51
|
Monzón-Casanova E, Matheson LS, Tabbada K, Zarnack K, Smith CWJ, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. eLife 2020; 9:e53557. [PMID: 32081131 PMCID: PMC7058386 DOI: 10.7554/elife.53557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Louise S Matheson
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| | - Kristina Tabbada
- Next Generation Sequencing Facility, The Babraham InstituteCambridgeUnited Kingdom
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| |
Collapse
|
52
|
Hong W, Zhang W, Guan R, Liang Y, Hu S, Ji Y, Liu M, Lu H, Yu M, Ma L. Genome-wide profiling of prognosis-related alternative splicing signatures in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:557. [PMID: 31807538 PMCID: PMC6861818 DOI: 10.21037/atm.2019.09.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sarcomas (SARCs) are rare malignant tumors with poor prognosis. Increasing evidence has suggested that aberrant alternative splicing (AS) is strongly associated with tumor initiation and progression. We considered whether survival-related AS events might serve as prognosis predictors and underlying targeted molecules in SARC treatment. METHODS RNA-Seq data of the SARC cohort were downloaded from The Cancer Genome Atlas (TCGA) database. Survival-related AS events were selected by univariate and multivariate Cox regression analyses. Metascape was used for constructing a gene interaction network and performing functional enrichment analysis. Then, prognosis predictors were established based on statistically significant survival-related AS events and evaluated by receiver operator characteristic (ROC) curve analysis. Finally, the potential regulatory network was analyzed via Pearson's correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3,610 AS events and 2,291 genes were found to be prognosis-related in 261 SARC samples. The focal adhesion pathway was identified as the most critical molecular mechanism corresponding to poor prognosis. Notably, several prognosis predictors based on survival-related AS events showed excellent performance in prognosis prediction. The area under the curve of the ROC of the risk score was 0.85 in the integrated predictor. The splicing network proved complicated regulation between prognosis-related SFs and AS events. Also, driver gene mutations were significantly associated with AS in SARC patients. CONCLUSIONS Survival-related AS events may become ideal indictors for the prognosis prediction of SARCs. Corresponding splicing regulatory mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weicong Zhang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yuying Liang
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yayun Ji
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hai Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
53
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
54
|
Lian S, Li L, Zhou Y, Liu Z, Wang L. The co-expression networks of differentially expressed RBPs with TFs and LncRNAs related to clinical TNM stages of cancers. PeerJ 2019; 7:e7696. [PMID: 31576243 PMCID: PMC6753928 DOI: 10.7717/peerj.7696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) play important roles in cellular homeostasis by regulating the expression of thousands of transcripts, which have been reported to be involved in human tumorigenesis. Despite previous reports of the dysregulation of RBPs in cancers, the degree of dysregulation of RBPs in cancers and the intrinsic relevance between dysregulated RBPs and clinical TNM information remains unknown. Furthermore, the co-expressed networks of dysregulated RBPs with transcriptional factors and lncRNAs also require further investigation. RESULTS Here, we firstly analyzed the deviations of expression levels of 1,542 RBPs from 20 cancer types and found that (1) RBPs are dysregulated in almost all 20 cancer types, especially in BLCA, COAD, READ, STAD, LUAD, LUSC and GBM with proportion of deviation larger than 300% compared with non-RBPs in normal tissues. (2) Up- and down-regulated RBPs also show opposed patterns of differential expression in cancers and normal tissues. In addition, down-regulated RBPs show a greater degree of dysregulated expression than up-regulated RBPs do. Secondly, we analyzed the intrinsic relevance between dysregulated RBPs and clinical TNM information and found that (3) Clinical TNM information for two cancer types-CHOL and KICH-is shown to be closely related to patterns of differentially expressed RBPs (DE RBPs) by co-expression cluster analysis. Thirdly, we identified ten key RBPs (seven down-regulated and three up-regulated) in CHOL and seven key RBPs (five down-regulated and two up-regulated) in KICH by analyzing co-expression correlation networks. Fourthly, we constructed the co-expression networks of key RBPs between 1,570 TFs and 4,147 lncRNAs for CHOL and KICH, respectively. CONCLUSIONS These results may provide an insight into the understanding of the functions of RBPs in human carcinogenesis. Furthermore, key RBPs and the co-expressed networks offer useful information for potential prognostic biomarkers and therapeutic targets for patients with cancers at the N and M stages in two cancer types CHOL and KICH.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Liansheng Li
- College of Life Sciences, XinYang Normal University, Xinyang, HeNan, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Lei Wang
- College of Life Sciences, XinYang Normal University, Xinyang, HeNan, China
| |
Collapse
|
55
|
More than a messenger: Alternative splicing as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194395. [PMID: 31271898 DOI: 10.1016/j.bbagrm.2019.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Alternative splicing of pre-mRNA is an essential post- and co-transcriptional mechanism of gene expression regulation that produces multiple mature mRNA transcripts from a single gene. Genetic mutations that affect splicing underlie numerous devastating diseases. The complexity of splicing regulation allows for multiple therapeutic approaches to correct disease-associated mis-splicing events. In this review, we first highlight recent findings from therapeutic strategies that have used splice switching antisense oligonucleotides and small molecules that bind directly to RNA. Second, we summarize different genetic and chemical approaches to target components of the spliceosome to correct splicing defects in pathological conditions. Finally, we present an overview of compounds that target kinases and accessory pathways that intersect with the splicing machinery. Advancements in the understanding of disease-specific defects caused by mis-regulation of alternative splicing will certainly increase the development of therapeutic options for the clinic. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
|
56
|
An RNA Switch of a Large Exon of Ninein Is Regulated by the Neural Stem Cell Specific-RNA Binding Protein, Qki5. Int J Mol Sci 2019; 20:ijms20051010. [PMID: 30813567 PMCID: PMC6429586 DOI: 10.3390/ijms20051010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
A set of tissue-specific splicing factors are thought to govern alternative splicing events during neural progenitor cell (NPC)-to-neuron transition by regulating neuron-specific exons. Here, we propose one such factor, RNA-binding protein Quaking 5 (Qki5), which is specifically expressed in the early embryonic neural stem cells. We performed mRNA-SEQ (Sequence) analysis using mRNAs obtained by developing cerebral cortices in Qk (Quaking) conditional knockout (cKO) mice. As expected, we found a large number of alternative splicing changes between control and conditional knockouts relative to changes in transcript levels. DAVID (The Database for Annotation, Visualization and Integrated Discovery) and Metascape analyses suggested that the affected spliced genes are involved in axon development and microtubule-based processes. Among these, the mRNA coding for the Ninein protein is listed as one of Qki protein-dependent alternative splicing targets. Interestingly, this exon encodes a very long polypeptide (2121 nt), and has been previously defined as a dynamic RNA switch during the NPC-to-neuron transition. Additionally, we validated that the regulation of this large exon is consistent with the Qki5-dependent alternative exon inclusion mode suggested by our previous Qki5 HITS-CLIP (high throughput sequencing-cross linking immunoprecipitation) analysis. Taken together, these data suggest that Qki5 is an important factor for alternative splicing in the NPC-to-neuron transition.
