public Health, University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary;
| | - Bùi Quốc Thiện
- Faculty of Medicine, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary;
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Orsolya Varga
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary;
- Office for Research Groups Attached to Universities and Other Institutions, Hungarian Academy of Sciences, 1051 Budapest, Hungary
| |
Collapse
|
70
|
Alam MA, Quamri MA, Sofi G. Historical account of endocrinal disorders in Unani medicine. J Basic Clin Physiol Pharmacol 2021; 32:1013-1019. [PMID: 33550777 DOI: 10.1515/jbcpp-2020-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
Hippocratic doctrine of four humors and qualities is implicated to be a pioneer of modern endocrinology because of the concept of dyscrasia. Imbalance in humors causes disease. Unani scholars were aware of endocrinological disorders like endocrinologic syndrome (i.e., association of amenorrhea and galactorrhoea in a non-pregnant woman), castration, contraceptives techniques, infertility, obesity, diabetes etc., and also their mode of remedy, albeit with a phenomenological approach. Their understanding of the symptoms and signs related to endocrinologic syndromes, which were explained in detail in the recent account of the endocrine system, is presented here with historical chronology. The survey was carried out from the literature of the Unani system of medicine, and the same was analyzed from the observations reported in various indexed journals and reputed books. The paper details the account of endocrinologic syndrome from the Greek era to the end of the medieval ages. - Description of the endocrinal disorders is mentioned in Unani Medicine for centuries, albeit with a different name for the disease category.- According to Unani Medicine, this disease arises due to abnormal quality and quantity of humour.- Renowned Unani scholars like Hippocrates (370-460 BC), Aristotle (384-322 BC), Aretaeos of Kappadokia(81-96 AD), Galen (130-200 AD), Zakaria Razi (865-925 AD), Majusi (930-994 AD), Ibn-e-Sina (980-1037 AD), Albucasis (1013-1106 AD) and Ismail Jorjani (1042-1137 AD) also treated such ailments through Unani medicine (plant, mineral and animal origin drugs).-Majusi performed surgery of Goiter and mentioned in his treatise and recommended the method of surgery.-Albucasis performed the first successful thyroidectomy under opium (Papaver somniferum L.) sedation and simple ligatures and hot cautery in the name of 'elephantiasis' of the throat (goiter).- The principles of treatment in Unani medicine may provide a guide for better management of endocrinal disorders (e.g., hypothyroidism, hyperthyroidism, diabetes etc.).- The treatment in Unani medicine for various diseases/syndromes/signs, which are now likely associated with hormone dysfunction, can open up the new field of Unani therapeutics for these diseases for the exploration of better treatment options.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of IlmulAdvia (Pharmacology), National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
71
|
Ergun-Longmire B, Clemente E, Vining-Maravolo P, Roberts C, Buth K, Greydanus DE. Diabetes education in pediatrics: How to survive diabetes. Dis Mon 2021; 67:101153. [PMID: 33541707 DOI: 10.1016/j.disamonth.2021.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most common abnormal carbohydrate metabolism disorder affecting millions of people worldwide. It is characterized by hyperglycemia as a result of ß-cell destruction or dysfunction by both genetic and environmental factors. Over time chronic hyperglycemia leads to microvascular (i.e., retinopathy, nephropathy and neuropathy) and macrovascular (i.e., ischemic heart disease, peripheral vascular disease, and cerebrovascular disease) complications of diabetes. Diabetes complication trials showed the importance of achieving near-normal glycemic control to prevent and/or reduce diabetes-related morbidity and mortality. There is a staggering rate of increased incidence of diabetes in youth, raising concerns for future generations' health, quality of life and its enormous economic burden. Despite advancements in the technology, diabetes management remains cumbersome. Training individuals with diabetes to gain life-long survival skills requires a comprehensive and ongoing diabetes education by a multidisciplinary team. Diabetes education and training start at the time of diagnosis of diabetes and should be continuous throughout the course of disease. The goal is to empower the individuals and families to gain diabetes self-management skills. Diabetes education must be individualized depending on the individual's age, education, family dynamics, and support. In this article, we review the history of diabetes, etiopathogenesis and clinical presentation of both type 1 and type 2 diabetes in children as well as adolescents. We then focus on diabetes management with education methods and materials.
