51
|
Song E, Wu Q, Gao R, Lan X, Zhang Y, Geng H, Liu C, Xu F, Li Y, Liu C. Supramolecular catalytic nanomedicines based on coordination self-assembly of amino acids for cascade-activated and -amplified synergetic cancer therapy. J Mater Chem B 2022; 10:9838-9847. [PMID: 36448199 DOI: 10.1039/d2tb02326a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Simple biomolecule-based supramolecular nanomedicines hold great promise in cancer therapy, but their clinical translation is greatly hindered by low tumor-specificity and unsatisfactory antitumor performance. Herein, we developed an amino acid basedsupramolecular nanomedicine that could be co-activated by multiple stimuli in tumor tissue to trigger cascade catalytic reactions in situ for synergetic therapy. The supramolecular nanomedicine was developed based on a combination of coordination and hydrophobic noncovalent interactions among amphiphilic amino acids, glucose oxidase (GOx), copper ions, as well as doxorubicin (DOX)-camptothecin (CPT) prodrugs. The cascade reactions including the catalytic oxidation of glucose to generate H2O2, GSH reducing Cu2+ to Cu+, a Fenton-like reaction between H2O2 and Cu+ to produce hydroxyl radicals (˙OH), and ˙OH-triggered rapid release of dual parent drugs were specifically activated in tumor cells. With these cascade reactions, the catalytic-chemo synergetic therapy was realized for high-efficiency tumor suppression.
Collapse
Affiliation(s)
- Enhui Song
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiong Wu
- Department of Laboratory, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao 266033, China
| | - Ren Gao
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiaopeng Lan
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanhui Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Geng
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Feijie Xu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Yongxin Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
52
|
Liu Z, Lin W, Liu Y. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications. Acc Chem Res 2022; 55:3417-3429. [PMID: 36380600 DOI: 10.1021/acs.accounts.2c00462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.
Collapse
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300000, China
| |
Collapse
|
53
|
Photocatalytic Degradation of Tetracycline by Supramolecular Materials Constructed with Organic Cations and Silver Iodide. Catalysts 2022. [DOI: 10.3390/catal12121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photocatalytic degradation, as a very significant advanced oxidation technology in the field of environmental purification, has attracted extensive attention in recent years. The design and synthesis of catalysts with high-intensity photocatalytic properties have been the focus of many researchers in recent years. In this contribution, two new supramolecular materials {[(L1)·(Ag4I7)]CH3CN} (1), {[(L2)·(Ag4I7)]CH3CN} (2) were synthesized by solution volatilization reaction of two cationic templates 1,3,5-Tris(4-aminopyridinylmethyl)-2,4,6-Trimethylphenyl bromide (L1) and 1,3,5-Tris(4-methyl pyridinyl methyl)-2,4,6-trimethylphenyl bromide (L2) with metal salt AgI at room temperature, respectively. The degradation effect of 1 and 2 as catalyst on tetracycline (TC) under visible light irradiation was studied. The results showed that the degradation of TC by 1 was better than that by 2 and both of them had good stability and cyclability. The effects of pH value, catalyst dosage, and anion in water on the photocatalytic performance were also investigated. The adsorption kinetics fit the quasi-first-order model best. After 180 min of irradiation with 1, the degradation rate of TC can reach 97.91%. In addition, the trapping experiments showed that ·OH was the main active substance in the photocatalytic degradation of TC compared with ·O2− and h+. Because of its simple synthesis and high removal efficiency, catalyst 1 has potential value for the treatment of wastewater containing organic matter.
Collapse
|
54
|
Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. Int J Mol Sci 2022; 23:ijms232315298. [PMID: 36499625 PMCID: PMC9740030 DOI: 10.3390/ijms232315298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.
Collapse
|
55
|
Verma N, Sutariya P, Patel T, Shukla M, Pandya A. Tailored calix[4]arene-gold nanoconjugate as a ultra-sensitive immunosensing nanolabel. Biomed Microdevices 2022; 25:1. [PMID: 36449135 DOI: 10.1007/s10544-022-00640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
The construction of highly sensitive and specific immunosensing nanolabels have attracted tremendous attention in the development of reliable point-of-care disease diagnostics. However, there are still challenges with traditional immunoassays, such as complicated and time-consuming procedure, the use of enzyme label, non-specificity, and require readers for detection. Therefore, we have designed and developed site-directed antibody-immobilized calix[4]arene-gold nanoconjugate based colorimetric immunosensing nanolabel to offer high sensitivity. The prepared nanolabel enabled oriented binding of the antibodies by providing full accessibility of Fab domain for antigen binding. The improved sensitivity of the developed nanolabel was evaluated using vertical flow immunoassay (VFIA) for detecting C-reactive protein (CRP) with a lower detection limit up to 1 ng/ml. Our developed nanolabel was found to be highly specific, easy, quick, and appropriate for onsite detection. The nanolabel is validated with spiked blood samples which exhibited ~90% recovery having a relative error of ~2%. Furthermore, the nanolabel was also used for screening of human blood real samples which showed relative error of ~0.6%. The developed nanolabel can be utilized as a potential nanolabel for the quantitative detection of various biomolecules in clinical samples.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Pinkesh Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Tvarit Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
56
|
Zhang XX, Li J, Niu YY. A Review of Crystalline Multibridged Cyclophane Cages: Synthesis, Their Conformational Behavior, and Properties. Molecules 2022; 27:molecules27207083. [PMID: 36296675 PMCID: PMC9607443 DOI: 10.3390/molecules27207083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the most stable conformation of crystalline three-dimensional cyclophane (CP) achieved by self-assembling based on changing the type of aromatic compound or regulating the type and number of bridging groups. [3n]cyclophanes (CPs) were reported to form supramolecular compounds with bind organic, inorganic anions, or neutral molecules selectively. [3n]cyclophanes ([3n]CPs) have stronger donor capability relative to compound [2n]cyclophanes ([2n]CPs), and it is expected to be a new type of electron donor for the progress of fresh electron conductive materials. The synthesis, conformational behavior, and properties of crystalline multi-bridge rings are summarized and discussed.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jian Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
57
|