Collapse
|
57
|
Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng S. Axonogenesis Is Coordinated by Neuron-Specific Alternative Splicing Programming and Splicing Regulator PTBP2. Neuron 2019; 101:690-706.e10. [PMID: 30733148 DOI: 10.1016/j.neuron.2019.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
How a neuron acquires an axon is a fundamental question. Piecemeal identification of many axonogenesis-related genes has been done, but coordinated regulation is unknown. Through unbiased transcriptome profiling of immature primary cortical neurons during early axon formation, we discovered an association between axonogenesis and neuron-specific alternative splicing. Known axonogenesis genes exhibit little expression alternation but widespread splicing changes. Axonogenesis-associated splicing is governed by RNA binding protein PTBP2, which is enriched in neurons and peaks around axonogenesis in the brain. Cortical depletion of PTBP2 prematurely induces axonogenesis-associated splicing, causes imbalanced expression of axonogenesis-associated isoforms, and specifically affects axon formation in vitro and in vivo. PTBP2-controlled axonogenesis-associated Shtn1 splicing determines SHTN1's capacity to regulate actin interaction, polymerization, and axon growth. Precocious Shtn1 isoform switch contributes to disorganized axon formation of Ptbp2-/- neurons. We conclude that PTBP2-orchestrated alternative splicing programming is required for robust generation of a single axon in mammals.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Liang Chen
- Department of Biological Sciences, Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA; Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
58
|
Nandagopalan SR, Agatheeswaran S, Vadlamudi Y, Biswas S, Biswas G, Pattnayak NC, Chakraborty S. PTBP2 exon 10 inclusion is associated with the progression of CML and it is BCR-ABL1 dependent. Int J Biochem Cell Biol 2019; 109:69-75. [PMID: 30726713 DOI: 10.1016/j.biocel.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 01/14/2023]
Abstract
Altered or aberrant expression of several splicing factors leads to the progression of different cancers. Though there are several ongoing studies underscoring the role of the splicing regulator polypyrimidine tract binding protein 2 (PTBP2) in neuronal cells, we unveil the role of PTBP2 in chronic myeloid leukemia (CML). Different RNA binding proteins (RBP's) earlier reported in chronic myeloid leukemia blast crisis (CML-BC) cases (n = 28) from Radich Oncomine leukemia dataset, were compared. We observed increased expression of MSI2 followed by PTBP2 in BC cases and increased PTBP2 expression in relapsed cases (n = 10) from the same dataset compared to other RBPs. We also observed increased PTBP2 exon 10 inclusion in KCL22, a granulocytic lineage CML cell line when compared to other CML cell lines of different lineages. As PTBP2 protein expression is associated with PTBP2 exon 10 inclusion, we observed in cell lines and in a set of progressed cases (n = 4) that increased BCR-ABL1 expression potentiates PTBP2 exon 10 inclusion and thus confers the existence of a functional protein. Inhibition of BCR-ABL1 with imatinib not only blocks the inclusion of exon 10 but also deregulates PTBP2 expression in CML cells. Knockdown of PTBP2 in KCL22 cells leads to reduced cell proliferation, increased G2/M cell cycle arrest and increased apoptosis. Taken together our study portrays PTBP2 as a new possible target for CML and progressive inclusion/exclusion of PTBP2 exon 10 might play an important role in CML progression.
Collapse
Affiliation(s)
| | | | | | - Sutapa Biswas
- Sparsh Hospital and Critical Care, Bhubaneswar 751007, India
| | | | | | | |
Collapse
|
59
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|
60
|
Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019; 10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.
Collapse
Affiliation(s)
- Emma R Hinkle
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Hannah J Wiedner
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Adam J Black
- b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Jimena Giudice
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , USA
| |
Collapse
|
61
|
Saito Y, Yuan Y, Zucker-Scharff I, Fak JJ, Jereb S, Tajima Y, Licatalosi DD, Darnell RB. Differential NOVA2-Mediated Splicing in Excitatory and Inhibitory Neurons Regulates Cortical Development and Cerebellar Function. Neuron 2019; 101:707-720.e5. [PMID: 30638744 DOI: 10.1016/j.neuron.2018.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023]
Abstract
RNA-binding proteins (RBPs) regulate genetic diversity, but the degree to which they do so in individual cell types in vivo is unknown. We developed NOVA2 cTag-crosslinking and immunoprecipitation (CLIP) to generate functional RBP-RNA maps from different neuronal populations in the mouse brain. Combining cell type datasets from Nova2-cTag and Nova2 conditional knockout mice revealed differential NOVA2 regulatory actions on alternative splicing (AS) on the same transcripts expressed in different neurons. This includes functional differences in transcripts expressed in cortical and cerebellar excitatory versus inhibitory neurons, where we find NOVA2 is required for, respectively, development of laminar structure, motor coordination, and synapse formation. We also find that NOVA2-regulated AS is coupled to NOVA2 regulation of intron retention in hundreds of transcripts, which can sequester the trans-acting splicing factor PTBP2. In summary, cTag-CLIP complements single-cell RNA sequencing (RNA-seq) studies by providing a means for understanding RNA regulation of functional cell diversity.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Yuan Yuan
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Saša Jereb
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
62
|
Yang X, Qu S, Wang L, Zhang H, Yang Z, Wang J, Dai B, Tao K, Shang R, Liu Z, Li X, Zhang Z, Xia C, Ma B, Liu W, Li H, Dou K. PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene 2018; 37:6399-6413. [PMID: 30068940 DOI: 10.1038/s41388-018-0416-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Nuclear-enriched RNA-binding proteins (RBPs) are mainly involved in transcriptional regulation, which is a critical checkpoint to tune gene diversity and expression levels. We analyzed nuclear RBPs in human HCC tissues and matched normal control tissues. Based on the gene expression levels, PTBP3 was identified as top-ranked in the nuclei of HCC cells. HCC cell lines then were transfected with siRNAs or lentiviral vectors. PTBP3 promoted HCC cell proliferation and metastasis both in vitro and in vivo. RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and qRT-PCR assays verified that PTBP3 protein recruited abundant lnc-NEAT1 splicing variants (NEAT1_1 and NEAT1_2) and pre-miR-612 (precursor of miR-612) in the nucleus. NEAT1_1, NEAT1_2 and miR-612 expression levels were determined by PTBP3. Correlational analyses revealed that PTBP3 was positively correlated with NEAT1, but it was inversely correlated with miR-612 in HCC. The P53/CCND1 and AKT2/EMT pathways were determined by NEAT1 and miR-612 respectively in HCC. The PTBP3high and NEAT1high/miR-612low patients had a shorter overall survival. Therefore, nuclear-enriched RBP, PTBP3, promotes HCC cell malignant growth and metastasis by regulating the balance of splicing variants (NEAT1_1, NEAT1_2 and miR-612) in HCC.