Collapse
Affiliation(s)
- Berrin Ergun-Longmire
- Associate Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| | - Ethel Clemente
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Patricia Vining-Maravolo
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Cheryl Roberts
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Koby Buth
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Donald E Greydanus
- Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI United States
| |
Collapse
|
72
|
Verhoeff K, Henschke SJ, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells 2021; 10:cells10020278. [PMID: 33573247 PMCID: PMC7911560 DOI: 10.3390/cells10020278] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last century, diabetes has been treated with subcutaneous insulin, a discovery that enabled patients to forego death from hyperglycemia. Despite novel insulin formulations, patients with diabetes continue to suffer morbidity and mortality with unsustainable costs to the health care system. Continuous glucose monitoring, wearable insulin pumps, and closed-loop artificial pancreas systems represent an advance, but still fail to recreate physiologic euglycemia and are not universally available. Islet cell transplantation has evolved into a successful modality for treating a subset of patients with ‘brittle’ diabetes but is limited by organ donor supply and immunosuppression requirements. A novel approach involves generating autologous or immune-protected islet cells for transplant from inducible pluripotent stem cells to eliminate detrimental immune responses and organ supply limitations. In this review, we briefly discuss novel mechanisms for subcutaneous insulin delivery and define their shortfalls. We describe embryological development and physiology of islets to better understand their role in glycemic control and, finally, discuss cell-based therapies for diabetes and barriers to widespread use. In response to these barriers, we present the promise of stem cell therapy, and review the current gaps requiring solutions to enable widespread use of stem cells as a potential cure for diabetes.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Correspondence: ; Tel.: +1-780-984-1836
| | - Sarah J. Henschke
- Department of Emergency Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | | | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Andrew Mark James Shapiro
- FRCS (Eng) FRCSC MSM FCAHS, Clinical Islet Transplant Program, Alberta Diabetes Institute, Department of Surgery, Canadian National Transplant Research Program, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
73
|
Babel RA, Dandekar MP. A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications. Curr Diabetes Rev 2021; 17:457-473. [PMID: 33143626 DOI: 10.2174/1573399816666201103143818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Modern lifestyle, changing eating habits and reduced physical work have been known to culminate into making diabetes a global pandemic. Hyperglycemia during the course of diabetes is an important causative factor for the development of both microvascular (retinopathy, nephropathy and neuropathy) and macrovascular (coronary artery disease, stroke and peripheral artery disease) complications. In this article, we summarize several mechanisms accountable for the development of both microvascular and macrovascular complications of diabetes. Several metabolic and cellular events are linked to the augmentation of oxidative stress like the activation of advanced glycation end products (AGE) pathway, polyol pathway, Protein Kinase C (PKC) pathway, Poly-ADP Ribose Polymerase (PARP) and hexosamine pathway. Oxidative stress also leads to the production of reactive oxygen species (ROS) like hydroxyl radical, superoxide anion and peroxides. Enhanced levels of ROS rescind the anti-oxidant defence mechanisms associated with superoxide dismutase, glutathione and ascorbic acid. Moreover, ROS triggers oxidative damages at the level of DNA, protein and lipids, which eventually cause cell necrosis or apoptosis. These physiological insults may be related to the microvascular complications of diabetes by negatively impacting the eyes, kidneys and the brain. While underlying pathomechanism of the macrovascular complications is quite complex, hyperglycemia associated atherosclerotic abnormalities like changes in the coagulation system, thrombin formation, fibrinolysis, platelet and endothelial function and vascular smooth muscle are well proven. Since hyperglycemia also modulates the vascular inflammation, cytokines, macrophage activation and gene expression of growth factors, elevated blood glucose level may play a central role in the development of macrovascular complications of diabetes. Taken collectively, chronic hyperglycemia and increased production of ROS are the miscreants for the development of microvascular and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Rishabh A Babel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
74
|
Yahaya TO, Yusuf AB, Danjuma JK, Usman BM, Ishiaku YM. Mechanistic links between vitamin deficiencies and diabetes mellitus: a review. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 8:189-202. [DOI: 10.1080/2314808x.2021.1945395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Tajudeen O. Yahaya
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - AbdulRahman B. Yusuf
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Jamilu K. Danjuma
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Bello M. Usman
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Yahaya M. Ishiaku
- Department of Biochemistry and Molecular Biology, Federal University Dutsinma, Katsina, Nigeria
| |
Collapse
|
75
|
Mass Spectrometry-based Metabolomics in Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:509-531. [PMID: 33834448 DOI: 10.1007/978-981-33-6064-8_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.
Collapse
|
76
|
Cui T, Li Y, Wei Z, Zhang X, Li W, Zhou W, Lu J, Li J, Yi X, Zeng Y, Liu C, Yan F. Pharmacokinetics, tissue distribution and excretion of a novel long-acting human insulin analogue - recombinant insulin LysArg in rats. Xenobiotica 2020; 51:307-315. [PMID: 33151101 DOI: 10.1080/00498254.2020.1847361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As a novel long-acting recombinant human insulin analogue, it is necessary to carry out the preclinical research for insulin LysArg. The purpose of this study was to characterise the pharmacokinetic, tissue distribution and excretion of insulin LysArg and provide a reference for its development. Three methods were used to measure the content of insulin LysArg in biological samples after a single subcutaneous administration in rats, including radioassay, radioassay after precipitation with TCA and separation by HPLC. After Subcutaneous administration of recombinant insulin LysArg 1, 2, 4 U/kg in rats, it showed both Cmax and AUC0-t were positively correlated with the dose. In the meanwhile, after a single subcutaneous administration of recombinant insulin LysArg at 2 U/kg in rats, the amount of radioactivity in most organs was highest at 1.5 h and then decreased gradually, no accumulation was found. The highest level of insulin LysArg was observed in the kidney. Like other macromolecules, insulin LysArg was mainly excreted from urine. The study fully illustrated the pharmacokinetic pattern of insulin LysArg, provided valuable informations to support its further development about safety and toxicology.
