51
|
Krenning L, Sonneveld S, Tanenbaum M. Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. eLife 2022; 11:71356. [PMID: 35103592 PMCID: PMC8806192 DOI: 10.7554/elife.71356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023] Open
Abstract
Accurate control of the cell cycle is critical for development and tissue homeostasis, and requires precisely timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle in human cells. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and we identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.
Collapse
Affiliation(s)
- Lenno Krenning
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Marvin Tanenbaum
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
52
|
Belhocine S, Machado Xavier A, Distéfano-Gagné F, Fiola S, Rivest S, Gosselin D. Context-dependent transcriptional regulation of microglial proliferation. Glia 2021; 70:572-589. [PMID: 34862814 DOI: 10.1002/glia.24124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Microglia proliferate during brain development and brain lesions, but how this is coordinated at the transcriptional level is not well understood. Here, we investigated fundamental aspects of the transcriptional process associated with proliferation of mouse microglia during postnatal development and in adults in a model of induced microglial depletion-repopulation. While each proliferative subset displayed globally a distinct signature of gene expression, they also co-expressed a subgroup of 1370 genes at higher levels than quiescent microglia. Expression of these may be coordinated by one of two mechanisms of regulation with distinct properties. A first mechanism augments expression of genes already expressed in quiescent microglia and is subject to regulation by Klf/Sp, Nfy, and Ets transcription factors. Alternatively, a second mechanism enables de novo transcription of cell cycle genes and requires additional regulatory input from Lin54 and E2f transcription factors. Of note, transcriptional upregulation of E2f1 and E2f2 family members may represent a critical regulatory checkpoint to enable microglia to achieve efficient cell cycling. Furthermore, analysis of the activity profile of the repertoire of promoter-distal genomic regulatory elements suggests a relatively restricted role for these elements in coordinating cell cycle gene expression in microglia. Overall, proliferating microglia integrates regulation of cell cycle gene expression with their broader, context-dependent, transcriptional landscape.
Collapse
Affiliation(s)
- Sarah Belhocine
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.,Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Canada
| | - André Machado Xavier
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.,Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Canada
| | - Félix Distéfano-Gagné
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.,Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Canada
| | - Stéphanie Fiola
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Serge Rivest
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.,Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Canada
| | - David Gosselin
- Axe Neuroscience, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.,Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
53
|
A genetically-encoded crosslinker screen identifies SERBP1 as a PKCε substrate influencing translation and cell division. Nat Commun 2021; 12:6934. [PMID: 34836941 PMCID: PMC8626422 DOI: 10.1038/s41467-021-27189-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The PKCε-regulated genome protective pathway provides transformed cells a failsafe to successfully complete mitosis. Despite the necessary role for Aurora B in this programme, it is unclear whether its requirement is sufficient or if other PKCε cell cycle targets are involved. To address this, we developed a trapping strategy using UV-photocrosslinkable amino acids encoded in the PKCε kinase domain. The validation of the mRNA binding protein SERBP1 as a PKCε substrate revealed a series of mitotic events controlled by the catalytic form of PKCε. PKCε represses protein translation, altering SERBP1 binding to the 40 S ribosomal subunit and promoting the assembly of ribonucleoprotein granules containing SERBP1, termed M-bodies. Independent of Aurora B, SERBP1 is shown to be necessary for chromosome segregation and successful cell division, correlating with M-body formation. This requirement for SERBP1 demonstrates that Aurora B acts in concert with translational regulation in the PKCε-controlled pathway exerting genome protection.
Collapse
|
54
|
Zein-Sabatto H, Lerit DA. The Identification and Functional Analysis of mRNA Localizing to Centrosomes. Front Cell Dev Biol 2021; 9:782802. [PMID: 34805187 PMCID: PMC8595238 DOI: 10.3389/fcell.2021.782802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are multifunctional organelles tasked with organizing the microtubule cytoskeleton required for genome stability, intracellular trafficking, and ciliogenesis. Contributing to the diversity of centrosome functions are cell cycle-dependent oscillations in protein localization and post-translational modifications. Less understood is the role of centrosome-localized messenger RNA (mRNA). Since its discovery, the concept of nucleic acids at the centrosome was controversial, and physiological roles for centrosomal mRNAs remained muddled and underexplored. Over the past decades, however, transcripts, RNA-binding proteins, and ribosomes were detected at the centrosome in various organisms and cell types, hinting at a conservation of function. Indeed, recent work defines centrosomes as sites of local protein synthesis, and defined mRNAs were recently implicated in regulating centrosome functions. In this review, we summarize the evidence for the presence of mRNA at the centrosome and the current work that aims to unravel the biological functions of mRNA localized to centrosomes.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
55
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
56
|
Arellano JI, Morozov YM, Micali N, Rakic P. Radial Glial Cells: New Views on Old Questions. Neurochem Res 2021; 46:2512-2524. [PMID: 33725233 PMCID: PMC8855517 DOI: 10.1007/s11064-021-03296-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Nicola Micali
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA.
| |
Collapse
|
57
|
Garcia DM, Campbell EA, Jakobson CM, Tsuchiya M, Shaw EA, DiNardo AL, Kaeberlein M, Jarosz DF. A prion accelerates proliferation at the expense of lifespan. eLife 2021; 10:e60917. [PMID: 34545808 PMCID: PMC8455135 DOI: 10.7554/elife.60917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.
