51
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
52
|
Wu P, Shen L, Liu HF, Zou XH, Zhao J, Huang Y, Zhu YF, Li ZY, Xu C, Luo LH, Luo ZQ, Wu MH, Cai L, Li XK, Wang ZG. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res 2023; 10:35. [PMID: 37525300 PMCID: PMC10388535 DOI: 10.1186/s40779-023-00469-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration. METHODS In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO3, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physical and chemical properties of the Cs/Gel/PHA scaffold with 0-10 wt% PBT were analyzed. Cell and animal experiments were performed to characterize the immunomodulatory, angiogenic, and osteogenic capabilities of the piezoelectric hydrogel scaffold in vitro and in vivo. RESULTS The incorporation of BaTiO3 into the scaffold improved its mechanical properties and increased self-generated electricity. Due to their endogenous piezoelectric stimulation and bioactive constituents, the as-prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory, angiogenic, and osteogenic capabilities; they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration, tube formation, and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) and facilitated the migration, osteo-differentiation, and extracellular matrix (ECM) mineralization of MC3T3-E1 cells. The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model. The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis, and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization. CONCLUSION The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation, angiogenesis, and osteogenesis functions may be used as a substitute in periosteum injuries, thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat effectiveness in grassroots troops.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Hui-Fan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiang-Hui Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu Huang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu-Fan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Hua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhi-Qiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
53
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
54
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
55
|
Fan S, Sun X, Su C, Xue Y, Song X, Deng R. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing. Front Cell Dev Biol 2023; 11:1193765. [PMID: 37427382 PMCID: PMC10327485 DOI: 10.3389/fcell.2023.1193765] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Bone healing is associated with many orthopedic conditions, including fractures and osteonecrosis, arthritis, metabolic bone disease, tumors and periprosthetic particle-associated osteolysis. How to effectively promote bone healing has become a keen topic for researchers. The role of macrophages and bone marrow mesenchymal stem cells (BMSCs) in bone healing has gradually come to light with the development of the concept of osteoimmunity. Their interaction regulates the balance between inflammation and regeneration, and when the inflammatory response is over-excited, attenuated, or disturbed, it results in the failure of bone healing. Therefore, an in-depth understanding of the function of macrophages and bone marrow mesenchymal stem cells in bone regeneration and the relationship between the two could provide new directions to promote bone healing. This paper reviews the role of macrophages and bone marrow mesenchymal stem cells in bone healing and the mechanism and significance of their interaction. Several new therapeutic ideas for regulating the inflammatory response in bone healing by targeting macrophages and bone marrow mesenchymal stem cells crosstalk are also discussed.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanchao Su
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
56
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
57
|
Bai L, Tao G, Feng M, Xie Y, Cai S, Peng S, Xiao J. Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2023; 15:pharmaceutics15051334. [PMID: 37242576 DOI: 10.3390/pharmaceutics15051334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
Collapse
Affiliation(s)
- Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maogeng Feng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
58
|
Yunsheng D, Hui X, Jie W, Tingting Y, Naiqi K, Jiaxing H, Wei C, Yufei L, Qiang Y, Shufang W. Sustained release silicon from 3D bioprinting scaffold using silk/gelatin inks to promote osteogenesis. Int J Biol Macromol 2023; 234:123659. [PMID: 36796557 DOI: 10.1016/j.ijbiomac.2023.123659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Repairing extensive bone defects that cannot self-heal has been a clinical challenge. The construction of scaffolds with osteogenic activity through tissue engineering can provide an effective strategy for bone regeneration. This study utilized gelatin, silk fibroin, and Si3N4 as scaffold materials to prepare silicon-functionalized biomacromolecules composite scaffolds using three-dimensional printing (3DP) technology. This system delivered positive outcomes when Si3N4 levels were 1 % (1SNS). The results showed that the scaffold had a porous reticular structure with a pore size of 600-700 μm. The Si3N4 nanoparticles were distributed uniformly in the scaffold. The scaffold could release Si ions for up to 28 days. In vitro experiments showed that the scaffold had good cytocompatibility, promoting the osteogenic differentiation of mesenchymal stem cells (MSCs). In vivo experiments on bone defects in rats showed that the 1SNS group facilitated bone regeneration. Therefore, the composite scaffold system showed potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Dong Yunsheng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Xiao Hui
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Wang Jie
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Yang Tingting
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Kang Naiqi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Huang Jiaxing
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Cui Wei
- Qingdao Alticera Advanced Materials Co., Ltd, 266299 Shan Dong, China
| | - Liu Yufei
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China
| | - Yang Qiang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 300211 Tianjin, China.
| | - Wang Shufang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
59
|
Barzaghini B, Carelli S, Messa L, Rey F, Avanzini MA, Jacchetti E, Maghraby E, Berardo C, Zuccotti G, Raimondi MT, Cereda C, Calcaterra V, Pelizzo G. Bone Marrow Mesenchymal Stem Cells Expanded Inside the Nichoid Micro-Scaffold: a Focus on Anti-Inflammatory Response. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023:1-12. [PMID: 37363698 PMCID: PMC10027280 DOI: 10.1007/s40883-023-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 03/28/2023]
Abstract
Purpose Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application. Materials and Methods In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis. Results We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control. Conclusion The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations. Lay Summary Regenerative medicine is the research field integrating medicine, biology, and biomedical engineering. In this context, stem cells, which are a fundamental cell source able to regenerate tissues and restore damage in the body, are the key component for a regenerative therapeutic approach. When expanded outside the body, stem cells tend to differentiate spontaneously and lose regenerative potential due to external stimuli. For this reason, we exploit the scaffold named Nichoid, which mimics the in vivo cell niche architecture. In this scaffold, mesenchymal stem cells "feel at home" due to the three-dimensional mechanical stimuli, and our findings could be considered as an innovative culture system for the in vitro expansion of stem cells for clinical translation. Future Perspective The increasing demand of safe and effective cell therapies projects our findings toward the possibility of improving cell therapies based on the use of BM-MSCs, particularly for their clinical translation in lung diseases. Graphical Abstract
Collapse
Affiliation(s)
- Bianca Barzaghini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Stephana Carelli
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Erika Maghraby
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Clarissa Berardo
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Unit, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
60
|