Collapse
Affiliation(s)
- Tao Cui
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Yazhuo Li
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Zihong Wei
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Xingyan Zhang
- Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Wei Li
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Wei Zhou
- Hefei Tianmai Biotechnology Development Co. Ltd , Hefei, China
| | - Jiangjie Lu
- Hefei Tianmai Biotechnology Development Co. Ltd , Hefei, China
| | - Jing Li
- Hefei Tianmai Biotechnology Development Co. Ltd , Hefei, China
| | - Xiulin Yi
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Yong Zeng
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Changxiao Liu
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China
| | - Fengying Yan
- Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics , Tianjin, China.,Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
77
|
Bondy SC, Wu M, Prasad KN. Alternatives to Insulin for the Regulation of Blood Sugar Levels in Type 2 Diabetes. Int J Mol Sci 2020; 21:E8302. [PMID: 33167495 PMCID: PMC7663956 DOI: 10.3390/ijms21218302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022] Open
Abstract
This short overview focuses on the causation and treatment of type 2 diabetes (T2D). Emphasis is given to the historical basis of understanding this disease and the background leading to emergence of the central role of insulin. The strengths of insulin administration in the treatment of diabetes are profound, but these need to be balanced against several serious shortcomings of its extended use. Some alternative approaches to T2D management are considered. Insulin is no longer considered as the first choice for type 2 diabetes, and an expanding range of new therapeutic possibilities is emerging. While these may lack the potency of insulin, at a minimum, they allow a major reduction in the intensity of insulin use. In view of the rising worldwide incidence of this disease, it is imperative to develop safe and inexpensive means of limiting its potential for impairment of normal functioning.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Evergreen World Healthcare Center, Garden Grove, CA 92844, USA;
| | | |
Collapse
|
78
|
Shobako N, Ohinata K. Anti-Hypertensive Effects of Peptides Derived from Rice Bran Protein. Nutrients 2020; 12:nu12103060. [PMID: 33036355 PMCID: PMC7600238 DOI: 10.3390/nu12103060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is one of the major risk factors for arteriosclerosis. Anti-hypertensive peptides derived from animal proteins, such as milk, eggs and fish, are well studied. Anti-hypertensive peptides have also been identified from plant proteins such as soybeans. Rice bran, a byproduct of white rice polishing, is rich in protein and its high protein efficiency ratio is well known. This review discusses the anti-hypertensive peptides identified from rice bran protein and their mechanisms. In addition, we describe protease-digested rice bran from which functional peptides have not been isolated.
Collapse
|
79
|
Gupta A, Phatak S, Rao YS, Ramesh J, Sanyal D. Consensus on Choice of Insulin Pen Devices in Routine Clinical Practice in India. Diabetes Technol Ther 2020; 22:777-786. [PMID: 32233934 DOI: 10.1089/dia.2019.0494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although insulin delivery devices are widely used by the patients, there is a paucity of published guidelines to help professionals manage their patients in insulin therapies. To provide simple and easily implementable guidelines to health care physicians on the choice of insulin delivery devices in routine clinical practice, experts in diabetes gathered together and discussed the recommendations at the National insulin Summit 2018. An ideal insulin delivery device should accurately deliver the prescribed dose of insulin and be easy to use. Recommendations are: (1) insulin should be initiated by using an insulin device if the patient seems to discontinue insulin therapy. (2) Pen devices offer accurate dosing than a syringe and vial and are associated with cost savings in the long term. (3) Switching over from syringes and vial to disposable pen devices improves adherence. (4) FlexPen® offers better accuracy, and it requires lower dose force and injection force than SoloStar® and KwikPen® (5). Durable delivery pens such as NovoPen® 4 maintain accuracy and low dose force compared with vials and syringes. (6) One pen should be used by only one patient. (7) Regular counseling on the proper use of the pen device is required regularly. This consensus-based recommendation is a useful reference tool for health care practitioners to initiate insulin therapy in patients with diabetes by using the appropriate insulin pen device.