Yu X, Liang TH, Wang M, Ren XL, Zhou ZY, Jiang MM, Zhang DQ. An innovative extraction strategy for herbal medicine by adopting p-sulphonatocalix[6]/[8]arenes. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1068-1085. [PMID: 35778370 DOI: 10.1002/pca.3160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alkaloids exist in various herbal medicine widely and exhibit diverse biological and pharmacological activities. p-Sulphonatocalix[6]arenes (SC6A) and p-sulphonatocalix[8]arenes (SC8A) are water-soluble supramolecular macrocycles and are applied to the extraction of alkaloids from herbal products. OBJECTIVE In this study, an innovative method of SC6A/SC8A assisted extraction of the alkaloids from herbs was established. METHODS SC6A and SC8A were designed to extract 27 alkaloids from seven herbal medicines. Based on the significant solubilisation and extraction effect, Stephaniae Tetrandrae Radix (Fangji, FJ) was selected to obtain the optimal extraction process by adopting single factor test and orthogonal experiment. Then, the alkaloids and SC6A/SC8A were separated by one-step alkalisation and SCnA were reused. The host-guest complexes between alkaloids and SCnA were determined by competitive fluorescence titration, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1 H-NMR) analysis. RESULTS The optimum condition for SC6A assisted extraction was 5:1:80 (g/g/mL) for herbs/SC6A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h, whilst 10:1:40 (g/g/mL) for herbs/SC8A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h for SC8A assisted extraction. The total yield of alkaloids (fangchinoline and tetrandrine) from FJ was increased by 4.87 times and 5.97 times with SC6A and SC8A. Moreover, a good reusability of SC6A/SC8A was achieved by alkalisation dissociation. Host-guest complexes were determined by competitive fluorescence titration at a molar ratio of 1:1 between most alkaloids (25/27, except evodiamine and rutaecarpine) and SC6A/SC8A. The complex structure was proved by DSC, FTIR and 1 H-NMR analysis. CONCLUSION The study provided an effective eco-friendly and energy-saving extraction method of alkaloids from herbal medicine.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Teng-Hui Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Liang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen-Yu Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao-Miao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
58
|
Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of Hydrogel Therapy in Periodontal Regeneration-A Materials Perspective Review. Gels 2022; 8:gels8100624. [PMID: 36286125 PMCID: PMC9602018 DOI: 10.3390/gels8100624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Hydrogel, a functional polymer material, has emerged as a promising technology for therapies for periodontal diseases. It has the potential to mimic the extracellular matrix and provide suitable attachment sites and growth environments for periodontal cells, with high biocompatibility, water retention, and slow release. In this paper, we have summarized the main components of hydrogel in periodontal tissue regeneration and have discussed the primary construction strategies of hydrogels as a reference for future work. Hydrogels provide an ideal microenvironment for cells and play a significant role in periodontal tissue engineering. The development of intelligent and multifunctional hydrogels for periodontal tissue regeneration is essential for future research.
Collapse
|
59
|
Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. J Control Release 2022; 350:777-786. [PMID: 35995300 DOI: 10.1016/j.jconrel.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. β-cyclodextrin (β-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via β-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome.
Collapse
|
60
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
61
|
Chatterjee S, Zamani E, Farzin S, Evazzade I, Obewhere OA, Johnson TJ, Alexandrov V, Dishari SK. Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. JACS AU 2022; 2:1144-1159. [PMID: 35647599 PMCID: PMC9131371 DOI: 10.1021/jacsau.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.
Collapse
Affiliation(s)
| | | | | | - Iman Evazzade
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Oghenetega Allen Obewhere
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Tyler James Johnson
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
62
|
Chen X, Chen Z, Hu Y, Ma L, Zhang Z, Yi F, Zhang H, Liu C. Novel quinolinium-derivated fluorescent fluoride chemosensor based on the F−-triggered cascade reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
63
|
pH/ROS dual-responsive supramolecular polypeptide prodrug nanomedicine based on host-guest recognition for cancer therapy. Acta Biomater 2022; 143:381-391. [PMID: 35272024 DOI: 10.1016/j.actbio.2022.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular nanomedicine assembly combined with polypeptide prodrug could become a powerful strategy to minimize drug leakage in blood circulation and trigger sufficient drug release at tumor tissue. Here, we developed a charge-reversal amphiphilic pillar[5]arene-modified polypeptide (P5-PLL-DMA), and reactive oxygen species (ROS)-sensitive polypeptide prodrug (P-PLL-DOX) including a ROS-cleavable thioketal (TK) linker between doxorubicin (DOX) and poly(L-lysine) (PLL), which could assemble via pillar[5]arene host-guest recognition, and further encapsulate chlorin e6 (Ce6) to obtain a supramolecular polypeptide prodrug (SPP-DOX/Ce6). The chemical conjugation to load drugs of DOX and the negatively charge of SPP-DOX/Ce6 could prevent premature drug leakage, and reduce undesirable interaction with serum proteins to enhance stability under physiological conditions (pH 7.4). Simultaneously, the carried charge of SPP-DOX/Ce6 reversed from negative to positive could effectively enhance the cellular internalization for efficient DOX delivery under acidic tumor microenvironment (pH 6.5). Upon 660 nm near-infrared light (NIR) irradiation, the ROS generated by encapsulated Ce6 rapidly cleaved the TK linker to release activated DOX, inducing the tumor-specific drug delivery. This intelligent supramolecular polypeptide prodrug based on pillar[5]arene host-guest recognition represents new avenues to develop stimulus responsive prodrug for enhanced cancer therapy with minimized the side effect. STATEMENT OF SIGNIFICANCE: In this work, a pH/ROS dual-sensitive supramolecular polypeptide prodrug (SPP-DOX/Ce6) was developed to minimize drug leakage in blood circulation and trigger sufficient drug release at tumor tissue. The chemical conjugation to load drugs of DOX via a ROS-cleavable thioketal (TK) linker and the distinctive charge-reversal capacity of SPP-DOX/Ce6 significantly enhances the stability under physiological conditions (pH 7.4), while facilitates cellular uptake at tumor site (pH 6.8). Upon 660 nm near-infrared light (NIR) irradiation, the ROS generated by encapsulated Ce6 induces the rapid cleavage of TK linker to release activated DOX, achieving a tumor-specific drug delivery. This intelligent supramolecular polypeptide prodrug SPP-DOX/Ce6 provides an effective strategy to construct stimulus responsive prodrug for enhanced cancer therapy.
