51
|
Ghafelehbashi R, Farshbafnadi M, Aghdam NS, Amiri S, Salehi M, Razi S. Nanoimmunoengineering strategies in cancer diagnosis and therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:78-90. [PMID: 36076122 DOI: 10.1007/s12094-022-02935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer immunotherapy strategies in combination with engineered nanosystems have yielded beneficial results in the treatment of cancer and their application is increasing day by day. The pivotal role of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, as a subsidiary discipline in the field of immunology, cannot be ignored. Today, rapid advances in nanomedicine are used as a platform for exploring new therapeutic applications and modern smart healthcare management strategies. The progress of nanomedicine in cancer treatment has confirmed the findings of immunotherapy in the medical research phase. This study concentrates on approaches connected to the efficacy of nanoimmunoengineering strategies for cancer immunotherapies and their applications. By assessing improved approaches, different aspects of the nanoimmunoengineering strategies for cancer therapies are discussed in this study.
Collapse
Affiliation(s)
- Robabehbeygom Ghafelehbashi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melina Farshbafnadi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
52
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
53
|
Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacol Res 2022; 186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
54
|
Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnology 2022; 20:485. [PMCID: PMC9675272 DOI: 10.1186/s12951-022-01698-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, tumor treatments are characterized by intelligence, diversity and personalization, but the therapeutic reagents used are often limited in clinical efficacy due to problems with water solubility, targeting, stability and multidrug resistance. To remedy these shortcomings, the application of multifunctional nanotechnology in the biomedical field has been widely studied. Synthetic melanin nanoparticles (MNPs) surfaces which contain highly reactive chemical groups such as carboxyl, hydroxyl and amine groups, can be used as a reaction platform on which to graft different functional components. In addition, MNPs easily adhere to substrate surface, and serve as a secondary reaction platform to modify it. The multifunctionality and intrinsic biocompatibility make melanin-like nanoparticles promising as a multifunctional and powerful nanoplatform for oncological applications. This paper first reviews the preparation methods, polymerization mechanisms and physicochemical properties of melanin including natural melanin and chemically synthesized melanin to guide scholars in MNP-based design. Then, recent advances in MNPs especially synthetic polydopamine (PDA) melanin for various medical oncological applications are systematically and thoroughly described, mainly focusing on bioimaging, photothermal therapy (PTT), and drug delivery for tumor therapy. Finally, based on the investigated literature, the current challenges and future directions for clinical translation are reasonably discussed, focusing on the innovative design of MNPs and further elucidation of pharmacokinetics. This paper is a timely and comprehensive and detailed study of the progress of MNPs in tumor therapy, especially PTT, and provides ideas for the design of personalized and customizable oncology nanomedicines to address the heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Luyao Tian
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Xia Li
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Haixia Ji
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Qing Yu
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Mingjuan Yang
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Lanping Guo
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wenyuan Gao
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| |
Collapse
|
55
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
56
|
Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022; 13:1027124. [PMID: 36341334 PMCID: PMC9630919 DOI: 10.3389/fimmu.2022.1027124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Immune checkpoint blockade (ICB) has gained unparalleled success in the treatment of colorectal cancer (CRC). However, undesired side effects, unsatisfactory response rates, tumor metastasis, and drug resistance still hinder the further application of ICB therapy against CRC. Advancing ICB with nanotechnology can be game-changing. With the development of immuno-oncology and nanomaterials, various nanoplatforms have been fabricated to enhance the efficacy of ICB in CRC treatment. Herein, this review systematically summarizes these recent nano-strategies according to their mechanisms. Despite their diverse and complex designs, these nanoplatforms have four main mechanisms in enhancing ICB: 1) targeting immune checkpoint inhibitors (ICIs) to tumor foci, 2) increasing tumor immunogenicity, 3) remodeling tumor microenvironment, and 4) pre-sensitizing immune systems. Importantly, advantages of nanotechnology in CRC, such as innovating the mode-of-actions of ICB, modulating intestinal microbiome, and integrating the whole process of antigen presentation, are highlighted in this review. In general, this review describes the latest applications of nanotechnology for CRC immunotherapy, and may shed light on the future design of ICB platforms.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yucheng Xiang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yaxian Zheng
- Department of Pharmacy, Third People’s Hospital of Chengdu, Chengdu, China
| | - Xin Kang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
57
|
Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol 2022; 40:1195-1212. [PMID: 35450779 PMCID: PMC10439010 DOI: 10.1016/j.tibtech.2022.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
Abstract
Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, UK.
| |
Collapse
|
58
|
Podojil JR, Cogswell AC, Chiang MY, Eaton V, Ifergan I, Neef T, Xu D, Meghani KA, Yu Y, Orbach SM, Murthy T, Boyne MT, Elhofy A, Shea LD, Meeks JJ, Miller SD. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front Immunol 2022; 13:887649. [PMID: 36059473 PMCID: PMC9433741 DOI: 10.3389/fimmu.2022.887649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.
Collapse
Affiliation(s)
- Joseph R. Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Andrew C. Cogswell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Valerie Eaton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Igal Ifergan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Khyati A. Meghani
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanni Yu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sophia M. Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Tushar Murthy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Michael T. Boyne
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Adam Elhofy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Lonnie D. Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua J. Meeks
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
59
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
60
|
Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses 2022; 14:v14071553. [PMID: 35891532 PMCID: PMC9318803 DOI: 10.3390/v14071553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.