Collapse
Affiliation(s)
- Xisheng Yang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China.,Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Hongtao Zhang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Runze Shang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Zhengcai Liu
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Zhuochao Zhang
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Ben Ma
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, The Xijing Hospital of The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
63
|
Senoo M, Takijiri T, Yoshida N, Ozawa M, Ikawa M. PTBP1 contributes to spermatogenesis through regulation of proliferation in spermatogonia. J Reprod Dev 2018; 65:37-46. [PMID: 30416150 PMCID: PMC6379764 DOI: 10.1262/jrd.2018-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a highly conserved RNA-binding protein that is a well-known regulator of alternative splicing. Testicular tissue is one of the richest
tissues with respect to the number of alternative splicing mRNA isoforms, but the molecular role(s) of PTBP1 in the regulation of these isoforms during spermatogenesis is still unclear.
Here, we developed a germ cell–specific Ptbp1 conditional knockout (cKO) mouse model by using the Cre-loxP system to investigate the role of PTBP1 in spermatogenesis. Testis
weight in Ptbp1 cKO mice was comparable to that in age-matched controls until 3 weeks of age; at ≥ 2 months old, testis weight was significantly lighter in cKO mice than in
age-matched controls. Sperm count in Ptbp1 cKO mice at 2 months old was comparable to that in controls, whereas sperm count significantly decreased at 6 months old.
Seminiferous tubules that exhibited degeneration in spermatogenic function were more evident in the 2-month-old Ptbp1 cKO mice than in controls. In addition, the early
neonatal proliferation of spermatogonia, during postnatal days 1–5, was significantly retarded in Ptbp1 cKO mice compared with that in controls. An in vitro
spermatogonia culture model (germline stem cells) revealed that hydroxytamoxifen-induced deletion of PTBP1 from germline stem cells caused severe proliferation arrest accompanied by an
increase of apoptotic cell death. These data suggest that PTBP1 contributes to spermatogenesis through regulation of spermatogonia proliferation.
Collapse
Affiliation(s)
- Manami Senoo
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.,Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.,Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
64
|
Polypyrimidine tract-binding protein blocks miRNA-124 biogenesis to enforce its neuronal-specific expression in the mouse. Proc Natl Acad Sci U S A 2018; 115:E11061-E11070. [PMID: 30401736 DOI: 10.1073/pnas.1809609115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miRNA)-124 is expressed in neurons, where it represses genes inhibitory for neuronal differentiation, including the RNA binding protein PTBP1. PTBP1 maintains nonneuronal splicing patterns of mRNAs that switch to neuronal isoforms upon neuronal differentiation. We find that primary (pri)-miR-124-1 is expressed in mouse embryonic stem cells where mature miR-124 is absent. PTBP1 binds to this precursor RNA upstream of the miRNA stem-loop to inhibit mature miR-124 expression in vivo and DROSHA cleavage of pri-miR-124-1 in vitro. This function for PTBP1 in repressing miR-124 biogenesis defines an additional regulatory loop in the already intricate interplay between these two molecules. Applying mathematical modeling to examine the dynamics of this regulation, we find that the pool of pri-miR-124 whose maturation is blocked by PTBP1 creates a robust and self-reinforcing transition in gene expression as PTBP1 is depleted during early neuronal differentiation. While interlocking regulatory loops are often found between miRNAs and transcriptional regulators, our results indicate that miRNA targeting of posttranscriptional regulators also reinforces developmental decisions. Notably, induction of neuronal differentiation observed upon PTBP1 knockdown likely results from direct derepression of miR-124, in addition to indirect effects previously described.
Collapse
|
65
|
Hu J, Qian H, Xue Y, Fu XD. PTB/nPTB: master regulators of neuronal fate in mammals. BIOPHYSICS REPORTS 2018; 4:204-214. [PMID: 30310857 PMCID: PMC6153489 DOI: 10.1007/s41048-018-0066-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/21/2018] [Indexed: 01/15/2023] Open
Abstract
PTB was initially discovered as a polypyrimidine tract-binding protein (hence the name), which corresponds to a specific RNA-binding protein associated with heterogeneous ribonucleoprotein particle (hnRNP I). The PTB family consists of three members in mammalian genomes, with PTBP1 (PTB) expressed in most cell types, PTBP2 (also known as nPTB or brPTB) exclusively found in the nervous system, and PTBP3 (also known as ROD1) predominately detected in immune cells. During neural development, PTB is down-regulated, which induces nPTB, and the expression of both PTB and nPTB becomes diminished when neurons mature. This programed switch, which largely takes place at the splicing level, is critical for the development of the nervous system, with PTB playing a central role in neuronal induction and nPTB guarding neuronal maturation. Remarkably, sequential knockdown of PTB and nPTB has been found to be necessary and sufficient to convert non-neuronal cells to the neuronal lineage. These findings, coupled with exquisite understanding of the molecular circuits regulated by these RNA-binding proteins, establish a critical foundation for their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Jing Hu
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA
| | - Hao Qian
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA
| | - Yuanchao Xue
- 2Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiang-Dong Fu
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA.,2Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
66
|
Lu YL, Yoo AS. Mechanistic Insights Into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts. Front Neurosci 2018; 12:522. [PMID: 30116172 PMCID: PMC6083049 DOI: 10.3389/fnins.2018.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The use of transcriptional factors as cell fate regulators are often the primary focus in the direct reprogramming of somatic cells into neurons. However, in human adult fibroblasts, deriving functionally mature neurons with high efficiency requires additional neurogenic factors such as microRNAs (miRNAs) to evoke a neuronal state permissive to transcription factors to exert their reprogramming activities. As such, increasing evidence suggests brain-enriched miRNAs, miR-9/9∗ and miR-124, as potent neurogenic molecules through simultaneously targeting of anti-neurogenic effectors while allowing additional transcription factors to generate specific subtypes of human neurons. In this review, we will focus on methods that utilize neuronal miRNAs and provide mechanistic insights by which neuronal miRNAs, in synergism with brain-region specific transcription factors, drive the conversion of human fibroblasts into clinically relevant subtypes of neurons. Furthermore, we will provide insights into the age signature of directly converted neurons and how the converted human neurons can be utilized to model late-onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Lin Lu
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.,Program in Developmental, Regenerative and Stem Cell Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew S Yoo
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
67
|
Pina JM, Reynaga JM, Truong AAM, Keppetipola NM. Post-Translational Modifications in Polypyrimidine Tract Binding Proteins PTBP1 and PTBP2. Biochemistry 2018; 57:3873-3882. [PMID: 29851470 PMCID: PMC6211845 DOI: 10.1021/acs.biochem.8b00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA binding proteins play an important role in regulating alternative pre-mRNA splicing and in turn cellular gene expression. Many of these RNA binding proteins occur as gene families with members sharing a high degree of primary structure identity and domain organization yet have tissue-specific expression patterns and regulate different sets of target exons. How highly similar members in a gene family can exert different splicing outcomes is not well understood. We conducted mass spectrometry analysis of post-translational phosphorylation and acetylation modifications for two paralogs of the polypyrimidine tract binding protein family, PTBP1 and PTBP2, to discover modifications that occur in splicing reaction mixtures and to identify discrete modifications that may direct their different splicing activities. We find that PTBP1 and PTBP2 have many distinct phosphate modifications located in the unstructured N-terminal, linker 1, and linker 2 regions. We find that the two proteins have many overlapping acetate modifications in the RNA recognition motifs (RRMs) with a few distinct sites in PTBP1 RRM2 and RRM3. Our data also reveal that lysine residues in the nuclear localization sequence of PTBP2 are acetylated. Collectively, our results highlight important differences in post-translational modifications between the paralogs and suggest a role for them in the differential splicing activity of PTBP1 and PTBP2.