Collapse
|
64
|
Xue EY, Yang C, Fong WP, Ng DKP. Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14903-14915. [PMID: 35333503 DOI: 10.1021/acsami.1c23740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery and activation of photosensitizers in a specific manner is crucial in photodynamic therapy. For an antitumoral application, it can confine the photodynamic action on the cancer cells, thereby enhancing the treatment efficacy and reducing the side effects. We report herein a novel supramolecular photosensitizing nanosystem that can be specifically activated in cancer cells and tumors that overexpress epidermal growth factor receptor (EGFR). It involves the self-assembly of the amphiphilic host-guest complex of a β-cyclodextrin-conjugated phthalocyanine-based photosensitizer (Pc-CD) and a ferrocene-substituted poly(ethylene glycol) (Mn = 2000) (Fc-PEG) in aqueous media. The resulting nanosystem Pc-CD@Fc-PEG with a hydrodynamic diameter of 124-147 nm could not emit fluorescence and generate reactive oxygen species due to the self-quenching effect and the ferrocene-based quencher. Upon interactions with molecules of adamantane substituted with an EGFR-targeting peptide (Ad-QRH*) in water and in EGFR-positive HT29 and A431 cells, the ferrocene guest species were displaced, resulting in disassembly of the nanoparticles and restoration of these photoactivities. The half-maximal inhibitory concentration values were down to 1.24 μM (for HT29 cells). The nanosystem Pc-CD@Fc-PEG could also be activated in an Ad-QRH*-treated HT29 tumor in nude mice, leading to increased intratumoral fluorescence intensity and effective eradication of the tumor upon laser irradiation. The results showed that this two-step supramolecular approach can actualize site-specific photosensitization and minimize nonspecific phototoxicity in a general photodynamic treatment.
Collapse
|
65
|
Soundarapandian S, Alexander A, Sumohan Pillai A, Manikandan V, Enoch IVMV, Yousuf S. Differential interaction of Fluorescein-β-cyclodextrin conjugate to quadruplex kit22 DNA: Inclusion of Berberine and modulation of binding. J Biomol Struct Dyn 2022; 41:3791-3799. [PMID: 35362364 DOI: 10.1080/07391102.2022.2056508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Clinical applicability of G-quadruplexes as anticancer drugs is an area of current interest. Identification of supramolecular systems for selective targeting G-quartets is particularly intriguing. In this work, the DNA binder Berberine is encapsulated inside the molecular cavity of the synthesised host structure, Fluoresecein-β-cyclodextrin conjugate. The host: guest complex is characterized and the mode of binding is optimized using two dimensional rotating-frame Overhauser effect spectroscopy. The conjugate is examined for its binding to quadruplex DNAs viz., kit22, myc22, telo24 and the duplex calf-thymus DNA before and after Berberine encapsulation. UV-vis and fluorescence spectroscopic methods were employed to determine the strength of binding of the complex with the DNAs. The binding strength and the stoichiometry of the host: guest complex are 1.9 × 106 mol-1 dm3 and 1:1, respectively. A quenching of fluorescence of the quadruplex kit22 and duplex ctDNA is observed on binding to the Fluorescein-β-cyclodextrin conjugate. The quadruplexes of myc22 and telo24 display an enhanced fluorescence on binding to the modified cyclodextrin. The Stern-Volmer quenching constants are 1.4 × 106 mol-1 dm3 and 3.8 × 105 mol-1 dm3 for binding to kit22 and ctDNA respectively. kit22 shows a different emission profile on interacting with the Berberine encapsulated conjugate, whereas all the other quadruplexes and duplex exhibit similar emission profiles. The results indicate a variation in the binding mode and strength of the ligand-quadruplexes and depend on the conformation of the quadruplexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suganthi Soundarapandian
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Varnitha Manikandan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Sameena Yousuf
- Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
66
|
Stability and Self-Association of styryl hemicyanine dyes in water studied by 1H NMR spectroscopy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
67
|
Biswas R, Yang S, Crichton RA, Adly-Gendi P, Chen TK, Kopcha WP, Shi Z, Zhang J. C 60-β-cyclodextrin conjugates for enhanced nucleus delivery of doxorubicin. NANOSCALE 2022; 14:4456-4462. [PMID: 35262142 DOI: 10.1039/d2nr00777k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate the use of water-soluble C60-β-cyclodextrin conjugates to encapsulate and deliver doxorubicin to the cell nucleus. The behaviour of the fullerene aggregates inside cells is dictated by the functionalization of the C60 cage. While both the C60 conjugates are taken up by lysosomes upon cellular entry, only the one with a hydroxylated cage rapidly escaped the lysosome. The drug delivery system (DDS) with a hydroxylated C60 cage showed significantly enhanced doxorubicin delivery to the cell nucleus, whereas the DDS with a hydrophobic C60 cage was trapped in the lysosome for a longer time and showed significantly reduced doxorubicin delivery to the nucleus. This study opens new paths towards advanced fullerene-based DDSs for small molecule drugs.