Collapse
|
61
|
Comparetti EJ, Lins PMP, Quitiba J, Zucolotto V. Cancer cell membrane‐derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. J Biomed Mater Res A 2022; 110:1499-1511. [DOI: 10.1002/jbm.a.37387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Edson J. Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Paula M. P. Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - João Quitiba
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
- Institute of Advanced Studies University of Sao Paulo Sao Carlos Brazil
| |
Collapse
|
62
|
Tran TH, Phuong Tran TT. Targeting the PD-1/PD-L1 axis for cancer treatment: a review on nanotechnology. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211991. [PMID: 35425626 PMCID: PMC9006034 DOI: 10.1098/rsos.211991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 05/03/2023]
Abstract
Although nanomedicines have been in the oncology field for almost three decades with the introduction of doxil, only a few nanomedicine products have reached approval. Can nanotechnology be a realistic tool to reduce the number of hospital beds? At present, several clinically approved anti-PD-1/PD-L1 antibodies or CAR T cell-based therapies are available; however, the immunotherapy field is far from mature. Will immunotherapy be the fourth pillar of cancer treatment? In this review, we summarized the current status of immunotherapy using PD-1/PD-L1-targeting nanocarriers. The knowledge on material science, therapeutic agents and formulation designs could pave the way for high-efficacy treatment outcomes.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Thi Thu Phuong Tran
- Department of Life Sciences, University of Science and Technology of Hanoi Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
63
|
Chaikhumwang P, Madapong A, Saeng-Chuto K, Nilubol D, Tantituvanont A. Intranasal delivery of inactivated PRRSV loaded cationic nanoparticles coupled with enterotoxin subunit B induces PRRSV-specific immune responses in pigs. Sci Rep 2022; 12:3725. [PMID: 35260663 PMCID: PMC8904483 DOI: 10.1038/s41598-022-07680-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to evaluate the induction of systemic and mucosal immune responses and protective efficacy following the intranasal administration of inactivated porcine reproductive and respiratory syndrome virus (PRRSV) loaded in polylactic acid (PLA) nanoparticles coupled with heat-labile enterotoxin subunit B (LTB) and dimethyldioctadecylammonium bromide (DDA). Here, 42- to 3-week-old PRRSV-free pigs were randomly allocated into 7 groups of 6 pigs each. Two groups represented the negative (nonvaccinated pigs/nonchallenged pigs, NoVacNoChal) and challenge (nonvaccinated/challenged, NoVacChal) controls. The pigs in the other 5 groups, namely, PLA nanoparticles/challenged (blank NPs), LTB-DDA coupled with PLA nanoparticles/challenged (adjuvant-blank NPs), PLA nanoparticles-encapsulating inactivated PRRSV/challenged (KNPs), LTB-DDA coupled with PLA nanoparticles loaded with inactivated PRRSV/challenged pigs (adjuvant-KNPs) and inactivated PRRSV/challenged pigs (inactivated PRRSV), were intranasally vaccinated with previously described vaccines at 0, 7 and 14 days post-vaccination (DPV). Serum and nasal swab samples were collected weekly and assayed by ELISA to detect the presence of IgG and IgA, respectively. Viral neutralizing titer (VNT) in sera, IFN-γ-producing cells and IL-10 secretion in stimulated peripheral blood mononuclear cells (PBMCs) were also measured. The pigs were intranasally challenged with PRRSV-2 at 28 DPV and necropsied at 35 DPV, and then macro- and microscopic lung lesions were evaluated. The results demonstrated that following vaccination, adjuvant-KNP-vaccinated pigs had significantly higher levels of IFN-γ-producing cells, VNT and IgG in sera, and IgA in nasal swab samples and significantly lower IL-10 levels than the other vaccinated groups. Following challenge, the adjuvant-KNP-vaccinated pigs had significantly lower PRRSV RNA and macro- and microscopic lung lesions than the other vaccinated groups. In conclusion, the results of the study demonstrated that adjuvant-KNPs are effective in eliciting immune responses against PRRSV and protecting against PRRSV infections over KNPs and inactivated PRRSV and can be used as an adjuvant for intranasal PRRSV vaccines.
Collapse
Affiliation(s)
- Puwich Chaikhumwang
- Division of Pharmaceutical Sciences, Department of Pharmaceutical Care, Faculty of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Adthakorn Madapong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
64
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
65
|
Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. iScience 2022; 25:103639. [PMID: 35024580 PMCID: PMC8724970 DOI: 10.1016/j.isci.2021.103639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor immunotherapy has been convincingly demonstrated as a feasible approach for treating cancers. Although promising, the immunosuppressive tumor microenvironment (TME) has been recognized as a major obstacle in tumor immunotherapy. It is highly desirable to release an immunosuppressive "brake" for improving cancer immunotherapy. Among tumor-infiltrated immune cells, tumor-associated macrophages (TAMs) play an important role in the growth, invasion, and metastasis of tumors. The polarization of TAMs (M2) into the M1 type can alleviate the immunosuppression of the TME and enhance the effect of immunotherapy. Inspired by this, we constructed a therapeutic exosomal vaccine from antigen-stimulated M1-type macrophages (M1OVA-Exos). M1OVA-Exos are capable of polarizing TAMs into M1 type through downregulation of the Wnt signaling pathway. Mediating the TME further activates the immune response and inhibits tumor growth and metastasis via the exosomal vaccine. Our study provides a new strategy for the polarization of TAMs, which augments cancer vaccine therapy efficacy.
Collapse
|
66
|
Jiang M, Zhao L, Cui X, Wu X, Zhang Y, Guan X, Ma J, Zhang W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J Adv Res 2022; 35:49-60. [PMID: 35003793 PMCID: PMC8721234 DOI: 10.1016/j.jare.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Facile antigen/adjuvant co-loaded nanovaccine made by convenient green preparation. The immunological activity of the antigen and adjuvant was maximally preserved. The minimalist nanovaccine had excellent stability and antitumor immune activation. Nanovaccine combined with PD-1 antibody synergistically enhanced therapy outcome. Good practicability for expanding clinical translation and personalized therapy.