Collapse
Affiliation(s)
- David M Garcia
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Edgar A Campbell
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Christopher M Jakobson
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | - Ethan A Shaw
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Acadia L DiNardo
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
58
|
Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 2021; 597:561-565. [PMID: 34497418 DOI: 10.1038/s41586-021-03887-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022]
Abstract
Single-cell sequencing methods have enabled in-depth analysis of the diversity of cell types and cell states in a wide range of organisms. These tools focus predominantly on sequencing the genomes1, epigenomes2 and transcriptomes3 of single cells. However, despite recent progress in detecting proteins by mass spectrometry with single-cell resolution4, it remains a major challenge to measure translation in individual cells. Here, building on existing protocols5-7, we have substantially increased the sensitivity of these assays to enable ribosome profiling in single cells. Integrated with a machine learning approach, this technology achieves single-codon resolution. We validate this method by demonstrating that limitation for a particular amino acid causes ribosome pausing at a subset of the codons encoding the amino acid. Of note, this pausing is only observed in a sub-population of cells correlating to its cell cycle state. We further expand on this phenomenon in non-limiting conditions and detect pronounced GAA pausing during mitosis. Finally, we demonstrate the applicability of this technique to rare primary enteroendocrine cells. This technology provides a first step towards determining the contribution of the translational process to the remarkable diversity between seemingly identical cells.
Collapse
|
59
|
Bonnot T, Nagel DH. Time of the day prioritizes the pool of translating mRNAs in response to heat stress. THE PLANT CELL 2021; 33:2164-2182. [PMID: 33871647 PMCID: PMC8364243 DOI: 10.1093/plcell/koab113] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 05/24/2023]
Abstract
The circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental stimuli. Under growth limiting temperatures, the time of the day modulates the accumulation of polyadenylated mRNAs. In response to heat stress, plants will conserve energy and selectively translate mRNAs. How the clock and/or the time of the day regulates polyadenylated mRNAs bound by ribosomes in response to heat stress is unknown. In-depth analysis of Arabidopsis thaliana translating mRNAs found that the time of the day gates the response of approximately one-third of the circadian-regulated heat-responsive translatome. Specifically, the time of the day and heat stress interact to prioritize the pool of mRNAs in cue to be translated. For a subset of mRNAs, we observed a stronger gated response during the day, and preferentially before the peak of expression. We propose previously overlooked transcription factors (TFs) as regulatory nodes and show that the clock plays a role in the temperature response for select TFs. When the stress was removed, the redefined priorities for translation recovered within 1 h, though slower recovery was observed for abiotic stress regulators. Through hierarchical network connections between clock genes and prioritized TFs, our work provides a framework to target key nodes underlying heat stress tolerance throughout the day.
Collapse
Affiliation(s)
- Titouan Bonnot
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Dawn H. Nagel
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
60
|
Cao X, Lemaire S, Bollen M. Protein phosphatase 1: life-course regulation by SDS22 and Inhibitor-3. FEBS J 2021; 289:3072-3085. [PMID: 34028981 DOI: 10.1111/febs.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
61
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
62
|
Lin28, a major translation reprogramming factor, gains access to YB-1-packaged mRNA through its cold-shock domain. Commun Biol 2021; 4:359. [PMID: 33742080 PMCID: PMC7979924 DOI: 10.1038/s42003-021-01862-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown. We show here, using a structural and cellular approach, a mixing of Lin28 with YB-1 (YBX1) in the presence of mRNA owing to their cold-shock domain, a conserved β-barrel structure that binds to ssRNA cooperatively. In contrast, the other RNA binding-proteins without cold-shock domains tested, HuR, G3BP-1, FUS and LARP-6, did not mix with YB-1. Given that YB-1 is the core component of dormant mRNPs, a model in which Lin28 gains access to mRNPs through its co-association with YB-1 to mRNA may provide a means for Lin28 to reprogram translation. We anticipate that the translational plasticity provided by mRNPs may contribute to Lin28 functions in development and adaptation of cancer cells to an adverse environment. Samsonova et al. show a cooperative association of Lin28 and YB-1 for their target mRNA through their cold-shock domain, which is a conserved β-barrel structure that binds to single-stranded RNA. This study suggests that the association of Lin28 with YB-1 in mRNPs may contribute to the translational plasticity during development and the adaptation of cancer cells to adverse environments.