Collapse
Affiliation(s)
- Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Ryan A Crichton
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Patrick Adly-Gendi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Tyler K Chen
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
68
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
69
|
Zhang X, Qi S, Liu D, Du J, Jin J. PSMA-Targeted Supramolecular Nanoparticles Prepared From Cucurbit[8]uril-Based Ternary Host–Guest Recognition for Prostate Cancer Therapy. Front Chem 2022; 10:847523. [PMID: 35223775 PMCID: PMC8867089 DOI: 10.3389/fchem.2022.847523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Nanomedicines play an important role in cancer therapy; however, some drawbacks including unsatisfactory efficacy and side effects arising from indiscriminate drug release retard their clinical applications. Although functionalization of nanomedicines through covalent interactions can improve the pharmacokinetics and efficacy of the loaded drugs, complicated and tedious synthesis greatly limits the exploration of multifunctional nanoparticles. Herein, we utilize a supramolecular strategy to design a nanomedicine for targeted drug delivery through cucurbit[8]uril-based host–guest ternary complexation and successfully prepare prostate-specific membrane antigen (PSMA)-targeted supramolecular nanoparticles encapsulating doxorubicin (DOX). In vitro studies exhibit targeted modification via noncovalent enhance anticancer efficiency of DOX due to the increased cell uptake on account of receptor-mediated endocytosis. This design provides a new strategy for the development of sophisticated drug delivery systems and holds perspective potentials in precise cancer treatments.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shaolong Qi
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Dahai Liu, ; Jianshi Du, ; Jingji Jin,
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Dahai Liu, ; Jianshi Du, ; Jingji Jin,
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Dahai Liu, ; Jianshi Du, ; Jingji Jin,
| |
Collapse
|
70
|
Wen S, Qin C, Shen L, Liu D, Zhu S, Lin Q. Surface Self-Assembly Construction of Therapeutic Contact Lens with Bacterial "Kill-Releasing" and Drug-Reloading Capabilities for Efficient Bacterial Keratitis Treatment. ACS Biomater Sci Eng 2022; 8:1329-1341. [PMID: 35129952 DOI: 10.1021/acsbiomaterials.1c01557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial keratitis, an ophthalmic emergency, can cause corneal perforation and even endophthalmitis, thus leading to severe visual impairment. To achieve effective treatment of bacterial keratitis, good bioavailability of antimicrobial drugs on the ocular surface is desired. In this investigation, a layer-by-layer (LBL) self-assembly combined with the host-guest recognition was used to construct an antibacterial coating on the surface of corneal contact lens (CLs) to improve drug bioavailability and achieve successful treatment of bacterial keratitis. First, a radical copolymerization of acrylic acid (AA) and 1-adamantan-1-ylmethyl acrylate (AdA) was carried out to synthesize a polyanionic copolymer P(AA-co-AdA) (defined as PAcA). Then, PAcA copolymer combined with poly(ethyleneimine) (PEI) was used for a layer-by-layer (LBL) self-assembly to fabricate multilayer films on the surface of CLs. An antibacterial conjugate, β-cyclodextrin-levofloxacin (β-CD-LEV), was successfully synthesized and utilized to generate antibacterial coating through a host-guest interaction between AdA and β-CD-LEV. The antibacterial ability and treatment effect of bacterial keratitis was evaluated by in vitro assay and in vivo test in an animal model of staphylococcal keratitis, demonstrating that the antibacterial coating had good antibacterial and germicidal efficacy both in vivo and in vitro. We believe that this work will provide a promising strategy for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
71
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
72
|
Ji QT, Mu XF, Hu DK, Fan LJ, Xiang SZ, Ye HJ, Gao XH, Wang PY. Fabrication of Host-Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and β-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2564-2577. [PMID: 34981928 DOI: 10.1021/acsami.1c19758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular chemistry provides huge potentials and opportunities in agricultural pest management. In an attempt to develop highly bioactive, eco-friendly, and biocompatible supramolecular complexes for managing intractable plant bacterial diseases, herein, a type of interesting adamantane-functionalized 1,3,4-oxadiazole was rationally prepared to facilitate the formation of supramolecular complexes via β-cyclodextrin-adamantane host-guest interactions. Initial antibacterial screening revealed that most of these adamantane-decorated 1,3,4-oxadiazoles were obviously bioactive against three typically destructive phytopathogens. The lowest EC50 values could reach 0.936 (III18), 0.889 (III18), and 2.10 (III19) μg/mL against the corresponding Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Next, the representative supramolecular binary complex III18@β-CD (binding mode 1:1) was successfully fabricated and characterized by 1H nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), high-resolution mass spectrometry (HRMS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Eventually, correlative water solubility and foliar surface wettability were significantly improved after the formation of host-guest assemblies. In vivo antibacterial evaluation found that the achieved supramolecular complex could distinctly alleviate the disease symptoms and promote the control efficiencies against rice bacterial blight (from 34.6-35.7% (III18) to 40.3-43.6% (III18@β-CD)) and kiwi canker diseases (from 41.0-42.3% (III18) to 53.9-68.0% (III18@β-CD)) at 200 μg/mL (active ingredient). The current study can provide a feasible platform and insight for constructing biocompatible supramolecular assemblies for managing destructive bacterial infections in agriculture.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiu-Hui Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
73
|
Lin L, Chen H, Zhao R, Zhu M, Nie G. Nanomedicine Targets Iron Metabolism for Cancer Therapy. Cancer Sci 2021; 113:828-837. [PMID: 34962017 PMCID: PMC8898713 DOI: 10.1111/cas.15250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
Iron is an essential element for cell proliferation and homeostasis by engaging in cell metabolism including DNA synthesis, cell cycle, and redox cycling; however, iron overload could contribute to tumor initiation, proliferation, metastasis, and angiogenesis. Therefore, manipulating iron metabolisms, such as using iron chelators, transferrin receptor 1 (TFR1) Abs, and cytotoxic ligands conjugated to transferrin, has become a considerable strategy for cancer therapy. However, there remain major limitations for potential translation to the clinic based on the regulation of iron metabolism in cancer treatment. Nanotechnology has made great advances for cancer treatment by improving the therapeutic potential and lowering the side‐effects of the proved drugs and those under various stages of development. Early studies that combined nanotechnology with therapeutic means for the regulation of iron metabolism have shown certain promise for developing specific treatment options based on the intervention of cancer iron acquisition, transportation, and utilization. In this review, we summarize the current understanding of iron metabolism involved in cancer and review the recent advances in iron‐regulatory nanotherapeutics for improved cancer therapy. We also envision the future development of nanotherapeutics for improved treatment for certain types of cancers.