Introduction Tumor vaccine has been a research boom for cancer immunotherapy, while its therapeutic outcome is severely depressed by the vulnerable in vivo delivery efficiency. Moreover, tumor immune escape is also another intractable issue, which has badly whittled down the therapeutic efficiency. Objectives Our study aims to solve the above dilemmas by cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. Methods The minimalist antigen and adjuvant co-delivery nanovaccine was developed by employing natural polycationic protamine (PRT) to carry the electronegative ovalbumin (OVA) antigen and unmethylated Cytosine-phosphorothioate-Guanine (CpG) adjuvant via convenient chemical bench-free “green” preparation without chemical-synthesis and no organic solvent was required, which could preserve the immunological activities of the antigens and adjuvants. On that basis, PD-1 antibody (aPD-1) was utilized to block the tumor immune escape and cooperate with the nanovaccine by maintaining the tumoricidal-activity of the vaccine-induced T cells. Results Benefited from the polycationic PRT, the facile PRT/CpG/OVA nanovaccine displayed satisfactory delivery performance, involving enhanced cellular uptake in dendritic cells (DCs), realizable endosomal escape and promoted stimulation for DCs’ maturation. These features would be helpful for the antitumor immunotherapeutic efficiency of the nanovaccine. Furthermore, the cooperation of the nanovaccine with aPD-1 synergistically improved the immunotherapy outcome, profiting by the cooperation of the “T cell induction” competency of the nanovaccine and the “T cell maintenance” function of the aPD-1. Conclusion This study will provide new concepts for the design and construction of facile nanovaccines, and contribute valuable scientific basis for cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuhan Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
67
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
68
|
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021; 22:13011. [PMID: 34884816 PMCID: PMC8657629 DOI: 10.3390/ijms222313011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
Collapse
Affiliation(s)
- Andrey S. Drozdov
- Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Julian M. Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
69
|
Dai Z, Wang Q, Tang J, Wu M, Li H, Yang Y, Zhen X, Yu C. Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials 2021; 280:121261. [PMID: 34815099 DOI: 10.1016/j.biomaterials.2021.121261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunogenic cell death (ICD) is a promising strategy in cancer immunotherapy to induce high immunogenicity and activate the immune system. However, its efficacy is counteracted by the concurrent exposure of phosphatidylserine (PS), an immunosuppressive signal on the surface of cancer cells. Here we report the synthesis of a bimetallic metal-organic framework (MOF) nanoparticle containing Gd3+ and Zn2+ (Gd-MOF-5) that can be used as an immunomodulator to downregulate the immunosuppressive PS signal and an ICD inducer to upregulate immunostimulatory signals. Gd3+ inhibits PS externalization via inhibiting the activity of scramblase, an enzyme to transfer PS to the outer leaflet of plasma membrane. Moreover, intracellular Zn2+ overload activates endoplasmic reticulum stress for ICD induction. In combination with an immune checkpoint inhibitor (PD-L1 antibody, denoted as aPDL1), Gd-MOF-5 activated potent immune response and effectively inhibited primary and distal tumor growth in a bilateral 4T1 tumor model. This work presents a new strategy using designed MOF materials to modulate the cell signalling and immunosuppressive microenvironment to improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Zan Dai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
70
|
Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021; 22:ijms222212510. [PMID: 34830392 PMCID: PMC8625613 DOI: 10.3390/ijms222212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
- Correspondence:
| |
Collapse
|
71
|
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021; 9:739161. [PMID: 34733848 PMCID: PMC8558531 DOI: 10.3389/fcell.2021.739161] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It’s known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying He
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
72
|
Wei J, Fang D, Zhou W. CCR2 and PTPRC are regulators of tumor microenvironment and potential prognostic biomarkers of lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1419. [PMID: 34733971 PMCID: PMC8506762 DOI: 10.21037/atm-21-3301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Background Tumor microenvironment (TME) plays an essential role in lung adenocarcinoma (LUAD) development and metastasis. With the development of TME research, it has been proved that differences in tumor-infiltrating immune cells (TICs) and gene expression profile are related to the prognosis of cancer. The aim of our study was to identify key genes affecting immune state in TME of LUAD. Methods The RNA-seq data and clinical characteristics of 594 LUAD patients were downloaded from the TCGA database. ImmuneScore, StromalScore and ESTIMATEScore of each LUAD sample were calculated using ESTIMATE algorithm. Based on the median of different scores, LUAD samples were divided into high and low score groups. Differentially expressed genes (DEGs) between groups were obtained, and univariate Cox regression analysis and protein-protein interaction (PPI) network were used to screen the shared DEGs generating in the intersection analysis. Finally, the CIBORSORT algorithm was performed to calculate the relative contents of TICs for each LUAD sample, and the correlation analysis between TICs and key genes was used to determine the influence of key genes to the TME. Results In the presented study, we found that three different scores were positively correlated with the prognosis of LUAD patients, and correlation analysis showed the different scores were closely related to tumor progression and metastasis. After performing the intersection analysis, a total of 585 up-regulated and 107 down-regulated DEGs between the high and low score groups were obtained, all of which were enriched in immune-related functions. Having used univariate COX regression analysis and PPI network, the key genes, CCR2 and PTPRC, affecting the immune status of TME and the prognosis of LUAD were acquired. Analysis based on the CIBERSORT algorithm suggested that CCR2 and PTPRC were correlated with a variety of TICs, and closely related to the clinical characteristics of the LUAD patients. Conclusions Our research showed that CCR2 and PTPRC may be potential prognostic markers in LUAD, which may affect the function of γδT cells and other immune cells by participating in the regulation of TME immune state.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Department of Clinical Laboratory, Baise Peopl's Hospital, Baise, China
| |
Collapse
|
73
|
Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021; 19:205-219. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the major diseases that threaten human life worldwide. Despite advances in cancer treatment techniques, such as radiation therapy, chemotherapy, targeted therapy, and immunotherapy, it is still difficult to cure cancer because of the resistance mechanism of cancer cells. Current understanding of tumor biology has revealed that resistance to these anticancer therapies is due to the tumor microenvironment (TME) represented by hypoxia, acidity, dense extracellular matrix, and immunosuppression. This review demonstrates the latest strategies for effective cancer treatment using functional nanoparticles that can modulate the TME. Indeed, preclinical studies have shown that functional nanoparticles can effectively modulate the TME to treat refractory cancer. This strategy of using TMEs with controllable functional nanoparticles is expected to maximize cancer treatment efficiency in the future by combining it with various modern cancer therapeutics.