Zhou Q, Su X, Wu J, Zhang X, Su R, Ma L, Sun Q, He R. Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomater Sci Eng 2023; 9:1164-1189. [PMID: 36786214 DOI: 10.1021/acsbiomaterials.2c01164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Treating bone defects is highly challenging because they do not heal on their own inside the patients, so implants are needed to assist in the reconstruction of the bone. Bioceramic implants based on additive manufacturing (AM) are currently emerging as promising treatment options for restoration bone engineering. On the one hand, additively manufactured bioceramic implants have excellent mechanical properties and biocompatibility, which are suitable for bone regeneration. On the other hand, the designable structure and adjustable pores of additively manufactured bioceramic implants allow them to promote suitable cell growth and tissue climbing. Herein, this review unfolds to introduce several frequently employed AM technologies for bioceramic implants. After that, advances in commonly used additively manufactured bioceramic implants, including bioinert ceramic implants, bioactive ceramic implants, and bioceramic/organic composite implants, are categorized and summarized. Finally, the future perspectives of additively manufactured bioceramic implants, in terms of mechanical performance improvement, innovative structural design, biological property enhancement, and other functionalization approaches, are proposed and forecasted. This review is believed to provide some fundamental understanding and cutting-edge knowledge for the additive manufacturing of bioceramic implants for restoration bone engineering.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaonan Su
- Beijing Scrianen Pharmaceutical Co. Ltd., Beijing 102699, China
| | - Jianqin Wu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xueqin Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruyue Su
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Ma
- Center of Dental Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qiang Sun
- Center of Dental Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rujie He
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
61
|
Zhang S, Chen X, Shan M, Hao Z, Zhang X, Meng L, Zhai Z, Zhang L, Liu X, Wang X. Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds. Biomimetics (Basel) 2023; 8:biomimetics8010094. [PMID: 36975324 PMCID: PMC10046132 DOI: 10.3390/biomimetics8010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising scaffold fabrication strategy for tissue engineering with excellent control over scaffold geometry and microstructure. Nanobiomaterials as bioinks play a key role in manipulating the cellular microenvironment to alter its growth and development. This review first introduces the commonly used nanomaterials in tissue engineering scaffolds, including natural polymers, synthetic polymers, and polymer derivatives, and reveals the improvement of nanomaterials on scaffold performance. Second, the 3D bioprinting technologies of inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, and stereolithography bioprinting are comprehensively itemized, and the advantages and underlying mechanisms are revealed. Then the convergence of 3D bioprinting and nanotechnology applications in tissue engineering scaffolds, such as bone, nerve, blood vessel, tendon, and internal organs, are discussed. Finally, the challenges and perspectives of convergence of 3D bioprinting and nanotechnology are proposed. This review will provide scientific guidance to develop 3D bioprinting tissue engineering scaffolds by nanotechnology.
Collapse
Affiliation(s)
- Shike Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Chen
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Shan
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zijuan Hao
- Henan Innovation Center for Functional Polymer Membrane Materials, Xinxiang 453000, China
| | - Xiaoyang Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lingxian Meng
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Zhai
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuying Liu
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghong Wang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67739217
| |
Collapse
|
62
|
Li J, Li W, Kong M, Li Z, Yang T, Wang Q, Teng W. Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration. J Nanobiotechnology 2023; 21:62. [PMID: 36814282 PMCID: PMC9948527 DOI: 10.1186/s12951-023-01811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Guided bone regeneration (GBR) is widely used in treating oral bone defects to exclude the influence of non-osteogenic tissue on the bone healing process. The traditional method of GBR with a titanium mesh to treat large-area bone defects is limited by the deficiency of increased trauma and costs to patients. Herein, a bi-layered scaffold for GBR composed of a fiber barrier layer and a self-healing hydrogel repair layer is successfully fabricated. The barrier layer is a fibrous membrane material with specific porosity constructed by electrospinning, while the functional layer is a self-healing hydrogel material formed by multiple dynamic covalent bonds. The system can provide an osteogenic microenvironment by preventing the infiltration of connective tissue to bone defects, maintain the stability of the osteogenic space through the self-healing property, and regulate the release of bioactive substances in the dynamic physical condition, which is beneficial to osteoblast proliferation, differentiation, and bone regeneration. This study focused on exploring the effects of different crosslinkers and bonding methods on the comprehensive properties of hydrogels. and proved that the hybrid scaffold system has good biocompatibility, cell barrier function and can enhance bone regeneration activity. Thereby it could be a promising clinical strategy for bone regeneration.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 People’s Republic of China ,grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Weichang Li
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 People’s Republic of China
| | - Mengjie Kong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 People’s Republic of China ,grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Zongtai Li
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 People’s Republic of China ,grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Tao Yang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 People’s Republic of China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Wei Teng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
63
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
64
|
Tu CC, Cheng NC, Yu J, Pan YX, Tai WC, Chen YC, Chang PC. Adipose-derived stem cell spheroid-laden microbial transglutaminase cross-linked gelatin hydrogel for treating diabetic periodontal wounds and craniofacial defects. Stem Cell Res Ther 2023; 14:20. [PMID: 36737813 PMCID: PMC9898981 DOI: 10.1186/s13287-023-03238-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetes mellitus deteriorates the destruction and impairs the healing of periodontal wounds and craniofacial defects. This study is to evaluate the potential of self-assembled adipose-derived stem cell spheroids (ADsp) in microbial transglutaminase cross-linked gelatin hydrogel (mTG) for treating diabetic periodontal wounds and craniofacial defects. METHODS Human adipose-derived stem cells (ADSCs) were isolated by lipoaspiration, pluripotent genes and trilineage differentiation were examined, and the maintenance of ADsp properties in mTG was verified. Oral mucosal wounds and calvarial osseous defects were created in diabetic rats. Gross observation, histologic evaluation, and immunohistochemistry for proliferating cells and keratinization were conducted in the mucosal wounds within 4-28 days. Micro-CT imaging, histologic evaluation, and immunohistochemistry for proliferating cells and osteogenic differentiation were conducted in the osseous defects at 7 and 28 days. RESULTS ADSCs expressed pluripotent genes and were capable of trilineage differentiation. ADsp retained morphology and stemness in mTG. In diabetic mucosal wounds, wound closure, epithelization, and keratinization were accelerated in those with ADsp and ADsp-mTG. In diabetic osseous defects, osteogenic differentiation markers were evidently expressed, cell proliferation was promoted from day 7, and bone formation was significantly promoted at day 28 in those with osteogenically pretreated ADsp-mTG. CONCLUSIONS ADsp-mTG accelerated diabetic oral mucosal wound healing, and osteogenically pretreated ADsp-mTG promoted diabetic osseous defect regeneration, proving that ADsp-mTG facilitated diabetic periodontal wound healing and craniofacial osseous defect regeneration.
Collapse
Affiliation(s)
- Che-Chang Tu
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Xuan Pan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
65
|
Song J, Vikulina AS, Parakhonskiy BV, Skirtach AG. Hierarchy of hybrid materials. Part-II: The place of organics- on-inorganics in it, their composition and applications. Front Chem 2023; 11:1078840. [PMID: 36762189 PMCID: PMC9905839 DOI: 10.3389/fchem.2023.1078840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.
