51
|
Hong J, Son M, Sin J, Kim H, Chung DK. Nanoparticles of Lactiplantibacillus plantarum K8 Reduce Staphylococcus aureus Respiratory Infection and Tumor Necrosis Factor Alpha- and Interferon Gamma-Induced Lung Inflammation. Nutrients 2023; 15:4728. [PMID: 38004123 PMCID: PMC10675637 DOI: 10.3390/nu15224728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple studies have confirmed that Lactiplantibacillus plantarum has beneficial effects in respiratory diseases, including respiratory tract infections, asthma, and chronic obstructive pulmonary disease. However, the role of L. plantarum lysates in respiratory diseases is unclear. Staphylococcus aureus infects the lungs of mice, recruits immune cells, and induces structural changes in alveoli. Lung diseases can be further aggravated by inflammatory cytokines such as CCL2 and interleukin (IL)-6. In in vivo studies, L. plantarum K8 nanoparticles (K8NPs) restored lung function and prevented lung damage caused by S. aureus infection. They inhibited the S. aureus infection and the infiltration of immune cells and prevented the increase in goblet cell numbers in the lungs of S. aureus-infected mice. K8NPs suppressed the expression of CCL2 and IL-6, which were increased by the combination treatment of tumor necrosis factor alpha and interferon gamma (TI), in a dose-dependent manner. In in vitro studies, the anti-inflammatory effect of K8NPs in TI-treated A549 cells and TI-injected mice occurred through the reduction in activated mitogen-activated protein kinases and nuclear factor kappa-B. These findings suggest that the efficacy of K8NPs in controlling respiratory inflammation and infection can be used to develop functional materials that can prevent or alleviate respiratory diseases.
Collapse
Affiliation(s)
- Jonghyo Hong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Minseong Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Jaeeun Sin
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co., Ltd., Yongin 17104, Republic of Korea
| | - Dae-Kyun Chung
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| |
Collapse
|
52
|
Kim J, Lee SH, Zhang S, Bong SK, Kim AT, Lee H, Liu X, Kim SM, Kim SN. Anti-Allergic Inflammatory Effect of Agarum cribrosum and Its Phlorotannin Component, Trifuhalol A, against the Ovalbumin-Induced Allergic Asthma Model. Curr Issues Mol Biol 2023; 45:8882-8893. [PMID: 37998734 PMCID: PMC10669934 DOI: 10.3390/cimb45110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Asthma is a chronic inflammatory disease involving structural changes to the respiratory system and severe immune responses mediated by allergic cytokines and pro-inflammatory mediators. Agarum cribrosum (AC) is a kind of seaweed which contains a phlorotannin, trifuhalol A. To evaluate its anti-allergic inflammatory effect against asthma, an ovalbumin inhalation-induced mouse asthma model was used. Histologic observations proved that trifuhalol A is minimizing the lung and tracheal structure changes as well as the infiltration of eosinophils and mast cells against ovalbumin inhalation challenge. From the serum and bronchoalveolar lavage fluid, ovalbumin-specific IgE and Th2-specific cytokines, IL-4, -5, and -13, were reduced with trifuhalol A treatment. In addition, IL-1β, IL-6, and TNF-α concentrations in lung homogenate were also significantly reduced via trifuhalol A treatment. Taken together, trifuhalol A, isolated from AC, was able to protect lung and airways from Th2-specific cytokine release, and IgE mediated allergic inflammation as well as the attenuation of IL-1β, IL-6, and TNF-α in lung, which results in the suppression of eosinophils and the mast cells involved asthmatic pathology.
Collapse
Affiliation(s)
- Joonki Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Heon Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
| | - Siqi Zhang
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sim-Kyu Bong
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
| | - Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hara Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Department of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Xiaoyong Liu
- Haizhibao Deutschland GmbH, Heiliggeistgasse, 85354 Freising, Germany;
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
53
|
Rajizadeh MA, Bejeshk MA, Aminizadeh A, Yari A, Rostamabadi F, Bagheri F, Najafipour H, Nematollahi MH, Amirkhosravi A, Mehrabani M, Mehrabani M. Inhalation of Spray-Dried Extract of Salvia rosmarinus Spenn Alleviates Lung Inflammatory, Oxidative, and Remodeling Changes in Asthmatic Rats. Pharmacology 2023; 109:10-21. [PMID: 37918369 DOI: 10.1159/000534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION For centuries, Salvia rosmarinus Spenn has been applied as folk medicine to cure different diseases due to its anti-inflammatory, antibacterial, antioxidant, antifungal, and antitumor effects. To find bioactive medicinal herbs exerting a protective effect on airway inflammation and remodeling, we assessed the anti-oxidative and anti-inflammatory effects of an aqueous spray-dried extract of Salvia rosmarinus Spenn. (rosemary) in an ovalbumin-induced asthmatic rat model. METHODS Rats were randomly divided into normal control (control), asthma, asthma+rosemary extract (RE) (13 mg/kg), asthma+RE (50 mg/kg), and asthma+budesonide groups. After 50 days, animals were anesthetized, and then blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for subsequent serological and pathological studies. Histopathology of lung tissues was evaluated by H&E staining. The oxidative stress parameters and airway inflammation factors in BALF and lung tissue were explored. RESULTS Using thin layer chromatography, the presence of rosmarinic acid was confirmed in aqueous extract of rosemary. Furthermore, RE markedly decreased immunoglobulin E levels (50 mg/kg; p < 0.001 vs. asthma group) and inflammatory cytokines (50 mg/kg; p < 0.001 vs. asthma group) and increased antioxidant enzymes (50 mg/kg, p < 0.001 vs. asthma group). Furthermore, RE at a concentration of 50 mg/kg obviously reduced the number of inflammatory cells, goblet cells, and pathological changes compared to the asthma group. CONCLUSION The results showed that RE administration might prevent or alleviate allergic asthma-related pathological change, probably via antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhashem Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Arian Amirkhosravi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Student Research Committee, Kerman University of Medical Science, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
54
|
Masjedy A, Salesi M, Ahmadi A, Salimian J, Azimzadeh Jamalkandi S. Association between single-nucleotide polymorphism of cytokines genes and chronic obstructive pulmonary disease: A systematic review and meta-analysis. Cytokine 2023; 171:156352. [PMID: 37703677 DOI: 10.1016/j.cyto.2023.156352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic inflammatory disease with high morbidity and mortality rates worldwide. Cytokines, which are the main regulators of immune responses, play crucial roles in inflammatory diseases such as COPD. Moreover, certain genetic variations can alter cytokine expression, and changes in cytokine level or function can affect disease susceptibility. Therefore, investigating the association between genetic variations and disease progression can be useful for prevention and treatment. Several studies have explored the association between common genetic variations in cytokine genes and COPD susceptibility. In this study, we summarized the reported studies and, where possible, conducted a systematic review and meta-analysis to evaluate the genetic association between various cytokines and COPD pathogenesis. We extracted relevant articles from PubMed and Google Scholar databases using a standard systematic search strategy. We included a total of 183 studies from 78 separate articles that evaluated 50 polymorphisms in 12 cytokine genes in this study. Our analysis showed that among all reported cytokine polymorphisms (including TNF-α, TGF-β, IL1, IL1RN, IL4, IL4R, IL6, IL10, IL12, IL13, IL17, IL18, IL27, and IL33), only four variants, including TNF-α-rs1800629, TGF-β1-rs6957, IL13-rs1800925, and IL6-rs1800796, were associated with the risk of COPD development. This updated meta-analysis strongly supports the association of TNF-α-rs1800629, TGF-β1-rs6957, IL13-rs1800925, and IL6-rs1800796 variants with a high risk of COPD.
Collapse
Affiliation(s)
- Ali Masjedy
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
Yuan F, Yang Y, Liu L, Zhou P, Zhu Y, Chai Y, Chen K, Tang W, Huang Q, Zhang C. Research progress on the mechanism of astragaloside IV in the treatment of asthma. Heliyon 2023; 9:e22149. [PMID: 38045181 PMCID: PMC10692808 DOI: 10.1016/j.heliyon.2023.e22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Asthma is a common chronic respiratory disease, and its treatment is a core problem and challenge in clinical practice. Glucocorticoids (GCs) are the first-line therapy for the treatment of asthma. Local and systemic adverse reactions caused by GCs create obstacles to the treatment of asthma. Therefore, the research target is to find a new, safe, and effective therapeutic medicine at present. Natural products are an important source for treating asthma with low cost and low toxicity. Astragaloside IV (AS-IV) is an active ingredient of traditional Chinese medicine Astragalus mongholicus Bunge. Previous studies have indicated that AS-IV plays a therapeutic role in the treatment of asthma by inhibiting airway inflammation and remodeling the airway, and by regulating immunity and neuroendocrine function (Fig. 1) . It has a variety of biological characteristics such as multi-target intervention, high safety, and good curative effect. This article reviews the specific mechanism of AS-IV for the treatment of asthma to provide references for subsequent research.
Collapse
Affiliation(s)
- Fanyi Yuan
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
56
|
Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, Singh TG, Singh SK, Gupta G, Adams J, MacLoughlin R, Oliver BGG, Hansbro PM, Chellappan DK, Dua K. Agarwood oil nanoemulsion counteracts LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. Pathol Res Pract 2023; 251:154895. [PMID: 37879146 DOI: 10.1016/j.prp.2023.154895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.