Collapse
Affiliation(s)
- Liangru Lin
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Hanqing Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
74
|
Zhou S, Li W, Zhao Q, Dong H, Wang Y, Lu F, Zhao J, Liu S, Chen H, Wang L, Liu W, Zhang M, Chen S. Detoxification of the Toxic Sulfur Mustard Simulant by a Supramolecular Antidote in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58291-58300. [PMID: 34846119 DOI: 10.1021/acsami.1c15890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although great potential hazards and threats still occur from sulfur mustard, there are no specific medicine or therapy for the intoxication of sulfur mustard. Herein, we have demonstrated a supramolecular approach for the detoxification of the sulfur mustard simulant CEES (4) in vitro and in vivo by carboxylatopillar[5]arene potassium salts (CP[5]AK 1) efficiently based on host-guest interactions. The encapsulation of CEES (4) by the cavity of the pillar[5]arene 2 is driven by C-H···π interactions between CEES (4) and the electron-rich cavity of pillar[5]arene 2, which was investigated by 1H NMR titration, density functional theory studies, and the independent gradient model studies. CEES (4) is degradated to the reactive sulfonium salts quickly in aqueous media, resulting in the alkylation of DNA and proteins. The sulfonium salts can be encapsulated by CP[5]AK 1 efficiently, which accelerates the degradation of the sulfonium salts about 14 times. The cell and animal experiments indicated that the bioactivities of the sulfonium salts are inhibited with the formation of stable host-guest complexes, and CP[5]AK 1 has a good therapeutic effect on the damages caused by CEES (4) at either pre- or post-treatments. Due to the low cytotoxicity and good therapeutic effect, the anionic pillar[5]arenes are expected to be developed as specific antidotes against sulfur mustard (HD).
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Wangzi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yueqi Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feihong Lu
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jiahao Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hong Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
75
|
Bernier NA, Teh J, Reichel D, Zahorsky-Reeves JL, Perez JM, Spokoyny AM. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14500-14508. [PMID: 34843246 PMCID: PMC8761388 DOI: 10.1021/acs.langmuir.1c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of closo-dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating. We find that several boron cluster derivatives can become encapsulated into ferumoxytol, and the lack of pH dependence in these interactions suggests that ion pairing, hydrophobic/hydrophilic interaction, and hydrogen bonding are not the driving force for encapsulation in this system. Biodistribution experiments in BALB/c mice show that this system is nontoxic at the reported dosage and demonstrate that encapsulation of dodecaborate-based clusters in ferumoxytol can alter the biodistribution of the guest molecules.
Collapse
Affiliation(s)
- Nicholas A. Bernier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joanne L. Zahorsky-Reeves
- Division of Lab Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding Author:,
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Corresponding Author:,
| |
Collapse
|
76
|
Luo S, Qiu F, Shi H, Yu W. Design, Characterizations and Host‐Guest Properties of a New Metal‐Organic Cage Based on Half‐Sandwich Rhodium Moieties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Feng‐Yi Qiu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
77
|
|
78
|
Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100067. [PMID: 34909685 PMCID: PMC8663983 DOI: 10.1016/j.crphar.2021.100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features. Amalgamation of supramolecular approaches to nano-based features further equip the potential of designing novel approaches to overcome limitations seen by the conventional theranostic strategies, for curing even the lethal diseases and endowing personalized therapeutics with optimistic prognosis, endorsing their clinical translation. Among many potential nanocarriers for theranostics, lipid nanoparticles (LNPs) have shown various promising advances in theranostics and their formulation can be tailored for several applications. Despite the great advancement in cancer nanotheranostics, there are still many challenges that need to be highlighted to fill the literature gap. For this purpose, herein, we have presented a systematic overview on the subject and proposed LNPs as the potential material to manage cancer via non-invasive approaches by highlighting the use of supramolecular approaches to make them robust for cancer theranostics. We have concluded the review by entailing the future perspectives of lipid nanotheranostics towards clinical translation.
Collapse
Affiliation(s)
- Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
79
|
Wu H, Chen Z, Qi S, Bai B, Ye J, Wu D, Shen J, Kang F, Yu G. Evaluation of the stability of cucurbit[8]uril-based ternary host-guest complexation in physiological environment and the fabrication of a supramolecular theranostic nanomedicine. J Nanobiotechnology 2021; 19:330. [PMID: 34670552 PMCID: PMC8529793 DOI: 10.1186/s12951-021-01076-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Supramolecular theranostics have exhibited promising potentials in disease diagnosis and therapy by taking advantages of the dynamic and reversible nature of non-covalent interactions. It is extremely important to figure out the stability of the driving forces in physiological environment for the preparation of theranostic systems. METHODS The host-guest complexation between cucurbit[8]uril (CB[8]), 4,4'-bipyridinium, and napththyl guest was fully studied using various characterizations, including nuclear magnetic resonance spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, isothermal titration calorimetry (ITC). The association constants of this ternary complex were determined using isothermal titration calorimetry. The stability of the non-covalent interactions and self-assemblies form from this molecular recognition was confirmed by UV-vis spectroscopy and dynamic light scattering (DLS). A supramolecular nanomedicine was constructed on the basis of this 1:1:1 ternary recognition, and its in vitro and in vivo anticancer efficacy were thoroughly evaluated. Positron emission tomography (PET) imaging was used to monitor the delivery and biodistribution of the supramolecular nanomedicine. RESULTS Various experiments confirmed that the ternary complexation between 4,4'-bipyridinium, and napththyl derivative and CB[8] was stable in physiological environment, including phosphate buffered solution and cell culture medium. Supramolecular nanomedicine (SNM@DOX) encapsulating a neutral anticancer drug (doxrubincin, DOX) was prepared based on this molecular recognition that linked the hydrophobic poly(ε-caprolactone) chain and hydrophilic polyethylene glycol segment. The non-covalent interactions guaranteed the stability of SNM@DOX during blood circulation and promoted its tumor accumulation by taking advantage of the enhanced permeability and retention effect, thus greatly improving the anti-tumor efficacy as compared with the free drug. CONCLUSION Arising from the host-enhanced charge-transfer interactions, the CB[8]-based ternary recognition was stable enough in physiological environment, which was suitable for the fabrication of supramolecular nanotheranostics showing promising potentials in precise cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Han Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| | - Shaolong Qi
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Bing Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 400030, People's Republic of China
| | - Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, People's Republic of China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 400030, People's Republic of China.