Collapse
Affiliation(s)
- Seungyong Shin
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jieun Han
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wooram Park
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea. .,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.
| |
Collapse
|
74
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
75
|
|
76
|
Zhang K, Wang H, Fang J, Xu Q. Immune checkpoint inhibitor combined with anti-angiogenesis agent inhibits metastasis of advanced adenoid cystic carcinoma of the tongue base to the lung: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1353. [PMID: 34532490 PMCID: PMC8422104 DOI: 10.21037/atm-21-3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Patients diagnosed with advanced adenoid cystic carcinoma (ACC) with metastasis to the lung generally have poor prognosis when they exhibit resistance to conventional therapies. Programmed cell-death protein 1 (PD-1) inhibitors, a type of Immune checkpoint inhibitors (ICI), have shown good response in the treatment of various types of malignant tumors; however, objective response rates of monotherapy for advanced ACC are low. Anlotinib, a novel, orally managed tyrosine kinase inhibitor, that targets vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and c-kit, has appeared great adequacy in treating numerous sorts of malignant tumors, particularly tumors with lung metastases. Here, we have presented a case of refractory ACC with lung metastases that was reduced after combinatorial treatment using the immune checkpoint inhibitor (ICI) toripalimab and anti-angiogenesis agent anlotinib. The patient achieved a reduction in lung metastases by chest computed tomography (CT) examination, with an outcome of stable disease (SD) of 5 months, a significant decrease in the levels of peripheral blood cytokines interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as good tolerance without noteworthy unfavorable reactions, indicating that the combined therapy of toripalimab and anlotinib may be utilized in the management of advanced ACC.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Oncology, Shanghai Tenth People's Hospital, TongJi Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Department of Oncology, Shanghai Tenth People's Hospital, TongJi Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, TongJi Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, TongJi Cancer Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
77
|
Dou L, Meng X, Yang H, Dong H. Advances in technology and applications of nanoimmunotherapy for cancer. Biomark Res 2021; 9:63. [PMID: 34419164 PMCID: PMC8379775 DOI: 10.1186/s40364-021-00321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Host-tumor immune interactions play critical roles in the natural history of tumors, including oncogenesis, progress and metastasis. On the one hand, neoantigens have the potential to drive a tumor-specific immune response. In tumors, immunogenic cell death (ICD) triggered by various inducers can initiate a strong host anti-immune response. On the other hand, the tolerogenic tumor immune microenvironment suppresses host immune responses that eradicate tumor cells and impair the effect of tumor therapy. Therefore, a deeper understanding and more effective manipulation of the intricate host-tumor immune interaction involving the host, tumor cells and the corresponding tumor immune microenvironment are required. Despite the encouraging breakthroughs resulting from tumor immunotherapy, no single strategy has elicited sufficient or sustained antitumor immune responses in most patients with specific malignancies due to limited activation of specific antitumor immune responses and inadequate remodeling of the tolerogenic tumor immune microenvironment. However, nanotechnology provides a unique paradigm to simultaneously tackle all these challenges, including effective “targeted” delivery of tumor antigens, sustained ICD mediation, and “cold” tumor microenvironment remodeling. In this review, we focus on several key concepts in host-tumor immune interactions and discuss the corresponding therapeutic strategy based on the application of nanoparticles.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gerontology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, China. .,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
78
|
Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target 2021; 29:911-924. [DOI: 10.1080/1061186x.2020.1815209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Dong Lu
- Childrens Hospital, Neonatal Medical Center, Nanjing Medical University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
79
|
Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy. Immunogenetics 2021; 73:369-380. [PMID: 34302518 DOI: 10.1007/s00251-021-01223-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that tumor immune cell infiltration (ICI) is associated with immunotherapy sensitivity and the prognosis of lung adenocarcinoma (LUAD). However, the immunoinfiltrative landscape of LUAD has not been elucidated. We propose two computational algorithms to unravel the ICI landscape to evaluate the efficacy of immunotherapy in LUAD patients. The raw data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed. After merging these datasets and removing the batch differences, we used the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm to obtain the immune cell content of all the samples. The unsupervised consistency clustering algorithm was used to analyze the ICI subtypes, and three subgroups were obtained. In addition, the unsupervised consistency clustering algorithm was used to analyze the differentially expressed genes (DEGs) of the ICI subtypes and obtain three ICI gene clusters. Finally, the ICI score was determined by using principal component analysis (PCA) for the gene signature. The ICI score of LUAD patients ranged from - 32.26 to 12.89 and represents the prognosis and the response to immunotherapy. High ICI scores were characterized by the T cell receptor signaling pathway, B cell receptor signaling pathway, and natural killer cell-mediated cytotoxicity, suggesting that some immune cells were activated and had increased activity, which may be the cause of the better prognosis for patients with high ICI scores. Additionally, patients with higher ICI scores showed a significant immune therapeutic advantage and clinical benefit. This study shows that the ICI score may be a potent prognostic biomarker and predictor of therapy with immune checkpoint inhibitors.
