51
|
Zhang Y, Fan X, Ge H, Yu Y, Li J, Zhou Z. The effect of salidroside on the bone and cartilage properties in broilers. Poult Sci 2024; 103:104274. [PMID: 39270480 PMCID: PMC11417263 DOI: 10.1016/j.psj.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Leg disorders frequently occur in fast-growing broiler chickens, constituting severe health and welfare problems. Although salidroside (SAL) promotes osteogenesis and inhibits apoptosis of chondrocytes in rats, it remains to be determined whether SAL can effectively improve bone growth in broilers. The present study was designed to investigate the effects of dietary SAL supplementation on bone and cartilage characteristics in broiler chickens. Ninety-six Arbor Acres broiler chickens were randomly divided into 4 groups: control, low-dose SAL, medium-dose SAL, and high-dose SAL groups. The broiler chickens were raised until 42 d of age, with samples of bone and cartilage collected for biomechanical testing and bone metabolism index detection. The results showed that SAL significantly increased the vertical external diameter, cross-sectional moment of inertia, and cross-sectional area of the femur and tibia. Additionally, SAL enhanced bone mineral density and strength, as evidenced by significant increases in stiffness, Young's modulus, ultimate load, and fracture work of the femur and tibia. Furthermore, SAL influenced the relative content of phosphate, carbonate, and amide I in cortical bone. Moreover, SAL upregulated the expression of osteogenic genes (Collagen-1, RUNX2, BMP2, and ALP) in a dose-dependent manner and maintained the homeostasis of the extracellular matrix (ECM) of chondrocytes. These results indicated that SAL promoted leg health in broilers by improving bone and cartilage quality and enhancing chondrocyte activity.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfan Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaling Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianzeng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
52
|
Mazinis E, Thomaidis V. Short Root Anomaly and Transverse Hemimelia: A Rare Case Presentation. Clin Case Rep 2024; 12:e9691. [PMID: 39649507 PMCID: PMC11622148 DOI: 10.1002/ccr3.9691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024] Open
Abstract
A case of Short Root Anomaly (SRA), hypodontia and taurodontism with the associated finding of transverse hemimelia, is presented. Although there is no documented evidence of a link between SRA and hemimelia, the shared genetic, environmental and metabolic factors suggest the possibility of a common underlying mechanism.
Collapse
Affiliation(s)
- Emmanuel Mazinis
- Department of Endodontology, Dental SchoolAristotle University of ThessalonikiThessalonikiGreece
- Aristotle University of Thessaloniki University CampusThessalonikiGreece
| | - Vasilios Thomaidis
- Department of Anatomy, Medical SchoolDemocritus University of ThraceAlexandroupolisGreece
- Democritus University of ThraceAlexandroupolisGreece
| |
Collapse
|
53
|
Dohle E, Schmeinck L, Parkhoo K, Sader R, Ghanaati S. Platelet rich fibrin as a bioactive matrix with proosteogenic and proangiogenic properties on human healthy primary cells in vitro. Platelets 2024; 35:2316744. [PMID: 38390838 DOI: 10.1080/09537104.2024.2316744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Blood concentrates like platelet rich fibrin (PRF) have been established as a potential autologous source of cells and growth factors with regenerative properties in the field of dentistry and regenerative medicine. To further analyze the effect of PRF on bone tissue regeneration, this study investigated the influence of liquid PRF matrices on human healthy primary osteoblasts (pOB) and co-cultures composed of pOB and human dermal vascular endothelial cells (HDMEC) as in vitro model for bone tissue regeneration. Special attention was paid to the PRF mediated influence on osteoblastic differentiation and angiogenesis. Based on the low-speed centrifugation concept, cells were treated indirectly with PRF prepared with a low (44 g) and high relative centrifugal force (710 g) before the PRF mediated effect on osteoblast proliferation and differentiation was assessed via gene and protein expression analyses and immunofluorescence. The results revealed a PRF-mediated positive effect on osteogenic proliferation and differentiation accompanied by increased concentration of osteogenic growth factors and upregulated expression of osteogenic differentiation factors. Furthermore, it could be shown that PRF treatment resulted in an increased formation of angiogenic structures in a bone tissue mimic co-culture of endothelial cells and osteoblasts induced by the PRF mediated increased release of proangiogenic growth factors. The effects on osteogenic proliferation, differentiation and vascularization were more evident when low RCF PRF was applied to the cells. In conclusion, PRF possess proosteogenic, potentially osteoconductive as well as proangiogenic properties, making it a beneficial tool for bone tissue regeneration.
Collapse
Affiliation(s)
- Eva Dohle
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lena Schmeinck
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Kamelia Parkhoo
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Robert Sader
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
54
|
Oryan A, Afzali SA, Maffulli N. Manipulation of signaling pathways in bone tissue engineering and regenerative medicine: Current knowledge, novel strategies, and future directions. Injury 2024; 55:111976. [PMID: 39454294 DOI: 10.1016/j.injury.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
During osteogenesis, a large number of bioactive molecules, macromolecules, cells, and cellular signals are activated to induce bone growth and development. The activation of molecular pathways leads to the occurrence of cellular events, ultimately resulting in observable changes. Therefore, in the studies of bone tissue engineering and regenerative medicine, it is essential to target fundamental events to exploit the mechanisms involved in osteogenesis. In this context, signaling pathways are activated during osteogenesis and trigger the activation of numerous other processes involved in osteogenesis. Direct influence of signaling pathways should allow to manipulate the signaling pathways themselves and impact osteogenesis. A combination of sequential cascades takes place to drive the progression of osteogenesis. Also, the occurrence of these processes and, more generally, cellular and molecular processes related to osteogenesis necessitate the presence of transcription factors and their activity. The present review focuses on outlining several signaling pathways and transcription factors influencing the development of osteogenesis, and describes various methods of their manipulation to induce and enhance bone formation.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Ali Afzali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nicola Maffulli
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine and Psychology, Sant'Andrea Hospital Sapienza University of Rome, Rome, Italy; Centre for Sport and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke on Trent ST47QB, UK
| |
Collapse
|
55
|
Fan D, Li J, Li L, An M, Yang H, Zhou G, Gao S, Bottini M, Zhang J, Ge K. Phosphate Ion-Responsive and Calcium Peroxide-Based Nanomedicine for Bone-Targeted Treatment of Breast Cancer Bone Metastasis. Adv Healthc Mater 2024; 13:e2402216. [PMID: 39109966 DOI: 10.1002/adhm.202402216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 12/18/2024]
Abstract
The treatment of breast cancer bone metastasis is an unresolved clinical challenge, mostly because currently therapeutic approaches cannot simultaneously block the tumor growth and repair the osteolytic bone injuries at the metastatic site. Herein, the study develops a novel nanomedicine to treat breast cancer bone metastasis. The nanomedicine is based on phosphate ion-responsive and calcium peroxide-based nanoparticles carrying the bone-targeting agent zoledronic acid on the surface and loaded with the photosensitizer indocyanine green. Following intravenous administration to a mouse model of breast cancer bone metastasis, the nanoparticles efficiently accumulate at the bone metastasis site, react with free phosphate ions, and form hydroxyapatite nanoaggregates and O2, while releasing the photosensitizer. Hydroxyapatite nanoaggregates elicit the remineralization of the collagenous bone matrix and trigger tumor cell apoptosis. Upon irradiating tumor-bearing legs with an 808 nm laser source, the O2 and free photosensitizer produced 1O2 by the reaction of the nanoparticles with phosphate ions, further boosting the anti-tumor effect. Tumor killing hampers the vicious cycle at the site of bone metastasis, translating to osteolysis blockade and further encouraging the remineralization of bone matrix. This work sheds light on the development of a novel, safe, and efficient approach for the treatment of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Dehui Fan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Jing Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Luwei Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Ming An
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
- Orthopedics Department, Bao Ding NO.1 Central Hospital, Baoding, 071000, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoqiang Zhou
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
- Hebei University, Baoding, 071002, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071002, China