Collapse
Affiliation(s)
- Jeffrey M. Pina
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Janice M. Reynaga
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Anthony A. M. Truong
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Niroshika M. Keppetipola
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| |
Collapse
|
68
|
Weyn-Vanhentenryck SM, Feng H, Ustianenko D, Duffié R, Yan Q, Jacko M, Martinez JC, Goodwin M, Zhang X, Hengst U, Lomvardas S, Swanson MS, Zhang C. Precise temporal regulation of alternative splicing during neural development. Nat Commun 2018; 9:2189. [PMID: 29875359 PMCID: PMC5989265 DOI: 10.1038/s41467-018-04559-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated during neurodevelopment. However, the precise timing of developmental splicing switches and the underlying regulatory mechanisms are poorly understood. Here we systematically analyze the temporal regulation of AS in a large number of transcriptome profiles of developing mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro. Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and these switches accurately define neuronal maturation stages. Integrative modeling suggests that these switches are under direct and combinatorial regulation by distinct sets of neuronal RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain the "immature" splicing program in early-switch exons, affecting numerous synaptic genes. These results provide new insights into the organization and regulation of the neurodevelopmental transcriptome.
Collapse
Affiliation(s)
- Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Automation, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | - Dmytro Ustianenko
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Qinghong Yan
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Cambridge, MA, 02141, USA
| | - Martin Jacko
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Jose C Martinez
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Xuegong Zhang
- Department of Automation, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | - Ulrich Hengst
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
69
|
Hartmann L, Wießner T, Wachter A. Subcellular Compartmentation of Alternatively Spliced Transcripts Defines SERINE/ARGININE-RICH PROTEIN30 Expression. PLANT PHYSIOLOGY 2018; 176:2886-2903. [PMID: 29496883 PMCID: PMC5884584 DOI: 10.1104/pp.17.01260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/16/2018] [Indexed: 05/08/2023]
Abstract
Alternative splicing (AS) is prevalent in higher eukaryotes, and generation of different AS variants is tightly regulated. Widespread AS occurs in response to altered light conditions and plays a critical role in seedling photomorphogenesis, but despite its frequency and effect on plant development, the functional role of AS remains unknown for most splicing variants. Here, we characterized the light-dependent AS variants of the gene encoding the splicing regulator Ser/Arg-rich protein SR30 in Arabidopsis (Arabidopsis thaliana). We demonstrated that the splicing variant SR30.2, which is predominantly produced in darkness, is enriched within the nucleus and strongly depleted from ribosomes. Light-induced AS from a downstream 3' splice site gives rise to SR30.1, which is exported to the cytosol and translated, coinciding with SR30 protein accumulation upon seedling illumination. Constitutive expression of SR30.1 and SR30.2 fused to fluorescent proteins revealed their identical subcellular localization in the nucleoplasm and nuclear speckles. Furthermore, expression of either variant shifted splicing of a genomic SR30 reporter toward SR30.2, suggesting that an autoregulatory feedback loop affects SR30 splicing. We provide evidence that SR30.2 can be further spliced and, unlike SR30.2, the resulting cassette exon variant SR30.3 is sensitive to nonsense-mediated decay. Our work delivers insight into the complex and compartmentalized RNA processing mechanisms that control the expression of the splicing regulator SR30 in a light-dependent manner.
Collapse
Affiliation(s)
- Lisa Hartmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Theresa Wießner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
70
|
Su CH, D D, Tarn WY. Alternative Splicing in Neurogenesis and Brain Development. Front Mol Biosci 2018; 5:12. [PMID: 29484299 PMCID: PMC5816070 DOI: 10.3389/fmolb.2018.00012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.
Collapse
Affiliation(s)
- Chun-Hao Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dhananjaya D
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
71
|
Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res 2018; 1693:67-74. [PMID: 29395044 DOI: 10.1016/j.brainres.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in RNA processing. In accord with this central function, TDP43 levels are tightly regulated through a negative feedback loop, in which TDP43 recognizes its own RNA transcript, destabilizes it, and reduces new TDP43 protein production. In the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), cytoplasmic mislocalization and accumulation of TDP43 disrupt autoregulation; conversely, inefficient TDP43 autoregulation can lead to cytoplasmic TDP43 deposition and subsequent neurodegeneration. Because TDP43 plays a multifaceted role in maintaining RNA metabolism, its mislocalization and accumulation interrupt several RNA processing pathways that in turn affect RNA stability and gene expression. TDP43-mediated disruption of these pathways-including alternative mRNA splicing, non-coding RNA processing, and RNA granule dynamics-may directly or indirectly contribute to ALS pathogenesis. Therefore, strategies that restore effective TDP43 autoregulation may ultimately prevent neurodegeneration in ALS and related disorders.
Collapse
Affiliation(s)
- Kaitlin Weskamp
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sami J Barmada
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| |
Collapse
|
72
|
Monzón-Casanova E, Screen M, Díaz-Muñoz MD, Coulson RMR, Bell SE, Lamers G, Solimena M, Smith CWJ, Turner M. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nat Immunol 2018; 19:267-278. [PMID: 29358707 PMCID: PMC5842895 DOI: 10.1038/s41590-017-0035-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
Antibody affinity maturation occurs in germinal centres (GC) where B
cells cycle between the light zone (LZ) and the dark zone. In the LZ GC B cells
bearing immunoglobulins with the highest affinity for antigen receive positive
selection signals from T helper cells that promotes their rapid proliferation.