Collapse
Affiliation(s)
- Arvind Gupta
- Director and Consultant Physician at Jaipur Diabetes Research Centre, Jaipur, Rajasthan
| | - Sanjeev Phatak
- Founder, Consultant Diabetologist, Vijayratna Diabetes Diagnostic Treatment Centre, Ahmedabad, India
| | - Y Sadashiv Rao
- Consultant Physician and Managing Director, Yalamanchi Hospital and Research Centre Private Limited, Vijayawada
| | - Jayanthy Ramesh
- Department of Endocrinology, Andhra Medical College, Visakhapatnam, India
| | - Debmalya Sanyal
- Consultant Endocrinologist, Department of Endocrinology, G.D. Diabetic Institute, R.N. Tagore Hospital, Kolkata, India
| |
Collapse
|
80
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
81
|
Abstract
The concept of access to health care has been dominated by the visit-based paradigm. However, with the advent of telehealth, wearables, and mobile applications, much of the information that is exchanged at the time of the provider encounter can be transmitted virtually. This calls for a reconceptualization of access that is not so heavily reliant on "the visit." We have proposed a concept of connected access that is "dose related," based on the expertise of the provider and the channel through which a patient and a provider communicate. Particularly relevant to chronic care, the intensity of access can be titrated according to the needs of the patient at different points in time as clinical needs change. To function optimally, this model requires value-based payment and a new care model that occurs at the intersection of team medicine, virtual care, self-care, and traditional visit-based care. Made possible through connected technologies, "Connected access" fulfills the vision articulated in the "Crossing the Quality Chasm" report (2001) that care is based on continuous healing relationships; hence, the health care system should be available at all times.
Collapse
|
82
|
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:5888. [PMID: 32824337 PMCID: PMC7460697 DOI: 10.3390/ijms21165888] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Based on the assumption that characterizing the history of a disease will help in improving practice while offering a clue to research, this article aims at reviewing the history of nonalcoholic fatty liver disease (NAFLD) in adults and children. To this end, we address the history of NAFLD histopathology, which begins in 1980 with Ludwig's seminal studies, although previous studies date back to the 19th century. Moreover, the principal milestones in the definition of genetic NAFLD are summarized. Next, a specific account is given of the evolution, over time, of our understanding of the association of NAFLD with metabolic syndrome, spanning from the outdated concept of "NAFLD as a manifestation of the Metabolic Syndrome", to the more appropriate consideration that NAFLD has, with metabolic syndrome, a mutual and bi-directional relationship. In addition, we also report on the evolution from first intuitions to more recent studies, supporting NAFLD as an independent risk factor for cardiovascular disease. This association probably has deep roots, going back to ancient Middle Eastern cultures, wherein the liver had a significance similar to that which the heart holds in contemporary society. Conversely, the notions that NAFLD is a forerunner of hepatocellular carcinoma and extra-hepatic cancers is definitely more modern. Interestingly, guidelines issued by hepatological societies have lagged behind the identification of NAFLD by decades. A comparative analysis of these documents defines both shared attitudes (e.g., ultrasonography and lifestyle changes as the first approaches) and diverging key points (e.g., the threshold of alcohol consumption, screening methods, optimal non-invasive assessment of liver fibrosis and drug treatment options). Finally, the principal historical steps in the general, cellular and molecular pathogenesis of NAFLD are reviewed. We conclude that an in-depth understanding of the history of the disease permits us to better comprehend the disease itself, as well as to anticipate the lines of development of future NAFLD research.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Ospedale Civile di Baggiovara, UOC Medicina Metabolica, Dipartimento di Medicina Interna Generale, d’Urgenza e post Acuzie, Azienda Ospedaliero-Universitaria di Modena, Via Giardini 1135, 41125 Modena, Italy
| | - Simona Leoni
- Internal Medicine Unit, Department of Digestive Diseases, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40136 Bologna, Italy;
| | - Khalid A. Alswat
- Liver Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11322, Saudi Arabia;
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya 19111, Egypt;
| |
Collapse
|
83
|
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends Endocrinol Metab 2020; 31:448-458. [PMID: 32396845 PMCID: PMC7987328 DOI: 10.1016/j.tem.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Traditional methods for diabetes management require constant and tedious glucose monitoring (GM) and insulin injections, impacting quality of life. The global diabetic population is expected to increase to 439 million, with approximately US$490 billion in healthcare expenditures by 2030, imposing a significant burden on healthcare systems worldwide. Recent advances in nanotechnology have emerged as promising alternative strategies for the management of diabetes. For example, implantable nanosensors are being developed for continuous GM, new nanoparticle (NP)-based imaging approaches that quantify subtle changes in β cell mass can facilitate early diagnosis, and nanotechnology-based insulin delivery methods are being explored as novel therapies. Here, we provide a holistic summary of this rapidly advancing field compiling all aspects pertaining to the management of diabetes.