Collapse
|
63
|
Chen L, Bai J, Peng D, Gao Y, Cai X, Zhang J, Tang S, Niu L, Sun Y, Lou F, Zhou H, Yin Q, Wang Z, Sun L, Du X, Xu Z, Wang H, Li Q, Wang H. SZB120 Exhibits Immunomodulatory Effects by Targeting eIF2α to Suppress Th17 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 206:953-962. [PMID: 33483349 DOI: 10.4049/jimmunol.2000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
IL-17-secreting Th17 cells play an important role in the pathogenesis of various inflammatory and autoimmune diseases. IL-17-targeted biologics and small molecules are becoming promising treatments for these diseases. In this study, we report that SZB120, a derivative of the natural compound 3-acetyl-β-boswellic acid, inhibits murine Th17 cell differentiation by interacting with the α-subunit of eukaryotic initiation factor 2 (eIF2α). We showed that SZB120 directly interacts with eIF2α and contributes to serine 51 phosphorylation of eIF2α. The suppressive effect of SZB120 on Th17 cell differentiation was reversed by GSK2606414, an inhibitor of eIF2α phosphokinase. Phosphorylation of eIF2α induced by SZB120 decreased the protein expression of IκBζ, which is important for Th17 cell differentiation. Notably, interaction with eIF2α by SZB120 also impaired glucose uptake and glycolysis in T cells. In vivo, SZB120 treatment of C57BL/6 mice significantly attenuated IL-17/Th17-mediated autoimmune disease. Our study indicates that SZB120 is a promising drug candidate for IL-17/Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Bai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danhong Peng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojie Cai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxun Zhang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sibei Tang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Libo Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China; and
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qun Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Institute of Immunology, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; .,Institute of Translational Medicine, Shanghai Institute of Immunology Center for Microbiota and Immune Related Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
64
|
Salamango DJ, Harris RS. Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Front Microbiol 2021; 11:622012. [PMID: 33510734 PMCID: PMC7835321 DOI: 10.3389/fmicb.2020.622012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
65
|
Boersma S, Rabouw HH, Bruurs LJM, Pavlovič T, van Vliet ALW, Beumer J, Clevers H, van Kuppeveld FJM, Tanenbaum ME. Translation and Replication Dynamics of Single RNA Viruses. Cell 2020; 183:1930-1945.e23. [PMID: 33188777 PMCID: PMC7664544 DOI: 10.1016/j.cell.2020.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/14/2020] [Accepted: 10/11/2020] [Indexed: 01/09/2023]
Abstract
RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.
Collapse
Affiliation(s)
- Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Huib H Rabouw
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Lucas J M Bruurs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Tonja Pavlovič
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands.
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
66
|
Pascual R, Segura-Morales C, Omerzu M, Bellora N, Belloc E, Castellazzi CL, Reina O, Eyras E, Maurice MM, Millanes-Romero A, Méndez R. mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4. RNA (NEW YORK, N.Y.) 2020; 27:rna.077552.120. [PMID: 33323527 PMCID: PMC7901846 DOI: 10.1261/rna.077552.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression. CPEB1 mediates mRNA localization to the meiotic spindle, which is required to ensure proper chromosome segregation. Temporal translational regulation also takes place in mitosis, where a large repertoire of transcripts are activated or repressed in specific cell cycle phases. However, whether control of localized translation at the spindle is required for mitosis is unclear, as mitotic and acentriolar-meiotic spindles are functionally and structurally different. Furthermore, the large differences in scale-ratio between cell volume and spindle size in oocytes compared to somatic mitotic cells may generate distinct requirements for gene expression compartmentalization in meiosis and mitosis. Here we show that mitotic spindles contain CPE-localized mRNAs and translating ribosomes. Moreover, CPEB1 and CPEB4 localize in the spindles and they may function sequentially in promoting mitotic stage transitions and correct chromosome segregation. Thus, CPEB1 and CPEB4 bind to specific spindle-associated transcripts controlling the expression and/or localization of their encoded factors that, respectively, drive metaphase and anaphase/cytokinesis.
Collapse
Affiliation(s)
- Rosa Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Carolina Segura-Morales
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Manja Omerzu
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue - CONICET
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Chiara Lara Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht
| | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology;
| |
Collapse
|
67
|
Panicucci G, Iacopino S, De Meo E, Perata P, Weits DA. An Improved HRPE-Based Transcriptional Output Reporter to Detect Hypoxia and Anoxia in Plant Tissue. BIOSENSORS-BASEL 2020; 10:bios10120197. [PMID: 33287141 PMCID: PMC7761731 DOI: 10.3390/bios10120197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023]
Abstract
Oxygen levels in plant tissues may vary, depending on metabolism, diffusion barriers, and environmental availability. Current techniques to assess the oxic status of plant cells rely primarily on invasive microoptodes or Clark-type electrodes, which are not optimally suited for experiments that require high spatial and temporal resolution. In this case, a genetically encoded oxygen biosensor is required instead. This article reports the design, test, and optimization of a hypoxia-signaling reporter, based on five-time repeated hypoxia-responsive promoter elements (HRPE) driving the expression of different reporter proteins. Specifically, this study aimed to improve its performance as a reporter of hypoxic conditions by testing the effect of different untranslated regions (UTRs) at the 5′ end of the reporter coding sequence. Next, we characterized an optimized version of the HRPE promoter (HRPE-Ω) in terms of hypoxia sensitivity and time responsiveness. We also observed that severe oxygen deficiency counteracted the reporter activity due to inhibition of GFP maturation, which requires molecular oxygen. To overcome this limitation, we therefore employed an oxygen-independent UnaG fluorescent protein-coupled to an O2-dependent mCherry fluorophore under the control of the optimized HRPE-Ω promoter. Remarkably, this sensor, provided a different mCherry/UnaG ratiometric output depending on the externally imposed oxygen concentration, providing a solution to distinguish between different degrees of tissue hypoxia. Moreover, a ubiquitously expressed UnaG-mCherry fusion could be used to image oxygen concentrations directly, albeit at a narrow range. The luminescent and fluorescent hypoxia-reporters described here can readily be used to conduct studies that involve anaerobiosis in plants.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
| | - Sergio Iacopino
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Elisa De Meo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | | - Daan A. Weits
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-881913
| |
Collapse
|
68
|
Waldron A, Yajima M. Localized translation on the mitotic apparatus: A history and perspective. Dev Biol 2020; 468:55-58. [PMID: 32979335 DOI: 10.1016/j.ydbio.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Localized translation is a proposed biological event that allows mRNA to be translated on site, providing an additional level of protein regulation within a cell. Examples of localized translation have been found or proposed in a variety of cellular contexts from neurons to cancer cells and implicated in both normal development and disease for over a half century. For example, mRNA translation on the mitotic apparatus (MA) was initially hypothesized in the 1950-60s. However, its proof of existence, biological significance and mechanistic details have remained sparse and it is still unclear how well conserved this mechanism may be among different cell types or organisms. In this review, we provide a brief historic summary of translation on the MA and discuss how current and future work may help us understand this biological process that provides a subcellular level of regulation in protein synthesis within a cell.