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
56
|
Ma Z, Qiu L, Li J, Wu Z, Liang S, Zhao Y, Yang J, Hu M, Li Y. Construction a novel osteoporosis model in immune-deficient mice with natural ageing. Biochem Biophys Res Commun 2024; 735:150820. [PMID: 39406026 DOI: 10.1016/j.bbrc.2024.150820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Osteoporosis (OP) predominantly affects elderly individuals. Stem cells show potential for treating OP. However, animal models with normal immune function can eliminate implanted human cells. This study utilized naturally aging NOD/SCID mice, which exhibit immunodeficiency, to create a human osteoporosis model. This approach helps to minimize the premature immune clearance of transplanted allogeneic or xenogeneic cells in preclinical studies, allowing for a more accurate replication of the clinical pharmacological and pharmacokinetic processes involved in stem cell interventions for osteoporosis. NOD/SCID mice were fed until 12, 32, and 43 weeks of age, respectively, and then euthanized. We harvested lumbar vertebra for Micro-Computed Tomography (Micro-CT) scanning and pathological examination. Additionally, we performed biomechanical testing of lumbar vertebra to assess the severity of osteoporosis. We utilized real-time RT-PCR to assess gene expression changes associated with bone metabolism, aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway. In addition, the protein expression levels of P16, Tgf-β1 and Smad3 were detected using Western Blotting (WB). In comparison to 12-week-old mice, the 32-week-old and 43-week-old mice displayed significantly sparser and fractured trabeculae in their lumbar vertebra, lower bone mineral density (BMD), and changes in bone microstructural parameters (∗∗P < 0.01, ∗∗∗P < 0.001). Additionally, compared to 12-week-old mice, the 32-week-old and 43-week-old mice exhibited decreased expression of osteogenic genes (Alp, Opg, Sp7, Col1a1), increased expression of osteoclastic gene (Rankl), the number of TRAP-positive osteoclasts significantly increased in 32-week-old and 43-week-old mice compared to 12-week-old mice. The expression of genes related to aging and inflammatory (P16, Il-1β, Tnf-α) increases with advancing age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). The expression of oxidative stress-related genes (Sod1, Sod2, Foxo3, Nrf2), as well as Tgf-β1 and Smad3 decreased with age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). As age increases, the levels of P16 protein increase, Tgf-β1 and Smad3 proteins decrease. Our study successfully replicated osteoporosis models in NOD/SCID mice at both 32 and 43 weeks, with the latter exhibiting more severe osteoporosis. This condition seems to be driven by factors such as aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Jinyan Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Shu Liang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Jinmei Yang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| |
Collapse
|
57
|
Shevtsov M, Pitkin E, Combs SE, Yudintceva N, Nazarov D, Meulen GVD, Preucil C, Akkaoui M, Pitkin M. Biocompatibility Analysis of the Silver-Coated Microporous Titanium Implants Manufactured with 3D-Printing Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1876. [PMID: 39683264 PMCID: PMC11643975 DOI: 10.3390/nano14231876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections. In the current study, a 1-µm thick silver coating was prepared on the surface of a 3D-printed microporous titanium alloy with physical vapor deposition (PVD), with a final silver content of 1.00 ± 02 mg/cm2. Cell viability was evaluated with an MTT assay of MC3T3-E1 osteoblasts and human dermal fibroblasts cultured on the surface of the implants, and showed low cytotoxicity for cells during the 14-day follow-up period. Quantitative real-time polymerase chain reaction (RT-PCR) analysis of the relative gene expression of the extracellular matrix components (fibronectin, vitronectin, type I collagen) and cell adhesion markers (α2, α5, αV, β1 integrins) in dermal fibroblasts showed that cell adhesion was not reduced by the silver coating of the microporous implants. An RT-PCR analysis of gene expression related to osteogenic differentiation, including TGF-β1, SMAD4, osteocalcin, osteopontin, and osteonectin in MC3T3-E1 osteoblasts, demonstrated that silver coating did not reduce the osteogenic activity of cells and, to the contrary, enhanced the activity of the TGF-β signaling pathway. For representative sample S5 on day 14, the gene expression levels were 7.15 ± 0.29 (osteonectin), 6.08 ± 0.12 (osteocalcin), and 11.19 ± 0.77 (osteopontin). In conclusion, the data indicate that the silver coating of the microporous titanium implants did not reduce the biointegrative or osteoinductive properties of the titanium scaffold, a finding that argues in favor of applying this coating in designing personalized osseointegrated implants.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Emil Pitkin
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
| | - Denis Nazarov
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | | | - Chris Preucil
- Movora, St. Augustine, FL 32095, USA; (G.V.D.M.); (C.P.)
| | | | - Mark Pitkin
- Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Poly-Orth International, Sharon, MA 02067, USA
| |
Collapse
|
58
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
59
|
Wang S, Xia D, Dou W, Chen A, Xu S. Bioactive Porous Composite Implant Guides Mesenchymal Stem Cell Differentiation and Migration to Accelerate Bone Reconstruction. Int J Nanomedicine 2024; 19:12111-12127. [PMID: 39583325 PMCID: PMC11586122 DOI: 10.2147/ijn.s479893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background Delayed healing and non-healing of bone defects pose significant challenges in clinical practice, with metal materials increasingly recognized for their significance in addressing these issues. Among these materials, Strontium (Sr) and Zinc (Zn) have emerged as promising agents for promoting bone repair. Building upon this insight, this research evaluates the impact of a porous Sr@Zn@SiO2 nanocomposite implant on bone regeneration, aiming to advance the field of bone repair. Methods The preparation of the Sr@Zn@SiO2 composite implant involves various techniques such as roasting, centrifugation, and washing. The material's composition is examined, and its microstructure and element distribution are analyzed using TEM and elemental scanning technology. In vitro experiments entail the isolation and characterization of BMSCs followed by safety assessments of the implant material, evaluation of cell migration capabilities, and relevant proliferation markers. Mechanistically, this study delves into key targets associated with significant changes in the osteogenic process. In vivo experiments involve establishing a rat femur bone defect model, followed by assessment of the osteogenic potential of Sr@Zn@SiO2 using Micro-CT imaging and tissue section staining. Results Through in vivo and in vitro investigations, we validate the osteogenic efficacy of the Sr@Zn@SiO2 composite implant. In vitro analyses demonstrate that porous Sr@Zn@SiO2 nanocomposite materials upregulate BMP-2 expression, leading to the activation of Smad1/5/9 phosphorylation and subsequent activation of downstream osteogenic genes, culminating in BMSCs osteogenic differentiation and bone proliferation. And the migration of BMSCs is closely related to the high expression of CXCL12/CXCR4, which will also provide the conditions for osteogenesis. In vivo, the osteogenic ability of Sr@Zn@SiO2 was also confirmed in rats. Conclusion In our research, the porous Sr@Zn@SiO2 composite implant displays prominent osteogenic effect and promotes the migration and differentiation of BMSCs to promote bone defect healing. This bioactive implant has surgical application potential in the future.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Demeng Xia
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Clinical Medicine, Hainan Health Vocational College, Haikou, 570100, People’s Republic of China
| | - Wenxue Dou
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Aimin Chen
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Shuogui Xu
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
60
|
Follmer ML, Isner TJ, Ozekin YH, Levitt CH, Burek CL, Benninger RKP, Bates EA. Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchymal cells. Nat Commun 2024; 15:9806. [PMID: 39532850 PMCID: PMC11558011 DOI: 10.1038/s41467-024-53642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Bone Morphogenetic Protein (BMP) signaling is essential for craniofacial development, though little is known about the mechanisms that govern BMP secretion. We show that depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchyme. We show endogenous transient changes in intracellular calcium occur in cranial neural crest cells, the cells from which embryonic palate mesenchyme derives. Waves of transient changes in intracellular calcium suggest that these cells are electrically coupled and may temporally coordinate BMP release. These transient changes in intracellular calcium persist in palate mesenchyme cells from embryonic day 9.5 to 13.5 mice. Disruption of a potassium channel called Kcnj2 significantly decreases the amplitude of calcium transients and the ability of cells to secrete BMP. Kcnj2 knockout mice have cleft palate and reduced BMP signaling. Our data suggest that temporal control of developmental cues is regulated by ion channels, depolarization, and intracellular calcium for mammalian craniofacial morphogenesis.