Collapse
Affiliation(s)
- Raniya Malik
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jessie Shen
- De'Aurora Pty Ltd., Dean, VIC 3363, Australia
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 602105, Tamil Nadu, India; School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
57
|
Singh A, Bhargawa SK, Yadav G, Kushwaha R, Verma SP, Tripathi T, Singh US, Tripathi AK. Interleukin-6 and interleukin-8 levels in children with aplastic anemia and its correlation with disease severity and response to immunosuppressive therapy. Ann Afr Med 2023; 22:446-450. [PMID: 38358144 PMCID: PMC10775928 DOI: 10.4103/aam.aam_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2024] Open
Abstract
Background Aplastic anemia (AA) is an uncommon condition characterized by pancytopenia and hypocellular bone marrow. Interleukin (IL)-6 and IL-8 have been shown to inhibit myelopoiesis and are major mediators of tissue damage. The primary goal of this study was to determine the IL-6 and IL-8 levels in children with AA, as well as their relationship to illness severity and immunosuppressive medication response. Materials and Methods The IL-6 and IL-8 levels were tested in 50 children aged 3-18 years who had AA. As controls, 50 healthy age and sex matched individuals were used. A sandwich enzyme-linked immunosorbent assay kit (solid-phase) was used to measure IL-6 and IL-8 levels quantitatively. The concentrations of IL-6 and IL-8 in pg/mL were used to represent the results. Immunosuppressive medication was given to the patients in accordance with the British Committee for Standards in Haematology Guidelines 2009. Results The patients' average age was 11.3 ± 3.7 years. Patients with AA had significantly higher IL-6 and IL-8 levels than controls (278.88 ± 216.03 vs. 4.51 ± 3.26; P < 0.001) and (120.28 ± 94.98 vs. 1.79 ± 0.78; P < 0.001), respectively. The IL-6 and IL-8 levels were also investigated with respect to AA severity, with statistically significant differences (P < 0.01) between different grading strata. Patients with very severe AA (VSAA) had the highest IL-6 levels (499.52 ± 66.19), followed by severe AA (SAA) (201.28 ± 157.77) and non-SAA (NSAA) (22.62 ± 14.63). For IL-8 levels, a similar trend (P < 0.01) was detected, with values of 209.81 ± 38.85, 92.12 ± 78.0, and 9.29 ± 10.68 for VSAA, SAA, and NSAA, respectively. After 6 months of immunosuppressive treatment (IST), mean levels of IL-6 and IL-8 in responders and nonresponders were again assessed. The mean IL-6 level in the responders' group (46.50 ± 45.41) was significantly lower, when compared to the nonresponders' group (145.76 ± 116.32) (P < 0.001). Similarly, the mean IL-8 level in the responder's group (33.57 ± 27.14) was significantly lower, compared to the nonresponder's group (97.49 ± 69.00) (P < 0.001). Conclusions Children with AA had higher IL-6 and IL-8 levels than normal age- and sex-matched controls. Increased levels were linked to the severity of the condition, suggesting that IL may have a role in AA. IL levels can be monitored in AA patients during IST, which can assist in predicting response to IST.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sharvan Kumar Bhargawa
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Geeta Yadav
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Kushwaha
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Prasad Verma
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Tanya Tripathi
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Uma Shankar Singh
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
58
|
Kim EY, Ji Kim E, Park H, Lee Y, Kyung Kim D, Sohn Y, Jung HS. A study on specific factors related to inflammation and autophagy in BEAS-2B cells induced by urban particulate matter (PM, 1648a) and histological evaluation of PM-induced bronchial asthma model in mice. Int Immunopharmacol 2023; 123:110730. [PMID: 37543014 DOI: 10.1016/j.intimp.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
As particulate matter (PM) poses an increasing risk, research on its correlation with diseases is active. However, researchers often use their own PM, making it difficult to determine its components. To address this, we investigated the effects of PM with known constituents on BEAS-2B cells, examining cytokine levels, reactive oxygen species ROS production, DNA damage, and MAPK phosphorylation. Additionally, we evaluated the effects of PM on normal and OVA-induced asthmatic mice by measuring organ weight, cytokine levels, and inflammatory cells in bronchoalveolar lavage fluid, and examining histological changes. PM markedly increased levels of IL-6, GM-CSF, TNF-α, ROS, nitric oxide, and DNA damage, while surprisingly reducing IL-8 and MCP-1. Moreover, PM increased MAPK phosphorylation and inhibited mTOR and AKT phosphorylation. In vivo, lung and spleen weights, IgE, OVA-specific IgE, IL-4, IL-13, total cells, macrophages, lymphocytes, mucus generation, and LC3II were higher in the asthma group. PM treatment in asthmatic mice increased lung weight and macrophage infiltration, but decreased IL-4 and IL-13 in BALF. Meanwhile, PM treatment in the Nor group increased total cells, macrophages, lymphocytes, and mucus generation. Our study suggests that PM may induce and exacerbate lung disease by causing immune imbalance via the MAPK and autophagy pathways, resulting in decreased lung function due to increased smooth muscle thickness and mucus generation.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yujin Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
59
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
60
|
Lin CH, Chen YJ, Lin MW, Chang HJ, Yang XR, Lin CS. ACE2 and a Traditional Chinese Medicine Formula NRICM101 Could Alleviate the Inflammation and Pathogenic Process of Acute Lung Injury. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1554. [PMID: 37763673 PMCID: PMC10533189 DOI: 10.3390/medicina59091554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
COVID-19 is a highly transmittable respiratory illness caused by SARS-CoV-2, and acute lung injury (ALI) is the major complication of COVID-19. The challenge in studying SARS-CoV-2 pathogenicity is the limited availability of animal models. Therefore, it is necessary to establish animal models that can reproduce multiple characteristics of ALI to study therapeutic applications. The present study established a mouse model that has features of ALI that are similar to COVID-19 syndrome to investigate the role of ACE2 and the administration of the Chinese herbal prescription NRICM101 in ALI. Mice with genetic modifications, including overexpression of human ACE2 (K18-hACE2 TG) and absence of ACE2 (mACE2 KO), were intratracheally instillated with hydrochloric acid. The acid intratracheal instillation induced severe immune cell infiltration, cytokine storms, and pulmonary disease in mice. Compared with K18-hACE2 TG mice, mACE2 KO mice exhibited dramatically increased levels of multiple inflammatory cytokines (IL-6 and TNF-α) in bronchoalveolar lavage fluid, histological evidence of lung injury, and dysregulation of MAPK and MMP activation. In mACE2 KO mice, NRICM101 could ameliorate the disease progression of acid-induced ALI. In conclusion, the established mouse model provided an effective platform for researchers to investigate pathological mechanisms and develop therapeutic strategies for ALI, including COVID-19-related ALI.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Yi-Ju Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Ho-Ju Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Xin-Rui Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
61
|
Kim MH, Bae CS, Bok SH, Choi HS, Ahn T, Cho SS, Park DH. Drug Development from Natural Products Based on the Pathogenic Mechanism of Asthma. Int J Mol Sci 2023; 24:12469. [PMID: 37569846 PMCID: PMC10419019 DOI: 10.3390/ijms241512469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the pulmonary system associated with many wheeze-to-sleep apnea complications that may lead to death. In 2019, approximately 262 million patients suffered from asthma, and 455 thousand died from the disease worldwide. It is a more severe health problem in children and older adults, and as the aging of society intensifies, the problem will continue to worsen. Asthma inducers can be classified as indoor and outdoor allergens and can cause asthma due to their repeated invasion. There are several theories about asthma occurrence, such as the imbalance between Th1 and Th2, inflammation in the pulmonary system, and the abnormal apoptosis/cell proliferation of cells related to asthma. Although there are many medications for asthma, as it is an incurable disease, the purpose of the drugs is only to suppress the symptoms. The current drugs can be divided into relievers and controllers; however, as they have many adverse effects, such as immune suppression, growth retardation, promotion of cataracts, hyperactivity, and convulsions, developing new asthma drugs is necessary. Although natural products can have adverse effects, the development of asthma drugs from natural products may be beneficial, as some have anti-asthmatic effects such as immune modulation, anti-inflammation, and/or apoptosis modulation.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Forestry and Landscape Architecture, Dongshin University, Naju 58245, Republic of Korea;
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - So-Hyeon Bok
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Hyo-Seung Choi
- Department of Digital Contents, Dongshin University, Naju 58245, Republic of Korea;
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
62
|
Meurer F, Häberlein H, Franken S. Ivy Leaf Dry Extract EA 575 ® Has an Inhibitory Effect on the Signalling Cascade of Adenosine Receptor A 2B. Int J Mol Sci 2023; 24:12373. [PMID: 37569749 PMCID: PMC10418604 DOI: 10.3390/ijms241512373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ivy leaf dry extract EA 575® is used to improve complaints of chronic inflammatory bronchial diseases and acute inflammation of the respiratory tract accompanied by coughing. Its mechanism of action has so far been explained by influencing β2-adrenergic signal transduction. In the present study, we investigated a possible influence on adenosine receptor A2B (A2BAR) signalling, as it has been described to play a significant and detrimental role in chronic inflammatory airway diseases. The influence of EA 575® on A2BAR signalling was assessed with measurements of dynamic mass redistribution. Subsequently, the effects on A2BAR-mediated second messenger cAMP levels, β-arrestin 2 recruitment, and cAMP response element (CRE) activation were examined using luciferase-based HEK293 reporter cell lines. Lastly, the impact on A2BAR-mediated IL-6 release in Calu-3 epithelial lung cells was investigated via the Lumit™ Immunoassay. Additionally, the adenosine receptor subtype mediating these effects was specified, and A2BAR was found to be responsible. The present study demonstrates an inhibitory influence of EA 575® on A2BAR-mediated general cellular response, cAMP levels, β-arrestin 2 recruitment, CRE activation, and IL-6 release. Since these EA 575®-mediated effects occur within a time frame of several hours of incubation, its mode of action can be described as indirect. The present data are the first to describe an inhibitory effect of EA 575® on A2BAR signalling. This may offer an explanation for the beneficial clinical effects of the extract in adjuvant asthma therapy.
Collapse
Affiliation(s)
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany; (F.M.); (H.H.)