Collapse
Affiliation(s)
- Ashley Waldron
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA.
| |
Collapse
|
69
|
An S, Kwon OS, Yu J, Jang SK. A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cell Mol Life Sci 2020; 77:4693-4708. [PMID: 32030451 PMCID: PMC7599166 DOI: 10.1007/s00018-019-03436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
During mitosis, translation of most mRNAs is strongly repressed; none of the several explanatory hypotheses suggested can fully explain the molecular basis of this phenomenon. Here we report that cyclin-dependent CDK11/p58-a serine/threonine kinase abundantly expressed during M phase-represses overall translation by phosphorylating a subunit (eIF3F) of the translation factor eIF3 complex that is essential for translation initiation of most mRNAs. Ectopic expression of CDK11/p58 strongly repressed cap-dependent translation, and knockdown of CDK11/p58 nullified the translational repression during M phase. We identified the phosphorylation sites in eIF3F responsible for M phase-specific translational repression by CDK11/p58. Alanine substitutions of CDK11/p58 target sites in eIF3F nullified its effects on cell cycle-dependent translational regulation. The mechanism of translational regulation by the M phase-specific kinase, CDK11/p58, has deep evolutionary roots considering the conservation of CDK11 and its target sites on eIF3F from C. elegans to humans.
Collapse
Affiliation(s)
- Sihyeon An
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Oh Sung Kwon
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jinbae Yu
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
70
|
Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, Doran B, Ghram M, Bouthillette M, Lecuyer E, DesGroseillers L. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle. J Cell Sci 2020; 133:jcs247155. [PMID: 32576666 DOI: 10.1242/jcs.247155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.
Collapse
Affiliation(s)
- Sami Hassine
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Louis Philip Benoit Bouvrette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Bellastrid Doran
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mathieu Bouthillette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Eric Lecuyer
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
71
|
Ruijtenberg S, Sonneveld S, Cui TJ, Logister I, de Steenwinkel D, Xiao Y, MacRae IJ, Joo C, Tanenbaum ME. mRNA structural dynamics shape Argonaute-target interactions. Nat Struct Mol Biol 2020; 27:790-801. [PMID: 32661421 DOI: 10.1038/s41594-020-0461-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.
Collapse
Affiliation(s)
- Suzan Ruijtenberg
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.,Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, the Netherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tao Ju Cui
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, Delft, the Netherlands
| | - Ive Logister
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dion de Steenwinkel
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Chirlmin Joo
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, Delft, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
72
|
Kalous J, Jansová D, Šušor A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells 2020; 9:cells9071568. [PMID: 32605021 PMCID: PMC7408968 DOI: 10.3390/cells9071568] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis.
Collapse
|
73
|
Koltun B, Ironi S, Gershoni-Emek N, Barrera I, Hleihil M, Nanguneri S, Sasmal R, Agasti SS, Nair D, Rosenblum K. Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Res 2020; 48:e32. [PMID: 31974573 PMCID: PMC7102941 DOI: 10.1093/nar/gkaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.
Collapse
Affiliation(s)
- Bella Koltun
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Sivan Ironi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Hleihil
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Ranjan Sasmal
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sarit S Agasti
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
74
|
Haneke K, Schott J, Lindner D, Hollensen AK, Damgaard CK, Mongis C, Knop M, Palm W, Ruggieri A, Stoecklin G. CDK1 couples proliferation with protein synthesis. J Cell Biol 2020; 219:e201906147. [PMID: 32040547 PMCID: PMC7054999 DOI: 10.1083/jcb.201906147] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Cell proliferation exerts a high demand on protein synthesis, yet the mechanisms coupling the two processes are not fully understood. A kinase and phosphatase screen for activators of translation, based on the formation of stress granules in human cells, revealed cell cycle-associated kinases as major candidates. CDK1 was identified as a positive regulator of global translation, and cell synchronization experiments showed that this is an extramitotic function of CDK1. Different pathways including eIF2α, 4EBP, and S6K1 signaling contribute to controlling global translation downstream of CDK1. Moreover, Ribo-Seq analysis uncovered that CDK1 exerts a particularly strong effect on the translation of 5'TOP mRNAs, which includes mRNAs encoding ribosomal proteins and several translation factors. This effect requires the 5'TOP mRNA-binding protein LARP1, concurrent to our finding that LARP1 phosphorylation is strongly dependent on CDK1. Thus, CDK1 provides a direct means to couple cell proliferation with biosynthesis of the translation machinery and the rate of protein synthesis.