| | - Guocan Yu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
80
|
Sembo-Backonly BS, Estour F, Gouhier G. Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Adv 2021; 11:29762-29785. [PMID: 35479531 PMCID: PMC9040919 DOI: 10.1039/d1ra04084g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for non-invasive, high-resolution three-dimensional medical imaging of anatomical structures such as organs and tissues. The use of contrast agents based on gadolinium chelates started in 1988 to improve the quality of the image, since researchers and industry focused their attention on the development of more efficient and stable structures. This review is about the state of the art of MRI contrast agents based on cyclodextrin scaffolds. Chemical engineering strategies are herein reported including host-guest inclusion complexation and covalent linkages. It also offers descriptions of the MRI properties and in vitro and in vivo biomedical applications of these emerging macrostructures. It highlights that these supramolecular associations can improve the image contrast, the sensitivity, and the efficiency of MRI diagnosis by targeting cancer tumors and other diseases with success proving the great potential of this natural macrocycle.
Collapse
Affiliation(s)
- Berthe Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - François Estour
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| |
Collapse
|
81
|
Liao C, Liu S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J Mater Chem B 2021; 9:6116-6128. [PMID: 34278394 DOI: 10.1039/d1tb01124c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first report by Yaghi's group in 2005, research enthusiasm has been increasingly raised to synthesize diverse crystalline porous materials as -B-O-, -C-N-, -C-C-, and -C-O- linkage-based COFs. Recently, the biomedical applications of COFs have become more and more attractive in biomedical applications, including drug delivery, bioimaging, biosensing, antimicrobial, and therapeutic applications, as these materials bear well-defined crystalline porous structures and well-customized functionalities. However, the clinical translation of these research findings is challenging due to the formidable hindrances for in vivo use, such as low biocompatibility, poor selectivity, and long bio-persistence. Some attempts have raised a promising solution towards these obstacles by tailored engineering the functionalities of COFs. To speed up the clinical translations of COFs, a short review of principles and strategies to tune the physicochemical properties of COFs is timely and necessary. In this review, we summarized the biomedical utilities of COFs and discussed the related key physicochemical properties. To improve the performances of COFs in biomedical uses, we propose approaches for the tailored functionalization of COFs, including large-scale manufacture, standardization in nanomedicines, enhancing targeting efficacy, maintaining predesigned functions upon transformations, and manipulation of multifunctional COFs. We expect that this minireview strengthens the fundamental understandings of property-bioactivity relationships of COFs and provides insights for the rational design of their high-order reticular structures.
Collapse
Affiliation(s)
- Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|
82
|
Sorroza-Martínez K, González-Méndez I, Vonlanthen M, Cuétara-Guadarrama F, Illescas J, Zhu XX, Rivera E. Guest-Mediated Reversal of the Tumbling Process in Phosphorus-Dendritic Compounds Containing β-Cyclodextrin Units: An NMR Study. Pharmaceuticals (Basel) 2021; 14:556. [PMID: 34207945 PMCID: PMC8230630 DOI: 10.3390/ph14060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
The conformational study of dendritic platforms containing multiple β-cyclodextrin (βCD) units in the periphery is relevant to determine the availability of βCD cavities for the formation of inclusion complexes in aqueous biological systems. In this work, we performed a detailed conformational analysis in D2O, via 1D and 2D NMR spectroscopy of a novel class of phosphorus dendritic compounds of the type P3N3-[O-C6H4-O-(CH2)n-βCD]6 (where n = 3 or 4). We unambiguously demonstrated that a functionalized glucopyranose unit of at least one βCD unit undergoes a 360° tumbling process, resulting in a deep inclusion of the spacer that binds the cyclodextrin to the phosphorus core inside the cavity, consequently limiting the availability of the inner cavities. In addition, we confirmed through NMR titrations that this tumbling phenomenon can be reversed for all βCD host units using a high-affinity guest, namely 1-adamantanecarboxylic acid (AdCOOH). Our findings have demonstrated that it is possible to create a wide variety of multi-functional dendritic platforms.
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Avenida Tecnológico S/N Col. Agrícola Bellavista, Metepec CP 52140, Mexico;
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada;
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| |
Collapse
|
83
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
84
|
The construction of supramolecular and hybrid Ag-AgCl nanoparticles with photodynamic therapy action on the base of tetraundecylсalix[4]resorcinarene-mPEG conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
86
|
Soni SS, Alsasa A, Rodell CB. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front Chem 2021; 9:658548. [PMID: 33889565 PMCID: PMC8055865 DOI: 10.3389/fchem.2021.658548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a central role in the development and progression of human disease. Modulation of the immune response is therefore a critical therapeutic target that enables us to approach some of the most vexing problems in medicine today such as obesity, cancer, viral infection, and autoimmunity. Methods of manipulating the immune system through therapeutic delivery centralize around two common themes: the local delivery of biomaterials to affect the surrounding tissue or the systemic delivery of soluble material systems, often aided by context-specific cell or tissue targeting strategies. In either case, supramolecular interactions enable control of biomaterial composition, structure, and behavior at the molecular-scale; through rational biomaterial design, the realization of next-generation immunotherapeutics and immunotheranostics is therefore made possible. This brief review highlights methods of harnessing macromolecular interaction for immunotherapeutic applications, with an emphasis on modes of drug delivery.