Here we show that the RNA binding protein PTBP1 is necessary for the progression
of GC B cells through late S-phase of the cell cycle and for affinity
maturation. PTBP1 is required for the proper expression of the c-MYC-dependent
gene program induced in GC B cells receiving T cell help and directly regulates
the alternative splicing and abundance of transcripts increased during positive
selection to promote proliferation.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael Screen
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Richard M R Coulson
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Sarah E Bell
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Greta Lamers
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
73
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
74
|
Vuong JK, Lin CH, Zhang M, Chen L, Black DL, Zheng S. PTBP1 and PTBP2 Serve Both Specific and Redundant Functions in Neuronal Pre-mRNA Splicing. Cell Rep 2017; 17:2766-2775. [PMID: 27926877 DOI: 10.1016/j.celrep.2016.11.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Families of alternative splicing regulators often contain multiple paralogs presumed to fulfill different functions. Polypyrimidine tract binding proteins PTBP1 and PTBP2 reprogram developmental pre-mRNA splicing in neurons, but how their regulatory networks differ is not understood. To compare their targeting, we generated a knockin allele that conditionally expresses PTBP1. Bred to a Ptbp2 knockout, the transgene allowed us to compare the developmental and molecular phenotypes of mice expressing only PTBP1, only PTBP2, or neither protein in the brain. This knockin Ptbp1 rescued a forebrain-specific, but not a pan-neuronal, Ptbp2 knockout, demonstrating both redundant and distinct roles for the proteins. Many developmentally regulated exons exhibited different sensitivities to PTBP1 and PTBP2. Nevertheless, the two paralogs displayed similar RNA binding across the transcriptome, indicating that their differential targeting does not derive from their RNA interactions, but from possible different cofactor interactions.
Collapse
Affiliation(s)
- John K Vuong
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Min Zhang
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Liang Chen
- Division of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Sika Zheng
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
75
|
PTBP1 and PTBP2 Repress Nonconserved Cryptic Exons. Cell Rep 2017; 17:104-113. [PMID: 27681424 DOI: 10.1016/j.celrep.2016.08.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 08/20/2016] [Indexed: 01/06/2023] Open
Abstract
The fidelity of RNA splicing is maintained by a network of factors, but the molecular mechanisms that govern this process have yet to be fully elucidated. We previously found that TDP-43, an RNA-binding protein implicated in neurodegenerative disease, utilizes UG microsatellites to repress nonconserved cryptic exons and prevent their incorporation into mRNA. Here, we report that two well-characterized splicing factors, polypyrimidine tract-binding protein 1 (PTBP1) and polypyrimidine tract-binding protein 2 (PTBP2), are also nonconserved cryptic exon repressors. In contrast to TDP-43, PTBP1 and PTBP2 utilize CU microsatellites to repress both conserved tissue-specific exons and nonconserved cryptic exons. Analysis of these conserved splicing events suggests that PTBP1 and PTBP2 repression is titrated to generate the transcriptome diversity required for neuronal differentiation. We establish that PTBP1 and PTBP2 are members of a family of cryptic exon repressors.
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RECENT FINDINGS RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. SUMMARY Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.
Collapse
|
77
|
Hayakawa-Yano Y, Suyama S, Nogami M, Yugami M, Koya I, Furukawa T, Zhou L, Abe M, Sakimura K, Takebayashi H, Nakanishi A, Okano H, Yano M. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling. Genes Dev 2017; 31:1910-1925. [PMID: 29021239 PMCID: PMC5693031 DOI: 10.1101/gad.300822.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023]
Abstract
Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states.
Collapse
Affiliation(s)
- Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Satoshi Suyama
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Nogami
- Shonan Incubation Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.,Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yugami
- Shonan Incubation Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.,Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Li Zhou
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.,Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
78
|
Identification and characterization of new isoforms of human fas apoptotic inhibitory molecule (FAIM). PLoS One 2017; 12:e0185327. [PMID: 28981531 PMCID: PMC5628826 DOI: 10.1371/journal.pone.0185327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Fas Apoptosis Inhibitory Molecule (FAIM) is an evolutionarily highly conserved death receptor antagonist, widely expressed and known to participate in physiological and pathological processes. Two FAIM transcript variants have been characterized to date, namely FAIM short (FAIM-S) and FAIM long (FAIM-L). FAIM-S is ubiquitously expressed and serves as an anti-apoptotic protein in the immune system. Furthermore, in neurons, this isoform promotes NGF-induced neurite outgrowth through NF-кB and ERK signaling. In contrast FAIM-L is found only in neurons, where it exerts anti-apoptotic activity against several stimuli. In addition to these two variants, in silico studies point to the existence of two additional isoforms, neither of which have been characterized to date. In this regard, here we confirm the presence of these two additional FAIM isoforms in human fetal brain, fetal and adult testes, and placenta tissues. We named them FAIM-S_2a and FAIM-L_2a since they have the same sequence as FAIM-S and FAIM-L, but include exon 2a. PCR and western blot revealed that FAIM-S_2a shows ubiquitous expression in all the tissues and cellular models tested, while FAIM-L_2a is expressed exclusively in tissues of the nervous system. In addition, we found that, when overexpressed in non-neuronal cells, the splicing factor nSR100 induces the expression of the neuronal isoforms, thus identifying it as responsible for the generation of FAIM-L and FAIM-L_2a. Functionally, FAIM-S_2a and FAIM-L_2a increased neurite outgrowth in response to NGF stimulation in a neuronal model. This observation thus, supports the notion that these two isoforms are involved in neuronal differentiation. Furthermore, subcellular fractionation experiments revealed that, in contrast to FAIM-S and FAIM-L, FAIM-S_2a and FAIM-L_2a are able to localize to the nucleus, where they may have additional functions. In summary, here we report on two novel FAIM isoforms that may have relevant roles in the physiology and pathology of the nervous system.