Collapse
Affiliation(s)
- Junnan Song
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna S. Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
66
|
Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol 2023; 11:1105248. [PMID: 36761294 PMCID: PMC9902883 DOI: 10.3389/fbioe.2023.1105248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Although tissue engineering offered new approaches to repair bone defects, it remains a great challenge to create a bone-friendly microenvironment and rebuild bone tissue rapidly by a scaffold with a bionic structure. In this study, a multifunctional structurally optimized hydrogel scaffold was designed by integrating polyvinyl alcohol (PVA), gelatin (Gel), and sodium alginate (SA) with aspirin (ASA) and nano-hydroxyapatite (nHAP). The fabrication procedure is through a dual-crosslinking process. The chemical constitution, crystal structure, microstructure, porosity, mechanical strength, swelling and degradation property, and drug-release behavior of the hydrogel scaffold were analyzed. Multi-hydrogen bonds, electrostatic interactions, and strong "egg-shell" structure contributed to the multi-network microstructure, bone tissue-matched properties, and desirable drug-release function of the hydrogel scaffold. The excellent performance in improving cell viability, promoting cell osteogenic differentiation, and regulating the inflammatory microenvironment of the prepared hydrogel scaffold was verified using mouse pre-osteoblasts (MC3T3-E1) cells. And the synergistic osteogenic and anti-inflammatory functions of aspirin and nano-hydroxyapatite were also verified. This study provided valuable insights into the design, fabrication, and biological potential of multifunctional bone tissue engineering materials with the premise of constructing a bone-friendly microenvironment.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Libo Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Yifan Sun
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Lulu Yin
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhiyu Chen,
| |
Collapse
|
67
|
Sun X, Mao Y, Liu B, Gu K, Liu H, Du W, Li R, Zhang J. Mesenchymal Stem Cell-Derived Exosomes Enhance 3D-Printed Scaffold Functions and Promote Alveolar Bone Defect Repair by Enhancing Angiogenesis. J Pers Med 2023; 13:jpm13020180. [PMID: 36836414 PMCID: PMC9963484 DOI: 10.3390/jpm13020180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The reconstruction of severe alveolar bone defects remains a complex and challenging field for clinicians. Three-dimensional-printed scaffolds can adapt precisely to the complicated shape of the bone defects, which is an alternative solution to bone tissue engineering. Our previous study constructed an innovative low-temperature 3D-printed silk fibroin/collagen I/nano-hydroxyapatite (SF/COL-I/nHA) composite scaffold with a stable structure and remarkable biocompatibility. However, the clinical translation of most scaffolds is limited by insufficient angiogenesis and osteogenesis. In this study, we investigated the effects of human umbilical cord mesenchymal-stem-cell-derived exosomes (hUCMSC-Exos) on bone regeneration, especially from the perspective of inducing angiogenesis. HUCMSC-Exos were isolated and characterized. In vitro, the effect of hUCMSC-Exos on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was examined. Moreover, the loading and release of hUCMSC-Exos on 3D-printed SF/COL-I/nHA scaffolds were evaluated. In vivo, hUCMSC-Exos and 3D-printed SF/COL-I/nHA scaffolds were implanted into alveolar bone defects, and bone regeneration and angiogenesis were investigated by micro-CT, HE staining, Masson staining, and immunohistochemical analysis. The results showed that hUCMSC-Exos stimulated HUVEC proliferation, migration, and tube formation in vitro, and the effect increased with increasing exosome concentrations. In vivo, the combination of hUCMSC-Exos and 3D-printed SF/COL-I/nHA scaffolds promoted alveolar bone defect repair by enhancing angiogenesis and osteogenesis. We constructed an elaborate cell-free bone-tissue-engineering system by combining hUCMSC-Exos with 3D-printed SF/COL-I/nHA scaffolds, potentially providing new ideas for treating alveolar bone defects.
Collapse
Affiliation(s)
- Xiaodi Sun
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yupu Mao
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Beibei Liu
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Affiliated Stomatological Hospital of Nankai University, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ke Gu
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Han Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Du
- Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China
- Union Stem Cell & Gene Engineering Co., Ltd., Tianjin 300384, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Correspondence: (R.L.); (J.Z.)
| | - Jian Zhang
- The Affiliated Stomatological Hospital of Nankai University, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (R.L.); (J.Z.)
| |
Collapse
|
68
|
Li J, Li K, Du Y, Tang X, Liu C, Cao S, Zhao B, Huang H, Zhao H, Kong W, Xu T, Shao C, Shao J, Zhang G, Lan H, Xi Y. Dual-Nozzle 3D Printed Nano-Hydroxyapatite Scaffold Loaded with Vancomycin Sustained-Release Microspheres for Enhancing Bone Regeneration. Int J Nanomedicine 2023; 18:307-322. [PMID: 36700146 PMCID: PMC9868285 DOI: 10.2147/ijn.s394366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects. Methods Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation. Results The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 μg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration. Conclusion Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Keke Li
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Yukun Du
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaojie Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Chenjing Liu
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shannan Cao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Baomeng Zhao
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hai Huang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hongri Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Weiqing Kong
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tongshuai Xu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Cheng Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jiale Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guodong Zhang
- Tengzhou Central People’s Hospital, Tengzhou, People’s Republic of China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, People’s Republic of China,Hongbo Lan, Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, 266520, People’s Republic of China, Email
| | - Yongming Xi
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China,Correspondence: Yongming Xi, Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China, Email
| |
Collapse
|
69
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
70
|
Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J, Hu Y, Lan X, Hou J, Li Y, Lu D. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater 2023; 19:24-37. [PMID: 35415312 PMCID: PMC8980440 DOI: 10.1016/j.bioactmat.2022.03.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a highly orchestrated process involving a variety of cells, including immune cells. Developing immunomodulatory biomaterials for regenerative engineering applications, such as bone regeneration, is an appealing strategy. Herein, inspired by the immunomodulatory effects of gastrodin (a bioactive component in traditional Chinese herbal medicine), a series of new immunomodulatory gastrodin-comprising biodegradable polyurethane (gastrodin-PU) and nano-hydroxyapatite (n-HA) (gastrodin-PU/n-HA) composites were developed. RAW 264.7 macrophages, rat bone marrow mesenchymal stem cells (rBMSCs), and human umbilical vein endothelial cells (HUVECs) were cultured with gastrodin-PU/n-HA containing different concentrations of gastrodin (0.5%, 1%, and 2%) to decipher their immunomodulatory effects on osteogenesis and angiogenesis in vitro. Results demonstrated that, compared with PU/n-HA, gastrodin-PU/n-HA induced macrophage polarization toward the M2 phenotype, as evidenced by the higher expression level of pro-regenerative cytokines (CD206, Arg-1) and the lower expression of pro-inflammatory cytokines (iNOS). The expression levels of osteogenesis-related factors (BMP-2 and ALP) in the rBMSCs and angiogenesis-related factors (VEGF and BFGF) in the HUVECs were significantly up-regulated in gastrodin-PU/n-HA/macrophage-conditioned medium. The immunomodulatory effects of gastrodin-PU/n-HA to reprogram macrophages from a pro-inflammatory (M1) phenotype to an anti-inflammatory and pro-healing (M2) phenotype were validated in a rat subcutaneous implantation model. And the 2% gastrodin-PU/n-HA significantly decreased fibrous capsule formation and enhanced angiogenesis. Additionally, 2% gastrodin-PU/n-HA scaffolds implanted in the rat femoral condyle defect model showed accelerated osteogenesis and angiogenesis. Thus, the novel gastrodin-PU/n-HA scaffold may represent a new and promising immunomodulatory biomaterial for bone repair and regeneration. A new immunomodulatory gastrodin-PU/n-HA biomaterial has been developed. The gastrodin-PU/n-HA triggered M2 macrophage polarization. The osteogenesis and angiogenesis were enhanced in response to the local immune microenvironment. The findings prove a therapeutic strategy in bone defect and other inflammatory osteoimmune disorders.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
| | - Yi Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lu Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650000, China
| | - Jianhong Hou
- Department of Orthopaedics, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
- Corresponding author.