| |
Collapse
|
63
|
Sharma G, Pund S, Govindan R, Nissa MU, Biswas D, Middha S, Ganguly K, Anand MP, Banerjee R, Srivastava S. A Proteomics Investigation of Cigarette Smoke Exposed Wistar Rats Revealed Improved Anti-Inflammatory Effects of the Cysteamine Nanoemulsions Delivered via Inhalation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:338-360. [PMID: 37581495 DOI: 10.1089/omi.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Cigarette smoking is the major cause of chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It is paramount to develop pharmacological interventions and delivery strategies against the cigarette smoke (CS) associated oxidative stress in COPD. This study in Wistar rats examined cysteamine in nanoemulsions to counteract the CS distressed microenvironment. In vivo, 28 days of CS and 15 days of cysteamine nanoemulsions treatment starting on 29th day consisting of oral and inhalation routes were established in Wistar rats. In addition, we conducted inflammatory and epithelial-to-mesenchymal transition (EMT) studies in vitro in human bronchial epithelial cell lines (BEAS2B) using 5% CS extract. Inflammatory and anti-inflammatory markers, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-8, IL-10, and IL-13, have been quantified in bronchoalveolar lavage fluid (BALF) to evaluate the effects of the cysteamine nanoemulsions in normalizing the diseased condition. Histopathological analysis of the alveoli and the trachea showed the distorted, lung parenchyma and ciliated epithelial barrier, respectively. To obtain mechanistic insights into the CS COPD rat model, "shotgun" proteomics of the lung tissues have been carried out using high-resolution mass spectrometry wherein genes such as ABI1, PPP3CA, PSMA2, FBLN5, ACTG1, CSNK2A1, and ECM1 exhibited significant differences across all the groups. Pathway analysis showed autophagy, signaling by receptor tyrosine kinase, cytokine signaling in immune system, extracellular matrix organization, and hemostasis, as the major contributing pathways across all the studied groups. This work offers new preclinical findings on how cysteamine taken orally or inhaled can combat CS-induced oxidative stress.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Pund
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Biobay, Ahmedabad, India
| | - Rajkumar Govindan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, New York, USA
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanniya Middha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
64
|
Yin Y, Mu C, Wang J, Wang Y, Hu W, Zhu W, Yu X, Hao W, Zheng Y, Li Q, Han W. CXCL17 Attenuates Diesel Exhaust Emissions Exposure-Induced Lung Damage by Regulating Macrophage Function. TOXICS 2023; 11:646. [PMID: 37624152 PMCID: PMC10459829 DOI: 10.3390/toxics11080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
Exposure to diesel exhaust emissions (DEE) is strongly linked to innate immune injury and lung injury, but the role of macrophage chemoattractant CXCL17 in the lung damage caused by DEE exposure remains unclear. In this study, whole-body plethysmography (WBP), inflammatory cell differential count, and histopathological analysis were performed to assess respiratory parameters, airway inflammation, and airway injury in C57BL/6 male mice exposed to DEE for 3 months. qRT-PCR, IHC (immunohistochemistry), and ELISA were performed to measure the CXCL17 expression in airway epithelium or BALF (bronchoalveolar lavage fluid) following DEE/Diesel exhaust particle (DEP) exposure. Respiratory parameters, airway inflammation, and airway injury were assessed in CXCL17-overexpressing mice through adeno-associated virus vector Type 5 (AAV5) infection. Additionally, an in vitro THP-1 and HBE co-culture system was constructed. Transwell assay was carried out to evaluate the effect of rh-CXCL17 (recombinant human protein-CXCL17) on THP-1 cell migration. Flow cytometry and qRT-PCR were conducted to assess the impacts of rh-CXCL17 on apoptosis and inflammation/remodeling of HBE cells. We found that the mice exposed to DEE showed abnormal respiratory parameters, accompanied by airway injury and remodeling (ciliary injury in airway epithelium, airway smooth muscle hyperplasia, and increased collagen deposition). Carbon content in airway macrophages (CCAM), but not the number of macrophages in BALF, increased significantly. CXCL17 expression significantly decreased in mice airways and HBE after DEE/DEP exposure. AAV5-CXCL17 enhanced macrophage recruitment and clearance of DEE in the lungs of mice, and it improved respiratory parameters, airway injury, and airway remodeling. In the THP-1/HBE co-culture system, rh-CXCL17 increased THP-1 cell migration while attenuating HBE cell apoptosis and inflammation/remodeling. Therefore, CXCL17 might attenuate DEE-induced lung damage by recruiting and activating pulmonary macrophages, which is expected to be a novel therapeutic target for DEE-associated lung diseases.
Collapse
Affiliation(s)
- Yize Yin
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Public Health, Qingdao University, Qingdao 266071, China;
| | - Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China;
| | - Jiahui Wang
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
| | - Yixuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, China;
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
| | - Wenmin Hu
- School of Medicine and Pharmacy, Ocean University of China, Department of Pulmonary and Critical Care Medicine, University of Health and Rehabilitation Science, Qingdao 266071, China;
| | - Wenjing Zhu
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| | - Xinjuan Yu
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| | - Wanming Hao
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China;
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China; (J.W.); (W.H.)
- Respiratory Disease Key Laboratory of Qingdao, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China; (W.Z.); (X.Y.)
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Science, Qingdao 266071, China
| |
Collapse
|
65
|
Bejeshk MA, Bagheri F, Salimi F, Rajizadeh MA. The Diabetic Lung Can Be Ameliorated by Citrullus colocynthis by Reducing Inflammation and Oxidative Stress in Rats with Type 1 Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5176645. [PMID: 37520024 PMCID: PMC10382246 DOI: 10.1155/2023/5176645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023]
Abstract
Background Diabetes impacts various organs in the body and some reports showed that the lung is also affected by diabetes, and an imbalance of inflammation and oxidative stress may participate to diabetic lung impairments. The present study is conducted to assess the impacts of Citrullus colocynthis (CC) on some aspects of these impairments. Methods Frothy two male Wistar rats (3-4 months old and weighing 200-250 g) were used in the present research. Animals were divided into 3 groups of control, Diabetes, and Diabetes + Drug. CC was administered to diabetic rats orally. The lung tissue and BALF oxidative stress and inflammatory indices including the MDA, TAC, SOD, Gpx, TNFα, IL-6, IL-17, and IL-10 were evaluated by the ELISA method. Results Our observations disclosed the ameliorative impacts of CC administration against oxidative stress and inflammation imbalance. Also, it was found that CC improved body weight and fasting blood sugar in rats with diabetes. Conclusion We can conclude that the administration of CC can be effective in improving diabetic lungs in rats.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
66
|
Borkar NA, Ambhore NS, Balraj P, Ramakrishnan YS, Sathish V. Kisspeptin regulates airway hyperresponsiveness and remodeling in a mouse model of asthma. J Pathol 2023; 260:339-352. [PMID: 37171283 PMCID: PMC10759912 DOI: 10.1002/path.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | | | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
67
|
Cai X, Rong R, Huang Y, Pu X, Ge N. Effects of theophylline combined with inhaled corticosteroids on patients with moderate and severe asthma and changes of T lymphocyte subsets in peripheral blood. Cent Eur J Immunol 2023; 48:135-143. [PMID: 37692023 PMCID: PMC10485692 DOI: 10.5114/ceji.2023.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Asthma is a common respiratory disease. Theophylline combined with inhaled corticosteroids (ICS) is a promising therapy for asthma. This study explored the therapeutic effects of ICS combined with theophylline on moderate and severe asthma patients and T lymphocyte subsets (CD3+CD8+ T cells) in peripheral blood. Material and methods A total of 202 moderate and severe asthma patients were selected, with 101 treated with theophylline combined with ICS and 101 treated with ICS alone as controls. Lung function [forced expiratory volume within 1 second (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF)] were tested using a spirometer. Asthma symptom control was evaluated by asthma control tests (ACT). The life quality was evaluated using the Asthma Quality of Life Questionnaire (AQLQ). The number and percentage of CD3+ T, CD3+CD4+ T and CD3+CD8+ T cells in peripheral blood mononuclear cells were assessed by flow cytometry. The correlation between CD3+CD8+ T cells and lung function and asthma control of patients after combination therapy was analyzed by Pearson correlation analysis. Results Compared with moderate and severe patients treated with ICS alone, theophylline improved the efficacy of ICS. Theophylline combined with ICS decreased IL-4 and IL-6 levels, and CD3+ T and CD3+CD8+ T cell number and percentage. After combined treatment, CD3+ CD8+ T cells in peripheral blood of patients were positively correlated with lung function and negatively correlated with asthma control. Conclusions The additional use of theophylline improved the efficacy of corticosteroids in asthma patient treatment and reduced inflammation level and CD3+ T and CD3+CD8+ T cell contents in peripheral blood.
Collapse
Affiliation(s)
- Xiaozhen Cai
- Department of Respiratory and Critical Care Medicine, Houjie Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| | - Rong Rong
- Department of Respiratory and Critical Care Medicine, Houjie Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| | - Yidan Huang
- Department of Respiratory and Critical Care Medicine, Houjie Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiaowen Pu
- Department of Respiratory and Critical Care Medicine, Houjie Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| | - Nanhai Ge
- Department of Respiratory and Critical Care Medicine, Houjie Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
68
|
Nair AK, Van Hulle CA, Bendlin BB, Zetterberg H, Blennow K, Wild N, Kollmorgen G, Suridjan I, Busse WW, Dean DC, Rosenkranz MA. Impact of asthma on the brain: evidence from diffusion MRI, CSF biomarkers and cognitive decline. Brain Commun 2023; 5:fcad180. [PMID: 37377978 PMCID: PMC10292933 DOI: 10.1093/braincomms/fcad180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic systemic inflammation increases the risk of neurodegeneration, but the mechanisms remain unclear. Part of the challenge in reaching a nuanced understanding is the presence of multiple risk factors that interact to potentiate adverse consequences. To address modifiable risk factors and mitigate downstream effects, it is necessary, although difficult, to tease apart the contribution of an individual risk factor by accounting for concurrent factors such as advanced age, cardiovascular risk, and genetic predisposition. Using a case-control design, we investigated the influence of asthma, a highly prevalent chronic inflammatory disease of the airways, on brain health in participants recruited to the Wisconsin Alzheimer's Disease Research Center (31 asthma patients, 186 non-asthma controls, aged 45-90 years, 62.2% female, 92.2% cognitively unimpaired), a sample enriched for parental history of Alzheimer's disease. Asthma status was determined using detailed prescription information. We employed multi-shell diffusion weighted imaging scans and the three-compartment neurite orientation dispersion and density imaging model to assess white and gray matter microstructure. We used cerebrospinal fluid biomarkers to examine evidence of Alzheimer's disease pathology, glial activation, neuroinflammation and neurodegeneration. We evaluated cognitive changes over time using a preclinical Alzheimer cognitive composite. Using permutation analysis of linear models, we examined the moderating influence of asthma on relationships between diffusion imaging metrics, CSF biomarkers, and cognitive decline, controlling for age, sex, and cognitive status. We ran additional models controlling for cardiovascular risk and genetic risk of Alzheimer's disease, defined as a carrier of at least one apolipoprotein E (APOE) ε4 allele. Relative to controls, greater Alzheimer's disease pathology (lower amyloid-β42/amyloid-β40, higher phosphorylated-tau-181) and synaptic degeneration (neurogranin) biomarker concentrations were associated with more adverse white matter metrics (e.g. lower neurite density, higher mean diffusivity) in patients with asthma. Higher concentrations of the pleiotropic cytokine IL-6 and the glial marker S100B were associated with more salubrious white matter metrics in asthma, but not in controls. The adverse effects of age on white matter integrity were accelerated in asthma. Finally, we found evidence that in asthma, relative to controls, deterioration in white and gray matter microstructure was associated with accelerated cognitive decline. Taken together, our findings suggest that asthma accelerates white and gray matter microstructural changes associated with aging and increasing neuropathology, that in turn, are associated with more rapid cognitive decline. Effective asthma control, on the other hand, may be protective and slow progression of cognitive symptoms.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Carol A Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 30 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WCIE 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Clear Water Bay, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 30 Mölndal, Sweden
| | - Norbert Wild
- Roche Diagnostics GmbH, Core Lab RED, 82377 Penzberg, Germany
| | | | - Ivonne Suridjan
- CDMA Clinical Development, Roche Diagnostics International Ltd, CH-6346, Rotkreuz, Switzerland
| | - William W Busse
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53703, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
69
|
de Carvalho IM, de Souza ABF, Castro TDF, Machado-Júnior PA, Menezes TP, Dias ADS, Oliveira LAM, Nogueira KDOPC, Talvani A, Cangussú SD, Arízaga GGC, Bezerra FS. Effects of a lycopene-layered double hydroxide composite administration in cells and lungs of adult mice: Effects of a lycopene-layered double hydroxide in cells and mice. Int Immunopharmacol 2023; 121:110454. [PMID: 37301124 DOI: 10.1016/j.intimp.2023.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Lycopene is a natural compound with one of the highest antioxidant activities. Its consumption is associated with lower risks in lung cancer and chronic obstructive pulmonary disease, for example. Experimentally, a murine model demonstrated the ingestion of lycopene, which reduced the damage in lungs caused by cigarette smoke. Since lycopene is highly hydrophobic, its formulations in supplements and preparations for laboratory assays are based on oils, additionally, bioavailavility is low. We developed a lycopene layered double hydroxide (Lyc-LDH) composite, which is capable of transporting lycopene aqueous media. Our objective was to evaluate the cytotoxicity of Lyc-LDH and the intra-cellular production of reactive oxygen species (ROS) in J774A.1 cells. Also, in vivo assays were conducted with 50 male C57BL/6 mice intranasally treated with Lyc-LDH 10 mg/kg (LG10), Lyc-LDH 25 mg/kg (LG25) and Lyc-LDH 50 mg/kg (LG50) during five days compared against a vehicle (VG) and control (CG) group. The blood, bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed. The results revealed that Lyc-LDH composite attenuated intracellular ROS production stimulated with lipopolysacharide. In BALF, the highest doses of Lyc-LDH (LG25 and LG50) promoted influx of macrophages, lymphocytes, neutrophils and eosinophils compared to CG and VG. Also, LG50 increased the levels of IL-6 and IL-13, and promoted the redox imbalance in the pulmonary tissue. On the contrary, low concentrations did not produce significative effects. In conclusion, our results suggest that intranasal administration of high concentrations of Lyc-LDH induces inflammation as well as redox status changes in the lungs of healthy mice, however, results with low concentrations open a promising way to study LDH composites as vehicles for intranasal administration of antioxidant coadjuvants.