Collapse
|
79
|
Hwang HW, Saito Y, Park CY, Blachère NE, Tajima Y, Fak JJ, Zucker-Scharff I, Darnell RB. cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation. Neuron 2017; 95:1334-1349.e5. [PMID: 28910620 DOI: 10.1016/j.neuron.2017.08.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Abstract
Alternative polyadenylation (APA) is increasingly recognized to regulate gene expression across different cell types, but obtaining APA maps from individual cell types typically requires prior purification, a stressful procedure that can itself alter cellular states. Here, we describe a new platform, cTag-PAPERCLIP, that generates APA profiles from single cell populations in intact tissues; cTag-PAPERCLIP requires no tissue dissociation and preserves transcripts in native states. Applying cTag-PAPERCLIP to profile four major cell types in the mouse brain revealed common APA preferences between excitatory and inhibitory neurons distinct from astrocytes and microglia, regulated in part by neuron-specific RNA-binding proteins NOVA2 and PTBP2. We further identified a role of APA in switching Araf protein isoforms during microglia activation, impacting production of downstream inflammatory cytokines. Our results demonstrate the broad applicability of cTag-PAPERCLIP and a previously undiscovered role of APA in contributing to protein diversity between different cell types and cellular states within the brain.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Nathalie E Blachère
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
80
|
Lennox AL, Mao H, Silver DL. RNA on the brain: emerging layers of post-transcriptional regulation in cerebral cortex development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28837264 DOI: 10.1002/wdev.290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Embryonic development is a critical period during which neurons of the brain are generated and organized. In the developing cerebral cortex, this requires complex processes of neural progenitor proliferation, neuronal differentiation, and migration. Each step relies upon highly regulated control of gene expression. In particular, RNA splicing, stability, localization, and translation have emerged as key post-transcriptional regulatory nodes of mouse corticogenesis. Trans-regulators of RNA metabolism, including microRNAs (miRs) and RNA-binding proteins (RBPs), orchestrate diverse steps of cortical development. These trans-factors function either individually or cooperatively to influence RNAs, often of similar classes, termed RNA regulons. New technological advances raise the potential for an increasingly sophisticated understanding of post-transcriptional control in the developing neocortex. Many RNA-binding factors are also implicated in neurodevelopmental diseases of the cortex. Therefore, elucidating how RBPs and miRs converge to influence mRNA expression in progenitors and neurons will give valuable insights into mechanisms of cortical development and disease. WIREs Dev Biol 2018, 7:e290. doi: 10.1002/wdev.290 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory RNA Nervous System Development > Vertebrates: Regional Development Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hanqian Mao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
81
|
Lei L, Yan SY, Yang R, Chen JY, Li Y, Bu Y, Chang N, Zhou Q, Zhu X, Li CY, Xiong JW. Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic Acids Res 2017; 45:3422-3436. [PMID: 27899647 PMCID: PMC5389467 DOI: 10.1093/nar/gkw1043] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Haploinsufficiency of EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2) is linked to human mandibulofacial dysostosis, Guion-Almeida type (MFDGA), but the underlying cellular and molecular mechanisms remain to be addressed. We report here the isolation, cloning and functional analysis of the mutated eftud2 (snu114) in a novel neuronal mutant fn10a in zebrafish. This mutant displayed abnormal brain development with evident neuronal apoptosis while the development of other organs appeared less affected. Positional cloning revealed a nonsense mutation such that the mutant eftud2 mRNA encoded a truncated Eftud2 protein and was subjected to nonsense-mediated decay. Disruption of eftud2 led to increased apoptosis and mitosis of neural progenitors while it had little effect on differentiated neurons. Further RNA-seq and functional analyses revealed a transcriptome-wide RNA splicing deficiency and a large amount of intron-retaining and exon-skipping transcripts, which resulted in inadequate nonsense-mediated RNA decay and activation of the p53 pathway in fn10a mutants. Therefore, our study has established that eftud2 functions in RNA splicing during neural development and provides a suitable zebrafish model for studying the molecular pathology of the neurological disease MFDGA.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Shou-Yu Yan
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ran Yang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jia-Yu Chen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Yumei Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ye Bu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Qinchao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
82
|
Hannigan MM, Zagore LL, Licatalosi DD. Ptbp2 Controls an Alternative Splicing Network Required for Cell Communication during Spermatogenesis. Cell Rep 2017; 19:2598-2612. [PMID: 28636946 PMCID: PMC5543815 DOI: 10.1016/j.celrep.2017.05.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing has essential roles in development. Remarkably, spermatogenic cells express more alternatively spliced RNAs compared to most whole tissues; however, regulation of these RNAs remains unclear. Here, we characterize the alternative splicing landscape during spermatogenesis and reveal an essential function for the RNA-binding protein Ptbp2 in this highly regulated developmental program. We found that Ptbp2 controls a network of genes involved in cell adhesion, migration, and polarity, suggesting that splicing regulation by Ptbp2 is critical for germ cell communication with Sertoli cells (multifunctional somatic cells necessary for spermatogenesis). Indeed, Ptbp2 ablation in germ cells resulted in disorganization of the filamentous actin (F-actin) cytoskeleton in Sertoli cells, indicating that alternative splicing regulation is necessary for cellular crosstalk during germ cell development. Collectively, the data delineate an alternative splicing regulatory network essential for spermatogenesis, the splicing factor that controls it, and its biological importance in germ-Sertoli communication.
Collapse
Affiliation(s)
- Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
83
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 879] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
84
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
85
|
Activation-Dependent TRAF3 Exon 8 Alternative Splicing Is Controlled by CELF2 and hnRNP C Binding to an Upstream Intronic Element. Mol Cell Biol 2017; 37:MCB.00488-16. [PMID: 28031331 DOI: 10.1128/mcb.00488-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific and inducible alternative splicing has a fundamental impact on regulating gene expression and cellular function in a variety of settings, including activation and differentiation. We have recently shown that activation-induced skipping of TRAF3 exon 8 activates noncanonical NF-κB signaling upon T cell stimulation, but the regulatory basis for this splicing event remains unknown. Here we identify cis- and trans-regulatory elements rendering this splicing switch activation dependent and cell type specific. The cis-acting element is located 340 to 440 nucleotides upstream of the regulated exon and acts in a distance-dependent manner, since altering the location reduces its activity. A small interfering RNA screen, followed by cross-link immunoprecipitation and mutational analyses, identified CELF2 and hnRNP C as trans-acting factors that directly bind the regulatory sequence and together mediate increased exon skipping in activated T cells. CELF2 expression levels correlate with TRAF3 exon skipping in several model systems, suggesting that CELF2 is the decisive factor, with hnRNP C being necessary but not sufficient. These data suggest an interplay between CELF2 and hnRNP C as the mechanistic basis for activation-dependent alternative splicing of TRAF3 exon 8 and additional exons and uncover an intronic splicing silencer whose full activity depends on the precise location more than 300 nucleotides upstream of the regulated exon.
Collapse
|
86
|
Li Z, Vuong JK, Zhang M, Stork C, Zheng S. Inhibition of nonsense-mediated RNA decay by ER stress. RNA (NEW YORK, N.Y.) 2017; 23:378-394. [PMID: 27940503 PMCID: PMC5311500 DOI: 10.1261/rna.058040.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/06/2016] [Indexed: 05/26/2023]
Abstract
Nonsense-mediated RNA decay (NMD) selectively degrades mutated and aberrantly processed transcripts that contain premature termination codons (PTC). Cellular NMD activity is typically assessed using exogenous PTC-containing reporters. We overcame some inherently problematic aspects of assaying endogenous targets and developed a broadly applicable strategy to reliably and easily monitor changes in cellular NMD activity. Our new method was genetically validated for distinguishing NMD regulation from transcriptional control and alternative splicing regulation, and unexpectedly disclosed a different sensitivity of NMD targets to NMD inhibition. Applying this robust method for screening, we identified NMD-inhibiting stressors but also found that NMD inactivation was not universal to cellular stresses. The high sensitivity and broad dynamic range of our method revealed a strong correlation between NMD inhibition, endoplasmic reticulum (ER) stress, and polysome disassembly upon thapsigargin treatment in a temporal and dose-dependent manner. We found little evidence of calcium signaling mediating thapsigargin-induced NMD inhibition. Instead, we discovered that of the three unfolded protein response (UPR) pathways activated by thapsigargin, mainly protein kinase RNA-like endoplasmic reticulum kinase (PERK) was required for NMD inhibition. Finally, we showed that ER stress compounded TDP-43 depletion in the up-regulation of NMD isoforms that had been implicated in the pathogenic mechanisms of amyotrophic lateral sclerosis and frontotemporal dementia, and that the additive effect of ER stress was completely blocked by PERK deficiency.