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- Corresponding author.
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
- Corresponding author.
| |
Collapse
|
71
|
Wang QQ, Tan C, Qin G, Yao SK. Promising Clinical Applications of Hydrogels Associated With Precise Cancer Treatment: A Review. Technol Cancer Res Treat 2023; 22:15330338221150322. [PMID: 36604973 PMCID: PMC9829993 DOI: 10.1177/15330338221150322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal cancer is one of the most malignant tumors with high morbidity and mortality, especially colorectal cancer, which has become the second leading cause of cancer-related deaths worldwide. Targeted drug treatment and precise endoscopic resection can significantly improve the overall survival rate and greatly extend the life span. Promising biomedical applications of hydrogels would represent hopeful therapeutic alternatives for patients with different kinds of diseases, particularly providing precise therapy for cancer patients. Although the intersection field of material science and biomedical science has made tremendous advances, major challenges remain. In this review, the application of hydrogel-based technology in cancer precision medicine is the focus of attention, which is the development trend of multidisciplinary cooperation in the future. First, we provide the current clinical landscape of hydrogel applications, and then we highlight precision oncology, including personalized drug treatment and accurate endoscopic intervention. Finally, we discuss major challenges for their clinical translation that have not yet been overcome and future perspectives on cancer precision medicine.
Collapse
Affiliation(s)
- Qian-qian Wang
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Chang Tan
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| | - Shu-kun Yao
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| |
Collapse
|
72
|
Avanzi IR, Parisi JR, Souza A, Cruz MA, Martignago CCS, Ribeiro DA, Braga ARC, Renno AC. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies. J Biomed Mater Res B Appl Biomater 2023; 111:203-219. [PMID: 35906778 DOI: 10.1002/jbm.b.35134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
Collapse
Affiliation(s)
- Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,São Paulo State Faculty of Technology (FATEC), Santos, Brazil
| | | | - Amanda Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,Department of Chemical Engineering, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
73
|
Wan W, Li Z, Wang X, Tian F, Yang J. Rapid preparation of hyperbranched β-CD functionalized hydroxyapatite based on host-guest reaction for cell imaging and drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Wang W, Liang X, Zheng K, Ge G, Chen X, Xu Y, Bai J, Pan G, Geng D. Horizon of exosome-mediated bone tissue regeneration: The all-rounder role in biomaterial engineering. Mater Today Bio 2022; 16:100355. [PMID: 35875196 PMCID: PMC9304878 DOI: 10.1016/j.mtbio.2022.100355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Bone injury repair has always been a tricky problem in clinic, the recent emergence of bone tissue engineering provides a new direction for the repair of bone injury. However, some bone tissue processes fail to achieve satisfactory results mainly due to insufficient vascularization or cellular immune rejection. Exosomes with the ability of vesicle-mediated intercellular signal transmission have gained worldwide attention and can achieve cell-free therapy. Exosomes are small vesicles that are secreted by cells, which contain genetic material, lipids, proteins and other substances. It has been found to play the function of material exchange between cells. It is widely used in bone tissue engineering to achieve cell-free therapy because it not only does not produce some immune rejection like cells, but also can play a cell-like function. Exosomes from different sources can bind to scaffolds in various ways and affect osteoblast, angioblast, and macrophage polarization in vivo to promote bone regeneration. This article reviews the recent research progress of exosome-loaded tissue engineering, focusing on the mechanism of exosomes from different sources and the application of exosome-loaded scaffolds in promoting bone regeneration. Finally, the existing deficiencies and challenges, future development directions and prospects are summarized.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Kai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| |
Collapse
|
75
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
76
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
77
|
Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics 2022; 14:pharmaceutics14102244. [PMID: 36297679 PMCID: PMC9610165 DOI: 10.3390/pharmaceutics14102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on different immunomodulation strategies for various delivery options and deliberate upon the outlook of such drug delivery platforms are conducted.