Collapse
Affiliation(s)
| | | | - Christopher B. Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
87
|
Mostovaya O, Padnya P, Shurpik D, Shiabiev I, Stoikov I. Novel lactide derivatives of p-tert-butylthiacalix[4]arene: Directed synthesis and molecular recognition of catecholamines. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
88
|
Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 2021; 8:7253-7263. [PMID: 32638824 DOI: 10.1039/d0tb01063d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The combination of different modalities greatly enhances the anticancer efficacy of each treatment by combining their merits, showing promising potential in clinical translation. Herein, we fabricated cancer cell membrane-coated gold nanorods (GNR@Mem) possessing excellent photothermal transfer ability in the second near-infrared window and radiosensitizing ability under X-ray irradiation. The cancer cell membrane coating endowed the nanomedicine with stability in the physiological environment and selective homotypic targeting to specific cancer cells in vitro. Under NIR light and X-ray irradiation, the gold nanorods induced a temperature increase, reactive oxygen generation, and subsequent damage to the DNA helix structure, leading to enhanced cell apoptosis. Benefitting from its relative long circulation time in the blood and homotypic targeting effect, the tumor accumulation of GNR@Mem significantly increased. The in vivo results demonstrate that the combination of photothermal therapy and radiotherapy effectively suppresses tumor growth without noticeable systemic toxicity.
Collapse
Affiliation(s)
- Qiang Sun
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinggen Wu
- Department of Reproductive Medicine Center, Department of Urology and Andrology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Fang Wang
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Mengjie Wu
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
89
|
Welling MM, Duszenko N, van Willigen DM, Smits WK, Buckle T, Roestenberg M, van Leeuwen FWB. Cyclodextrin/Adamantane-Mediated Targeting of Inoculated Bacteria in Mice. Bioconjug Chem 2021; 32:607-614. [PMID: 33621052 PMCID: PMC8028042 DOI: 10.1021/acs.bioconjchem.1c00061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Cyclodextrin (CD)-based host-guest interactions with adamantane (Ad) have demonstrated use for functionalizing living cells in vitro. The next step in this supramolecular functionalization approach is to explore the concept to deliver chemical cargo to living cells in vivo, e.g., inoculated bacteria, in order to study their dissemination. We validated this concept in two rodent Staphylococcus aureus models. Bacteria (1 × 108 viable S. aureus) were inoculated by (1) intramuscular injection or (2) intrasplenic injection followed by dissemination throughout the liver. The bacteria were prefunctionalized with 99mTc-UBI29-41-Ad2 (primary vector), which allowed us to both determine the bacterial load and create an in vivo target for the secondary host-vector (24 h post-inoculation). The secondary vector, i.e., chemical cargo delivery system, made use of a 111In-Cy50.5CD9PIBMA39 polymer that was administered intravenously. Bacteria-specific cargo delivery as a result of vector complexation was evaluated by dual-isotope SPECT imaging and biodistribution studies (111In), and by fluorescence (Cy5); these evaluations were performed 4 h post-injection of the secondary vector. Mice inoculated with nonfunctionalized S. aureus and mice without an infection served as controls. Dual-isotope SPECT imaging demonstrated that 111In-Cy50.5CD9PIBMA39 colocalized with 99mTc-UBI29-41-Ad2-labeled bacteria in both muscle and liver. In inoculated muscle, a 2-fold higher uptake level (3.2 ± 1.0%ID/g) was noted compared to inoculation with nonfunctionalized bacteria (1.9 ± 0.4%ID/g), and a 16-fold higher uptake level compared to noninfected muscle (0.2 ± 0.1%ID/g). The hepatic accumulation of the host-vector was nearly 10-fold higher (27.1 ± 11.1%ID/g) compared to the noninfected control (2.7 ± 0.3%ID/g; p < 0.05). Fluorescence imaging of the secondary vector corroborated SPECT-imaging and biodistribution findings. We have demonstrated that supramolecular host-guest complexation can be harnessed to achieve an in vivo cargo delivery strategy, using two different bacterial models in soft tissue and liver. This proof-of-principle study paves a path toward developing innovative drug delivery concepts via cell functionalization techniques.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Nikolas Duszenko
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Department
of Parasitology and Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Wiep Klaas Smits
- Department
of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Tessa Buckle
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Meta Roestenberg
- Department
of Parasitology and Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
90
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
91
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
92
|
Yang X, Yuan D, Hou J, Sedgwick AC, Xu S, James TD, Wang L. Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213609] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
93
|
Nikolova V, Velinova A, Dobrev S, Kircheva N, Angelova S, Dudev T. Host-Guest Complexation of Cucurbit[7]Uril and Cucurbit[8]Uril with the Antineoplastic and Multiple Sclerosis Agent Mitoxantrone (Novantrone). J Phys Chem A 2021; 125:536-542. [PMID: 33415972 DOI: 10.1021/acs.jpca.0c08544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nature of interactions between the neutral/protonated mitoxantrone and the cucurbit[n]uril (n = 7, 8) host system was analyzed by employing density functional theory calculations. A comparison between the inclusion complexes of CB[7] and CB[8] shows various subtle differences in the complexation thermodynamics, given as changes in the Gibbs energy. Doubly and quadruply charged mitoxantrone (MX) molecules spontaneously form complexes in a water solvent, which are modeled using the polarizable continuum model approach. Both CB[7] and CB[8] complexes are stable as the geometry of the cavity allows for electrostatic interactions between the charged MX arms and the rim of the CB cavity. CB[8] also forms a stable complex with two mitoxantrone molecules with their aromatic rings stacked inside the cavity. Both CB[7] and CB[8] show properties that can be utilized in drug delivery.