Collapse
Affiliation(s)
- Iriane Marques de Carvalho
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Feitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Andreia da Silva Dias
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Laser Antônio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
70
|
Muthumalage T, Rahman I. Pulmonary immune response regulation, genotoxicity, and metabolic reprogramming by menthol- and tobacco-flavored e-cigarette exposures in mice. Toxicol Sci 2023; 193:146-165. [PMID: 37052522 PMCID: PMC10230290 DOI: 10.1093/toxsci/kfad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Menthol and tobacco flavors are available for almost all tobacco products, including electronic cigarettes (e-cigs). These flavors are a mixture of chemicals with overlapping constituents. There are no comparative toxicity studies of these flavors produced by different manufacturers. We hypothesized that acute exposure to menthol and tobacco-flavored e-cig aerosols induces inflammatory, genotoxicity, and metabolic responses in mouse lungs. We compared two brands, A and B, of e-cig flavors (PG/VG, menthol, and tobacco) with and without nicotine for their inflammatory response, genotoxic markers, and altered genes and proteins in the context of metabolism by exposing mouse strains, C57BL/6J (Th1-mediated) and BALB/cJ (Th2-mediated). Brand A nicotine-free menthol exposure caused increased neutrophils and differential T-lymphocyte influx in bronchoalveolar lavage fluid and induced significant immunosuppression, while brand A tobacco with nicotine elicited an allergic inflammatory response with increased Eotaxin, IL-6, and RANTES levels. Brand B elicited a similar inflammatory response in menthol flavor exposure. Upon e-cig exposure, genotoxicity markers significantly increased in lung tissue. These inflammatory and genotoxicity responses were associated with altered NLRP3 inflammasome and TRPA1 induction by menthol flavor. Nicotine decreased surfactant protein D and increased PAI-1 by menthol and tobacco flavors, respectively. Integration of inflammatory and metabolic pathway gene expression analysis showed immunometabolic regulation in T cells via PI3K/Akt/p70S6k-mTOR axis associated with suppressed immunity/allergic immune response. Overall, this study showed the comparative toxicity of flavored e-cig aerosols, unraveling potential signaling pathways of nicotine and flavor-mediated pulmonary toxicological responses, and emphasized the need for standardized toxicity testing for appropriate premarket authorization of e-cigarette products.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
71
|
Liu Q, Han X, Chen Y, Gao Y, Yang W, Huang L. Asthma prevalence is increased in patients with high metabolism scores for visceral fat: study reports from the US. Front Endocrinol (Lausanne) 2023; 14:1162158. [PMID: 37260450 PMCID: PMC10227585 DOI: 10.3389/fendo.2023.1162158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Data from NHANES 2001-2018 were used to examine the relationship between metabolism score for visceral fat (METS-VF) and asthma prevalence. Methods We assessed the association between METS-VF and asthma disease using multiple logistic regression analysis from the National Health and Nutrition Examination Survey (NHANES), 2001-2018, followed by subgroup analysis for sensitive populations. To determine whether METS-VF and asthma disease had a non-linear relationship, smooth curve fitting was used, and threshold effect analysis was used to verify the relationship. Results Among the 36,876 participants, 4,919 self-reported having asthma. When all confounders were controlled for, a positive association was found between METS-VF and asthma prevalence (OR = 1.27, 95% CI: 1.22,1.32), and this positive association was stronger with elevated METS-VF (P for trend = 0.01). According to the smooth curve fitting analysis, METS-VF and asthma prevalence do not have a linear relationship. The double-segmented threshold effect analysis suggested a negative correlation but no statistically significant difference between METS-VF less than 5.24 and asthma prevalence (OR = 0.60, 95% CI: 0.33, 0.91). Besides, other METS-VF showed positive associations with asthma prevalence before and after the effective inflection point. According to subgroup analysis, METS-VF is associated with asthma prevalence among participants aged 40 - 59, male, Mexican American, with hypertension and diabetes, and without asthma history. Conclusion A positive correlation between METS-VF and asthma was observed and this positive correlation was non-linear, and participants with METS-VF above 5.24 should be cautious about the high risk of asthma. The relationship should be given more attention to participants who are aged 40-59 years old, male, Mexican American, have hypertension, diabetes, and who do not have a family history of asthma.
Collapse
Affiliation(s)
- Qiushi Liu
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiao Han
- Department of Hyperbaric Oxygen, The Second People’s Hospital of Hefei, Hefei, China
| | - Yan Chen
- Department of General Practice, Wuhu City Second People`s Hospital, Wuhu, China
| | - Ying Gao
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Yang
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lewei Huang
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
72
|
Pan R, Kuai S, Li Q, Zhu X, Wang T, Cui Y. Diagnostic value of IL-6 for patients with asthma: a meta-analysis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:39. [PMID: 37173781 PMCID: PMC10182700 DOI: 10.1186/s13223-023-00794-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND IL-6 is a pleotropic cytokine that acts as a pro-inflammatory mediator and acute-phase response inducer, but has also been reported to possess anti-inflammatory properties. The objective of this study was to assess the validity of serum IL-6 test for diagnosis of asthma. METHODS A literature search was conducted using PubMed, Embase, and Cochrane library from January 2007 to March 2021 to identify relevant studies. Eleven studies were included in this analysis, involving 1977 patients with asthma and 1591 healthy non-asthmatic controls. The meta-analysis was performed using Review Manager 5.3 software and Stata 16.0. Random effect model or fixed effect model (FEM) was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (CIs). RESULTS The meta-analysis results revealed that the serum IL-6 levels were higher in asthmatic patients than healthy non-asthmatic controls (SMD 1.31, 95% CI 0.82-1.81, P < 0.00001). IL-6 levels are significantly elevated in pediatric patients with asthma (SMD 1.58, 95% CI 0.75-2.41, P = 0.0002) and mildly elevated in adult patients with asthma (SMD 1.08, 95% CI 0.27-1.90, P = 0.009). In addition, a subgroup analysis of asthma disease status showed that IL-6 levels were increased in stable (SMD 0.69, 95% CI 0.28-1.09, P = 0.009) and exacerbation asthma (SMD 2.15, 95% CI 1.79-2.52, P < 0.00001) patients. CONCLUSION The results of this meta-analysis suggest that serum IL-6 levels were significantly elevated in asthmatic patients as compared to normal population. IL-6 levels can be used as an auxiliary indicator to distinguish individuals with asthma from healthy non-asthmatic controls.
Collapse
Affiliation(s)
- Ruilin Pan
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Shougang Kuai
- Department of Clinical Laboratory, Huishan District Hospital, WuXi, 214187, Jiangsu Province, China
| | - Qingqing Li
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Xuming Zhu
- Department of Clinical Laboratory, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China
| | - Tingting Wang
- Department of Clinical Laboratory, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China.
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu Province, China.
| |
Collapse
|
73
|
Li J, Xuan S, Dong P, Xiang Z, Gao C, Li M, Huang L, Wu J. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy. Front Immunol 2023; 14:1192506. [PMID: 37234162 PMCID: PMC10206122 DOI: 10.3389/fimmu.2023.1192506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Due to its widespread occurrence and high mortality rate, hepatocellular carcinoma (HCC) is an abhorrent kind of cancer. Immunotherapy is a hot spot in the field of cancer treatment, represented by immune checkpoint inhibitors (ICIs), which aim to improve the immune system's ability to recognize, target and eliminate cancer cells. The composition of the HCC immune microenvironment is the result of the interaction of immunosuppressive cells, immune effector cells, cytokine environment, and tumor cell intrinsic signaling pathway, and immunotherapy with strong anti-tumor immunity has received more and more research attention due to the limited responsiveness of HCC to ICI monotherapy. There is evidence of an organic combination of radiotherapy, chemotherapy, anti-angiogenic agents and ICI catering to the unmet medical needs of HCC. Moreover, immunotherapies such as adoptive cellular therapy (ACT), cancer vaccines and cytokines also show encouraging efficacy. It can significantly improve the ability of the immune system to eradicate tumor cells. This article reviews the role of immunotherapy in HCC, hoping to improve the effect of immunotherapy and develop personalized treatment regimens.
Collapse
Affiliation(s)
- Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Peng Dong
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
74
|
Fesenmeier DJ, Suresh MV, Kim S, Raghavendran K, Won YY. Polymer Lung Surfactants Attenuate Direct Lung Injury in Mice. ACS Biomater Sci Eng 2023; 9:2716-2730. [PMID: 37079432 PMCID: PMC11973738 DOI: 10.1021/acsbiomaterials.3c00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
If not properly managed, acute lung injuries, either through direct or indirect causes, have the potential to present serious risk for many patients worldwide. One of the mechanisms for the transition from acute lung injury (ALI) to the more serious acute respiratory distress syndrome (ARDS) is the deactivation of the native lung surfactant by injury-induced infiltrates to the alveolar space. Currently, there are no surfactant replacement therapies that are used to treat ALI and subsequent ARDS. In this paper, we present an indepth efficacy study of using a novel polymer lung surfactant (PLS, composed of poly(styrene-block-ethylene glycol) (PS-PEG) block copolymer micelles), which has unique properties compared to other tested surfactant replacements, in two different mouse models of lung injury. The results demonstrate that pharyngeal administration of PLS after the instillation of either acid (HCl) or lipopolysaccharide (LPS) can decrease the severity of lung injury as measured by multiple injury markers.