Collapse
Affiliation(s)
- Zhelin Li
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - John K Vuong
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Cheryl Stork
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
87
|
Lens Biology is a Dimension of Neurobiology. Neurochem Res 2017; 42:933-942. [DOI: 10.1007/s11064-016-2156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
|
88
|
Ohnishi T, Shirane M, Nakayama KI. SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth. Sci Rep 2017; 7:41130. [PMID: 28106138 PMCID: PMC5247714 DOI: 10.1038/srep41130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing gives rise to diversity of the proteome, and it is especially prevalent in the mammalian nervous system. Indeed, many factors that control the splicing process govern nervous system development. Among such factors, SRRM4 is an important regulator of aspects of neural differentiation including neurite outgrowth. The mechanism by which SRRM4 regulates neurite outgrowth has remained poorly understood, however. We now show that SRRM4 regulates the splicing of protrudin gene (Zfyve27) transcripts in neuronal cells. SRRM4 was found to promote splicing of protrudin pre-mRNA so as to include a microexon (exon L) encoding seven amino acids in a neuron-specific manner. The resulting protein (protrudin-L) promotes neurite outgrowth during neurogenesis. Depletion of SRRM4 in Neuro2A cells impaired inclusion of exon L in protrudin mRNA, resulting in the generation of a shorter protein isoform (protrudin-S) that is less effective at promoting neurite extension. SRRM4 was found to recognize a UGC motif that is located immediately upstream of exon L and is necessary for inclusion of exon L in the mature transcript. Deletion of exon L in Neuro2A or embryonic stem cells inhibited neurite outgrowth. Our results suggest that SRRM4 controls neurite outgrowth through regulation of alternative splicing of protrudin transcripts.
Collapse
Affiliation(s)
- Takafumi Ohnishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
89
|
Wongpalee SP, Vashisht A, Sharma S, Chui D, Wohlschlegel JA, Black DL. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016; 5. [PMID: 27882870 PMCID: PMC5122456 DOI: 10.7554/elife.19743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI:http://dx.doi.org/10.7554/eLife.19743.001
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, Phoenix, United States
| | - Darryl Chui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
90
|
Tyler CR, Labrecque MT, Solomon ER, Guo X, Allan AM. Prenatal arsenic exposure alters REST/NRSF and microRNA regulators of embryonic neural stem cell fate in a sex-dependent manner. Neurotoxicol Teratol 2016; 59:1-15. [PMID: 27751817 DOI: 10.1016/j.ntt.2016.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Exposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs. The master negative regulator of neural-lineage, REST/NRSF, controls the precise timing of fate specification and differentiation of neural stem cells (NSCs). Early in development (embryonic day 14), we observed increased expression of Rest, its co-repressor, CoREST, and the inhibitory RNA binding/splicing protein, Ptbp1, and altered expression of mRNA spliced isoforms of Pbx1 that are directly regulated by these factors in the male brain in response to prenatal 50ppb arsenic exposure. These increases were concurrent with decreased expression of microRNA-9 (miR-9), miR-9*, and miR-124, all of which are REST/NRSF targets and inversely regulate Rest expression to allow for maturation of NSCs. Exposure to arsenic decreased the formation of neuroblasts in vitro from NSCs derived from male pup brains. The female response to arsenic was limited to increased expression of CoREST and Ptbp2, an RNA binding protein that allows for appropriate splicing of genes involved in the progression of neurogenesis. These changes were accompanied by increased neuroblast formation in vitro from NSCs derived from female pups. Unexposed male mice express transcriptomic factors to induce differentiation earlier in development compared to unexposed females. Thus, arsenic exposure likely delays differentiation of NSCs in males while potentially inducing precocious differentiation in females early in development. These effects are mitigated by embryonic day 18 of development. Arsenic-induced dysregulation of the regulatory loop formed by REST/NRSF, its target microRNAs, miR-9 and miR-124, and RNA splicing proteins, PTBP1 and 2, leads to aberrant programming of NSC function that is perhaps perpetuated into adulthood inducing deficits in differentiation we have previously observed.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States
| | - Matthew T Labrecque
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Xun Guo
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
91
|
Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S, Mukaddes NM, Oner O, Al-Saffar M, Balkhy S, Gascon GG, Nieto M, Walsh CA. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior. Cell 2016; 167:341-354.e12. [PMID: 27667684 PMCID: PMC5063026 DOI: 10.1016/j.cell.2016.08.071] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Byoung-Il Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Beatriz Cubelos
- Department of Molecular Biology, Centro de Biología Molecular 'Severo Ochoa', Universidad Autonoma de Madrid, UAM-CSIC, Nicolas Cabrera 1, 28049 Madrid, Spain; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cindy Chang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amer A Hossain
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Nahit M Mukaddes
- Istanbul Institute of Child and Adolescent Psychiatry, 34365 Istanbul, Turkey
| | - Ozgur Oner
- Department of Child and Adolescent Psychiatry, Bahcesehir University School of Medicine, 34353 Istanbul, Turkey
| | - Muna Al-Saffar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates
| | - Soher Balkhy
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Kingdom of Saudi Arabia
| | - Generoso G Gascon
- Department of Neurology (Pediatric Neurology), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
92
|
Abstract
Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.
Collapse
Affiliation(s)
- Celine K Vuong
- Molecular Biology Interdepartmental Graduate Program, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521, USA
| |
Collapse
|
93
|
Murphy D, Cieply B, Carstens R, Ramamurthy V, Stoilov P. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina. PLoS Genet 2016; 12:e1006256. [PMID: 27541351 PMCID: PMC4991804 DOI: 10.1371/journal.pgen.1006256] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/22/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such "switch-like" exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments.