Collapse
|
78
|
Zhang T, Yan S, Song Y, Chen C, Xu D, Lu B, Xu Y. Exosomes secreted by hypoxia-stimulated bone-marrow mesenchymal stem cells promote grafted tendon-bone tunnel healing in rat anterior cruciate ligament reconstruction model. J Orthop Translat 2022; 36:152-163. [PMID: 36263381 PMCID: PMC9550857 DOI: 10.1016/j.jot.2022.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background After anterior cruciate ligament (ACL) reconstruction in clinic, firm and rapid integration of the grafted tendon into the bone tunnel remains a challenge. Exosomes from hypoxia-treated stem cells are beneficial for promoting angiogenesis and then coupling with osteogenesis. Therefore, exosomes from hypoxia-cultured bone-marrow mesenchymal stem cells (Hypo-Exos) may be a cell-free therapy for enhancing graft-bone incorporation after ACL reconstruction. Methods Exosomes from normoxia-cultured bone-marrow mesenchymal stem cells (Norm-Exos) or Hypo-Exos were respectively cultured with human umbilical vein endothelial cells (HUVECs) for in-vitro evaluating their functions in HUVECs proliferation, migration, and tube formation. A total of 87 rats with single-bundle ACL reconstructions in the right knee were randomly allocated into 3 different treatments: phosphate-buffered saline (PBS) with the adhesive hydrogel injection as control (Ctrl), Norm-Exos with the adhesive hydrogel injection (Norm-Exos), and Hypo-Exos with the adhesive hydrogel injection (Hypo-Exos). At postoperative weeks 2, 4, or 8, the ACL graft-bone integrations were evaluated. Results Hypo-Exos was a better stimulator for in-vitro HUVECs proliferation, migration, and tube formation compared to PBS or Norm-Exos. Hypo-Exos within the adhesive hydrogel could be sustained-released at least 14 days around the peri-graft site. Radiologically, at week 4 or 8, femoral or tibial bone tunnel areas (BTA), as well as bone volume/total volume ratio (BV/TV) of the femoral or tibial peri-graft bone in the Hypo-Exos group, improved significantly better than these parameters of the Ctrl and Norm-Exos groups (P<0.05 for all). Histologically, the grafted tendon-bone interface in the Hypo-Exos group showed significantly higher histologic scores at week 4 or 8 as compared with the other groups (P<0.05 for all). Immunofluorescent staining verified that type H vessels were more abundant in the Hypo-Exos group when compared to the Ctrl or Norm-Exos group at week 2. Biomechanically, the Hypo-Exos group exhibited a significantly heightened failure load compared with the Ctrl and Norm-Exos groups (P<0.05 for all) at 8 weeks. Meanwhile, the stiffness in the Hypo-Exos group was the greatest among the three groups. Conclusion Peri-graft Hypo-Exos injection accelerates grafted tendon-bone tunnel integration after ACL reconstruction by improving peri-graft bone microarchitecture.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaohang Yan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China,Corresponding author. No 87, Xiangya Road, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Corresponding author. No 87, Xiangya Road, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
79
|
Ganguly P, Jones E, Panagiotopoulou V, Jha A, Blanchy M, Antimisiaris S, Anton M, Dhuiège B, Marotta M, Marjanovic N, Panagiotopoulos E, Giannoudis PV. Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances. Injury 2022; 53 Suppl 2:S2-S12. [PMID: 35305805 DOI: 10.1016/j.injury.2022.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Critical-size long bone defects represent one of the major causes of fracture non-union and remain a significant challenge in orthopaedic surgery. Two-stage procedures such as a Masquelet technique demonstrate high level of success however their main disadvantage is the need for a second surgery, which is required to remove the non-resorbable cement spacer and to place the bone graft into the biological chamber formed by the 'induced membrane'. Recent research efforts have therefore been dedicated towards the design, fabrication and testing of resorbable implants that could mimic the biological functions of the cement spacer and the induced membrane. Amongst the various manufacturing techniques used to fabricate these implants, three-dimensional (3D) printing and electrospinning methods have gained a significant momentum due their high-level controllability, scalable processing and relatively low cost. This review aims to present recent advances in the evaluation of electrospun and 3D printed polymeric materials for critical-size, long bone defect reconstruction, emphasizing both their beneficial properties and current limitations. Furthermore, we present and discuss current state-of-the art techniques required for characterisation of the materials' physical, mechanical and biological characteristics. These represent the essential first steps towards the development of personalised implants for single-surgery, large defect reconstruction in weight-bearing bones.
Collapse
Affiliation(s)
- Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Marilys Blanchy
- RESCOLL, Allée Geoffroy Saint-Hilaire 8, 33600 Pessac, France
| | - Sophia Antimisiaris
- Panepistimio Patron (UPAT), University Campus Rio Patras, Rio Patras 265 04, Greece
| | - Martina Anton
- Klinikum Rechts Der Isar Der Technischen Universitat Munchen (TUM-MED), Ismaninger Strasse 22, Muenchen 81675, Germany
| | - Benjamin Dhuiège
- Genes'ink (GENE), 39 Avenue Gaston Imbert Zi De Rousset, Rousset 13790, France
| | - Mario Marotta
- Acondicionamiento tarrasense associacion (LEITAT), Carrer de la Innovacio 2, Terrassa 08225, Spain
| | - Nenad Marjanovic
- CSEM Centre Suisse D'electronique et de Microtechnique Sa - Recherche et Developpement (CSEM), Rue Jaquet Droz 1, Neuchatel 2000, Switzerland
| | | | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Leeds General Infirmary, Department of Trauma and Orthopaedic Surgery, University of Leeds, Leeds, UK.
| |
Collapse
|
80
|
The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol 2022; 224:533-543. [DOI: 10.1016/j.ijbiomac.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
81
|
Wei Y, Chen M, Li M, Wang D, Cai K, Luo Z, Hu Y. Aptamer/Hydroxyapatite-Functionalized Titanium Substrate Promotes Implant Osseointegration via Recruiting Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42915-42930. [PMID: 36107718 DOI: 10.1021/acsami.2c10809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endowing bone regeneration materials with both stem cell recruitment and osteoinduction properties is a key factor in promoting osseointegration of titanium (Ti) implants. In this study, Apt19s-grafted oxidized hyaluronic acid (OHA) was deposited onto a protein-mediated biomineralization hydroxyapatite (HAp) coating of Ti. HAp was achieved by the treatment of lysozyme and tris(2-carboxyethyl) phosphonate mixture and then soaked in calcium ion (Ca2+) solution to obtain functional Ti substrate (Ti/HAp/OHA-Apt). In vitro studies confirmed that Ti/HAp/OHA-Apt could effectively maintain the sustained release of Apt19s from Ti for 7 days. The released Apt19s significantly enhanced the migration of bone marrow mesenchymal stem cells (MSCs), which was reflected by the experiment of transwell assay, wound healing, and zymogram detection. Compared with pure Ti, Ti/HAp/OHA-Apt was able to adjust the adsorption of functional proteins at the Ti-based interface to expose their active sites, which significantly increased the expression of adhesion-associated proteins (vinculin and tensin) in MSCs to promote their adhesion on Ti-based interface. In vitro cell experiments of alkaline phosphatase activity staining, mineralization detection, and expression of osteogenesis-related genes showed that Ti/HAp/OHA-Apt significantly enhanced the osteogenic differentiation ability of MSCs, which may be highly related to the porous structure of hydroxyapatite on Ti interface. In vivo test of Micro-CT, H&E staining, and histochemical staining further confirmed that Ti/HAp/OHA-Apt was able to promote MSC recruitment at the peri-implant interface to form new bone. This work provides a new approach to develop functional Ti-based materials for bone defect repair.
Collapse
Affiliation(s)
- Yujia Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
82
|
A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390:399-411. [PMID: 36152061 DOI: 10.1007/s00441-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Since scaffolds are engineered to support functional tissue formation, their design and materials play an essential role in medical fields by providing different mechanical function. The aim of this study was to investigate the synthesis and structural characterization of collagen-gelatin (COL-GEL) composite scaffolds containing fluorapatite (FA) nanoparticles as well as evaluation of the osteogenic differentiation of human adipose-derived stem cells (hADSCs). First, the composite scaffolds were evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity of scaffolds and various concentrations of FA nanoparticles was studied through MTT assay and acridine orange/ethidium bromide staining. Next, the differentiated hADSCs were analyzed using Alizarin red and von Kossa staining, calcium content assay, alkaline phosphatase (ALP) activity, real-time RT-PCR, and immunocytochemical analyses. According to the characterization analyses, the composite scaffolds were properly integrated. The results also illustrated that COL-GEL composite scaffolds in the presence of FA nanoparticles not only showed no cytotoxicity but also increased ALP activity and calcium deposition as well as the expression of osteogenic genes, including Runx2, Col-I, ALP, and osteocalcin and the synthesis of proteins such as osteocalcin and osteopontin in vitro. The obtained data were confirmed by Alizarin red and von Kossa staining. These results are very promising for further tissue engineering experiments, in which FA nanoparticle incorporation into COL-GEL composite scaffolds is a novel approach that improves the surface COL-GEL composite scaffolds for tissue engineering application in vitro.