Collapse
Affiliation(s)
- Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne Kruse Hollensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Cyril Mongis
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, University of Heidelberg, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
75
|
Yang F, Wang W, Cetinbas M, Sadreyev RI, Blower MD. Genome-wide analysis identifies cis-acting elements regulating mRNA polyadenylation and translation during vertebrate oocyte maturation. RNA (NEW YORK, N.Y.) 2020; 26:324-344. [PMID: 31896558 PMCID: PMC7025505 DOI: 10.1261/rna.073247.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
Most cells change patterns of gene expression through transcriptional regulation. In contrast, oocytes are transcriptionally silent and regulate mRNA poly(A) tail length to control protein production. However, the genome-wide relationship of poly(A) tail changes to mRNA translation during vertebrate oocyte maturation is not known. We used Tail-seq and polyribosome analysis to measure poly(A) tail and translational changes during oocyte maturation in Xenopus laevis We identified large-scale poly(A) and translational changes during oocyte maturation, with poly(A) tail length changes preceding translational changes. Proteins important for completion of the meiotic divisions and early development exhibited increased polyadenylation and translation during oocyte maturation. A family of U-rich sequence elements was enriched near the polyadenylation signal of polyadenylated and translationally activated mRNAs. We propose that changes in mRNA polyadenylation are a conserved mechanism regulating protein expression during vertebrate oocyte maturation and that these changes are controlled by a spatial code of cis-acting sequence elements.
Collapse
Affiliation(s)
- Fei Yang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
76
|
Quantification of mRNA translation in live cells using single-molecule imaging. Nat Protoc 2020; 15:1371-1398. [PMID: 32076351 DOI: 10.1038/s41596-019-0284-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022]
Abstract
mRNA translation is a key step in gene expression. Proper regulation of translation efficiency ensures correct protein expression levels in the cell, which is essential to cell function. Different methods used to study translational control in the cell rely on population-based assays that do not provide information about translational heterogeneity between cells or between mRNAs of the same gene within a cell, and generally provide only a snapshot of translation. To study translational heterogeneity and measure translation dynamics, we have developed microscopy-based methods that enable visualization of translation of single mRNAs in live cells. These methods consist of a set of genetic tools, an imaging-based approach and sophisticated computational tools. Using the translation imaging method, one can investigate many new aspects of translation in single living cells, such as translation start-site selection, 3'-UTR (untranslated region) translation and translation-coupled mRNA decay. Here, we describe in detail how to perform such experiments, including reporter design, cell line generation, image acquisition and analysis. This protocol also provides a detailed description of the image analysis pipeline and computational modeling that will enable non-experts to correctly interpret fluorescence measurements. The protocol takes 2-4 d to complete (after cell lines expressing all required transgenes have been generated).
Collapse
|
77
|
Mitchell DC, Menon A, Garner AL. Cyclin-dependent kinase 4 inhibits the translational repressor 4E-BP1 to promote cap-dependent translation during mitosis-G1 transition. FEBS Lett 2019; 594:1307-1318. [PMID: 31853978 DOI: 10.1002/1873-3468.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
78
|
An T, Liu Y, Gourguechon S, Wang CC, Li Z. CDK Phosphorylation of Translation Initiation Factors Couples Protein Translation with Cell-Cycle Transition. Cell Rep 2019; 25:3204-3214.e5. [PMID: 30540951 PMCID: PMC6350937 DOI: 10.1016/j.celrep.2018.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Protein translation in eukaryotes is cell-cycle dependent, with translation rates more robust in G1 phase of the cell cycle than in mitosis. However, whether the fundamental cell-cycle control machinery directly activates protein translation during the G1/S cell-cycle transition remains unknown. Using the early divergent eukaryote Trypanosoma brucei as a model organism, we report that the G1 cyclin-dependent kinase CRK1 phosphorylates two translation initiation factors, eIF4E4 and PABP1, to promote the G1/S cell-cycle transition and global protein translation. Phosphorylation of eIF4E4 by CRK1 enhances binding to the m7G cap structure and interaction with eIF4E4 and eIF4G3, and phosphorylation of PABP1 by CRK1 promotes association with the poly(A) sequence, self-interaction, and interaction with eIF4E4. These findings demonstrate that cyclin-dependent kinase-mediated regulation of translation initiation factors couples global protein translation with the G1/S cell-cycle transition. Protein translation is cell-cycle dependent, with more robust translation rates in the G1 phase of the cell cycle than in mitosis. An et al. show that the G1 cyclin-dependent kinase CRK1 phosphorylates translation initiation factors eIF4E4 and PABP1 to couple protein translation initiation with the G1/S cell-cycle transition.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ching C Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
79
|
Arake de Tacca LM, Pulos-Holmes MC, Floor SN, Cate JHD. PTBP1 mRNA isoforms and regulation of their translation. RNA (NEW YORK, N.Y.) 2019; 25:1324-1336. [PMID: 31263002 PMCID: PMC6800477 DOI: 10.1261/rna.070193.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of posttranscriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remains incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells and identified alternative 5' and 3' untranslated regions (5'-UTRs, 3'-UTRs), as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.