Collapse
Affiliation(s)
- Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Anita Velinova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
94
|
Serillon D, Bo C, Barril X. Testing automatic methods to predict free binding energy of host-guest complexes in SAMPL7 challenge. J Comput Aided Mol Des 2021; 35:209-222. [PMID: 33464434 PMCID: PMC7904704 DOI: 10.1007/s10822-020-00370-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
The design of new host–guest complexes represents a fundamental challenge in supramolecular chemistry. At the same time, it opens new opportunities in material sciences or biotechnological applications. A computational tool capable of automatically predicting the binding free energy of any host–guest complex would be a great aid in the design of new host systems, or to identify new guest molecules for a given host. We aim to build such a platform and have used the SAMPL7 challenge to test several methods and design a specific computational pipeline. Predictions will be based on machine learning (when previous knowledge is available) or a physics-based method (otherwise). The formerly delivered predictions with an RMSE of 1.67 kcal/mol but will require further work to identify when a specific system is outside of the scope of the model. The latter is combines the semiempirical GFN2B functional, with docking, molecular mechanics, and molecular dynamics. Correct predictions (RMSE of 1.45 kcal/mol) are contingent on the identification of the correct binding mode, which can be very challenging for host–guest systems with a large number of degrees of freedom. Participation in the blind SAMPL7 challenge provided fundamental direction to the project. More advanced versions of the pipeline will be tested against future SAMPL challenges.
Collapse
Affiliation(s)
- Dylan Serillon
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Carles Bo
- Institut Català d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 17, 43007, Tarragona, Spain
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
95
|
Li XX, Xu WT, Deng XY, Tian LF, Huang Y, Tao Z. Selective Identification of Phenylalanine Using Cucurbit[7,8]uril-Based Fluorescent Probes. Aust J Chem 2021. [DOI: 10.1071/ch20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interactions of two host–guest inclusion complexes comprised of cucurbit[7]uril (Q[7]) and cucurbit[8]uril (Q[8]) with a derivative of toluidine blue O (TB) have been investigated using 1H NMR and fluorescence spectroscopy. The experimental results revealed that the Q[7] host interacts with a TB molecule to form a 1:1 inclusion complex and the Q[8] host interacts with two TB guest molecules to form a 1:2 inclusion complex. The inclusion of the TB guest molecule within the Q[7] host gave rise to significant fluorescence enhancement, whereas the inclusion of the TB guest molecule within the Q[8] host resulted in significant fluorescence quenching. Further recognition experiments involving a series of l-α-amino acids revealed that the TB@Q[7] inclusion fluorescence probe exhibits high selectivity for the recognition of phenylalanine via significant fluorescence quenching in an aqueous solution, whereas the TB@Q[8] inclusion fluorescence probe also exhibited high selectivity for phenylalanine recognition via fluorescence enhancement in an aqueous solution.
Collapse
|
96
|
Guo Z, He H, Zhang Y, Rao J, Yang T, Li T, Wang L, Shi M, Wang M, Qiu S, Song X, Ke H, Chen H. Heavy-Atom-Modulated Supramolecular Assembly Increases Antitumor Potency against Malignant Breast Tumors via Tunable Cooperativity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004225. [PMID: 33270303 DOI: 10.1002/adma.202004225] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Triple-negative breast cancer (TNBC) remains with highest incidence and mortality rates among females, and a critical bottleneck lies in rationally establishing potent therapeutics against TNBC. Here, the self-assembled micellar nanoarchitecture of heavy-atom-modulated supramolecules with efficient cytoplasmic translocation and tunable photoconversion is shown, for potent suppression against primary, metastatic, and recurrent TNBC. Multi-iodinated boron dipyrromethene micelles yield tunable photoconversion into singlet oxygen and a thermal effect, together with deep penetration and subsequent cytoplasmic translocation at the tumor. Tetra-iodinated boron dipyrromethene micelles (4-IBMs) particularly show a distinctly enhanced cooperativity of antitumor efficiency through considerable expressions of apoptotic proteins, potently suppressing subcutaneous, and orthotopic TNBC models, together with reduced oxygen dependence. Furthermore, 4-IBMs yield preferable anti-metastatic and anti-recurrent efficacies through the inhibition of metastasis-relevant proteins, distinct immunogenic cell death, and re-education of M2 macrophages into tumoricidal M1 phenotype as compared to chemotherapy and surgical resection. These results offer insights into the cooperativity of supramolecular nanoarchitectures for potent phototherapy against TNBC.
Collapse
Affiliation(s)
- Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yi Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jiaming Rao
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengke Shi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Mengya Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shihong Qiu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xue Song
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
97
|
ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
98
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
99
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
100
|
Dai X, Zhang B, Zhou W, Liu Y. High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy. Biomacromolecules 2020; 21:4998-5007. [PMID: 32946217 DOI: 10.1021/acs.biomac.0c01181] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel cyclodextrin-prodrug supramolecular nanoparticles (NPs) with cooperative-enhancing cancer therapy were constructed from a reduction-sensitive disulfide bond-linked permethyl-β-cyclodextrin-camptothecin prodrug, water-soluble adamantane-porphyrin photosensitizer, and hyaluronic acid grafted by triphenylphosphine and β-cyclodextrin through an orthogonal host-guest recognition strategy, displaying uniform nanoparticles with a diameter around 100 nm as revealed by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Compared with 293T normal cells, the supramolecular NPs could be easily taken up by mitochondria of A549 cancer cells, then release the active anticancer drug camptothecin (CPT) in situ via the cleavage of the disulfide bond by the overexpressed glutathione, and could initiate the effective singlet oxygen (1O2) generation by porphyrin under light irradiation, ultimately resulting in severe mitochondrial dysfunction and a rising cell death rate with increasing micromolar concentration of NPs. These multicomponent supramolecular nanoassemblies effectively combined the two-step synergistic chemo-photodynamic therapy of reduction-release of CPT and light-triggered 1O2 generation within cancer cells presenting the synergistic effect of supramolecular nanoparticles on cancer therapy, which provide a new approach for efficient step-by-step cancer therapy.
Collapse
Affiliation(s)
- Xianyin Dai
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Weilei Zhou
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|