Collapse
Affiliation(s)
- Daniel J. Fesenmeier
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN 47907, United States
| | | | - Seyoung Kim
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN 47907, United States
| | - Krishnan Raghavendran
- Department of Surgery, University of Michigan Medical
School, Ann Arbor, MI 48109, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN 47907, United States
- Purdue University Center for Cancer Research, Purdue
University, West Lafayette, IN 47907, United States
| |
Collapse
|
75
|
Palacios-García J, Porras-González C, Moreno-Luna R, Maza-Solano J, Polo-Padillo J, Muñoz-Bravo JL, Sánchez-Gómez S. Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps-A Systematic Review. J Clin Med 2023; 12:3280. [PMID: 37176721 PMCID: PMC10179235 DOI: 10.3390/jcm12093280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss of smell cause a worsening in the quality of life of patients. The source of the nasal polyps remains unclear, although it seems to be due to a chronic inflammation process in the sinonasal mucosa. Fibroblasts, the main cells in connective tissue, are intimately involved in the inflammation processes of various diseases; to this end, we carried out a systematic review to evaluate their inflammatory role in nasal polyps. Thus, we evaluated the main cytokines produced by nasal polyp-derived fibroblasts (NPDF) to assess their involvement in the production of nasal polyps and their involvement in different inflammatory pathways. The results of the review highlight the inflammatory role of NPDF through the secretion of various cytokines involved in the T1, T2, and T3 inflammatory pathways, as well as the ability of NPDF to be stimulated by a multitude of substances. With these findings, the fibroblast is positioned as a new potential therapeutic target in the treatment of CRSwNP.
Collapse
Affiliation(s)
- José Palacios-García
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - Cristina Porras-González
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Doctor Fedriani 3, 41009 Seville, Spain
| | - Ramón Moreno-Luna
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Maza-Solano
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Polo-Padillo
- Department of Preventive Medicine and Public Health, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - José Luis Muñoz-Bravo
- Clinical Analysis Service, General University Hospital of Elche, Foundation for the Promotion of Health and Biomedical Research in the Valencia Region (FISABIO), Av. De Catalunya 21, 46020 Valencia, Spain
| | - Serafín Sánchez-Gómez
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
76
|
Déméautis T, Bouyssi A, Chapalain A, Guillemot J, Doublet P, Geloen A, George C, Menotti J, Glehen O, Devouassoux G, Bentaher A. Chronic Exposure to Secondary Organic Aerosols Causes Lung Tissue Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6085-6094. [PMID: 37014236 DOI: 10.1021/acs.est.2c08753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Alexandra Bouyssi
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Johann Guillemot
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Alain Geloen
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Jean Menotti
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de chirurgie digestive et endocrinienne, CHU de Lyon HCL - GH Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, UCB Lyon 1, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
77
|
Jia-Xing W, Chao-Yi L, Wei-Ya C, Yi-Jun C, Chun-Yu L, Fei-Fei Y, Yong-Hong L. The pulmonary biopharmaceutics and anti-inflammatory effects after intratracheal and intravenous administration of Re-Du-Ning injection. Biomed Pharmacother 2023; 160:114335. [PMID: 36724641 DOI: 10.1016/j.biopha.2023.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Re-Du-Ning injection (RDN) is a renowned heat-clearing traditional Chinese medicine for the treatment of respiratory diseases owing to its anti-inflammatory effects. However, very little is known about the pulmonary distribution and lung exposure-efficacy relationships. This study aimed to investigate the pulmonary distribution and biopharmaceutics concerning lung penetrability and affinity and the local anti-inflammatory effects after intravenous and pulmonary administration of RDN. METHODS Two iridoids and seven phenolic acid components were selected as the chemical markers in RDN. The in vitro pulmonary distribution and biopharmaceutics were conducted by evaluating the binding and disassociation kinetics of chemical markers in lung tissue explants whereas the in vivo evaluation was performed by determining the time-dependent concentrations of chemical markers in plasma, lung epithelial lining fluid (ELF), lung tissues and immune cells in the ELF after intratracheal and intravenous administrations of RDN. The inhibitory effects on tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production were used to evaluate the anti-inflammatory effect of RDN on lung tissues in vitro and on mice with LPS-induced lung inflammation. RESULTS The chemical markers of RDN exhibited excellent lung penetrability but poor lung affinity in vitro and in vivo. After intravenous administration, the chemical markers appeared to rapidly penetrate through the lung tissue to reach the ELF, leading to markedly higher drug exposure to ELF and immune cells in the ELF than to lung tissues. Compared to intravenous injection, the intratracheal instillation of RDN increased drug exposure to lung tissue and immune cells in the ELF by up to > 80-fold, leading to improved anti-inflammatory potency and prolonged duration of action. CONCLUSION The drug exposure to immune cells in the ELF was correlated with the lung-targeted anti-inflammatory effects of RDN and pulmonary delivery has the potential to replace intravenous injection of RDN for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Wei Jia-Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Li Chao-Yi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chen Wei-Ya
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Cong Yi-Jun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Liu Chun-Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yang Fei-Fei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Liao Yong-Hong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
78
|
Raftery AL, O’Brien CA, Harris NL, Tsantikos E, Hibbs ML. Development of severe colitis is associated with lung inflammation and pathology. Front Immunol 2023; 14:1125260. [PMID: 37063825 PMCID: PMC10102339 DOI: 10.3389/fimmu.2023.1125260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic relapsing diseases that affect the gastrointestinal tract, most commonly the colon. A link between the gut and the lung is suggested since patients with IBD have an increased susceptibility for chronic inflammatory lung disease. Furthermore, in the absence of overt lung disease, IBD patients have worsened lung function and more leukocytes in sputum than healthy individuals, highlighting a conduit between the gut and lung in disease. To study the gut-lung axis in the context of IBD, we used TCRδ-/- mice, which are highly susceptible to dextran sulfate sodium (DSS) due to the importance of γδ T cells in maintenance of barrier integrity. After induction of experimental colitis using DSS, the lungs of TCRδ-/- mice exhibited signs of inflammation and mild emphysema, which was not observed in DSS-treated C57BL/6 mice. Damage to the lung tissue was accompanied by a large expansion of neutrophils in the lung parenchyma and an increase in alveolar macrophages in the lung wash. Gene expression analyses showed a significant increase in Csf3, Cxcl2, Tnfa, and Il17a in lung tissue in keeping with neutrophil infiltration. Expression of genes encoding reactive oxygen species enzymes and elastolytic enzymes were enhanced in the lungs of both C57BL/6 and TCRδ-/- mice with colitis. Similarly, surfactant gene expression was also enhanced, which may represent a protective mechanism. These data demonstrate that severe colitis in a susceptible genetic background is sufficient to induce lung inflammation and tissue damage, providing the research community with an important tool for the development of novel therapeutics aimed at reducing co-morbidities in IBD patients.
Collapse
|
79
|
Nada H, Sivaraman A, Lu Q, Min K, Kim S, Goo JI, Choi Y, Lee K. Perspective for Discovery of Small Molecule IL-6 Inhibitors through Study of Structure–Activity Relationships and Molecular Docking. J Med Chem 2023; 66:4417-4433. [PMID: 36971365 DOI: 10.1021/acs.jmedchem.2c01957] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a key role in the pathogenesis and physiology of inflammatory and autoimmune diseases, such as coronary heart disease, cancer, Alzheimer's disease, asthma, rheumatoid arthritis, and most recently COVID-19. IL-6 and its signaling pathway are promising targets in the treatment of inflammatory and autoimmune diseases. Although, anti-IL-6 monoclonal antibodies are currently being used in clinics, huge unmet medical needs remain because of the high cost, administration-related toxicity, lack of opportunity for oral dosing, and potential immunogenicity of monoclonal antibody therapy. Furthermore, nonresponse or loss of response to monoclonal antibody therapy has been reported, which increases the importance of optimizing drug therapy with small molecule drugs. This work aims to provide a perspective for the discovery of novel small molecule IL-6 inhibitors by the analysis of the structure-activity relationships and computational studies for protein-protein inhibitors targeting the IL-6/IL-6 receptor/gp130 complex.
Collapse
|
80
|
Di Vincenzo S, Ferraro M, Taverna S, Malizia V, Buscetta M, Cipollina C, Lazzara V, Pinto P, Bassano M, La Grutta S, Pace E. Tyndallized Bacteria Preferentially Induce Human Macrophage M1 Polarization: An Effect Useful to Balance Allergic Immune Responses and to Control Infections. Antibiotics (Basel) 2023; 12:antibiotics12030571. [PMID: 36978438 PMCID: PMC10044585 DOI: 10.3390/antibiotics12030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophage polarization is a dynamic process through which macrophages acquire specific features whose extremes are represented by M1 and M2 polarization. Interleukin (IL)-6, IL-1β, IL-12 and IL-8 belong to M1 macrophages while transforming growth factor-beta (TGF-β belongs to M2 cytokines. M2 polarization prevalence is observed in allergic diseases. Tyndallization is a thermal process able to inactivate microorganisms and to allow their use for chronic respiratory disease treatment via immune response modulation. The present study explores the effects of a blend of tyndallized bacteria (TB) on macrophage polarization. THP-1-derived macrophages were exposed to different concentrations of TB (106, 5 × 106, 107, 5 × 107, 108 CFU/mL) and then cell viability and TB phagocytosis, and IL-8, IL-1β, IL-6, IL-12 and TGF-β1 gene expression and release were assessed. TB were tolerated, phagocyted and able to increase IL-8, IL-1β and IL-6 gene expression and release IL-12 gene expression, as well as decrease TGF-β1 gene expression and release. The effects on IL-8, IL-6 and TGF-β1 release were confirmed in human monocyte-derived macrophages (hMDMs) exposed to TB. In conclusion, TB promote M1 polarization, and this mechanism might have valuable potential in controlling allergic diseases and infections, possibly preventing disease exacerbations.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Velia Malizia
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | | | - Chiara Cipollina
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Rimed Foundation, 90100 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90100 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Marco Bassano
- Dipartimento di Farmacia, Università degli Studi-Federico II, 80100 Napoli, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| |
Collapse
|
81
|
Walsemann T, Böttger M, Traidl S, Schwager C, Gülsen A, Freimooser S, Roesner LM, Werfel T, Jappe U. Specific IgE against the house dust mite allergens Der p 5, 20 and 21 influences the phenotype and severity of atopic diseases. Allergy 2023; 78:731-742. [PMID: 36239002 DOI: 10.1111/all.15553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND House dust mites (HDM) are among the most important sources for airborne allergens with high relevance for atopic diseases. Routine tests contain only 4 of 32 registered allergens of Dermatophagoides pteronyssinus. Clinical relevance and pathomechanistic properties of many allergens are not well understood. OBJECTIVE The association of several HDM allergens with allergic rhinitis, allergic asthma, and atopic dermatitis was investigated to identify allergens with biomarker potential and to transfer them into diagnostics. METHODS Eight out of nine D. pteronyssinus allergens (nDer p 1, rDer p 2, rDer p 5, rDer p 7, rDer p 10, rDer p 13, rDer p 20, rDer p 21, rDer p 23) were recombinantly expressed and purified. Sensitization patterns of 384 HDM-allergic individuals exhibiting different clinical phenotypes were analyzed with a serum-saving multiplex array. RESULTS Sensitization to more than three mite allergens (sensitization count) was associated with allergic asthma and/or atopic dermatitis. Reactions to Der p 5 and Der p 21 were more frequent in allergic asthma compared to allergic rhinitis. Atopic dermatitis patients were more often sensitized to Der p 5, Der p 20, and Der p 21 among others. Der p 20-IgE > 80 kU/L was associated with severe atopic dermatitis in 75% of patients. CONCLUSION This study demonstrates the clinical importance of the sensitization count and of certain allergens (Der p 5, Der p 20, and Der p 21) not available for routine diagnostics yet. Implementing them as well as the sensitization count in diagnostic measures will improve diagnosis and risk assessment of HDM-allergic patients.