Collapse
Affiliation(s)
- Luisa M Arake de Tacca
- Graduate Study in Comparative Biochemistry, University of California, Berkeley, California 94720, USA
| | - Mia C Pulos-Holmes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Jamie H D Cate
- Graduate Study in Comparative Biochemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences 3 (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
80
|
Boye E, Grallert B. eIF2α phosphorylation and the regulation of translation. Curr Genet 2019; 66:293-297. [PMID: 31485739 DOI: 10.1007/s00294-019-01026-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022]
Abstract
We discuss novel insight into the role and consequences of the phosphorylation of the translation initiation factor eIF2α in the context of stress responses and cell-cycle regulation. eIF2α is centrally located to regulate translation and its phosphorylation in response to different environmental challenges is one of the best characterized stress-response pathways. In addition to its role in stress management, eIF2α phosphorylation is also linked to cell-cycle progression and memory consolidation in the nervous system. The best known consequences of eIF2α phosphorylation are downregulation of global translation and stimulation of translation of some mRNAs. However, recent evidence shows that (i) eIF2α phosphorylation is not always required for the downregulation of global translation after exposure to stress and (ii) eIF2α phosphorylation does not necessarily lead to the downregulation of global translation. These results suggest that the textbook view of eIF2α phosphorylation needs to be revised and that there must be additional regulatory mechanisms at play.
Collapse
Affiliation(s)
- Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
81
|
Prozzillo Y, Delle Monache F, Ferreri D, Cuticone S, Dimitri P, Messina G. The True Story of Yeti, the "Abominable" Heterochromatic Gene of Drosophila melanogaster. Front Physiol 2019; 10:1093. [PMID: 31507454 PMCID: PMC6713933 DOI: 10.3389/fphys.2019.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Yeti gene (CG40218) was originally identified by recessive lethal mutation and subsequently mapped to the deep pericentromeric heterochromatin of chromosome 2. Functional studies have shown that Yeti encodes a 241 amino acid protein called YETI belonging to the evolutionarily conserved family of Bucentaur (BCNT) proteins and exhibiting a widespread distribution in animals and plants. Later studies have demonstrated that YETI protein: (i) is able to bind both subunits of the microtubule-based motor kinesin-I; (ii) is required for proper chromosome organization in both mitosis and meiosis divisions; and more recently (iii) is a new subunit of dTip60 chromatin remodeling complex. To date, other functions of YETI counterparts in chicken (CENtromere Protein 29, CENP-29), mouse (Cranio Protein 27, CP27), zebrafish and human (CranioFacial Development Protein 1, CFDP1) have been reported in literature, but the fully understanding of the multifaceted molecular function of this protein family remains still unclear. In this review we comprehensively highlight recent work and provide a more extensive hypothesis suggesting a broader range of YETI protein functions in different cellular processes.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Francesca Delle Monache
- "Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Diego Ferreri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Stefano Cuticone
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Patrizio Dimitri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Messina
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
82
|
Michel AM, Kiniry SJ, O'Connor PBF, Mullan JP, Baranov PV. GWIPS-viz: 2018 update. Nucleic Acids Res 2019; 46:D823-D830. [PMID: 28977460 PMCID: PMC5753223 DOI: 10.1093/nar/gkx790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
The GWIPS-viz browser (http://gwips.ucc.ie/) is an on-line genome browser which is tailored for exploring ribosome profiling (Ribo-seq) data. Since its publication in 2014, GWIPS-viz provides Ribo-seq data for an additional 14 genomes bringing the current total to 23. The integration of new Ribo-seq data has been automated thereby increasing the number of available tracks to 1792, a 10-fold increase in the last three years. The increase is particularly substantial for data derived from human sources. Following user requests, we added the functionality to download these tracks in bigWig format. We also incorporated new types of data (e.g. TCP-seq) as well as auxiliary tracks from other sources that help with the interpretation of Ribo-seq data. Improvements in the visualization of the data have been carried out particularly for bacterial genomes where the Ribo-seq data are now shown in a strand specific manner. For higher eukaryotic datasets, we provide characteristics of individual datasets using the RUST program which includes the triplet periodicity, sequencing biases and relative inferred A-site dwell times. This information can be used for assessing the quality of Ribo-seq datasets. To improve the power of the signal, we aggregate Ribo-seq data from several studies into Global aggregate tracks for each genome.
Collapse
Affiliation(s)
- Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - James P Mullan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
83
|
Hoek TA, Khuperkar D, Lindeboom RGH, Sonneveld S, Verhagen BMP, Boersma S, Vermeulen M, Tanenbaum ME. Single-Molecule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay. Mol Cell 2019; 75:324-339.e11. [PMID: 31155380 PMCID: PMC6675935 DOI: 10.1016/j.molcel.2019.05.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/15/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.