Collapse
|
80
|
Ahmad S, Idris RAM, Wan Hanaffi WN, Perumal K, Boer JC, Plebanski M, Jaafar J, Lim JK, Mohamud R. Cancer Nanomedicine and Immune System—Interactions and Challenges. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles have tremendous therapeutic potential in the treatment of cancer as they increase drug delivery, attenuate drug toxicity, and protect drugs from rapid clearance. Since Doxil®, the first FDA-approved nanomedicine, several other cancer nanomedicines have been approved and have successfully increased the efficacy over their free drug counterparts. Although their mechanisms of action are well established, their effects towards our immune system, particularly in the tumor microenvironment (TME), still warrant further investigation. Herein, we review the interactions between an approved cancer nanomedicine with TME immunology. We also discuss the challenges that need to be addressed for the full clinical potential of ongoing cancer nanomedicines despite the encouraging preclinical data.
Collapse
|
81
|
Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Nanovaccine-based immunotherapy (NBI) has received greater attention recently for its potential to prime tumor-specific immunity and establish a long-term immune memory that prevents tumor recurrence. Despite encouraging results in the recent studies, there are still numerous challenges to be tackled for eliciting potent antitumor immunity using NBI strategies. Based on the principles that govern immune response, here it is proposed that these challenges need to be addressed at the five critical cascading events: Loading tumor-specific antigens by nanoscale drug delivery systems (L); Draining tumor antigens to lymph nodes (D); Internalization by dendritic cells (DCs) (I); Maturation of DCs by costimulatory signaling (M); and Presenting tumor-peptide-major histocompatibility complexes to T cells (P) (LDIMP cascade in short). This review provides a detailed and objective overview of emerging NBI strategies to improve the efficacy of nanovaccines in each step of the LDIMP cascade. It is concluded that the balance between each step must be optimized by delicate designing and modification of nanovaccines and by combining with complementary approaches to provide a synergistic immunity in the fight against cancer.
Collapse
Affiliation(s)
- Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Chongqing Vocational College of Transportation, Chongqing, 400715, China
| | - Huilin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
82
|
Huang X, Lu Y, Guo M, Du S, Han N. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 2021; 11:7546-7569. [PMID: 34158866 PMCID: PMC8210617 DOI: 10.7150/thno.56482] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer has been a great threat to humans for decades. Due to the limitations of monotherapy, combinational therapies such as photothermal therapy (PTT) and immunotherapy have gained increasing attention with expectation to overcome the shortfalls of each other and obtain satisfactory therapeutic outcomes. PTT can inhibit primary tumors by thermal ablation but usually fails to achieve complete eradication and cannot prevent metastasis and recurrence. Meanwhile, the efficacy of immunotherapy is usually attenuated by the weak immunogenicity of tumor and the immunosuppressive tumor microenvironment (ITM). Therefore, many recent studies have attempted to synergize PTT with immunotherapy in order to enhance the therapeutic efficacy. In this review, we aim to summarize the cutting-edge strategies in combining nano-based PTT with immunotherapy for cancer treatment. Herein, the combination strategies were mainly classified into four categories, including 1) nano-based PTT combined with antigens to induce host immune responses; 2) nano-based PTT in combination with immune adjuvants acting as in situ vaccines; 3) nano-based PTT synergized with immune checkpoint blockade or other regulators to relieve the ITM; 4) nano-based PTT combined with CAR-T therapy or cytokine therapy for tumor treatment. The characteristics of various photothermal agents and nanoplatforms as well as the immunological mechanisms for the synergism were also introduced in detail. Finally, we discussed the existing challenges and future prospects in combined PTT and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
83
|
Antitumor immune responses induced by photodynamic and sonodynamic therapy: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
84
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
85
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
86
|
Chen S, Lai SWT, Brown CE, Feng M. Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy. Front Immunol 2021; 12:635173. [PMID: 33790906 PMCID: PMC8006289 DOI: 10.3389/fimmu.2021.635173] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has revolutionized the paradigm for the clinical management of cancer. While FDA-approved cancer immunotherapies thus far mainly exploit the adaptive immunity for therapeutic efficacy, there is a growing appreciation for the importance of innate immunity in tumor cell surveillance and eradication. The past decade has witnessed macrophages being thrust into the spotlight as critical effectors of an innate anti-tumor response. Promising evidence from preclinical and clinical studies have established targeting macrophage phagocytosis as an effective therapeutic strategy, either alone or in combination with other therapeutic moieties. Here, we review the recent translational advances in harnessing macrophage phagocytosis as a pivotal therapeutic effort in cancer treatment. In addition, this review emphasizes phagocytosis checkpoint blockade and the use of nanoparticles as effective strategies to potentiate macrophages for phagocytosis. We also highlight chimeric antigen receptor macrophages as a next-generation therapeutic modality linking the closely intertwined innate and adaptive immunity to induce efficacious anti-tumor immune responses.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Seigmund W. T. Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Christine E. Brown
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
87
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
88
|
Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment. Biosci Rep 2021; 41:227787. [PMID: 33543230 PMCID: PMC7890403 DOI: 10.1042/bsr20202439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor immune cell infiltration was significantly correlated with the progression and the effect of immunotherapy in cancers including esophageal carcinoma (ESCA). However, no biomarkers were identified which were associated with immune infiltration in ESCA. In the present study, a total of 128 common differentially expressed genes (DEGs) were identified between esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinomas (EAC). The results of gene ontology (GO) enrichment and Reactome pathway analysis displayed that the up-regulated DEGs were mainly involved in the regulation of extracellular matrix (ECM), while the down-regulated DEGs were mainly involved in the regulation of cornification and keratinocyte differentiation. The most significant module of up-regulated DEGs was selected by Molecular Complex Detection (MCODE). Top ten similar genes of COL1A2 were explored, then validation and the prognostic analysis of these genes displayed that COL1A2, COL1A1, COL3A1, ZNF469 and Periostin (POSTN) had the prognostic value which were up-regulated in ESCA. The expressions of COL1A2 and its four similar genes were mainly correlated with infiltrating levels of macrophages and dendritic cells (DCs) and showed strong correlations with diverse immune marker sets in ESCA. To summarize, COL1A2 and its four similar genes were identified as the potential biomarkers associated with immune infiltration in ESCA. These genes might be applied to immunotherapy for ESCA.