Collapse
Affiliation(s)
- Daniel Murphy
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Benjamin Cieply
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Russ Carstens
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Visvanathan Ramamurthy
- Departments of Biochemistry, Ophthalmology and Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Peter Stoilov
- Department of Biochemistry and Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
94
|
Keppetipola NM, Yeom KH, Hernandez AL, Bui T, Sharma S, Black DL. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2. RNA (NEW YORK, N.Y.) 2016; 22:1172-1180. [PMID: 27288314 PMCID: PMC4931110 DOI: 10.1261/rna.057505.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Most human genes generate multiple protein isoforms through alternative pre-mRNA splicing, but the mechanisms controlling alternative splicing choices by RNA binding proteins are not well understood. These proteins can have multiple paralogs expressed in different cell types and exhibiting different splicing activities on target exons. We examined the paralogous polypyrimidine tract binding proteins PTBP1 and PTBP2 to understand how PTBP1 can exhibit greater splicing repression activity on certain exons. Using both an in vivo coexpression assay and an in vitro splicing assay, we show that PTBP1 is more repressive than PTBP2 per unit protein on a target exon. Constructing chimeras of PTBP1 and 2 to determine amino acid features that contribute to their differential activity, we find that multiple segments of PTBP1 increase the repressive activity of PTBP2. Notably, when either RRM1 of PTBP2 or the linker peptide separating RRM2 and RRM3 are replaced with the equivalent PTBP1 sequences, the resulting chimeras are highly active for splicing repression. These segments are distinct from the known region of interaction for the PTBP1 cofactors Raver1 and Matrin3 in RRM2. We find that RRM2 of PTBP1 also increases the repression activity of an otherwise PTBP2 sequence, and that this is potentially explained by stronger binding by Raver1. These results indicate that multiple features over the length of the two proteins affect their ability to repress an exon.
Collapse
Affiliation(s)
- Niroshika M Keppetipola
- California State University Fullerton, Department of Chemistry and Biochemistry, Fullerton, California 92831, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Adrian L Hernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Tessa Bui
- California State University Fullerton, Department of Chemistry and Biochemistry, Fullerton, California 92831, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
95
|
Dynamin 1 isoform roles in a mouse model of severe childhood epileptic encephalopathy. Neurobiol Dis 2016; 95:1-11. [PMID: 27363778 DOI: 10.1016/j.nbd.2016.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin 1 is a large neuron-specific GTPase involved in the endocytosis and recycling of pre-synaptic membranes and synaptic vesicles. Mutations in the gene encoding dynamin 1 (DNM1) underlie two epileptic encephalopathy syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Mice homozygous for the Dnm1 "fitful" mutation, a non-synonymous coding variant in an alternatively spliced exon of Dnm1 (exon 10a; isoform designation: Dnm1a(Ftfl)) have an epileptic encephalopathy-like disorder including lethal early onset seizures, locomotor and neurosensory deficits. Although fitful heterozygotes have milder recurrent seizures later in life, suggesting an additive or semi-dominant mechanism, the molecular etiology must also consider the fact that Dnm1a(Ftfl) exerts a dominant negative effect on endocytosis in vitro. Another complication is that the fitful mutation induces alterations in the relative abundance of Dnm1 splice variants; mutants have a downregulation of Dnm1a and an upregulation of Dnm1b, changes which may contribute to the epileptic pathology. To examine whether Dnm1a loss of function, Dnm1a(Ftfl) dominance or compensation by Dnm1b is the most critical for severe seizures, we studied alternate isoform-specific mutant mice. Mice lacking Dnm1 exon 10a or Dnm1 exon 10b have neither spontaneous seizures nor other overt abnormalities, suggesting that in normal conditions the major role of each isoform is redundant. However, in the presence of Dnm1a(Ftfl) only exon 10a deleted mice experience severe seizures. These results reveal functional differences between Dnm1a and Dnm1b isoforms in the presence of a challenge, i.e. toxic Dnm1(Ftfl), while reinforcing its effect explicitly in this model of severe pediatric epilepsy.
Collapse
|
96
|
Tomioka M, Naito Y, Kuroyanagi H, Iino Y. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor. Nat Commun 2016; 7:11645. [PMID: 27198602 PMCID: PMC4876481 DOI: 10.1038/ncomms11645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 01/18/2023] Open
Abstract
Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. Little is known about the molecular mechanisms regulating neuron-specific alternative splicing. Here, the authors identify a combination of RNA-binding proteins regulating neuron-specific expression of the C. elegans insulin receptor isoform DAF-2c and find disrupting these factors leads to learning deficits.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuki Naito
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
97
|
Abstract
Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.
Collapse
Affiliation(s)
- Benoit Chabot
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Lulzim Shkreta
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
98
|
Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition. Mol Cell Biol 2016; 36:1704-19. [PMID: 27044866 DOI: 10.1128/mcb.00019-16] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential biological process during embryonic development that is also implicated in cancer metastasis. While the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains relatively uncharacterized. We previously showed that the epithelial cell-type-specific proteins epithelial splicing regulatory proteins 1 (ESRP1) and ESRP2 are important for the regulation of many AS events that are altered during EMT. However, the contributions of the ESRPs and other splicing regulators to the AS regulatory network in EMT require further investigation. Here, we used a robust in vitro EMT model to comprehensively characterize splicing switches during EMT in a temporal manner. These investigations revealed that the ESRPs are the major regulators of some but not all AS events during EMT. We determined that the splicing factor RBM47 is downregulated during EMT and also regulates numerous transcripts that switch splicing during EMT. We also determined that Quaking (QKI) broadly promotes mesenchymal splicing patterns. Our study highlights the broad role of posttranscriptional regulation during the EMT and the important role of combinatorial regulation by different splicing factors to fine tune gene expression programs during these physiological and developmental transitions.
Collapse
|
99
|
Traunmüller L, Gomez AM, Nguyen TM, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science 2016; 352:982-6. [PMID: 27174676 DOI: 10.1126/science.aaf2397] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
Alternative RNA splicing represents a central mechanism for expanding the coding power of genomes. Individual RNA-binding proteins can control alternative splicing choices in hundreds of RNA transcripts, thereby tuning amounts and functions of large numbers of cellular proteins. We found that the RNA-binding protein SLM2 is essential for functional specification of glutamatergic synapses in the mouse hippocampus. Genome-wide mapping revealed a markedly selective SLM2-dependent splicing program primarily consisting of only a few target messenger RNAs that encode synaptic proteins. Genetic correction of a single SLM2-dependent target exon in the synaptic recognition molecule neurexin-1 was sufficient to rescue synaptic plasticity and behavioral defects in Slm2 knockout mice. These findings uncover a highly selective alternative splicing program that specifies synaptic properties in the central nervous system.
Collapse
Affiliation(s)
- Lisa Traunmüller
- Biozentrum, University of Basel Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Andrea M Gomez
- Biozentrum, University of Basel Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Thi-Minh Nguyen
- Biozentrum, University of Basel Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Peter Scheiffele
- Biozentrum, University of Basel Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| |
Collapse
|
100
|
Dash S, Siddam AD, Barnum CE, Janga SC, Lachke SA. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:527-57. [PMID: 27133484 DOI: 10.1002/wrna.1355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University & Purdue University Indianapolis, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| |
Collapse
|