Collapse
Affiliation(s)
- Tim A Hoek
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Deepak Khuperkar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, the Netherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bram M P Verhagen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
84
|
Sun R, Cheng E, Velásquez C, Chang Y, Moore PS. Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E). J Biol Chem 2019; 294:11840-11852. [PMID: 31201269 PMCID: PMC6682726 DOI: 10.1074/jbc.ra119.008512] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E)–binding protein 1 (4E-BP1) inhibits cap-dependent translation in eukaryotes by competing with eIF4G for an interaction with eIF4E. Phosphorylation at Ser-83 of 4E-BP1 occurs during mitosis through the activity of cyclin-dependent kinase 1 (CDK1)/cyclin B rather than through canonical mTOR kinase activity. Here, we investigated the interaction of eIF4E with 4E-BP1 or eIF4G during interphase and mitosis. We observed that 4E-BP1 and eIF4G bind eIF4E at similar levels during interphase and mitosis. The most highly phosphorylated mitotic 4E-BP1 isoform (δ) did not interact with eIF4E, whereas a distinct 4E-BP1 phospho-isoform, EB-γ, phosphorylated at Thr-70, Ser-83, and Ser-101, bound to eIF4E during mitosis. Two-dimensional gel electrophoretic analysis corroborated the identity of the phosphorylation marks on the eIF4E-bound 4E-BP1 isoforms and uncovered a population of phosphorylated 4E-BP1 molecules lacking Thr-37/Thr-46–priming phosphorylation. Moreover, proximity ligation assays for phospho-4E-BP1 and eIF4E revealed different in situ interactions during interphase and mitosis. The eIF4E:eIF4G interaction was not inhibited but rather increased in mitotic cells, consistent with active translation initiation during mitosis. Phosphodefective substitution of 4E-BP1 at Ser-83 did not change global translation or individual mRNA translation profiles as measured by single-cell nascent protein synthesis and eIF4G RNA immunoprecipitation sequencing. Mitotic 5′-terminal oligopyrimidine RNA translation was active and, unlike interphase translation, resistant to mTOR inhibition. Our findings reveal the phosphorylation profiles of 4E-BP1 isoforms and their interactions with eIF4E throughout the cell cycle and indicate that 4E-BP1 does not specifically inhibit translation initiation during mitosis.
Collapse
Affiliation(s)
- Rui Sun
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.,Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Erdong Cheng
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.,Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Celestino Velásquez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.,Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Yuan Chang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213 .,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Patrick S Moore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 .,Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
85
|
Poornima G, Mythili R, Nag P, Parbin S, Verma PK, Hussain T, Rajyaguru PI. RGG-motif self-association regulates eIF4G-binding translation repressor protein Scd6. RNA Biol 2019; 16:1215-1227. [PMID: 31157589 PMCID: PMC6693564 DOI: 10.1080/15476286.2019.1621623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Regulation of mRNA translation plays a key role in the control of gene expression. Scd6, a conserved RGG-motif containing protein represses translation by binding to translation initiation factor eIF4G1. Here we report that Scd6 binds itself in RGG-motif dependent manner and self-association regulates its repression activity. Scd6 self-interaction competes with eIF4G1 binding and methylation of Scd6 RGG-motif by Hmt1 negatively affects self-association. Results pertaining to Sbp1 indicate that self-association could be a general feature of RGG-motif containing translation repressor proteins. Taken together, our study reveals a mechanism of regulation of eIF4G-binding RGG-motif translation repressors.
Collapse
Affiliation(s)
| | - Ravishankar Mythili
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India.,b Department of Biology, University of Western Ontario , London , Canada
| | - Priyabrata Nag
- c Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Sabnam Parbin
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India
| | - Praveen Kumar Verma
- a Department of Biochemistry, Indian Institute of Science , Bangalore , India
| | - Tanweer Hussain
- c Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
86
|
Boersma S, Khuperkar D, Verhagen BMP, Sonneveld S, Grimm JB, Lavis LD, Tanenbaum ME. Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding. Cell 2019; 178:458-472.e19. [PMID: 31178119 PMCID: PMC6630898 DOI: 10.1016/j.cell.2019.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics. Development of MoonTag, a fluorescence labeling system to visualize translation Combining MoonTag and SunTag enables visualization of translational heterogeneity mRNAs from a single gene vary in initiation frequency at different start sites Ribosomes take many different “paths” along the 5′ UTR of a single mRNA molecule
Collapse
Affiliation(s)
- Sanne Boersma
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Deepak Khuperkar
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bram M P Verhagen
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
87
|
Miettinen TP, Kang JH, Yang LF, Manalis SR. Mammalian cell growth dynamics in mitosis. eLife 2019; 8:44700. [PMID: 31063131 PMCID: PMC6534395 DOI: 10.7554/elife.44700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The extent and dynamics of animal cell biomass accumulation during mitosis are unknown, primarily because growth has not been quantified with sufficient precision and temporal resolution. Using the suspended microchannel resonator and protein synthesis assays, we quantify mass accumulation and translation rates between mitotic stages on a single-cell level. For various animal cell types, growth rates in prophase are commensurate with or higher than interphase growth rates. Growth is only stopped as cells approach metaphase-to-anaphase transition and growth resumes in late cytokinesis. Mitotic arrests stop growth independently of arresting mechanism. For mouse lymphoblast cells, growth in prophase is promoted by CDK1 through increased phosphorylation of 4E-BP1 and cap-dependent protein synthesis. Inhibition of CDK1-driven mitotic translation reduces daughter cell growth. Overall, our measurements counter the traditional dogma that growth during mitosis is negligible and provide insight into antimitotic cancer chemotherapies.