Collapse
Affiliation(s)
- Mikaela L Follmer
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Trevor J Isner
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yunus H Ozekin
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire H Levitt
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn L Burek
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Anne Bates
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
61
|
García-Recio E, González-Acedo A, Manzano-Moreno FJ, De Luna-Bertos E, Ruiz C. Gene Expression Modulation of Markers Involved in Bone Formation and Resorption by Bisphenol A, Bisphenol F, Bisphenol S, and Bisphenol AF. Genes (Basel) 2024; 15:1453. [PMID: 39596653 PMCID: PMC11593564 DOI: 10.3390/genes15111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) and its analogs (BPF, BPS, and BPAF) are recognized for inducing detrimental effects on various tissues, including bone. OBJECTIVES The aim of this study is to investigate their impact on information and repair processes, specifically focusing on vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), and the receptors for transforming growth factor β (TGFR1, TGFR2, and TGFR3). METHODS Human osteoblasts isolated through primary culture from bone samples of healthy volunteers were subjected to cultivation in the presence of various dosage levels (10-5, 10-6, or 10-7 M) of BPA, BPF, BPS, or BPAF for 24 h. Gene expressions of RANKL, OPG, TGF-β1, TGFR1, TGFR2, TGFR3, and VEGF were analyzed by real-time polymerase chain reaction (RT-PCR). All experiments included untreated cells as controls. RESULTS Expressions of RANKL and OPG were dose-dependently downregulated by the presence of all tested bisphenols (BPs) except for BPAF, whose presence upregulated OPG expression at all three doses. TGF-β1 expression was downregulated by all BP treatments, and TGF-β1 receptor expression was also downregulated as a function of the BP and dose. VEGF expression was downregulated in the presence of BPF and BPAF at all three doses and in the presence of BPA at the two higher doses (10-5, and 10-6 M), but it was not changed by the presence of BPS at any dose. CONCLUSIONS The inhibition of both RANKL and OPG by the BPs, with a higher %inhibition of RANKL than of OPG, appears to rule out BP-induced activation of osteoclastogenesis via RANKL/RANK/OPG. Nevertheless, the effect of the BPs on the expression by osteoblasts of TGF-β1, TGF-β receptors, and VEGF indicates that these compounds can be responsible for major molecular changes in this cell population, contributing to their adverse effects on bone tissue.
Collapse
Affiliation(s)
- Enrique García-Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18016 Granada, Spain
| | - Elvira De Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, University of Granada, 18016 Granada, Spain
| |
Collapse
|
62
|
Hong S, Kwon J, Song S, Park I, Jung DS, Saruul E, Nho CW, Kwon HC, Yoo G. Suppressive Effects of Geoje Raspberry ( Rubus tozawae Nakai ex J.Y. Yang) on Post-Menopausal Osteoporosis via Its Osteogenic Activity on Osteoblast Differentiation. Nutrients 2024; 16:3856. [PMID: 39599642 PMCID: PMC11597101 DOI: 10.3390/nu16223856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoporosis is a metabolic bone disease with a high mortality rate due to non-traumatic fractures. The risk of osteoporosis is increasing globally due to an increasing aging population. Current therapies are limited to delaying disease progression. Recently, the need to discover foods with osteogenic activity for the prevention and treatment of osteoporosis has been emphasized. We focused on bone formation via osteoblast differentiation, considering bone formation and resorption during bone homeostasis. Rubus tozawae Nakai ex J. Y. Yang (RL, Geoje raspberry) is a deciduous subshrub that has been traditionally eaten for its fruit. METHODS AND RESULTS We identified the third subfraction of n-hexane fraction (RL-Hex-NF3) of RL, an endemic Korean plant with osteogenic activity, which increased bone density in ovariectomized mice, a representative animal model of osteoporosis, via the depletion of female hormones, which resulted from the increase in the osteoblast population. RL-Hex-NF3 induced osteoblast differentiation and the expression of osteogenic markers in MC3T3-E1 pre-osteoblasts. Seven compounds were identified from RL-Hex-NF3 using NMR spectroscopy. Of these, three compounds, namely, 3β-hydroxy-18α,19α-urs-20-en-28-oic acid, betulinic acid, and (1S,6R,7S)-muurola-4,10(14)-diene-15-ol, showed strong osteogenic activity. CONCLUSIONS RL-Hex-NF3 and its compounds suppress bone loss via their osteogenic properties, suggesting that they could be a potent candidate to treat osteoporosis.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (E.S.); (C.W.N.)
| | - Jaeyoung Kwon
- Natural Product Informatics Research Center, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (S.S.); (I.P.)
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sungmin Song
- Natural Product Informatics Research Center, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (S.S.); (I.P.)
| | - InWha Park
- Natural Product Informatics Research Center, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (S.S.); (I.P.)
| | - Da Seul Jung
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (E.S.); (C.W.N.)
| | - Erdenebileg Saruul
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (E.S.); (C.W.N.)
| | - Chu Won Nho
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (E.S.); (C.W.N.)
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (S.S.); (I.P.)
| | - Gyhye Yoo
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (E.S.); (C.W.N.)
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
63
|
Park SH, Kim J, Yang HJ, Lee JY, Kim CH, Hur JK, Park SB. CRISPR activation identifies a novel miR-2861 binding site that facilitates the osteogenesis of human mesenchymal stem cells. J Orthop Surg Res 2024; 19:730. [PMID: 39506798 PMCID: PMC11542479 DOI: 10.1186/s13018-024-05163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
We investigated the regulation of histone deacetylases (HDACs) by miR-2861 in the osteoblastic differentiation of human mesenchymal stem cells (MSCs) and miR-2861 binding site by CRISPR activation (CRISPRa). Transfection of miR-2861 into human MSCs was performed and the effect on osteoblast differentiation was analyzed. Using catalytically inactive Cas12a, the CRISPRa system induced targeted overexpression of endogenous miRNA and repressed the luciferase activities of reporters that contained functional miRNA target sites. The delivery of miR-2861 into MSCs enhanced osteoblast differentiation by decreased expressions of the HDAC1, 4 and 5 genes. The mechanism of HDAC5 repression by miR-2861 in humans has not been fully elucidated. To this end, the HDAC5 mRNA sequence was analyzed and a putative primate-specific miR-2861 binding site was identified in the 3' untranslated region (3'-UTR). CRISPRa was applied to validate the putative binding site and an increase in endogenous miR-2861 was found to repress the expression of a reporter that contained the novel miR-2861 binding site. The delivery of miR-2861 to human MSCs enhanced osteoblast differentiation. In the 3'-UTR, the HDAC5 repression was mediated by the miR-2861 binding site, and miR-2861 promoted osteoblast differentiation via the inhibition of HDAC5 through a primate-specific miRNA binding site. Therefore, miRNAmiR-2861 with the CRISPRa methods might be a good biomaterial for osteogenesis augmentation.