Collapse
Affiliation(s)
- Theresa Walsemann
- Division of Clinical and Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, German Center for Lung Research (DZL) Airway Research Center North (ARCN), Borstel, Germany
| | - Marisa Böttger
- Division of Clinical and Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, German Center for Lung Research (DZL) Airway Research Center North (ARCN), Borstel, Germany
| | - Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, German Center for Lung Research (DZL) Airway Research Center North (ARCN), Borstel, Germany
| | - Askin Gülsen
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | - Sina Freimooser
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Lennart Matthias Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, German Center for Lung Research (DZL) Airway Research Center North (ARCN), Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
82
|
Arora S, Tagde P, Alam S, Akram W, Naved T, Gupta S. Influence of toll-like receptor-4 antagonist on bacterial load of asthma in Swiss albino mice: targeting TLR4/MD2 complex pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32854-32865. [PMID: 36472742 DOI: 10.1007/s11356-022-24521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Air pollution and environmental issues significantly impact life, resulting in the emergence and exacerbation of allergic asthma and other chronic respiratory infections. The main objective of this study is to suppress allergic asthma by TAK-242 from lipopolysaccharide-induced airway inflammation primarily stimulating toll-like receptor-4, and also to determine the potential mechanism of asthma eradication. The TAK-242 anti-allergic action was assured through the ovalbumin murine model of asthma via bronchial hyperresponsiveness and inflammation of the respiration tract in a pre-existing allergic inflammation paradigm. Swiss albino mice were sensitized and then challenged by ovalbumin and lipopolysaccharide for 5 days straight. TAK-242 reaction was assessed by inflammatory cytokines, and inflammatory cell count was determined from blood serum and bronchoalveolar lavage fluid, as well as group-wise regular weight assessments. After ovalbumin, lipopolysaccharide infusion, toll-like receptor-4 agonists caused a substantial increase in airway hyperresponsiveness, specific cellular inflammation, histological alterations, and immune mediator synthesis, as well as dose-related body-weight variations. A decrease in lipopolysaccharide-induced leukocyte count and Th1/Th17 related cytokines, TNF-α, and IL-6 expression through the ELISA study was particularly noticeable. Finally in treated groups, TAK-242, a TLR4/MD2 complex inhibitor, reduced airway inflammation and histopathological changes, cytokine expression, and body-weight management. TAK-242 has been found in an ovalbumin allergic asthma model to be a potential inhibitor of lipopolysaccharide-induced respiratory infection.
Collapse
Affiliation(s)
- Swamita Arora
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| | - Sanjar Alam
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Wasim Akram
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| |
Collapse
|
83
|
Edalatifard M, Mortaz E, Ghorbani F, Rahimi B, Marashian SM, Dinparastisaleh R, Yassari F, Eslaminejad A. Inflammatory Serum Biomarker Pattern in Emphysema and Chronic Bronchitis Phenotypes of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. TANAFFOS 2023; 22:317-324. [PMID: 38638383 PMCID: PMC11022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/07/2023] [Indexed: 04/20/2024]
Abstract
Background COPD exacerbation is characterized by both airway and systemic inflammation. The present study aimed to investigate the relationship between serum levels of some inflammatory biomarkers and the phenotypes of COPD exacerbation. Materials and Methods This study includes known COPD patients, presenting to a hospital with acute exacerbation of COPD. Serum levels of CRP, ESR, CBC, TNF-α, IL-8, and IL-6 were measured at the time of admission. According to the previously done HRCT, the patients were divided into two groups including emphysema and chronic bronchitis. Levels of serum biomarkers were compared in the two groups. The relationships between biomarkers and duration of hospitalization were assessed too. Results Comparison of quantitative CRP levels, WBC, and platelet counts did not show a statistically significant difference between emphysema and chronic bronchitis but it was significantly higher than control subjects. Although not statistically significant, ESR level was higher in emphysema. TNF-alpha was 6.0±1.5 ng / ml and 1.5 ng / ml in the emphysema and chronic bronchitis groups, respectively. TNF-α had no significant difference compared to the groups. Although higher than the control group, IL-6 and IL-8 did not show significant differences between emphysema and chronic bronchitis. The two groups did not statistically differ in terms of hospital stay but patients with higher serum TNF-α tended to have longer hospitalization and ICU admission. Conclusion The present study showed predictably higher inflammatory biomarkers in COPD exacerbation but no significant difference between the two phenotypes of COPD and these two entities could not be discriminated based on inflammatory bio-factors.
Collapse
Affiliation(s)
- Maryam Edalatifard
- Thoracic Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Ghorbani
- Tracheal Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Besharat Rahimi
- Thoracic Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fatemeh Yassari
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Martin-Almeida M, Perez-Garcia J, Herrera-Luis E, Rosa-Baez C, Gorenjak M, Neerincx AH, Sardón-Prado O, Toncheva AA, Harner S, Wolff C, Brandstetter S, Valletta E, Abdel-Aziz MI, Hashimoto S, Berce V, Corcuera-Elosegui P, Korta-Murua J, Buntrock-Döpke H, Vijverberg SJH, Verster JC, Kerssemakers N, Hedman AM, Almqvist C, Villar J, Kraneveld AD, Potočnik U, Kabesch M, der Zee AHMV, Pino-Yanes M, Consortium OBOTS. Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030676. [PMID: 36979655 PMCID: PMC10044864 DOI: 10.3390/biomedicines11030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.
Collapse
Affiliation(s)
- Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Brandstetter
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Elisa Valletta
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Mahmoud I. Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Heike Buntrock-Döpke
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Nikki Kerssemakers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-9223-16502-6343
| | | |
Collapse
|
85
|
Akkenepally S, Yombo DJK, Yerubandi S, Geereddy BR, McCormack FX, Madala SK. Interleukin 31 receptor alpha augments muscarinic acetylcholine receptor 3-driven calcium signaling and airway hyperresponsiveness in asthma. RESEARCH SQUARE 2023:rs.3.rs-2564484. [PMID: 36824812 PMCID: PMC9949265 DOI: 10.21203/rs.3.rs-2564484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and goblet cell hyperplasia. Both Th1 and Th2 cytokines, including IFN-γ, IL-4, and IL-13 have been shown to induce asthma; however, the underlying mechanisms remain unclear. We observed a significant increase in the expression of IL-31RA, but not its cognate ligand IL-31 during allergic asthma. In support of this, IFN-γ and Th2 cytokines, IL-4 and IL-13, upregulated IL-31RA but not IL-31 in airway smooth muscle cells (ASMC). Importantly, the loss of IL-31RA attenuated AHR but had no effects on inflammation and goblet cell hyperplasia in allergic asthma or mice treated with IL-13 or IFN-γ. Mechanistically, we demonstrate that IL-31RA functions as a positive regulator of muscarinic acetylcholine receptor 3 expression and calcium signaling in ASMC. Together, these results identified a novel role for IL-31RA in AHR distinct from airway inflammation and goblet cell hyperplasia in asthma.
Collapse
Affiliation(s)
- Santoshi Akkenepally
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Dan JK Yombo
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | - Sanjana Yerubandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | | | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| |
Collapse
|
86
|
Rebuli ME, Stanley Lee A, Nurhussien L, Tahir UA, Sun WY, Kimple AJ, Ebert CS, Almond M, Jaspers I, Rice MB. Nasal biomarkers of immune function differ based on smoking and respiratory disease status. Physiol Rep 2023; 11:e15528. [PMID: 36780897 PMCID: PMC9925276 DOI: 10.14814/phy2.15528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 02/15/2023] Open
Abstract
Respiratory biomarkers have the potential to identify airway injury by revealing inflammatory processes within the respiratory tract. Currently, there are no respiratory biomarkers suitable for clinical use to identify patients that warrant further diagnostic work-up, counseling, and treatment for toxic inhalant exposures or chronic airway disease. Using a novel, noninvasive method of sampling the nasal epithelial lining fluid, we aimed to investigate if nasal biomarker patterns could distinguish healthy nonsmoking adults from active smokers and those with chronic upper and lower airway disease in this exploratory study. We compared 28 immune mediators from healthy nonsmoking adults (n = 32), former smokers with COPD (n = 22), chronic rhinosinusitis (CRS) (n = 22), and smoking adults without airway disease (n = 13). Using ANOVA, multinomial logistic regressions, and weighted gene co-expression network analysis (WGCNA), we determined associations between immune mediators and each cohort. Six mediators (IL-7, IL-10, IL-13, IL-12p70, IL-15, and MCP-1) were lower among disease groups compared to healthy controls. Participants with lower levels of IL-10, IL-12p70, IL-13, and MCP-1 in the nasal fluid had a higher odds of being in the COPD or CRS group. The cluster analysis identified groups of mediators that correlated with disease status. Specifically, the cluster of IL-10, IL-12p70, and IL-13, was positively correlated with healthy and negatively correlated with COPD groups, and two clusters were correlated with active smoking. In this exploratory study, we preliminarily identified groups of nasal mucosal mediators that differed by airway disease and smoking status. Future prospective, age-matched studies that control for medication use are needed to validate these patterns and determine if nasosorption has diagnostic utility for upper and lower airway disease or injury.