Collapse
|
83
|
Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. BIOMATERIALS ADVANCES 2022; 140:213058. [PMID: 35933955 DOI: 10.1016/j.bioadv.2022.213058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The well-known synergetic interplay between the skeletal and immune systems has changed the design of advanced bone tissue engineering strategies. The immune system is essential during the bone lifetime, with macrophages playing multiple roles in bone healing and biomaterial integration. If in the past, the most valuable aspect of implants was to avoid immune responses of the host, nowadays, it is well-established how important are the crosstalks between immune cells and bone-engineered niches for an efficient regenerative process to occur. For that, it is essential to recapitulate the multiphenotypic cellular environment of bone tissue when designing new approaches. Indeed, the lack of osteoimmunomodulatory knowledge may be the explanation for the poor translation of biomaterials into clinical practice. Thus, smarter hydrogels incorporating immunomodulatory bioactive factors, stem cells, and immune cells are being proposed to develop a new generation of bone tissue engineering strategies. This review highlights the power of immune cells to upgrade the development of innovative engineered strategies, mainly focusing on orthopaedic and dental applications.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
84
|
Chen L, Yu C, Xiong Y, Chen K, Liu P, Panayi AC, Xiao X, Feng Q, Mi B, Liu G. Multifunctional hydrogel enhances bone regeneration through sustained release of Stromal Cell-Derived Factor-1α and exosomes. Bioact Mater 2022; 25:460-471. [PMID: 37056272 PMCID: PMC10087917 DOI: 10.1016/j.bioactmat.2022.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
Abstract
Fracture nonunion remains a great challenge for orthopedic surgeons. Fracture repair comprises of three phases, the inflammatory, repair and remodeling stage. Extensive advancements have been made in the field of bone repair, including development of strategies to balance the M1/M2 macrophage populations, and to improve osteogenesis and angiogenesis. However, such developments focused on only one or the latter two phases, while ignoring the inflammatory phase during which cell recruitment occurs. In this study, we combined Stromal Cell-Derived Factor-1α (SDF-1α) and M2 macrophage derived exosomes (M2D-Exos) with a hyaluronic acid (HA)-based hydrogel precursor solution to synthesize an injectable, self-healing, adhesive HA@SDF-1α/M2D-Exos hydrogel. The HA hydrogel demonstrated good biocompatibility and hemostatic ability, with the 4% HA hydrogels displaying great antibacterial activity against gram-negative E. coli and gram-positive S. aureus and Methicillin-resistant Staphylococcus aureus (MRSA). Synchronously and sustainably released SDF-1α and M2D-Exos from the HA@SDF-1α/M2D-Exos hydrogel enhanced proliferation and migration of human bone marrow mesenchymal stem cell (HMSCs) and Human Umbilical Vein Endothelial Cells (HUVECs), promoting osteogenesis and angiogenesis both in vivo and in vitro. Overall, the developed HA@ SDF-1α/M2D-Exos hydrogel was compatible with the natural healing process of fractures and provides a new modality for accelerating bone repair by coupling osteogenesis, angiogenesis, and resisting infection at all stages.
Collapse
|
85
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
86
|
Optimizing Design Parameters of PLA 3D-Printed Scaffolds for Bone Defect Repair. SURGERIES 2022. [DOI: 10.3390/surgeries3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current materials used to fill bone defects (ceramics, cement) either lack strength or do not induce bone repair. The use of biodegradable polymers such as PLA may promote patient healing by stimulating the production of new bone in parallel with a controlled degradation of the scaffold. This project aims to determine the design parameters maximising scaffold mechanical performance in such materials. Starting from a base cylindrical model of 10 mm height and of outer and inner diameters of 10 and 4 mm, respectively, 27 scaffolds were designed. Three design parameters were investigated: pore distribution (crosswise, lengthwise, and eccentric), pore shape (triangular, circular, and square), and pore size (surface area of 0.25 mm2, 0.5625 mm2, and 1 mm2). Using the finite element approach, a compressive displacement (0.05 mm/s up to 15% strain) was simulated on the models and the resulting scaffold stiffnesses (N/mm2) were compared. The models presenting good mechanical behaviors were further printed along two orientations: 0° (cylinder sitting on its base) and 90° (cylinder laying on its side). A total of n = 5 specimens were printed with PLA for each of the retained models and experimentally tested using a mechanical testing machine with the same compression parameters. Rigidity and yield strength were evaluated from the experimental curves. Both numerically and experimentally, the highest rigidity was found in the model with circular pore shape, crosswise pore distribution, small pore size (surface area of 0.25 mm2), and a 90° printing orientation. Its average rigidity reached 961 ± 32 MPa from the mechanical testing and 797 MPa from the simulation, with a yield strength of 42 ± 1.5 MPa. The same model with a printing orientation of 0° resulted in an average rigidity of 515 ± 7 MPa with a yield strength of 32 ± 1.6 MPa. Printing orientation and pore size were found to be the most influential design parameters on rigidity. The developed design methodology should accelerate the identification of effective scaffolds for future in vitro and in vivo studies.
Collapse
|
87
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|
88
|
Wan W, Li Z, Wang X, Tian F, Yang J. Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications. BIOSENSORS 2022; 12:bios12060419. [PMID: 35735566 PMCID: PMC9221440 DOI: 10.3390/bios12060419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 05/07/2023]
Abstract
Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.
Collapse
Affiliation(s)
- Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziqi Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
89
|
Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 2022; 285:121530. [DOI: 10.1016/j.biomaterials.2022.121530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
|
90
|
Deng R, Xie Y, Chan U, Xu T, Huang Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J Dent Res Dent Clin Dent Prospects 2022; 16:1-10. [PMID: 35936933 PMCID: PMC9339747 DOI: 10.34172/joddd.2022.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontal tissues are organized in a complex three-dimensional (3D) architecture, including the alveolar bone, cementum, and a highly aligned periodontal ligament (PDL). Regeneration is difficult due to the complex structure of these tissues. Currently, materials are developing rapidly, among which synthetic polymers and hydrogels have extensive applications. Moreover, techniques have made a spurt of progress. By applying guided tissue regeneration (GTR) to hydrogels and cell sheets and using 3D printing, a scaffold with an elaborate biomimetic structure can be constructed to guide the orientation of fibers. The incorporation of cells and biotic factors improves regeneration. Nevertheless, the current studies lack long-term effect tracking, clinical research, and in-depth mechanistic research. In summary, periodontal tissue engineering still has considerable room for development. The development of materials and techniques and an in-depth study of the mechanism will provide an impetus for periodontal regeneration.