Collapse
Affiliation(s)
- Seong-Ho Park
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, Korea
| | - Jungwoo Kim
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Ju Yeon Lee
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Junho K Hur
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
- Department of Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
64
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
65
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
66
|
Gigi R, Weil Y, Amar E, Sigal A, Ovadia D, Herzenberg JE, Segev E. Osteotomy Site Venting Enhances Femoral Bone Consolidation With Magnetic Intramedullary Lengthening Nails. Clin Orthop Relat Res 2024; 482:2075-2085. [PMID: 38843493 PMCID: PMC11469821 DOI: 10.1097/corr.0000000000003119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Magnetic intramedullary lengthening nailing has demonstrated benefits over external fixation devices for femoral bone lengthening. These include avoiding uncomfortable external fixation and associated pin site infections, scarring, and inhibition of muscle or joint function. Despite this, little has changed in the field of biologically enhanced bone regeneration. Venting the femoral intramedullary canal at the osteotomy site before reaming creates egress for bone marrow during reaming. The reamings that are extruded from vent holes may function as a prepositioned bone graft at the distraction gap. The relationship between venting and the consolidation of regenerating bone remains unclear. QUESTIONS/PURPOSES (1) Do bone marrow reamings extruded through venting holes enhance the quality of bone regeneration and improve healing indices and consolidation times? (2) Is venting associated with a higher proportion of complications than nonventing? METHODS We performed a retrospective study of femoral lengthening performed at one hospital from December 2012 to February 2022 using a magnetic intramedullary lengthening nail with or without venting at the osteotomy site before reaming. This was a generally sequential series, in which the study groups were assembled as follows: Venting was performed between July 2012 and August 2016 and again from November 2021 onward. Nonventing was used between October 2016 and October 2021 because the senior author opted to create drill holes after the reaming procedure to avoid commitment to the osteotomy level before completing the reaming procedure. Outcomes were evaluated based on bone healing time, time to achieve full weightbearing, and complications. Sixty-one femoral lengthening procedures were studied (in 33 male and 28 female patients); two patients were excluded because of implant breakage. The mean age was 17 ± 5 years. The mean amount of lengthening was 55 ± 13 mm in the venting group and 48 ± 16 mm in the nonventing group (mean difference 7 ± 21 [95% CI 2 to 12]; p = 0.07). The healing index was defined as the time (in days) required for three cortices to bridge with new bone formation divided by the length (in cm) lengthened during the clinical protocol. This index signifies the bone formation rate achieved under the specific conditions of the protocol. Full weightbearing was allowed upon bridging the regenerated gap on three sides. Consolidation time was defined as the total number of days from the completion of the lengthening phase until adequate bone union (all three cortices healed) was achieved and full weightbearing was permitted. This time frame represents the entire healing process after the lengthening is complete divided by the amount of lengthening achieved (in cm). Patient follow-up was conducted meticulously at our institution, and we adhered to a precise schedule, occurring every 2 weeks during the distraction phase and every 4 weeks during the consolidation phase. There were no instances of loss to follow-up. Every patient completed the treatment successfully, reaching the specified milestones of weightbearing and achieving three cortexes of bone bridging. RESULTS The mean healing index time in the venting group was faster than that in the nonventing group (21 ± 6 days/cm versus 31 ± 22 days/cm, mean difference 10 ± 23 [95% CI 4 to 16]; p = 0.02). The mean consolidation time was faster in the venting group than the nonventing group (10 ± 6 days/cm versus 20 ± 22 days/cm; mean difference 10 ± 23 [95% CI 4 to 15]; p = 0.02). No medical complications such as deep vein thrombosis or fat or pulmonary embolism were seen. Two patients had lengthy delays in regenerate union, both of whom were in the nonventing group (healing indexes were 74 and 62 days/cm; consolidation time was 52 and 40 days/cm). CONCLUSION Femoral lengthening with a magnetic intramedullary lengthening nail healed more quickly with prereaming venting than with nonventing, and it allowed earlier full weightbearing without any major associated complications. Future studies should evaluate whether there is a correlation between the number of venting holes and improvement in the healing index and consolidation time. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
Affiliation(s)
- Roy Gigi
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yehuda Weil
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eyal Amar
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amit Sigal
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dror Ovadia
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - John E. Herzenberg
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Eitan Segev
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
67
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
68
|
Gu C, Tang Q, Li L, Chen Y. Optimization and Implication of Adipose-Derived Stem Cells in Craniofacial Bone Regeneration and Repair. Bioengineering (Basel) 2024; 11:1100. [PMID: 39593759 PMCID: PMC11592193 DOI: 10.3390/bioengineering11111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) have emerged as a promising resource for craniofacial bone regeneration due to their high abundance and easy accessibility, significant osteogenic potential, versatile applications, and potential for personalized medicine, which underscore their importance in this field. This article reviews the current progress of preclinical studies that describe the careful selection of specific ADSC subpopulations, key signaling pathways involved, and usage of various strategies to enhance the osteogenic potential of ADSCs. Additionally, clinical case reports regarding the application of ADSCs in the repair of calvarial defects, cranio-maxillofacial defects, and alveolar bone defects are also discussed.
Collapse
Affiliation(s)
- Cong Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| |
Collapse
|
69
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
70
|
Hamad-Alrashid H, Muntión S, Sánchez-Guijo F, Borrajo-Sánchez J, Parreño-Manchado F, García-Cenador MB, García-Criado FJ. Bone Regeneration with Dental Pulp Stem Cells in an Experimental Model. J Pers Med 2024; 14:1075. [PMID: 39590567 PMCID: PMC11595977 DOI: 10.3390/jpm14111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The therapeutic approach to bone mass loss and bone's limited self-regeneration is a major focus of research, emphasizing new biomaterials and cell therapy. Tissue bioengineering emerges as a potential alternative to conventional treatments. In this study, an experimental model of a critical bone lesion in rats was used to investigate bone regeneration by treating the defect with biomaterials Evolution® and Gen-Os® (OsteoBiol®, Turín, Italy), with or without mesenchymal stromal cells from dental pulp (DP-MSCs). METHODS Forty-six adult male Wistar rats were subjected to a 5-mm critical bone defect in the right mandible, which does not regenerate without intervention. The rats were randomly assigned to a Simulated Group, Control Group, or two Study Groups (using Evolution®, Gen-Os®, and DP-MSCs). The specimens were euthanized at three or six months, and radiological, histological, and ELISA tests were conducted to assess bone regeneration. RESULTS The radiological results showed that the DP-MSC group achieved uniform radiopacity and continuity in the bone edge, with near-complete structural defect restitution. Histologically, full bone regeneration was observed, with well-organized, vascularized lamellar bone and no lesion edges. These findings were supported by increases in endoglin, transforming growth factor-beta 1 (TGF-β1), protocollagen, parathormone, and calcitonin, indicating a conducive environment for bone regeneration. CONCLUSIONS The use of DP-MSCs combined with biomaterials with appropriate three-dimensional matrices is a promising therapeutic option for further exploration.
Collapse
Affiliation(s)
- Haifa Hamad-Alrashid
- Doctoral School “Studii Salamantini”, University of Salamanca, 37008 Salamanca, Spain;
| | - Sandra Muntión
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
| | - Fermín Sánchez-Guijo
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
- Hematology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Javier Borrajo-Sánchez
- Department of Biomedical and Diagnostic Sciences, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - Felipe Parreño-Manchado
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
- Coordinator of the Esophagogastric Surgery and Obesity Unit, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - M. Begoña García-Cenador
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - F. Javier García-Criado
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
71
|
Zhou J, Zhou F, Yang L, Liang H, Zhu Q, Guo F, Yin X, Li J. Morinda officinalis saponins promote osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells via the BMP-SMAD signaling pathway. Am J Transl Res 2024; 16:5441-5453. [PMID: 39544743 PMCID: PMC11558395 DOI: 10.62347/knrs3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/19/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Morinda officinalis saponins (MOS), a traditional Chinese medicine extracted from M. officinalis roots, have been used as a health supplement. Existing evidence suggests that extracts from this plant can be used for osteoporosis treatment. However, the molecular mechanisms underlying the anti-osteoporotic effects of M. officinalis remain poorly understood. METHODS AND RESULTS In this study, we investigated the osteogenesis-promoting effects of MOS on human umbilical cord-derived mesenchymal stem cells (HUC-MSCs). Alkaline phosphatase staining, alizarin red staining, and quantitative reverse transcription-PCR demonstrated that MOS promoted the osteogenic differentiation of HUC-MSCs in a concentration-dependent manner. RNA sequencing results showed that the expression of key osteogenic differentiation-related genes, including BMP4, as well as the activity of transforming growth factor-β and calcium signaling pathways increased following MOS treatment. Furthermore, treatment with the bone morphogenetic protein (BMP) antagonist Noggin reversed the MOS-induced pro-osteogenic differentiation effects and the upregulation of osteoblast-specific markers. CONCLUSIONS Overall, the results indicate that MOS can partially promote osteogenic differentiation of HUC-MSCs by regulating the BMP-SMAD signaling pathway. These findings indicate the potential utility of MOS as a therapeutic agent for osteoporosis, particularly in the context of stem cell therapy.