Collapse
Affiliation(s)
- Luke R Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Devleena Das
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Raghavendra G Mirmira
- The University of Chicago, Kovler Diabetes Center and the Department of Medicine, Chicago, IL 60637, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA.
| |
Collapse
|
84
|
Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet 2020; 98:525-547. [PMID: 32385895 DOI: 10.1111/cge.13772] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, also known simply as diabetes, has been described as a chronic and complex endocrine metabolic disorder that is a leading cause of death across the globe. It is considered a key public health problem worldwide and one of four important non-communicable diseases prioritized for intervention through world health campaigns by various international foundations. Among its four categories, Type 2 diabetes (T2D) is the commonest form of diabetes accounting for over 90% of worldwide cases. Unlike monogenic inherited disorders that are passed on in a simple pattern, T2D is a multifactorial disease with a complex etiology, where a mixture of genetic and environmental factors are strong candidates for the development of the clinical condition and pathology. The genetic factors are believed to be key predisposing determinants in individual susceptibility to T2D. Therefore, identifying the predisposing genetic variants could be a crucial step in T2D management as it may ameliorate the clinical condition and preclude complications. Through an understanding the unique genetic and environmental factors that influence the development of this chronic disease individuals can benefit from personalized approaches to treatment. We searched the literature published in three electronic databases: PubMed, Scopus and ISI Web of Science for the current status of T2D and its associated genetic risk variants and discus promising approaches toward a personalized management of this chronic, non-communicable disorder.
Collapse
Affiliation(s)
- Mahmoud M Sirdah
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Biology Department, Al Azhar University-Gaza, Gaza, Palestine
| | - N Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
85
|
Carlson AL, Criego AB, Martens TW, Bergenstal RM. HbA 1c: The Glucose Management Indicator, Time in Range, and Standardization of Continuous Glucose Monitoring Reports in Clinical Practice. Endocrinol Metab Clin North Am 2020; 49:95-107. [PMID: 31980124 DOI: 10.1016/j.ecl.2019.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Continuous glucose monitoring (CGM) use is growing rapidly among people with diabetes and beginning to be standard of care for managing glucose levels in insulin therapy. With this increased use, there is a need to standardize CGM data. CGM standardization has been set forth by expert panels. The Glucose Management Indicator is a concept using the CGM-derived mean glucose to provide a value that can be understood similarly to hemoglobin A1c. The times an individual spends in various glucose ranges is emerging as an important set of metrics. Metrics derived from patient CGM data are changing the way diabetes is managed.
Collapse
Affiliation(s)
- Anders L Carlson
- International Diabetes Center & Health Partners, 3800 Park Nicollet Boulevard, Minneapolis, MN 55416, USA.
| | - Amy B Criego
- International Diabetes Center, Park Nicollet Clinic Pediatric Endocrinology, 3800 Park Nicollet Boulevard, Minneapolis, MN 55416, USA
| | - Thomas W Martens
- International Diabetes Center, 3800 Park Nicollet Boulevard, Minneapolis, MN 55416, USA
| | - Richard M Bergenstal
- International Diabetes Center, 3800 Park Nicollet Boulevard, Minneapolis, MN 55416, USA
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW To highlight global advancements in diabetes technology and compare available technologies and device approval processes in the USA and Europe and their impact on safety and innovation. RECENT FINDINGS The last two decades have seen a rapid growth in diabetes technology driven by the impetus to improve glycemic control, avoid complications of insulin therapy, improve quality of life, and hand more autonomy to individuals with diabetes. Meanwhile, changes to regulatory processes in the USA and Europe aim to facilitate entry of new devices into the marketplace. Major strides have been made in digitization of insulin pens, continuous glucose monitors and their integration with insulin pumps, automated insulin delivery systems, and closed-loop insulin pump systems. The centralized regulatory body in the USA and more decentralized approval bodies in Europe have led to differences in the rate of market availability of diabetes devices. While both US and Europe systems have different advantages and disadvantages in device approval, they continue to struggle with balancing accelerated device access with adequate clinical evidence and monitoring to ensure safety of such devices.