Collapse
Affiliation(s)
- Rong Deng
- School of Stomatology, Jinan University, Guangdong, China
| | - Yuzheng Xie
- School of Stomatology, Jinan University, Guangdong, China
| | - Unman Chan
- School of Stomatology, Jinan University, Guangdong, China
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangdong, China
| |
Collapse
|
91
|
Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu K, Tie C, Yin M. Degradation-Kinetics-Controllable and Tissue-Regeneration-Matchable Photocross-linked Alginate Hydrogels for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21886-21905. [PMID: 35507922 DOI: 10.1021/acsami.2c01739] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocross-linked alginate hydrogels, due to their biodegradability, biocompatibility, strong control for gelling kinetics in space and time, and admirable adaptability for in situ polymerization with a minimally invasive approach in surgical procedures, have created great expectations in bone regeneration. However, hydrogels with suitable degradation kinetics that can match the tissue regeneration process have not been designed, which limits their further application in bone tissue engineering. Herein, we finely developed an oxidation strategy for alginate to obtain hydrogels with more suitable degradation rates and comprehensively explored their physical and biological performances in vitro and in vivo to further advance the clinical application for the hydrogels in bone repair. The physical properties of the gels can be tuned via tailoring the degree of alginate oxidation. In particular, in vivo degradation studies showed that the degradation rates of the gels were significantly increased by oxidizing alginate. The activity, proliferation, initial adhesion, and osteogenic differentiation of rat and rabbit bone marrow stromal cells (BMSCs) cultured with/in the hydrogels were explored, and the results demonstrated that the gels possessed excellent biocompatibility and that the encapsulated BMSCs were capable of osteogenic differentiation. Furthermore, in vivo implantation of rabbit BMSC-loaded gels into tibial plateau defects of rabbits demonstrated the feasibility of hydrogels with appropriate degradation rates for bone repair. This study indicated that hydrogels with increasingly controllable and matchable degradation kinetics and satisfactory bioproperties demonstrate great clinical potential in bone tissue engineering and regenerative medicine and could also provide references for drug/growth-factor delivery therapeutic strategies for diseases requiring specific drug/growth-factor durations of action.
Collapse
Affiliation(s)
- Delu Zhao
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
- Hefei Stomatological Clinic Hospital, Anhui Medical University & Hefei Stomatological Hospital, Hefei 230001, Anhui, China
| | - Xin Wang
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bo Cheng
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Miaomiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Zhiqiang Hou
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaobao Li
- Department of Stomatology, Affiliated Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Kun Liu
- Hefei Stomatological Clinic Hospital, Anhui Medical University & Hefei Stomatological Hospital, Hefei 230001, Anhui, China
| | - Chaorong Tie
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Miao Yin
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
92
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
93
|
Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9:rbac022. [PMID: 35784096 PMCID: PMC9245650 DOI: 10.1093/rb/rbac022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the in vivo host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation. Plasma and lymphocytes from mesenteric lymph nodes were harvested in addition to colonic tissue. We set up tests, using flow cytometry and a live imaging system, to highlight the response to specific antibodies and measure the cytotoxicity of lymphocytes against injected MSCs. We demonstrated that Si-HPMC protects MSCs from specific antibodies production and from apoptosis by lymphocytes. We also observed that Si-HPMC does not modify innate immune response infiltrate in vivo, and that in vitro co-culture of Si-HPMC-embedded MSCs impacts macrophage inflammatory response depending on the microenvironment but, more importantly, increases the macrophage regenerative response through Wnt-family and VEGF gene expression. This study furthers our understanding of the mechanisms involved, with a view to improving the therapeutic benefits of biomaterial-assisted cell therapy by modulating the host immune response. The decrease in specific immune response against injected MSCs protected by Si-HPMC also opens up new possibilities for allogeneic clinical use.
Collapse
Affiliation(s)
- Christelle Demarquay
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Lara Moussa
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Gildas Réthoré
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | - Fabien Milliat
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Pierre Weiss
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | | |
Collapse
|
94
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
95
|
Biopaper Based on Ultralong Hydroxyapatite Nanowires and Cellulose Fibers Promotes Skin Wound Healing by Inducing Angiogenesis. COATINGS 2022. [DOI: 10.3390/coatings12040479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin injury that is difficult to heal caused by various factors remains a major clinical challenge. Hydroxyapatite (HAP) has high potential for wound healing owing to its high biocompatibility and adequate angiogenic ability, while traditional HAP materials are not suitable for wound dressing due to their high brittleness and poor mechanical properties. To address this challenge, we developed a novel wound dressing made of flexible ultralong HAP nanowire-based biopaper. This biopaper is flexible and superhydrophilic, with suitable tensile strength (2.57 MPa), high porosity (77%), and adequate specific surface area (36.84 m2·g−1) and can continuously release Ca2+ ions to promote the healing of skin wounds. Experiments in vitro and in vivo show that the ultralong HAP nanowire-based biopaper can effectively induce human umbilical vein endothelial cells (HUVECs) treated with hypoxia and rat skin tissue to produce more angiogenic factors. The as-prepared biopaper can also enhance the proliferation, migration, and in vitro angiogenesis of HUVECs. In addition, the biopaper can promote the rat skin to achieve thicker skin re-epithelialization and the formation of new blood vessels, and thus promote the healing of the wound. Therefore, the ultralong HAP nanowire-based biopaper has the potential to be a safe and effective wound dressing and has significant clinical application prospects.
Collapse
|
96
|
[Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:487-494. [PMID: 35426290 PMCID: PMC9011084 DOI: 10.7507/1002-1892.202111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. METHODS Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. RESULTS As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. CONCLUSION Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.