Collapse
Affiliation(s)
- Meghan E. Rebuli
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Anna Stanley Lee
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Lina Nurhussien
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Usman A. Tahir
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Wendy Y. Sun
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Adam J. Kimple
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles S. Ebert
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ilona Jaspers
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mary B. Rice
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
87
|
Voronkova OV, Birulina JG, Ivanov VV, Buyko EE, Esimova IE, Grigorieva AV, Osikhov IA, Chernyshov NA, Motlokhova EA. Features of the cytogram and cytokine profile of bronchoalveolar lavage fluid in experimental metabolic syndrome. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-29-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of the study was to identify the features of the cellular composition and cytokine profile of bronchoalveolar lavage fluid in rats in a model of diet-induced metabolic syndrome.Materials and methods. In an experiment on animals (rats), a model of metabolic syndrome (MS) induced by a high-fat and high-carbohydrate diet was reproduced. To assess the viability of the reproduced model, biochemical and morphometric methods were used, such as measurement of body weight, specific gravity of liver and visceral fat, and blood pressure, determination of glucose concentration in the blood (including a glucose tolerance test), as well as determination of blood lipid parameters. To assess the intensity of the inflammatory response in the blood, the concentration of total protein, the total number of leukocytes, and the levels of immunocytokines (interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)α, monocyte chemoattractant protein (MCP)-1) were determined. Open bronchoalveolar lavage was performed on the isolated heart – lung complex. The concentration of protein, immunocytokines (IL-6, IL-10, TNFα, MCP-1), the total number of leukocytes, and the ratio of their morphological types were determined in the bronchoalveolar lavage fluid (BALF).Results. In animals with MS, an increase in the total number of leukocytes in the blood due to granulocytes and a rise in the concentration of protein, TNFα, and IL-10 were revealed compared with the parameters in the controls. BALF analysis revealed an increase in the concentration of protein, the total number of leukocytes, and the absolute number of alveolar macrophages, neutrophil granulocytes, and lymphocytes. The levels of IL-6 and MCP-1 were more than 1.5 times higher.Conclusion. Changes in the qualitative and quantitative parameters of BALF are inflammatory in nature and are formed during a systemic inflammatory response accompanying metabolic disorders in modeling MS in rats in the experiment.
Collapse
|
88
|
Madissoon E, Oliver AJ, Kleshchevnikov V, Wilbrey-Clark A, Polanski K, Richoz N, Ribeiro Orsi A, Mamanova L, Bolt L, Elmentaite R, Pett JP, Huang N, Xu C, He P, Dabrowska M, Pritchard S, Tuck L, Prigmore E, Perera S, Knights A, Oszlanczi A, Hunter A, Vieira SF, Patel M, Lindeboom RGH, Campos LS, Matsuo K, Nakayama T, Yoshida M, Worlock KB, Nikolić MZ, Georgakopoulos N, Mahbubani KT, Saeb-Parsy K, Bayraktar OA, Clatworthy MR, Stegle O, Kumasaka N, Teichmann SA, Meyer KB. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat Genet 2023; 55:66-77. [PMID: 36543915 PMCID: PMC9839452 DOI: 10.1038/s41588-022-01243-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.
Collapse
Affiliation(s)
- Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | | | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, UK
| | - Ana Ribeiro Orsi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Andrew Knights
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Adam Hunter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sara F Vieira
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Lia S Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nikitas Georgakopoulos
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | | | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, UK
| | - Oliver Stegle
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
89
|
Erlandson G, Magzamen S, Sharp JL, Mitra S, Jones K, Poole JA, Bradford M, Nonnenmann M, Reynolds SJ, Schaeffer JW. Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:14-22. [PMID: 36260509 PMCID: PMC10958439 DOI: 10.1080/15459624.2022.2137297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Livestock workers experience an increased burden of bioaerosol-induced respiratory disease including a high prevalence of rhinosinusitis. Dairy operations generate bioaerosols spanning the inhalable size fraction (0-100 μm) containing bacterial constituents such as endotoxin. Particles with an aerodynamic diameter between 10 and 100 μm are known to deposit in the nasopharyngeal region and likely affect the upper respiratory tract. We evaluated the effectiveness of a hypertonic saline nasal lavage in reducing inflammatory responses in dairy workers from a high-volume dairy operation. Inhalable personal breathing zone samples and pre-/post-shift nasal lavage samples from each participant over five consecutive days were collected. The treatment group (n = 5) received hypertonic saline while the control group (n = 5) received normotonic saline. Personal breathing zone samples were analyzed for particulate concentrations and endotoxin using gravimetric and enzymatic methods, respectively. Pro- and anti-inflammatory cytokines (i.e., IL-8, IL-10, and TNF-α) were measured from nasal lavage samples using a multiplex assay. Inhalable dust concentrations ranged from 0.15 to 1.9 mg/m3. Concentrations of both pro- and anti-inflammatory cytokines, specifically IL-6, IL-8, and IL-10, were significantly higher in the treatment group compared to the control group (p < 0.02, p < 0.04, and p < 0.01, respectively). Further analysis of IL-10 anti-inflammatory indicates a positive association between hypertonic saline administration and IL-10 production. This pilot study demonstrates that hypertonic saline nasal lavages were successful in upregulating anti-inflammatory cytokines to support larger interventional studies.
Collapse
Affiliation(s)
- Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, Colorado
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Kenneth Jones
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
- Department of Cell Biology, University of Oklahoma Health Science Campus, Oklahoma City, Oklahoma
| | - Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mary Bradford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Matthew Nonnenmann
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, Colorado
- High Plains Intermountain Center for Agricultural Health and Safety, Colorado State University, Fort Collins, Colorado
| | - Joshua W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, Colorado
| |
Collapse
|
90
|
Wang Y, Wang J, Chen L, Zhang H, Yu L, Chi Y, Chen M, Cai Y. Efficacy of vitamin D supplementation on COPD and asthma control: A systematic review and meta-analysis. J Glob Health 2022; 12:04100. [PMID: 36520525 PMCID: PMC9754066 DOI: 10.7189/jogh.12.04100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The role of vitamin D (VD) in the management of chronic obstructive pulmonary disease (COPD) and asthma remains largely undetermined. In the present meta-analysis, we aimed to comprehensively investigate the efficacy of VD in the treatment of COPD and asthma according to the latest update. Methods The PubMed, Embase, and Cochrane Library databases were searched from their inception to June 2, 2022. Randomized controlled trials (RCTs) comparing the efficacy of VD with placebo against COPD or asthma were included. Results A total of 11 RCTs consisting of 1183 COPD patients and 19 RCTs consisting of 2025 asthmatic patients were finally included. As for pulmonary function, FEV1/FVC was not changed significantly, while FEV1% was improved in the VD group. In the asthma subgroup, FEV1% was not changed significantly, while FEV1/FVC was improved in the VD group. For the questionnaire and rating scale, the mMRC (modified Medical Research Council) dyspnoea scale score for COPD and ACT (Asthma Control Test) score for asthma were not significantly changed, while the SGRQ (St. George's Respiratory Questionnaire) score for COPD was improved in the VD group. For inflammation indicators, IL-6 and IL-10 were statistically equivalent between the VD and placebo groups, while IgE, IL-5, and IL-10 (baseline VD deficiency subgroup) were improved in the VD group. The exacerbation, length of hospital stays, and mortality were statistically equivalent between the two groups. Conclusions VD supplementation improved the indicators of asthma and COPD, especially in pulmonary function, SGRQ scores, IL-5, and IgE. Registration The protocol could be found at PROSPERO with the registration number of CRD42020218058.
Collapse
Affiliation(s)
- Yuhang Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Li Chen
- Department of Information, PLA General Hospital, Beijing, China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yu
- Laboratory of Department of Pulmonary and Critical Care Medicine, PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| |
Collapse
|
91
|
Peng R, Yang W, Shao W, Pan B, Zhu Y, Zhang Y, Kan H, Xu Y, Ying Z. Deficiency of interleukin-6 receptor ameliorates PM 2.5 exposure-induced pulmonary dysfunction and inflammation but not abnormalities in glucose homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114253. [PMID: 36343449 PMCID: PMC9759823 DOI: 10.1016/j.ecoenv.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure increases local and systemic interleukin-6 (IL-6). However, the pathogenic role of IL-6 signalling following PM2.5 exposure, particularly in the development of pulmonary dysfunction and abnormal glucose homeostasis, has hardly been investigated. RESULTS In the study, IL-6 receptor (IL-6R)-deficient (IL-6R-/-) and wildtype littermate (IL-6R+/+) mice were exposed to concentrated ambient PM2.5 (CAP) or filtered air (FA), and their pulmonary and metabolic responses to these exposures were analyzed. Our results demonstrated that IL-6R deficiency markedly alleviated PM2.5 exposure-induced increases in lung inflammatory markers including the inflammation score of histological analysis, the number of macrophages in bronchoalveolar lavage fluid (BALF), and mRNA expressions of TNFα, IL-1β and IL-6 and abnormalities in lung function test. However, IL-6R deficiency did not reduce the hepatic insulin resistance nor systemic glucose intolerance and insulin resistance induced by PM2.5 exposure. CONCLUSION Our findings support the crucial role of IL-6 signalling in the development of pulmonary inflammation and dysfunction due to PM2.5 exposure but question the putative central role of pulmonary inflammation for the extra-pulmonary dysfunctions following PM2.5 exposure, providing a deep mechanistic insight into the pathogenesis caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yubin Zhang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
92
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
93
|
Imoto S, Suzukawa M, Takada K, Watanabe S, Igarashi S, Kitani M, Nagase T, Ohta K. Immunoglobulin A promotes IL-6 and IL-8 production, proliferation, and migration by the human bronchial smooth muscle cells. Cell Immunol 2022; 381:104612. [PMID: 36130412 DOI: 10.1016/j.cellimm.2022.104612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
Immunoglobulin A (IgA) is important in biological defense, mainly in the mucosal area, and plays pathogenic roles in various diseases by activating both inflammatory and structural cells. The current study aimed to validate the effects of IgA on the human bronchial smooth muscle cell (BSMC), which plays a major role in airway inflammation and remodeling. Serum IgA induced interleukin (IL)-6 and IL-8 production at both mRNA and protein levels, and enhanced cell proliferation and migration by the BSMCs. The synthetic phenotype markers were regulated and the contractile phenotype markers were downregulated by serum IgA. Mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt, and nuclear factor-κB pathways were involved in IgA-induced IL-6 and IL-8 production. The BSMCs expressed transferrin receptor (TfR), and TfR siRNA transfection inhibited IL-6 and IL-8 production by serum IgA. In summary, serum IgA is a potent activator of the BSMCs at least partially via TfR.