Collapse
Affiliation(s)
- Jian Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
| | - Fanru Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Liu Yang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Haihui Liang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Qinyao Zhu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Fenghua Guo
- Glabiolus Biotech (Xuzhou) Co., Ltd.Xuzhou 221000, Jiangsu, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
- Glabiolus Biotech (Jiangxi) Co., Ltd.Ganzhou 341005, Jiangxi, China
| |
Collapse
|
72
|
Saranya I, Selvamurugan N. Regulation of TGF-β/BMP signaling during osteoblast development by non-coding RNAs: Potential therapeutic applications. Life Sci 2024; 355:122969. [PMID: 39142506 DOI: 10.1016/j.lfs.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Bone is a connective tissue that is metabolically active and serves multiple functions, including movement, structural support, and organ protection. It is comprised primarily of three types of bone cells, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts are bone-forming cells, and the differentiation of mesenchymal stem cells towards osteoblasts is regulated by several growth factors, cytokines, and hormones via various signaling pathways, including TGF-β/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling as a primary one. Non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, play crucial roles in regulating osteoblast differentiation via the TGF-β/BMP signaling cascade. Dysregulation of these ncRNAs leads to bone-pathological conditions such as osteoporosis, skeletal dysplasia, and osteosclerosis. This review provides a concise overview of the latest advancements in understanding the involvement of ncRNAs/TGF-β/BMP axis in osteoblast differentiation. These findings have the potential to identify new molecular targets for early detection of bone metabolism disorders and the development of innovative therapy strategies.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
73
|
Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D, Mastana S. Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review. Diseases 2024; 12:252. [PMID: 39452495 PMCID: PMC11507001 DOI: 10.3390/diseases12100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Bone remodeling is an intricate process executed throughout one's whole life via the cross-talk of several cellular events, progenitor cells and signaling pathways. It is an imperative mechanism for regaining bone loss, recovering damaged tissue and repairing fractures. To achieve this, molecular signaling pathways play a central role in regulating pathological and causal mechanisms in different diseases. Similarly, microRNAs (miRNAs) have shown promising results in disease management by mediating mRNA targeted gene expression and post-transcriptional gene function. However, the role and relevance of these miRNAs in signaling processes, which regulate the delicate balance between bone formation and bone resorption, are unclear. This review aims to summarize current knowledge of bone remodeling from two perspectives: firstly, we outline the modus operandi of five major molecular signaling pathways, i.e.,the receptor activator of nuclear factor kappa-B (RANK)-osteoprotegrin (OPG) and RANK ligand (RANK-OPG-RANKL), macrophage colony-stimulating factor (M-CSF), Wnt/β-catenin, Jagged/Notch and bone morphogenetic protein (BMP) pathways in regards to bone cell formation and function; and secondly, the miRNAs that participate in these pathways are introduced. Probing the miRNA-mediated regulation of these pathways may help in preparing the foundation for developing targeted strategies in bone remodeling, repair and regeneration.
Collapse
Affiliation(s)
- Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- VardhmanMahavir Health Care, Urban Estate Ph-II, Patiala 147002, India;
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
74
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
75
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
76
|
Docshin P, Panshin D, Malashicheva A. Molecular Interplay in Cardiac Fibrosis: Exploring the Functions of RUNX2, BMP2, and Notch. Rev Cardiovasc Med 2024; 25:368. [PMID: 39484128 PMCID: PMC11522771 DOI: 10.31083/j.rcm2510368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac fibrosis, characterized by the excessive deposition of extracellular matrix proteins, significantly contributes to the morbidity and mortality associated with cardiovascular diseases. This article explores the complex interplay between Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and Notch signaling pathways in the pathogenesis of cardiac fibrosis. Each of these pathways plays a crucial role in the regulation of cellular functions and interactions that underpin fibrotic processes in the heart. Through a detailed review of current research, we highlight how the crosstalk among RUNX2, BMP2, and Notch not only facilitates our understanding of the fibrotic mechanisms but also points to potential biomolecular targets for intervention. This article delves into the regulatory networks, identifies key molecular mediators, and discusses the implications of these signaling pathways in cardiac structural remodeling. By synthesizing findings from recent studies, we provide insights into the cellular and molecular mechanisms that could guide future research directions, aiming to uncover new therapeutic strategies to manage and treat cardiac fibrosis effectively.
Collapse
Affiliation(s)
- Pavel Docshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Daniil Panshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| |
Collapse
|
77
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
78
|
Pillay D, Perry V, Ndou R. Alcohol intake during pregnancy reduces offspring bone epiphyseal growth plate chondrocyte proliferation through transforming growth factor β-1 inhibition in the Sprague Dawley rat humerus. Anat Cell Biol 2024; 57:400-407. [PMID: 38817052 PMCID: PMC11424555 DOI: 10.5115/acb.23.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Intrauterine alcohol exposure delays bone maturation and intensifies osteoporosis and fracture risk. As most studies emphasize the neurological aspects of intrauterine alcohol exposure, there is a lack of research on the implications pertaining to osseous tissue. Previous studies investigated these effects in fetuses, with limited studies on postnatal life. Postnatal studies are crucial since peak bone growth occurs during adolescence. This study aimed at assessing the effects of prenatal alcohol exposure on the humerus proximal and distal growth plate chondrocytes in 3-week-old rats. Sprague Dawley rats (n=9) were assigned to either the ethanol group (n=3), saline (n=3), and untreated (n=3) group and time-mated. Once pregnant, as confirmed by the presence of a copulation plug, the former 2 groups were treated with 0.015 ml/g of 25.2% ethanol and 0.9% saline. The untreated group received no treatment. The left humeri belonging to 6 pups per group were used. Serial sections were cut with a microtome at 5 μm thickness. These sections were stained with haematoxylin and eosin for assessment of normal morphology or immunolabeled with anti-Ki-67 and transforming growth factor β-1 (TGFβ-1) antibody. Prenatal alcohol exposure adversely effected the growth plate sizes and the number of cells in the proliferative zone. Fewer TGFβ-1 immunopositive and proliferative chondrocytes were found using the anti-Ki-67 antibody. This may explain the growth retardation in offspring exposed to gestational alcohol, showing that gestational alcohol exposure inhibits cell proliferation, aiding the diminished stature.
Collapse
Affiliation(s)
- Diana Pillay
- Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Vaughan Perry
- Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Robert Ndou
- Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
79
|
Niu M, Whang H, Wu Z, Jiang S, Chen L. Deletion of Asb15b gene can lead to a significant decrease in zebrafish intermuscular bone. Gene 2024; 923:148561. [PMID: 38754570 DOI: 10.1016/j.gene.2024.148561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Intermuscular bones, which are present in numerous economically significant fish species, have a negative impact on the development of aquaculture. The Asb15b gene, primarily expressed in skeletal muscle, plays a crucial role in regulating protein turnover and the development of muscle fibers. It stimulates protein synthesis and controls the differentiation of muscle fibers. In this study, we employed CRISPR/Cas9 technology to generate homozygous zebrafish strains with 7 bp and 49 bp deletions in the Asb15b gene. Subsequent analyses using skeleton staining demonstrated a substantial reduction in the number of intermuscular bones in adult Asb15b-/- -7 bp and Asb15b-/- -49 bp mutants compared to the wild-type zebrafish, with decreases of 30 % (P < 0.001) and 40 % (P < 0.0001), respectively. Histological experiments further revealed that the diameter and number of muscle fibers in adult Asb15b-/- mutants did not exhibit significant changes when compared to wild-type zebrafish. Moreover, qRT-PCR experiments demonstrated significant differences in the expression of bmp6 and runx2b genes, which are key regulators of intermuscular bone development, during different stages of intermuscular bone development in Asb15b-/- mutants. This study strongly suggests that the Asb15b gene plays a crucial role in regulating intermuscular bone development in fish and lays the groundwork for further exploration of the role of the Asb15b gene in zebrafish intermuscular bone development.
Collapse
Affiliation(s)
- Minghui Niu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Huamin Whang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Zhichao Wu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Shouwen Jiang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Liangbiao Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
80
|
Tallon E, Macedo JP, Faria A, Tallon JM, Pinto M, Pereira J. Can Vitamin D Levels Influence Bone Metabolism and Osseointegration of Dental Implants? An Umbrella Review. Healthcare (Basel) 2024; 12:1867. [PMID: 39337208 PMCID: PMC11431482 DOI: 10.3390/healthcare12181867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Due to the large amount of scientific evidence on the subject and the limitations and incongruities in previous reviews, the primary aim of this umbrella review is to gather all the information regarding the importance of vitamin D levels in the osseointegration of dental implants. METHODS The literature search was performed in PubMed, Web of Science, CINAHL Plus, Cochrane Library, and Academic Search Complete throughout the search expression ["vitamin D" AND ("dental implant" OR "dental implants")]. RESULTS The initial search yielded 351 results, but at the end of the process, only five systematic reviews were selected. CONCLUSIONS Vitamin D seems to have a positive effect on the osseointegration of dental implants and on the reduction of dental implant failures; however, it is recommended that future studies take into account the limitations mentioned in this study in order to increase the validity and quality of scientific evidence on the subject.