Collapse
Affiliation(s)
- Gonzalo J Acosta
- Department of Internal Medicine, Division of Endocrinology, Houston Methodist Hospital, 6565 Fannin St. Suite 1101, Houston, TX, 77030, USA
| | - Spandana Brown
- Department of Internal Medicine, Division of Endocrinology, Houston Methodist Hospital, 6565 Fannin St. Suite 1101, Houston, TX, 77030, USA
| | - Ashkan M Zand
- Department of Internal Medicine, Division of Endocrinology, Houston Methodist Hospital, 6565 Fannin St. Suite 1101, Houston, TX, 77030, USA
| | - Abhishek Kansara
- Department of Internal Medicine, Division of Endocrinology, Houston Methodist Hospital, 6565 Fannin St. Suite 1101, Houston, TX, 77030, USA.
| | - Archana Sadhu
- Department of Internal Medicine, Division of Endocrinology, Houston Methodist Hospital, 6565 Fannin St. Suite 1101, Houston, TX, 77030, USA
| |
Collapse
|
87
|
Thevis M, Thomas A. Nachweis synthetischer Insuline in Doping-Analytik und Forensik. Rechtsmedizin (Berl) 2019. [DOI: 10.1007/s00194-019-00347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
88
|
Ulusu NN, Gok M, Erman B, Turan B. Effects of Timolol Treatment on Pancreatic Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats: An Experimental and Computational Study. J Med Biochem 2019; 38:306-316. [PMID: 31156341 PMCID: PMC6534949 DOI: 10.2478/jomb-2018-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. METHODS Diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. RESULTS Timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. CONCLUSIONS Our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, IstanbulTurkey
| | - Muslum Gok
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, AnkaraTurkey
| | - Burak Erman
- Koc University, School of Engineering, Department of Chemical and Biological Engineering, IstanbulTurkey
| | - Belma Turan
- Ankara University, Faculty of Medicine, Department of Biophysics, AnkaraTurkey
| |
Collapse
|
89
|
Kumar SA, Delgado M, Mendez VE, Joddar B. Applications of stem cells and bioprinting for potential treatment of diabetes. World J Stem Cells 2019; 11:13-32. [PMID: 30705712 PMCID: PMC6354103 DOI: 10.4252/wjsc.v11.i1.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cell-based therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulin-producing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Victor E Mendez
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
90
|
Abstract
The fast-growing field of metabolomics is impacting numerous areas of basic and life sciences. In metabolomics, analytical methods play a pivotal role, and nuclear magnetic resonance (NMR) and mass spectrometry (MS) have proven to be the most suitable and powerful methods. Although NMR exhibits lower sensitivity and resolution compared to MS, NMR's numerous important characteristics far outweigh its limitations. Some of its characteristics include excellent reproducibility and quantitative accuracy, the capability to analyze intact biospecimens, an unparalleled ability to identify unknown metabolites, the ability to trace in-cell and in-organelle metabolism in real time, and the capacity to trace metabolic pathways atom by atom using 2H, 13C, or 15N isotopes. Each of these characteristics has been exploited extensively in numerous studies. In parallel, the field has witnessed significant progress in instrumentation, methods development, databases, and automation that are focused on higher throughput and alleviating the limitations of NMR, in particular, resolution and sensitivity. Despite the advances, however, the high complexity of biological mixtures combined with the limitations in sensitivity and resolution continues to pose major challenges. These challenges need to be dealt with effectively to better realize the potential of metabolomics, in general. As a result, multifaceted efforts continue to focus on addressing the challenges as well as reaping the benefits of NMR-based metabolomics. This chapter highlights the current status with emphasis on the opportunities and challenges in NMR-based metabolomics.
Collapse
|
91
|
Kehinde BA, Sharma P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 2018; 60:322-340. [PMID: 30463420 DOI: 10.1080/10408398.2018.1528206] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes, a metabolic syndrome of global importance has been on a progressive rise in recent years. Several pharmacological approaches have been made, which have proved effective, but with underlying side effects. Bioactive hydrolysates (BHs) and peptides (BPs) from food sources, however, have shown the relative advantage of imparting less adverse effects. Furthermore, BHs and BPs from food have been discovered to impart their antidiabetic potentials through one or more mechanisms such as inhibition of digestive enzymes, inhibition of the antigenic enzyme - Dipeptyl peptidase IV (DPP-IV), decrease in blood glucose levels and increase in insulin uptake. Several plants and animal sources have been used as protein sources for the isolation of antidiabetic hydrolysates and peptides through different mechanisms and analytical techniques. This review integrates recent research information about several popular and unconventional food sources of BHs and BPs, their isolation techniques, antidiabetic effects and protein profiles. In addition, the fractionation technique(s) employed in each study and inhibition potentials of BHs and BPs are reviewed. This article is intended to supplement accessible scholarly literature and intellectual awareness on the subject of food-oriented approach for the management of diabetes.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
92
|