Collapse
|
89
|
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR, Kamal MA, Raju GSR, Han YK, Lakkakula BVKS, Nagaraju GP, Huh YS. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 2021; 69:293-306. [PMID: 31260733 DOI: 10.1016/j.semcancer.2019.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.
Collapse
Affiliation(s)
- Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Putty-Reddy Sudhir
- The Center for Translational Biomedical Research, UNCG, Kannapolis, NC-28081, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
90
|
Li Q, Fu D, Zhang J, Yan H, Wang H, Niu B, Guo R, Liu Y. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111586. [PMID: 33529927 DOI: 10.1016/j.colsurfb.2021.111586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
In this study, a new type of polypeptide, crosslinked methoxy poly(ethylene glycol)-g-poly(aspartic acid)-g-tyrosine (CPPT), was synthesized via a green and simple one-pot polymerization method. With the disulfide-crosslinked interlayer and the CaP shell, the pH and redox dual-sensitive polypeptide-based organic-inorganic hybrid nanoparticles encapsulated curcumin (Cur) into the hydrophobic core of micelles and loaded doxorubicin hydrochloride (DOX) on the hydrophilic segment of micelles as well as CaP shell. The spherical Cur- and DOX-loaded nanoparticles (CPPT@CaP-CD) showed a hydrodynamics size of about 157.9 ± 3.9 nm. The premature leakage of drugs from the nanoparticles at physiological pH was efficiently restrained because of the enhanced structure integrity, whereas at acidic and hypoxia microenvironment the release of both drugs was promoted due to the rapid dissolution of the CaP shell and the break of the disulfide crosslinked network, facilitating the stimuli-responsive controllable drugs release. In vitro anticancer activity evaluation revealed that the co-loaded nanoparticles presented higher cytotoxicity against A549 cells compared with that of the free combination of Cur + DOX. Confocal laser scanning microscopy observation indicated that more DOX and Cur were released into the nucleus triggered by the up-regulated intracellular glutathione (GSH) concentration and decreased pH, displaying enhanced cell uptake. The self-assembling polypeptide-based dual-sensitive drug co-delivery system could be a promising platform for efficient chemotherapy.
Collapse
Affiliation(s)
- Qiang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yiming Liu
- Shanxi Academy of Analytical Science, Taiyuan, 030006, China.
| |
Collapse
|
91
|
Zhang J, Zuo T, Yang J, Hu Z, Wang Z, Xu R, Ma S, Wei Y, Shen Q. Hierarchically Releasing Bio-Responsive Nanoparticles for Complete Tumor Microenvironment Modulation via TGF-β Pathway Inhibition and TAF Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2256-2268. [PMID: 33423468 DOI: 10.1021/acsami.0c18545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggressive progression of breast cancer is impacted significantly by the tumor microenvironment (TME). The current chemotherapy normally causes cytotoxicity to tumor cells, while does not effectively modulate the TME. Thus, the chemotherapy effect of breast cancer is usually dissatisfactory. In this study, a kind of hierarchically releasing bio-responsive nanoparticles (R(D)/H(S) NPs), constructed by β-cyclodextrin-grafted heparin and pH-sensitive pseudorotaxane, were investigated to enhance the breast cancer chemotherapeutic efficacy through TME modulation. Doxorubicin (DOX) and transforming growth factor-β (TGF-β) receptor inhibitor (SB431542) loaded onto R(D)/H(S) NPs were released rapidly for the respective response to low pH in endosomes/lysosomes and heparanase (HPSE) in TME. Our results showed that R(D)/H(S) NPs effectively inhibited the formation of tumor-associated fibroblasts (TAFs) and reduced TGF-β and collagen I secretion. Besides, the immunosuppressive microenvironment was effectively reversed into immunogenic, characterized by increased CD8+ and CD4+ T cell infiltration, which distinctly inhibited breast cancer metastasis. Therefore, R(D)/H(S) NPs remodeled the TME by downregulating TAFs, TGF-β, and collagen I; activating the immune microenvironment; and then amplifying the chemotherapeutic efficacy of DOX.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zongwei Hu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyu Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yawen Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
92
|
Li B, Sun L, Li T, Zhang Y, Niu X, Xie M, You Z. Ultra-small gold nanoparticles self-assembled by gadolinium ions for enhanced photothermal/photodynamic liver cancer therapy. J Mater Chem B 2021; 9:1138-1150. [PMID: 33432964 DOI: 10.1039/d0tb02410d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gold nanomaterials are widely used in biomedical research as drug delivery systems, imaging agents and therapeutic materials owing to their unique physicochemical properties and high biocompatibility. In this study, we prepared ultra-small gold nanoparticles (AuNPs) and induced them with gadolinium ions to form a spherical self-assembly. The nanoparticles were coupled with matrix metalloproteinase-2 (MMP-2) and loaded with the photosensitive drug IR820 for photothermal/photodynamic combination therapy of liver cancer. The formed nanoprobes were metabolised in vivo via degradation under dual-mode real-time imaging because of their acid response degradation characteristics. In addition, the nanoprobe showed excellent tumour-targeting ability due to the presence of surface-modified MMP-2. In vivo treatment experiments revealed that the nanoprobes achieved enhanced photodynamic/photothermal combination therapy under laser irradiation and significantly inhibited tumour growth. Therefore, the nanoprobes have great potential for anti-tumour therapy guided by dual-mode real-time imaging of liver cancer.