Collapse
Affiliation(s)
- Eduardo Tallon
- Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Oporto, Portugal;
| | - José Paulo Macedo
- Department of Oral Medicine, Surgery and Implantology, Faculty of Health Sciences, Fernando Pessoa University, FP-I3ID, 4249-004 Oporto, Portugal;
| | - Ana Faria
- Ana Faria Dental Clinic, 15220 Bertamiráns, Spain;
| | | | - Marta Pinto
- School of Medicine and Biomedical Sciences, Fernando Pessoa University, 4249-004 Oporto, Portugal;
| | - Jorge Pereira
- Department of Oral Medicine, Surgery and Implantology, Faculty of Health Sciences, Fernando Pessoa University, FP-I3ID, 4249-004 Oporto, Portugal;
| |
Collapse
|
81
|
Yu XF, Teng B, Li JF, Zhang JV, Su Z, Ren PG. Novel Function of Osteocalcin in Chondrocyte Differentiation and Endochondral Ossification Revealed on a CRISPR/Cas9 bglap-bglap2 Deficiency Mouse Model. Int J Mol Sci 2024; 25:9945. [PMID: 39337434 PMCID: PMC11431882 DOI: 10.3390/ijms25189945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Endochondral ossification is the process by which cartilage is mineralized into bone, and is essential for the development of long bones. Osteocalcin (OCN), a protein abundant in bone matrix, also exhibits high expression in chondrocytes, especially hypertrophic chondrocytes, while its role in endochondral ossification remains unclear. Utilizing a new CRISPR/Cas9-mediated bglap-bglap2 deficiency (OCNem) mouse model generated in our laboratory, we provide the first evidence of OCN's regulatory function in chondrocyte differentiation and endochondral ossification. The OCNem mice exhibited significant delays in primary and secondary ossification centers compared to wild-type mice, along with increased cartilage length in growth plates and hypertrophic zones during neonatal and adolescent stages. These anomalies indicated that OCN deficiency disturbed endochondral ossification during embryonic and postnatal periods. Mechanism wise, OCN deficiency was found to increase chondrocyte differentiation and postpone vascularization process. Furthermore, bone marrow mesenchymal stromal cells (BMSCs) from OCNem mice demonstrated an increased capacity for chondrogenic differentiation. Transcriptional network analysis implicated that BMP and TGF-β signaling pathways were highly affected in OCNem BMSCs, which is closely associated with cartilage development and maintenance. This elucidation of OCN's function in chondrocyte differentiation and endochondral ossification contributes to a more comprehensive understanding of its impact on skeletal development and homeostasis.
Collapse
Affiliation(s)
- Xiang-Fang Yu
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518026, China;
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
| | - Bin Teng
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
| | - Jun-Feng Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518026, China;
| | - Pei-Gen Ren
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
82
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
83
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
84
|
Yadalam PK, Ramya R, Anegundi RV, Chatterjee S. Graph Neural Network-Based Drug Gene Interactions of Wnt/β-Catenin Pathway in Bone Formation. Cureus 2024; 16:e68669. [PMID: 39371752 PMCID: PMC11455251 DOI: 10.7759/cureus.68669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The Wnt/β-catenin pathway is crucial for bone formation and remodeling, regulating osteoblast differentiation, bone remodeling, and skeletal homeostasis. Dysregulation of the Wnt/β-catenin pathway is linked to bone-related diseases like osteoporosis, osteoarthritis, and osteosarcoma. The strategies to modulate this pathway include Wnt agonists, inhibitors, and small molecules. Graph neural networks (GNNs) have shown potential in understanding drug-gene interactions, providing accurate predictions, identifying novel drug-target pairs, and enabling personalized drug therapy. So we aim to predict GNN-based drug-gene interactions of Wnt/β-catenin pathway in bone formation. Methodology The drug-gene interactions of Wnt signaling were annotated and preprocessed using Cytoscape, a powerful tool for building drug-gene interactions. Data was imported, nodes representing drugs and genes were created, and edges represented their interactions. GNNs were used to prepare data for nodes, genes, and drugs. GNNs are designed to operate on graph-structured data, capable of learning complex relationships between the nodes. The architecture consists of several steps: graph representation, message passing, node representation update, graph-level readout, and prediction or output. A data representation system is a GNN with an Adam optimizer, 100 epochs, a learning rate of 0.001, and entropy loss. Results The network has 108 nodes, 134 edges, and 2.444 neighbors, with a diameter of 4, radius of 2, and characteristic path length of 2.635. It lacks clustering, sparse connectivity, wide connection variation, and moderate centralization. The GNN model's drug-gene interactions demonstrate high precision, recall, F1 score, and accuracy, with a high sensitivity to true-positives and low false-negatives. Conclusion The study employs a GNN model to predict drug-gene interactions in the Wnt/β-catenin pathway, demonstrating high precision and accuracy, but further research is needed.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - R Ramya
- Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shubhangini Chatterjee
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
85
|
Toba K, Yamada A, Sasa K, Shirota T, Kamijo R. Expression of Kielin/chordin-like protein is regulated by BMP-2 in osteoblasts. Bone Rep 2024; 22:101793. [PMID: 39139593 PMCID: PMC11321374 DOI: 10.1016/j.bonr.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Bone morphogenetic protein (BMP), an osteoinductive factor, is a cytokine that induces osteoblast differentiation and mineralization, and expected to be applicable for hard tissue reconstruction. Kielin/chordin-like protein (Kcp), a member of the family of cysteine-rich proteins, enhances BMP signaling. The present study found that expression of Kcp in osteoblasts was induced by BMP-2 in a concentration- and time-dependent manner. Up-regulation of Kcp by BMP-2 was inhibited by Dorsomorphin, a SMAD signaling inhibitor. The involvement of up-regulation of Kcp by BMP-2 in induction of osteoblast differentiation by BMP-2 was also examined, which showed that suppression of Kcp expression by si Kcp partially inhibited induction of osteoblast differentiation and mineralization by BMP-2. Together, these results suggest that Kcp induced by BMP-2 functions to provide positive feedback for promotion of osteoblastic differentiation and mineralization by BMP-2 in osteoblasts.
Collapse
Affiliation(s)
- Kazuki Toba
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
86
|
Zhou L, Wu Y, Bai Z, Bian J, Xie H, Chen C. Effects of 10-MDP calcium salt on osteoblasts and fibroblasts. Dent Mater 2024; 40:1322-1331. [PMID: 38876824 DOI: 10.1016/j.dental.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE 10-methacryloyloxidecyl dihydrogen phosphate monomer (10-MDP) is commonly used as a bonding monomer in universal adhesives. Adhesives that contain this monomer can directly contact the surrounding periodontium due to the chemical binding of 10-MDP with hydroxyapatite in hard tissue to form calcium salts. However, the effect of these calcium salts on the periodontium in the case of subgingival fillings remains poorly understood. The objective of this study was to investigate effects of 10-MDP calcium salts on osteoblasts and fibroblasts in the periodontal tissues. METHODS This study investigated the effects of different concentrations of 10-MDP calcium salts on the migration, proliferation, and differentiation of osteoblasts (MC3T3-E1) and fibroblasts (L929); additionally, the effect on apoptosis and matrix metalloproteinases (MMPs) expression in these cells was evaluated. Cell proliferation assay, alkaline phosphatase (ALP) activity assay, Western blotting, and quantitative real-time polymerase chain reaction were performed to determine the effects. RESULTS The 10-MDP calcium salts (within a concentration of 0.5 mg/mL) showed no cytotoxicity and did not seem to influence the apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cells. However, they had an inhibitory effect on the secretion of MMP2 and MMP9 in the osteoblasts and fibroblasts. The ALP activity assay and Alizarin Red staining did not reveal any significant effects of the 10-MDP calcium salts on osteoblast differentiation. SIGNIFICANCE These results suggest that applying 10-MDP-containing adhesives to subgingival fillings may be safe and beneficial for the periodontal tissues.