Bottino R, Knoll MF, Knoll CA, Bertera S, Trucco MM. The Future of Islet Transplantation Is Now. Front Med (Lausanne) 2018; 5:202. [PMID: 30057900 PMCID: PMC6053495 DOI: 10.3389/fmed.2018.00202] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Milestones in the history of diabetes therapy include the discovery of insulin and successful methods of beta cell replacement including whole pancreas and islet cell transplantation options. While pancreas transplantation remains the gold standard for patients who have difficulty controlling their symptoms with exogenous insulin, islet allotransplantation is now able to provide similar results with some advantages that make it an attractive potential alternative. The Edmonton Protocol, which incorporated a large dose of islets from multiple donors with steroid-free immunosuppression helped to establish the modern era of islet transplantation almost 20 years ago. While islet allotransplantation is recognized around the world as a powerful clinical therapy for type 1 diabetes it is not yet recognized by the Federal Drug Administration of the United States. Large-scale clinical trials administered by the Clinical Islet Transplantation Consortium have recently demonstrated that the well-regulated manufacture of a human islet product transplanted into patients with difficult to control type 1 diabetes and with a history of severe hyperglycemic episodes can safely and efficaciously maintain glycemic balance and eliminate the most severe complications associated with diabetes. The results of these clinical trials have established a strong basis for licensure of clinical islet allotransplantation in the US. Recognition by the Federal Drug Administration would likely lead to third party reimbursement for islet allotransplantation as a therapeutic option in the United States and would make the treatment available to many more patients. The high costs of rampant diabetes justify the expense of the treatment, which is in-line with the costs of clinical pancreas transplantation. While much enthusiasm and hope is raised toward the development and optimization of stem cell therapy, the islet transplantation community should push toward licensure, if that means broader access of this procedure to patients who may benefit from it. Even as we prepare to take the first steps in that direction, we must acknowledge the new challenges that a shift from the experimental to clinical will bring. Clinical islet allotransplantation in the United States would be a game-changing event in the treatment of type 1 diabetes and also generate enthusiasm for continued research.
Collapse
Affiliation(s)
- Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Michael F. Knoll
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carmela A. Knoll
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Massimo M. Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
93
|
Yamamoto JM, Benham J, Mohammad K, Donovan LE, Wood S. Intrapartum glycaemic control and neonatal hypoglycaemia in pregnancies complicated by diabetes: a systematic review. Diabet Med 2018; 35:173-183. [PMID: 29117445 DOI: 10.1111/dme.13546] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
AIMS To examine whether, in neonates of mothers with Type 1, Type 2 and gestational diabetes, in-target intrapartum glycaemic control was associated with a lower risk of neonatal hypoglycaemia compared with out-of-target glycaemic control. METHODS We searched PubMed and EMBASE for all available publications, regardless of year, based on a published protocol (PROSPERO CRD42016052439). Studies were excluded if they did not report original data or were animal studies. Data were extracted from published reports in duplicate using a prespecified data extraction form. The main outcome of interest was the association between in-target intrapartum glycaemic control and neonatal hypoglycaemia. RESULTS We screened 2846 records for potential study inclusion; 23 studies, including approximately 2835 women with diabetes, were included in the systematic review. Only two of those studies specifically examined in-target vs out-of-target intrapartum glycaemic control. Of the studies included, six showed a relationship between intrapartum glucose and neonatal hypoglycaemia, five others showed a relationship in at least one of the analyses performed and 12 did not find a significant relationship. Only one study was identified as having a low risk of bias. CONCLUSIONS There is a paucity of high-quality data supporting the association of glucose during labour and delivery with neonatal hypoglycaemia in pregnancies complicated by diabetes. Further studies are required to examine the impact of tight glycaemic targets in labour.
Collapse
Affiliation(s)
- J M Yamamoto
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J Benham
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - K Mohammad
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - L E Donovan
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Calgary, Calgary, Alberta, Canada
| | - S Wood
- Department of Obstetrics and Gynecology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
94
|
Buckner JH, Greenbaum CJ. Stacking the Deck: Studies of Patients with Multiple Autoimmune Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:3011-3013. [DOI: 10.4049/jimmunol.1701299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
95
|
Eulálio JMR, Bon-Habib ACC, Soares DDO, Corrêa PGA, Pineschi GPF, Diniz VS, Manso JEF, Schanaider A. Critical analysis and systematization of rat pancreatectomy terminology. Acta Cir Bras 2017; 31:698-704. [PMID: 27828605 DOI: 10.1590/s0102-865020160100000010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To critically analyze and standardize the rat pancreatectomy nomenclature variants. METHODS: It was performed a review of indexed manuscripts in PUBMED from 01/01/1945 to 31/12/2015 with the combined keywords "rat pancreatectomy" and "rat pancreas resection". The following parameters was considered: A. Frequency of publications; B. Purpose of the pancreatectomy in each article; C. Bibliographic references; D. Nomenclature of techniques according to the pancreatic parenchyma resection percentage. RESULTS: Among the 468, the main objectives were to surgically induce diabetes and to study the genes regulations and expressions. Five rat pancreatectomy technique references received 15 or more citations. Twenty different terminologies were identified for the pancreas resection: according to the resected parenchyma percentage (30 to 95%); to the procedure type (total, subtotal and partial); or based on the selected anatomical region (distal, longitudinal and segmental). A nomenclature systematization was gathered by cross-checking information between the main surgical techniques, the anatomic parameters descriptions and the resected parenchyma percentages. CONCLUSION: The subtotal pancreatectomy nomenclature for parenchymal resection between 80 and 95% establishes a surgical parameter that also defines the total and partial pancreatectomy limits and standardizes these surgical procedures in rats.