Collapse
Affiliation(s)
- Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China.
| | | | | | | | | | | | | |
Collapse
|
93
|
Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers (Basel) 2020; 12:cancers12123773. [PMID: 33333816 PMCID: PMC7765190 DOI: 10.3390/cancers12123773] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer becomes one of the major public health problems globally and the burden is expected to be increasing. Currently, both the medical and research communities have attempted an approach to nonconventional cancer therapies that can limit damage or loss of healthy tissues and be able to fully eradicate the cancer cells. In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. Immunotherapy of cancer must activate the host’s anti-tumor response by enhancing the innate immune system and the effector cell number, while, minimizing the host’s suppressor mechanisms. However, many immunotherapies are still limited by poor therapeutic targeting and unwanted side effects. Hence, a deeper understanding of tumor immunology and antitumor immune responses is essential for further improvement of cancer immunotherapy. In addition, effective delivery systems are required to deliver immunotherapeutic agents to the site of interest (such as: to Tumor microenvironments, to Antigen-Presenting Cells, and to the other immune systems) to enhance their efficacy by minimizing off-targeted and unwanted cytotoxicity. Abstract In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. However, some immunotherapy shows certain limitations including poor therapeutic targeting and unwanted side effects that hinder its use in clinics. Recently, several researchers are exploring an alternative methodology to overcome the above limitations. One of the emerging tracks in this field area is nano-immunotherapy which has gone through rapid progress and revealed considerable potentials to solve limitations related to immunotherapy. Targeted and stimuli-sensitive biocompatible nanoparticles (NPs) can be synthesized to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity and to enhance the survival rate of cancer patients. In this review, we have discussed cancer immunotherapy and the application of NPs in cancer immunotherapy, as a carrier of immunotherapeutic agents and as a direct immunomodulator.
Collapse
|
94
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
95
|
Li S, Wei X, Li S, Zhu C, Wu C. Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment. Int J Nanomedicine 2020; 15:9431-9445. [PMID: 33268986 PMCID: PMC7701150 DOI: 10.2147/ijn.s266006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, we have witnessed great development and application potential of various up-conversion luminescent nanoparticles (UCNPs) in the nanomedicine field. Based on the unique luminescent mechanism of UCNPs and the distinguishable features of cancer biomarkers and the microenvironment, an increasing number of smart UCNPs nanoprobes have been designed and widely applied to molecular imaging, cancer diagnosis, and treatment. Considerable technological success has been achieved, but the main obstacles to oncology nanomedicine is becoming an incomplete understanding of nano-bio interactions, the challenges regarding chemistry manufacturing and controls required for clinical translation and so on. This review highlights the progress of the design principles, synthesis and surface functionalization preparation, underlying applications and challenges of UCNPs-based probes for cancer bioimaging, diagnosis and treatment that capitalize on our growing understanding of tumor biology and smart nano-devices for accelerating the commercialization of UCNPs.
Collapse
Affiliation(s)
- Shuihong Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Xiaodan Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, People’s Republic of China
| | - Sisi Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Cuiming Zhu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Chunhui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, People’s Republic of China
| |
Collapse
|
96
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Sui X, Jin T, Liu T, Wu S, Wu Y, Tang Z, Ren Y, Ni D, Yao Z, Zhang H. Tumor Immune Microenvironments (TIMEs): Responsive Nanoplatforms for Antitumor Immunotherapy. Front Chem 2020; 8:804. [PMID: 33094098 PMCID: PMC7508192 DOI: 10.3389/fchem.2020.00804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Interest in cancer immunotherapy has rapidly risen since it offers many advantages over traditional approaches, such as high efficiency and prevention of metastasis. Efforts have primarily focused on two major strategies for regulating the body's antitumor immune response mechanisms: “enhanced immunotherapy” that aims to amplify the immune activation, and “normalized immunotherapy” that corrects the defective immune mechanism in the tumor immune microenvironments (TIMEs), which returns to the normal immune trajectory. However, due to the complexity and heterogeneity of the TIMEs, and lack of visualization research on the immunotherapy process, cancer immunotherapy has not been widely used in clinical setting. Recently, through the design and modification of nanomaterials, intelligent TIME-responsive nanoplatforms were developed from which encouraging results in many aspects of immunotherapy have been achieved. In this mini review, the status of designed nanomaterials for nanoplatform-based immune regulation of TIMEs has been emphasized, particularly with respect to the aforementioned approaches. It is envisaged that future prospects will focus on a combination of multiple immunotherapies for more efficient cancer inhibition and elimination.