Collapse
Affiliation(s)
- Lvhui Zhou
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yumin Wu
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zehua Bai
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Bian
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haifeng Xie
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
87
|
Dong Y, Li J, Jiang Q, He S, Wang B, Yi Q, Cheng X, Gao X, Bai Y. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat 2024; 48:70-88. [PMID: 39185339 PMCID: PMC11342074 DOI: 10.1016/j.jot.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Background Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. Methods: The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatinmp to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment. Results The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance. Conclusion The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon. The translational potential of this article The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.
Collapse
Affiliation(s)
- YuHan Dong
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - JiangFeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - SiRong He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - QiYing Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - XiTing Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
88
|
Yadalam PK, Ramadoss R, Anegundi RV. HyperAttention and Linformer-Based β-catenin Sequence Prediction For Bone Formation. Cureus 2024; 16:e68849. [PMID: 39376879 PMCID: PMC11456985 DOI: 10.7759/cureus.68849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Beta (β)-catenin, a pivotal protein in bone development and homeostasis, is implicated in various bone disorders. Peptide-based therapeutics offer a promising approach due to their specificity and potential for reduced side effects. Attention networks are widely used for peptide sequence prediction, specifically sequence-to-sequence models. Hence, the current study aims to develop a HyperAttention and informatics-based β-catenin sequence prediction for bone formation. Methods β-catenin protein sequences were downloaded and quality-checked using UniProt and FASTA sequences using DeepBio (Deep Bio Inc., Seoul, South Korea) for predictive analysis. Data was analyzed for duplicates, outliers, and missing values. The data was then split into training and testing sets, with 80% of the data used for training and 20% for testing, and peptide sequences were encoded and subjected to algorithms. Results The HyperAttention and Linformer models perform well in predictive sequence, with HyperAttention correctly predicting 87% of instances and Linformer predicting 89%. Both models have higher sensitivity and specificity, with Linformer showing better identification of 91% of negative instances and slightly better sensitivity. Conclusion The HyperAttention and Linformer models effectively predict peptide sequences with high specificity and sensitivity. Further optimization and development are needed for optimal application and balance between positive and negative instances.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Periodontics, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| | - Raghavendra Vamsi Anegundi
- Periodontics, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| |
Collapse
|
89
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
90
|
Totoki Y, Mutsuzaki H, Yanagisawa Y, Sogo Y, Yasunaga M, Noguchi H, Matsumoto Y, Koda M, Ito A, Yamazaki M. Do Stainless-Steel Pins Coated with Fibroblast Growth Factor-Calcium Phosphatase Composite Layers Have Anti-Infective Effects? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1419. [PMID: 39336460 PMCID: PMC11434512 DOI: 10.3390/medicina60091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Background: The most problematic complication of external fixation is infection at the pin insertion site. Technology that improves the adhesion of the external fixation pin to the skin, subcutaneous tissue, and bone may prevent infection at the pin site. The purpose of this study is to formulate a calcium phosphate-fibroblast growth factor (Cp-FGF) coating on a stainless-steel external fixation pin and to verify its effectiveness in reducing infection at the pin site and its possible influence on bone fixation in animal experiments. Methods: We compared stainless-steel screws without coating (SS group; n = 32), those with a calcium phosphate coating (Cp group; n = 30), those with a Cp-FGF coating (FGF group; n = 32), and those with a Cp-FGF coating having enhanced biological activity (FGF+ group; n = 32) in male Japanese white domesticated rabbits. Screws were inserted percutaneously into the bilateral proximal tibial diaphysis of the rabbits and implanted for 4 weeks. Screws and periscrew tissue were observed postoperatively for qualitatively assessing infection. Results: Infection assessment by gross findings after 4 weeks (at screw removal) showed no significant differences between the groups. Histopathological evaluation of soft tissue infection and bone tissue infection showed no significant differences between the groups for either soft tissue or bone tissue. Since neither the FGF+ group nor the FGF group showed anti-infective effects, the biological activity of FGF is not the only determining factor. We compared SEM, XRD, coating detaching test, sustained release test, and bioassay to examine physicochemical properties among the coatings but found no sufficient differences. Conclusions: It is suggested that improving the tissue adhesion to and/or biocompatibility of pins is also important to improve the in vivo performance of Cp-FGF-coated external fixation pins.
Collapse
Affiliation(s)
- Yasukazu Totoki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Hirotaka Mutsuzaki
- Center for Medical Science, Ibaraki Prefectural University of Health Sciences, Ami 300-0394, Ibaraki, Japan
- Department of Orthopedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, Ami 300-0331, Ibaraki, Japan
| | - Yohei Yanagisawa
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Yu Sogo
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Mayu Yasunaga
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Hiroshi Noguchi
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Yukei Matsumoto
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Masao Koda
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
| | - Atsuo Ito
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba 305-8566, Ibaraki, Japan; (Y.S.); (M.Y.); (A.I.)
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan; (Y.T.); (Y.Y.); (H.N.); (Y.M.); (M.K.); (M.Y.)
- Department of Orthopaedic Surgery, Ichihara Hospital, Tsukuba 300-3295, Ibaraki, Japan
| |
Collapse
|
91
|
Wang D, Yang J, Li H, Chen Y, Lin W, Lei S, You Y, Liu C, Lin Y, Guo H, Mo G, Tang Y, Yuan K, Deng W, Liu T, Gu G, Mai B, Zhang Z, Zhang S, Li Y. Identification of Risk Factors for Primary Osteoporosis: The Role of Cervical Ligament Ossification. Med Sci Monit 2024; 30:e944963. [PMID: 39205372 PMCID: PMC11370645 DOI: 10.12659/msm.944963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Long-term clinical practice has suggested a possible association between ossification of cervical ligament (OCL) and primary osteoporosis (POP). However, there is a lack of relevant research data. This study aimed to clarify the potential relationship between OCL and POP, and propose new strategies for preventing the onset of POP. MATERIAL AND METHODS The study involved 107 patients. The patients' diagnosis included OCL (ossification of the posterior longitudinal ligament, ossification of the ligamentum flavum, and ossification of the nuchal ligament) and POP. Bone mineral density (BMD), types of OCL, types of ossification of posterior longitudinal ligament, age, sex, serum calcium, serum phosphorus, alkaline phosphatase, type I collagen amino-terminal extension peptide, type I collagen degradation products, osteocalcin N-terminal molecular fragments, 25-hydroxyvitamin D, and history of taking steroid drugs were collected. SPSS24.0 and GraphPad Prism 8 were used to obtain the risk factors for POP. RESULTS One-way analysis of variance found that OCL, ossification of posterior longitudinal ligament, alkaline phosphatase, and osteocalcin N-terminal molecular fragments had statistical significance on BMD of the femoral neck (P<0.05). The independent sample t test showed that patient sex had statistical significant effect on BMD (femoral neck) (P=0.036). Incorporating the above factors into multiple linear regression analysis, it was found that OCL, alkaline phosphatase, and osteocalcin N-terminal molecular fragments were risk factors affecting BMD of femoral neck (P<0.05). CONCLUSIONS OCL, osteocalcin N-terminal molecular fragments, and alkaline phosphatase are risk factors for POP.