Collapse
Affiliation(s)
- Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masashi Kitani
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, 3-1-24 Matsuyama, Kiyose-City, Tokyo 204-8522, Japan.
| |
Collapse
|
94
|
Mikkelsen H, Landt EM, Benn M, Nordestgaard BG, Dahl M. Causal risk factors for asthma in Mendelian randomization studies: A systematic review and meta-analysis. Clin Transl Allergy 2022; 12:e12207. [PMID: 36434743 PMCID: PMC9640961 DOI: 10.1002/clt2.12207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several risk factors for asthma have been proposed; however, the causality of these associations is sometimes unclear. Mendelian randomization is a powerful epidemiological approach that can help elucidate the causality of risk factors. The aim of the present study was to identify causal risk factors for asthma through Mendelian Randomization studies. METHODS A systematic search of PubMed and EMBASE was conducted, to identify studies investigating risk factors for asthma or respiratory allergies through Mendelian Randomization. When two or more studies investigated the same risk factor a meta-analysis was conducted. Of 239 studies initially identified, 41 were included. RESULTS A causal association between adiposity and adult asthma risk was found in 10 out of 12 studies with a summary risk ratio of 1.05 per kg/m2 increase in BMI (95% CI: 1.03-1.07). Puberty timing (n = 3), alcohol (n = 2), and linoleic acid (n = 1) had causal effects on asthma risk, while vitamins/minerals (n = 6) showed no consistent effect on asthma. The effect of smoking on adult asthma conflicted between studies. Several of the significant associations of asthma with immune related proteins (n = 5) and depression (n = 2) investigated through multiple traits analyses could generally benefit from replications in independent datasets. CONCLUSION This systematic review and meta-analysis found evidence for causal effects of adiposity, puberty timing, linoleic acid, alcohol, immune related proteins, and depression on risk of asthma.
Collapse
Affiliation(s)
- Heidi Mikkelsen
- Department of Clinical BiochemistryZealand University HospitalKøgeDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Eskild Morten Landt
- Department of Clinical BiochemistryZealand University HospitalKøgeDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Marianne Benn
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryHerlev and Gentofte HospitalCopenhagen University HospitalHerlevDenmark
| | - Morten Dahl
- Department of Clinical BiochemistryZealand University HospitalKøgeDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
95
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. METHODS This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. RESULTS Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. CONCLUSIONS It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
96
|
Meldrum K, Moura JA, Doak SH, Clift MJD. Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193431. [PMID: 36234557 PMCID: PMC9565225 DOI: 10.3390/nano12193431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
The majority of in vitro studies focusing upon particle-lung cell interactions use static models at an air-liquid interface (ALI). Advancing the physiological characteristics of such systems allows for closer resemblance of the human lung, in turn promoting 3R strategies. PATROLS (EU Horizon 2020 No. 760813) aimed to use a well-characterised in vitro model of the human alveolar epithelial barrier to determine how fluid-flow dynamics would impact the outputs of the model following particle exposure. Using the QuasiVivoTM (Kirkstall Ltd., York, UK) system, fluid-flow conditions were applied to an A549 + dTHP-1 cell co-culture model cultured at the ALI. DQ12 and TiO2 (JRCNM01005a) were used as model particles to assess the in vitro systems' sensitivity. Using a quasi- and aerosol (VitroCell Cloud12, VitroCell Systems, Waldkirch, Germany) exposure approach, cell cultures were exposed over 24 h at IVIVE concentrations of 1 and 10 (DQ12) and 1.4 and 10.4 (TiO2) µg/cm2, respectively. We compared static and fluid flow conditions after both these exposure methods. The co-culture was subsequently assessed for its viability, membrane integrity and (pro-)inflammatory response (IL-8 and IL-6 production). The results suggested that the addition of fluid flow to this alveolar co-culture model can influence the viability, membrane integrity and inflammatory responses dependent on the particle type and exposure.
Collapse
|
97
|
Li F, Li B, Liu J, Wei X, Qiang T, Mu X, Wang Y, Qi Y, Zhang B, Liu H, Xiao P. Anti-asthmatic fraction screening and mechanisms prediction of Schisandrae Sphenantherae Fructus based on a combined approach. Front Pharmacol 2022; 13:902324. [PMID: 36172200 PMCID: PMC9511055 DOI: 10.3389/fphar.2022.902324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Schisandrae Sphenantherae Fructus (SSF) is a traditional Chinese medicine used to treat coughs and pulmonary inflammatory diseases. However, the pharmacodynamic material basis and mechanisms for SSF in asthma treatment remain unclear. This study aims to screen the anti-asthmatic fraction and verify the pharmacodynamic material basis, predict the potential mechanism, and verify the interaction ability between compounds and core targets. Methods: First, three fractions from SSF were compared in terms of composition, comparison, and anti-asthmatic effects. Then, the ultra-performance liquid chromatography-quadrupole/time-of-flight-mass spectrometry/mass spectrometry (UPLC-Q/TOF-MS/MS) strategy was used to identify the compounds from the active fraction, and the anti-asthmatic efficacy of the active fraction was further studied by the ovalbumin (OVA)-induced asthma murine model. Finally, network pharmacology and molecular methods were used to study the relationships between active compounds, core targets, and key pathways of PEF in asthma treatments. Results: The petroleum ether fraction (PEF) of SSF showed better effects and could significantly diminish lung inflammation and mitigate the level of serum immunoglobulin E (IgE), interleukin (IL)-4, IL-5, IL-6, IL-13, and IL-17 in mice. A total of 26 compounds from the PEF were identified, among which the main compounds are lignans and triterpenes. Moreover, 21 active compounds, 129 overlap-ping targets, and 10 pathways were screened by network pharmacology tools. The top five core targets may play a great role in asthma treatment. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the PEF can treat asthma by acting on multiple asthma pathological processes, including the IL-17 signaling pathway, T helper (Th) 17 cell differentiation, and the calcium signaling pathway. Molecular docking was performed to evaluate the interactions of the protein–ligand binding, and most docked complexes had a good binding ability. Conclusion: The present results might contribute to exploring the active compounds with anti-asthmatic activity.
Collapse
Affiliation(s)
- Fan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinlu Mu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yumeng Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Haitao Liu,
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Peking Union Medical College, Institute of Medicinal Plant Development, Ministry of Education, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
98
|
Dey D, Mondal P, Moitra S, Saha GK, Podder S. Association of Interleukin 6 and Interleukin 8 genes polymorphisms with house dust mite-induced nasal-bronchial allergy in a sample of Indian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Genetic background of nasal-bronchial allergy (NBA) is well documented. House Dust Mites (HDMs) are reported to elicit NBA symptoms. Susceptibility to HDM sensitization varies considerably from person to person. Interleukin 6 (IL 6) and Interleukin 8 (IL 8) are studied previously for genetic association with several diseases. To the best of our knowledge, the genetic association of HDM-induced NBA has not been largely reported from India. The aim of our present study was to evaluate any possible association of IL 6 and IL 8 gene polymorphisms with HDM-induced NBA in an Indian population.
Methods
IL 6 (− 572G/C, − 597G/A) and IL 8 polymorphisms (− 251A/T, + 781C/T) were analyzed in a HDM-sensitized group (N = 372) and a control group (N = 110). Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR–RFLP) based genotyping was done. Chi-square test and Fisher’s exact tests were applied for statistical analysis.
Results
IL 6 − 597G/A and IL 8 + 781C/T were not associated with HDM-sensitization, while IL 6 − 72G/C and IL 8 − 51A/T showed significant associations in terms of both genotype and allele frequencies. For both the SNPs, minor allele frequencies were significantly higher in the patients compared to the control. Moreover, IL 6 -572G/C and IL 8 -251A/T were found to be strongly linked with HDM sensitization and severity.
Conclusion
This is probably the pioneer study to describe the association of IL 6 and IL 8 polymorphisms with HDM sensitization in any Indian population. The results suggested that IL 6 -572G/C and IL 8 -251A/T may exert a risk of HDM sensitization leading to NBA.
Collapse
|
99
|
Pan SY, Chi KH, Wang YC, Wei WC, Ueng YF. Sub-toxic events induced by truck speed-facilitated PM 2.5 and its counteraction by epigallocatechin-3-gallate in A549 human lung cells. Sci Rep 2022; 12:15004. [PMID: 36056034 PMCID: PMC9440210 DOI: 10.1038/s41598-022-18918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
To distinguish the influences of fuel type and truck speed on chemical composition and sub-toxic effects of particulates (PM2.5) from engine emissions, biomarkers-interleukin-6 (IL-6), cytochrome P450 (CYP) 1A1, heme oxygenase (HO)-1, and NADPH-quinone oxidoreductase (NQO)-1-were studied in A549 human lung cells. Fuel type and truck speed preferentially affected the quantity and ion/polycyclic aromatic hydrocarbon (PAH) composition of PM2.5, respectively. Under idling operation, phenanthrene was the most abundant PAH. At high speed, more than 50% of the PAHs had high molecular weight (HMW), of which benzo[a]pyrene (B[a]P), benzo[ghi]perylene (B[ghi]P), and indeno[1,2,3-cd]pyrene (I[cd]P) were the main PAHs. B[a]P, B[ghi]P, and I[cd]P caused potent induction of IL-6, CYP1A1, and NQO-1, whereas phenanthrene mildly induced CYP1A1. Based on the PAH-mediated induction, the predicted increases in biomarkers were positively correlated with the measured increases. HMW-PAHs contribute to the biomarker induction by PM2.5, at high speed, which was reduced by co-exposure to epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yen-Cih Wang
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC
| | - Wen-Chi Wei
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
- Institute of Biopharmaceutical Science, School of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
100
|
Yang SM, Bi Q, Zhang WJ, Cui X, Zhou Y, Yuan C, Cui Y. Highly accurate multiprotein detection on a digital ELISA platform. LAB ON A CHIP 2022; 22:3015-3024. [PMID: 35791922 DOI: 10.1039/d2lc00388k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emerging single-molecule detection platform digital enzyme-linked immunosorbent assay (ELISA) can detect numerous proteins simultaneously at serum concentrations as low as picograms per milliliter. We sought to improve cytokine detection with this platform to aid diagnosis of conditions such as allergy and asthma. We developed a multiple single-molecule detection digital ELISA approach, through the application of encoded magnetic microbeads to simultaneously detect three cytokines in one serum sample. We tested the approach's utility to distinguish asthma-related cytokines in children. Concentrations of interleukin-4 (IL-4) and IL-6 were significantly higher in children with asthma than in healthy controls, while the concentration of interferon-γ (IFN-γ) was significantly lower. Our method has higher accuracy than conventional methods, and our results indicate that the proposed improved high-sensitivity digital ELISA-based diagnosis approach can facilitate early detection and treatment of childhood asthma or related diseases.
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation of Shanghai University, No.99 at Shangda Road, Shanghai 200444, China
| | - Qingbo Bi
- School of Mechatronic Engineering and Automation of Shanghai University, No.99 at Shangda Road, Shanghai 200444, China
| | - Wen Jun Zhang
- Division of Biomedical Engineering of University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiaochuan Cui
- Department of General Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Ying Zhou
- Department of Pediatrics Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Cunyin Yuan
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299 at Qingyang Road, Wuxi 214023, China.
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299 at Qingyang Road, Wuxi 214023, China.
| |
Collapse
|