Collapse
Affiliation(s)
- Xueqing Sui
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongmin Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dalong Ni
- Departments of Radiology, Medical Physics, and Pharmaceutical Sciences, University of Wisconsin - Madison, Madison, WI, United States
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
98
|
Date V, Nair S. Emerging vistas in CAR T-cell therapy: challenges and opportunities in solid tumors. Expert Opin Biol Ther 2020; 21:145-160. [PMID: 32882159 DOI: 10.1080/14712598.2020.1819978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite advances in modern evidence-based medicine, cancer remains a major cause of global disease-associated mortality. CAR T-cell therapy is a major histocompatibility complex (MHC)-independent immunotherapy involving adoptive cell transfer. Cancer immunotherapy witnessed a major breakthrough with the US FDA approval of the first chimeric antigen receptor (CAR) T-cell therapy KymriahTM (tisagenlecleucel) for relapsed or refractory (R/R) acute lymphoblastic leukemia (ALL) in August 2017 followed by approval of Yescarta® (axicabtagene ciloleucel) for R/R non-Hodgkin's lymphoma (NHL) in October 2017. AREAS COVERED We review the potential of CAR T-cell therapy which, despite showing great promise in hematological malignancies, faces significant challenges in targeting solid tumors. We address these challenges and discuss proposed strategies to overcome them in solid tumors. We highlight the potential of CAR T-cell therapy as cancer precision medicine and briefly discuss the 'financial toxicity' of CAR T-cell therapy. EXPERT OPINION Taken together, we discuss various strategies to circumvent the limitations of CAR T-cell therapy in solid tumors. Despite the rapid advances in CAR NK-cell therapies, there is immense scope for CAR T-cell therapy in solid tumors. We provide a synthetic review of CAR T-cell therapy that will drive future research and harness its full potential in cancer precision medicine for solid tumors.
Collapse
Affiliation(s)
- Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Sujit Nair
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai , Mumbai, India
| |
Collapse
|
99
|
Li L, Zou J, Dai Y, Fan W, Niu G, Yang Z, Chen X. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat Biomed Eng 2020; 4:1102-1116. [PMID: 32807941 DOI: 10.1038/s41551-020-0599-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies, particularly therapeutic vaccination, do not typically generate robust anti-tumour immune responses. Here, we show that the intratumoral burst release of the protein annexin A5 from intravenously injected hollow mesoporous nanoparticles made of diselenide-bridged organosilica generates robust anti-tumour immunity by exploiting the capacity of primary tumours to act as antigen depots. Annexin A5 blocks immunosuppressive apoptosis and promotes immunostimulatory secondary necrosis by binding to the phagocytic marker phosphatidylserine on dying tumour cells. In mice bearing large established tumours, the burst release of annexin A5 owing to diselenide-bond cleavage under the oxidizing conditions of the tumour microenvironment and the reducing intracellular conditions of tumour cells induced systemic cytotoxic T-cell responses and immunological memory associated with tumour regression and the prevention of relapse, and led to complete tumour eradication in about 50% of mice with orthotopic breast tumours. Reducing apoptosis signalling via in situ vaccination could be a versatile strategy for the generation of adaptive anti-tumour immune responses.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jianhua Zou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA. .,State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, P. R. China.
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
100
|
Yang J, Hou M, Sun W, Wu Q, Xu J, Xiong L, Chai Y, Liu Y, Yu M, Wang H, Xu ZP, Liang X, Zhang C. Sequential PDT and PTT Using Dual-Modal Single-Walled Carbon Nanohorns Synergistically Promote Systemic Immune Responses against Tumor Metastasis and Relapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001088. [PMID: 32832363 PMCID: PMC7435231 DOI: 10.1002/advs.202001088] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 05/06/2023]
Abstract
Immune responses stimulated by photodynamic therapy (PDT) and photothermal therapy (PTT) are a promising strategy for the treatment of advanced cancer. However, the antitumor efficacy by PDT or PTT alone is less potent and unsustainable against cancer metastasis and relapse. In this study, Gd3+ and chlorin e6 loaded single-walled carbon nanohorns (Gd-Ce6@SWNHs) are developed, and it is demonstrated that they are a strong immune adjuvant, and have high tumor targeting and penetration efficiency. Then, three in vivo mouse cancer models are established, and it is found that sequential PDT and PTT using Gd-Ce6@SWNHs synergistically promotes systemic antitumor immune responses, where PTT stimulates dendritic cells (DCs) to secrete IL-6 and TNF-α, while PDT triggers upregulation of IFN-γ and CD80. Moreover, migration of Gd-Ce6@SWNHs from the targeted tumors to tumor-draining lymph nodes sustainably activates the DCs to generate a durable immune response, which eventually eliminates the distant metastases without using additional therapeutics. Gd-Ce6@SWNHs intervened phototherapies also generate durable and long-term memory immune responses to tolerate and prevent cancer rechallenge. Therefore, this study demonstrates that sequential PDT and PTT using Gd-Ce6@SWNHs under moderate conditions elicits cooperative and long-lasting antitumor immune responses, which are promising for the treatment of patients with advanced metastatic cancers.
Collapse
Affiliation(s)
- Jingxing Yang
- Department of OrthopedicsShanghai Jiao Tong University Affiliated 6th HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Mengfei Hou
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Wenshe Sun
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Qinghe Wu
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jia Xu
- Department of OrthopedicsShanghai Jiao Tong University Affiliated 6th HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Liqin Xiong
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yimin Chai
- Department of OrthopedicsShanghai Jiao Tong University Affiliated 6th HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yuxin Liu
- School of Environment and Biological EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Meihua Yu
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueensland4102Australia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQueensland4072Australia
| | - Haolu Wang
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueensland4102Australia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalGreenslopesQueensland4120Australia
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalSchool of MedicineShanghai Jiao Tong University800, Dongchuan RoadShanghai200240China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQueensland4072Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueensland4102Australia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalGreenslopesQueensland4120Australia
- Department of General SurgeryChangzheng HospitalThe Second Military Medical UniversityShanghai200003China
| | - Chunfu Zhang
- Department of OrthopedicsShanghai Jiao Tong University Affiliated 6th HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Department of Nuclear MedicineRui Jin HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|