Collapse
Affiliation(s)
- Dongping Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiamin Yang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Haishan Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yuxian Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wei Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shenglin Lei
- The Shenzhen Clinical College of Medicine of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, PR China
| | - Yawen You
- The Fifth Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chang Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yuewei Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Huizhi Guo
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Guoye Mo
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yongchao Tang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Kai Yuan
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wei Deng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Teng Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Guoning Gu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Bin Mai
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhen Zhang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shuncong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yongxian Li
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
92
|
Barberi J, Baruffaldi D, Napione L, Frascella F, Yamaguchi S, Pirri C, Spriano S. Investigation of the Relationship between Surface Features, Protein Adsorption, and Osteoimmunomodulation: The Case of a Chemically Treated Titanium Alloy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17301-17310. [PMID: 39106975 PMCID: PMC11340636 DOI: 10.1021/acs.langmuir.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
This paper deals with the combined effects of immune response and osseointegration because of the lack of comprehensive studies on this topic. An antibacterial Ti surface was considered because of the high risk of infection for titanium bone implants. A chemically treated Ti6Al4 V alloy [Ti64(Sr-Ag)] with a microporous and Sr-Ag doped surface was compared to a polished version (Ti64) regarding protein adsorption (albumin and fibronectin) and osteoimmunomodulation. Characterization via fluorescence microscopy and zeta potential showed a continuous fibronectin layer on Ti64(Sr-Ag), even with preadsorbed albumin, while it remained filamentous on Ti64. Macrophages (differentiated from THP-1 monocytes) were cultured on both surfaces, with viability and cytokine release analyzed. Differently from Ti64, Ti64(Sr-Ag) promoted early anti-inflammatory responses and significant downregulation of VEGF. Ti64(Sr-Ag) also enhanced human bone marrow mesenchymal cell differentiation toward osteoblasts, when a macrophage-conditioned medium was used, influencing ALP production. Surface properties in relation to protein adsorption and osteoimmunomodulation were discussed.
Collapse
Affiliation(s)
- J. Barberi
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - D. Baruffaldi
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - L. Napione
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - F. Frascella
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - S. Yamaguchi
- Department
of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - C.F. Pirri
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Center
for Sustainable Futures, PolitoIstituto
Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - S. Spriano
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
93
|
Gorashi RM, Baddour T, Chittle SJ, Vélez NEF, Wenning MA, Anseth KS, Mestroni L, Peña B, Guo P, Aguado BA. Y chromosome linked UTY modulates sex differences in valvular fibroblast methylation in response to nanoscale extracellular matrix cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593760. [PMID: 38798394 PMCID: PMC11118428 DOI: 10.1101/2024.05.13.593760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Aortic valve stenosis (AVS) is a progressive disease wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing, Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a novel role of UTY in the regulation of calcification processes in males during AVS progression.
Collapse
|
94
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
95
|
Liang L, Wang S, Zhang X, Yan T, Pan X, Gao Y, Zhang X, Wang Q, Qu L. Multi-site enhancement of osteogenesis: peptide-functionalized GelMA hydrogels with three-dimensional cultures of human dental pulp stem cells. Regen Biomater 2024; 11:rbae090. [PMID: 39193556 PMCID: PMC11349188 DOI: 10.1093/rb/rbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have demonstrated greater proliferation and osteogenic differentiation potential in certain studies compared to other types of mesenchymal stem cells, making them a promising option for treating craniomaxillofacial bone defects. However, due to low extracting concentration and long amplifying cycles, their access is limited and utilization rates are low. To solve these issues, the principle of bone-forming peptide-1 (BFP1) in situ chemotaxis was utilized for the osteogenic differentiation of hDPSCs to achieve simultaneous and synergistic osteogenesis at multiple sites. BFP1-functionalized gelatin methacryloyl hydrogel provided a 3D culture microenvironment for stem cells. The experimental results showed that the 3D composite hydrogel scaffold constructed in this study increased the cell spread area by four times compared with the conventional GelMA scaffold. Furthermore, the problems of high stem cell dosage and low rate of utilization were alleviated by orchestrating the programmed proliferation and osteogenic differentiation of hDPSCs. In vivo, high-quality repair of critical bone defects was achieved using hDPSCs extracted from a single tooth, and multiple 'bone island'-like structures were successfully observed that rapidly induced robust bone regeneration. In conclusion, this study suggests that this kind of convenient, low-cost, island-like osteogenesis strategy involving a low dose of hDPSCs has great potential for repairing craniomaxillofacial critical-sized bone defects.
Collapse
Affiliation(s)
- Leyi Liang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Xiyue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Tao Yan
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning 110016, China
| | - Xiyun Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xing Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Liu Qu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
96
|
Rodríguez-Sosa MR, Del Castillo LM, Belarra A, Zapata AG, Alfaro D. The lack of EphB3 receptor prevents bone loss in mouse models of osteoporosis. J Bone Miner Res 2024; 39:1008-1024. [PMID: 38739682 DOI: 10.1093/jbmr/zjae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7. To clarify the underlying molecular mechanisms, we found that the lack of EphB3 signaling alters the genetic profile of differentiating MSCs, reducing the expression of many inhibitory molecules and antagonists of the BMP signaling pathway, and increasing Bmp7 expression, a robust bone inductor. Then, to confirm the osteogenic role of EphB3 in vivo, we studied the condition of 2 mouse models of induced bone loss (ovariectomy or long-term glucocorticoid treatment). Interestingly, in both models, both WT and EphB2-/- mice equally developed the disease but EphB3-/- mice did not exhibit the typical bone loss, nor an increase in urine Ca2+ or blood serum CTX-1. This phenotype in EphB3-KO mice could be due to their significantly higher proportions of osteoprogenitor cells and preosteoblasts, and their lower number of osteoclasts, as compared with WT and EphB2-KO mice. Thus, we conclude that EphB3 acts as a negative regulator of the osteogenic differentiation, and its absence prevents bone loss in mice subjected to ovariectomy or dexamethasone treatment.
Collapse
Affiliation(s)
- Mariano R Rodríguez-Sosa
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
- Research Institute Hospital "12 de Octubre" (imas12), C.P. 28041, Madrid, Spain
| | - Luis M Del Castillo
- Reproductive Medicine Research Group, IVI Foundation, Health Research Institute Hospital La Fe (IIS La Fe), C.P. 46026, Valencia, Spain
| | - Adrián Belarra
- Micro-CT Laboratory, Central Radioactive Facility, Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| |
Collapse
|
97
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
98
|
Goloe D, Gildor T, Ben-Tabou de-Leon S. Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis. Genesis 2024; 62:e23614. [PMID: 39139086 DOI: 10.1002/dvg.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-β) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-β in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-βRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-βRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-βRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-β targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-β in biomineralization in these two phyla results from convergent evolution.
Collapse
Affiliation(s)
- Daniel Goloe
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
99
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
100
|
Sun J, Niu L, Wang Y, Zhao G, Tang L, Jiang J, Pan S, Ge X. MicroRNA‑17‑5p alleviates sepsis‑related acute kidney injury in mice by modulating inflammation and apoptosis. Mol Med Rep 2024; 30:139. [PMID: 38904199 PMCID: PMC11200053 DOI: 10.3892/mmr.2024.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 06/22/2024] Open
Abstract
Septic acute kidney injury (AKI) is considered as a severe and frequent complication that occurs during sepsis. Mounting evidence has confirmed the pivotal pathogenetic roles of microRNA (miRNA or miR) in sepsis‑induced AKI; however, the role of miRNAs and their underlying mechanisms in sepsis‑induced AKI have not been entirely understood. The present study aimed to elucidate the functions of special miRNAs during sepsis‑induced AKI and its underlying mechanism. First, a number of differently expressed miRNAs was identified based on the microarray dataset GSE172044. Subsequently, lipopolysaccharide (LPS) was used to induce AKI in mice, and the role of miR‑17‑5p on AKI was clarified. Finally, the related molecular mechanisms were further examined by western blotting and immunohistochemical analysis. MiR‑17‑5p was found to be continuously decreased and reached the bottom at h 24 after AKI in mice. Functionally, injection of agomiR‑17‑5p could observably improve renal injury and survival rate, as well as inhibit inflammatory cytokine production and renal cell apoptosis in mice after AKI. On the contrary, injection of antagomiR‑17‑5p aggravated LPS‑induced renal injury, inflammation and apoptosis in mice after AKI. Moreover, transforming growth factor β receptor 2 (TGFβR2) was identified as a direct target of miR‑17‑5p, and its downstream phosphorylated Smad3 was also suppressed by miR‑17‑5p upregulation. Taken together, these results demonstrated that miR‑17‑5p overexpression may exhibit a beneficial effect by attenuating LPS‑induced inflammation and apoptosis via regulating the TGFβR2/TGF‑β/Smad3 signaling pathway, indicating that miR‑17‑5p could act as a potential target for sepsis treatment.
Collapse
Affiliation(s)
- Jian Sun
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Lei Niu
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Wang
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Gang Zhao
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 20023, P.R. China
| | - Lujia Tang
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jiamei Jiang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 20023, P.R. China
| | - Shuming Pan
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoli Ge
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|