Collapse
Affiliation(s)
- José Marcus Raso Eulálio
- PhD, Assistant Professor, Head of Division, Department of Surgery, School of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Brazil. Conception and design of the study, interpretation of data, manuscript preparation and writing
| | - Assad Charbel Chequer Bon-Habib
- Graduate student, Scientific Initiation, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brail. Acquisition, analysis and interpretation of data
| | - Daiane de Oliveira Soares
- Graduate student, Scientific Initiation, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brail. Acquisition, analysis and interpretation of data
| | - Paulo Guilherme Antunes Corrêa
- Graduate student, Scientific Initiation, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brail. Acquisition, analysis and interpretation of data
| | - Giovana Penna Firme Pineschi
- Graduate student, Scientific Initiation, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brail. Acquisition, analysis and interpretation of data
| | - Victor Senna Diniz
- Graduate student, Scientific Initiation, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brail. Acquisition, analysis and interpretation of data
| | - José Eduardo Ferreira Manso
- PhD, Associate Professor, Head, Department of Surgery, Postgraduate Program in Surgical Sciences, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Acquisition and interpretation of data
| | - Alberto Schanaider
- PhD, Full Professor, Head, Center of Experimental Surgical. Coordinator, Postgraduate Program in Surgical Sciences, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Manuscript writing, critical revision
| |
Collapse
|
96
|
Eddouks M, Lemhadri A, Hebi M, EL Hidani A, Zeggwagh NA, EL Bouhali B, Hajji L, Burcelin R. Capparis spinosa L. aqueous extract evokes antidiabetic effect in streptozotocin-induced diabetic mice. AVICENNA JOURNAL OF PHYTOMEDICINE 2017; 7:191-198. [PMID: 28348974 PMCID: PMC5355824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/12/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE As the aqueous extract of Capparis spinosa (CS) possess antidiabetic effect, he present study aims to reveal the possible mechanism of action of CS in diabetic mice. MATERIALS AND METHODS Both single and repeated oral administrations of aqueous extract of CS were performed in multi-low dose streptozotocin-induced (MLDS) diabetic mice. Euglycemic hyperinsulinemic clamp was used in association with the endogenous glucose production (perfusion rate of 3-3H glucose) to evaluate the effect of CS aqueous extract on insulin sensitivity. RESULTS Our study showed that aqueous extract of CS possess a potent hypoglycaemic activity in MLDS diabetic mice. Furthermore, the analysis perfusion of 3-3H glucose demonstrated the parallel decrease of basal endogenous glucose production (EGP) with the hypoglycaemic activity. EGP was lower in CS-Treated group when compared to the control group (p<0.001). The euglycemic hyperinsulinemic clamp technique demonstrated that CS treatment improves insulin sensitivity in peripheral tissues. CONCLUSION We conclude that the antihyperglycemic effet CS is probably due to the inhibition of basal endogenous glucose production and the improvement of insulin sensitivity in MLDS diabetic mice.
Collapse
Affiliation(s)
- Mohamed Eddouks
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Ahmed Lemhadri
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Morad Hebi
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Ahmed EL Hidani
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Naoufel Ali Zeggwagh
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
- ISPITS Rabat, Avenue Hassan II Km 4,5 Route de Casa, Rabat Maroc
| | - Bachir EL Bouhali
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Lhoussaine Hajji
- Faculty of Sciences and Tecniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Remy Burcelin
- UMR 5018 CNRS-UPS and IFR 31, Rangueil Hospital, L1 Bldg, BP 84225 Toulouse 31432 Cedex 4, France
| |
Collapse
|
97
|
Abstract
Newer insulin products have advanced the evolution of insulin replacement options to more accurately mimic natural insulin action. There are new, modified, and concentrated insulins; administration devices calibrated for both increased concentrations and administration accuracy to improve adherence and safety; and inhaled insulin. There are new combinations of longer-acting basal insulin and rapid-acting insulin or glucagon like protein-1 receptor agonists. Existing insulin replacement designs and methods can be updated using these tools to improve efficacy and safety. Individualized decisions to use them should be based on patient physiologic needs, self-care ability, comorbidities, and cost considerations.
Collapse
Affiliation(s)
- Alissa R Segal
- Department of Pharmacy Practice, MCPHS University, 179 Longwood Avenue, Boston, MA 02115, USA; Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA.
| | - Tejaswi Vootla
- Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
98
|
|