Collapse
|
97
|
Merlo B, Baldassarro VA, Flagelli A, Marcoccia R, Giraldi V, Focarete ML, Giacomini D, Iacono E. Peptide Mediated Adhesion to Beta-Lactam Ring of Equine Mesenchymal Stem Cells: A Pilot Study. Animals (Basel) 2022; 12:ani12060734. [PMID: 35327131 PMCID: PMC8944785 DOI: 10.3390/ani12060734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In recent years, stem cell therapy has emerged as a promising potential treatment for chronic wounds in both human and veterinary medicine. Particularly, mesenchymal stem cells (MSCs) may be an attractive therapeutic tool for regenerative medicine and tissue engineering because these cells play a critical role in wound repair and tissue regeneration due to their immunosuppressive properties and multipotency. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. This pilot study focuses on the adhesion ability of equine adult (adipose tissue) and fetal adnexa (Wharton’s jelly) derived MSCs mediated by GM18, an α4β1 integrin agonist, alone and combined with a biodegradable polymeric scaffold. Results show that a 24 h exposition to soluble GM18 affects equine MSCs adhesion ability with a donor-related variability and might suggest that WJ-MSCs more easily adhere to poly L-lactic acid (PLLA) nanofibers combined with GM18. These preliminary results need to be confirmed by further studies on the interactions between the different types of equine MSCs and GM18 incorporated PLLA scaffolds before drawing definitive conclusions on which cells and scaffolds could be successfully used for the treatment of decubitus ulcers. Abstract Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4β1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton’s jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4β1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Correspondence:
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- IRET Foundation, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy
| | - Alessandra Flagelli
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Romina Marcoccia
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Valentina Giraldi
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Maria Letizia Focarete
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Daria Giacomini
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| |
Collapse
|
98
|
Nakkala JR, Duan Y, Ding J, Muhammad W, Zhang D, Mao Z, Ouyang H, Gao C. Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory effects on macrophage polarization. Acta Biomater 2022; 141:24-38. [PMID: 34958971 DOI: 10.1016/j.actbio.2021.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Immunomodulation is an important phenomenon in the normal mammalian host response toward an injury, and plays a critical role in tissue regeneration and regenerative medicine. Different phenotypes of macrophages show an array of activation states compassing pro-inflammatory to pro-alleviating cells, which are the critical players to modulate immune response and tissue regeneration. In this study, macrophage membranes of different phenotypes (macrophages (M0), classically activated macrophages (M1) and alternatively activated macrophages (M2)) were coated onto poly-ε-caprolactone (PCL) nanofibers to acquire exterior surface proteins and similar functions of the natural membranes. In vitro results unveiled that these nanofibers, especially the M2-PCL nanofibers, can suppress the activities of inflammatory markers such as TNF-α and IL-1β, and stimulate anti-inflammatory markers such as Arg-1, IL-10 and TGF-β. In a C57BL/6 mouse model, the macrophage membrane-coated nanofibers, especially the M2-PCL nanofibers, displayed minimal cellular infiltration and low collagen deposition, increased anti-inflammatory CD206 and decreased inflammatory CD86 levels. The M2-PCL nanofibers most effectively neutralized inflammatory chemokines, regulated the expression of inflammation-associated genes as well as anti-inflammatory genes, and showed strong immunomodulatory effects than the PCL, M0-PCL and M1-PCL nanofibers. STATEMENT OF SIGNIFICANCE: Different types of macrophage membrane-functionalized PCL nanofibers were successfully prepared and well characterized. They inherited the surface proteins imitating the source macrophages, and played an important role in limiting cellular infiltration and collagen deposition. These different macrophages and their membrane-coated nanofibers (M0-PCL, M1-PCL and M2-PCL) behaved like their respective source cells. The M2 mimicking M2-PCL nanofibers effectively polarized macrophages to M2 phenotype and decreased the expression of inflammation-associated chemokines and promoted the anti-inflammation in vitro and in vivo, which is critical for tissue regeneration. The mice implanted with the bio-mimicking M2-PCL nanofibers effectively inhibited toll like receptors signaling induced NF-kB and IRF-5 and their target genes such as Edn-1, IL-6, iNOS, TNF-α, etc. compared to the PCL, and M0-PCL and M1-PCL macrophage membrane-coated nanofibers.
Collapse
Affiliation(s)
- Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
99
|
Hybrid nanocomposite as a chest wall graft with improved vascularization by copper oxide nanoparticles. J Biomater Appl 2022; 36:1826-1837. [DOI: 10.1177/08853282211065624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chest wall repair can be necessary after tumor resection or chest injury. In order to cover or replace chest wall defects, autologous tissue or different synthetic materials are commonly used, among them the semi-rigid gold standard Gore-Tex® and prolene meshes. Synthetic tissues include composite materials with an organic and an inorganic component. On the basis of previously reported hybrid nanocomposite poly-lactic-co-glycolic acid amorphous calcium phosphate nanocomposite (PLGA/aCaP), a CuO component was incorporated to yield (60%/35%/5%). This graft was tested in vitro by seeding with murine adipose-derived stem cells (ASCs) for cell attachment and migration. The graft was compared to PLGA/CaCO3 and PLGA/hydroxyapatite, each providing the inorganic phase as nanoparticles. Further characterization of the graft was performed using scanning electron microscopy. Furthermore, PLGA/aCaP/CuO was implanted as a chest wall graft in mice. After 4 weeks, total cell density, graft integration, extracellular matrix components such as fibronectin and collagen I, the cellular inflammatory response (macrophages, F4/80 and lymphocytes, CD3) as well as vascularization (CD31) were quantitatively assessed. The nanocomposite PLGA/aCaP/CuO showed a good cell attachment and cells migrated well into the pores of the electrospun meshes. Cell densities did not differ between PLGA/aCaP/CuO and PLGA/CaCO3 or PLGA/hydroxyapatite, respectively. When applied as a chest wall graft, adequate stability for suturing into the thoracic wall could be achieved. Four weeks post-implantation, there was an excellent tissue integration without relevant fibrotic changes and a predominating collagen I matrix deposition within the graft. Slightly increased inflammation, reflected by increased infiltration of macrophages could be observed. Vascularization of the graft was significantly enhanced when compared with PLGA/aCaP (no CuO). We conclude that the hybrid nanocomposite PLGA/aCaP/CuO is a viable option to be used as a chest wall graft. Surgical implantation of the material is feasible and provides stability and enough flexibility. Proper tissue integration and an excellent vascularization are characteristics of this biodegradable material.
Collapse
|
100
|
Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022; 10:817391. [PMID: 35145958 PMCID: PMC8822157 DOI: 10.3389/fbioe.2022.817391] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue repair after trauma and infection has always been a difficult problem in regenerative medicine. Hydrogels have become one of the most important scaffolds for tissue engineering due to their biocompatibility, biodegradability and water solubility. Especially, the stiffness of hydrogels is a key factor, which influence the morphology of mesenchymal stem cells (MSCs) and their differentiation. The researches on this point are meaningful to the field of tissue engineering. Herein, this review focus on the design of hydrogels with different stiffness and their effects on the behavior of MSCs. In addition, the effect of hydrogel stiffness on the phenotype of macrophages is introduced, and then the relationship between the phenotype changes of macrophages on inflammatory response and tissue repair is discussed. Finally, the future application of hydrogels with a certain stiffness in regenerative medicine and tissue engineering has been prospected.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lengjing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yating Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jinfeng Liao,
| |
Collapse
|