Collapse
Affiliation(s)
- Teemu P Miettinen
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Lucy F Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
88
|
Ingolia NT, Hussmann JA, Weissman JS. Ribosome Profiling: Global Views of Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032698. [PMID: 30037969 DOI: 10.1101/cshperspect.a032698] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The translation of messenger RNA (mRNA) into protein and the folding of the resulting protein into an active form are prerequisites for virtually every cellular process and represent the single largest investment of energy by cells. Ribosome profiling-based approaches have revolutionized our ability to monitor every step of protein synthesis in vivo, allowing one to measure the rate of protein synthesis across the proteome, annotate the protein coding capacity of genomes, monitor localized protein synthesis, and explore cotranslational folding and targeting. The rich and quantitative nature of ribosome profiling data provides an unprecedented opportunity to explore and model complex cellular processes. New analytical techniques and improved experimental protocols will provide a deeper understanding of the factors controlling translation speed and its impact on protein function and cell physiology as well as the role of ribosomal RNA and mRNA modifications in regulating translation.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| |
Collapse
|
89
|
Owen N, Moosajee M. RNA-sequencing in ophthalmology research: considerations for experimental design and analysis. Ther Adv Ophthalmol 2019; 11:2515841419835460. [PMID: 30911735 PMCID: PMC6421592 DOI: 10.1177/2515841419835460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
High-throughput, massively parallel sequence analysis has revolutionized the way that researchers design and execute scientific investigations. Vast amounts of sequence data can be generated in short periods of time. Regarding ophthalmology and vision research, extensive interrogation of patient samples for underlying causative DNA mutations has resulted in the discovery of many new genes relevant to eye disease. However, such analysis remains functionally limited. RNA-sequencing accurately snapshots thousands of genes, capturing many subtypes of RNA molecules, and has become the gold standard for transcriptome gene expression quantification. RNA-sequencing has the potential to advance our understanding of eye development and disease; it can reveal new candidates to improve our molecular diagnosis rates and highlight therapeutic targets for intervention. But with a wide range of applications, the design of such experiments can be problematic, no single optimal pipeline exists, and therefore, several considerations must be undertaken for optimal study design. We review the key steps involved in RNA-sequencing experimental design and the downstream bioinformatic pipelines used for differential gene expression. We provide guidance on the application of RNA-sequencing to ophthalmology and sources of open-access eye-related data sets.
Collapse
Affiliation(s)
- Nicholas Owen
- Development, Ageing and Disease Theme, UCL Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
90
|
Kimmey SC, Borges L, Baskar R, Bendall SC. Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells. Nat Commun 2019; 10:1185. [PMID: 30862852 PMCID: PMC6414513 DOI: 10.1038/s41467-019-09128-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 12/02/2022] Open
Abstract
Cellular products derived from the activity of DNA, RNA, and protein synthesis collectively control cell identity and function. Yet there is little information on how these three biosynthesis activities are coordinated during transient and sparse cellular processes, such as activation and differentiation. Here, we describe Simultaneous Overview of tri-Molecule Biosynthesis (SOM3B), a molecular labeling and simultaneous detection strategy to quantify DNA, RNA, and protein synthesis in individual cells. Comprehensive interrogation of biosynthesis activities during transient cell states, such as progression through cell cycle or cellular differentiation, is achieved by partnering SOM3B with parallel quantification of select biomolecules with conjugated antibody reagents. Here, we investigate differential de novo DNA, RNA, and protein synthesis dynamics in transformed human cell lines, primary activated human immune cells, and across the healthy human hematopoietic continuum, all at a single-cell resolution.
Collapse
Affiliation(s)
- Samuel C Kimmey
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Luciene Borges
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reema Baskar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cancer Biology PhD Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
91
|
Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina SK, Patel N, Savage NM, Sharma A, Kaufman RJ, Li H, Singh N. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun 2019; 10:1084. [PMID: 30842412 PMCID: PMC6403283 DOI: 10.1038/s41467-019-08908-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 02/03/2023] Open
Abstract
The IRE1α/XBP1 branch of unfolded protein response (UPR) pathway has a critical function in endoplasmic reticulum (ER) expansion in plasma cells via unknown mechanisms; interestingly, another UPR branch, PERK, is suppressed during plasma cell development. Here we show that Ufbp1, a target and cofactor of the ufmylation pathway, promotes plasma cell development by suppressing the activation of PERK. By contrast, the IRE1α/XBP1 axis upregulates the expression of Ufbp1 and ufmylation pathway genes in plasma cells, while Ufbp1 deficiency impairs ER expansion in plasma cells and retards immunoglobulin production. Structure and function analysis suggests that lysine 267 of Ufbp1, the main lysine in Ufbp1 that undergoes ufmylation, is dispensable for the development of plasmablasts, but is required for immunoglobulin production and stimulation of ER expansion in IRE1α-deficient plasmablasts. Thus, Ufbp1 distinctly regulates different branches of UPR pathway to promote plasma cell development and function.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Sathish Sivaprakasam
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu Province, China
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA, 30912, USA
| | - Natasha M Savage
- Department of Pathology, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92307, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
92
|
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhães J, Larbi A. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep 2019; 26:1627-1640.e7. [PMID: 30726743 PMCID: PMC6367568 DOI: 10.1016/j.celrep.2019.01.041] [Citation(s) in RCA: 583] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
The molecular characterization of immune subsets is important for designing effective strategies to understand and treat diseases. We characterized 29 immune cell types within the peripheral blood mononuclear cell (PBMC) fraction of healthy donors using RNA-seq (RNA sequencing) and flow cytometry. Our dataset was used, first, to identify sets of genes that are specific, are co-expressed, and have housekeeping roles across the 29 cell types. Then, we examined differences in mRNA heterogeneity and mRNA abundance revealing cell type specificity. Last, we performed absolute deconvolution on a suitable set of immune cell types using transcriptomics signatures normalized by mRNA abundance. Absolute deconvolution is ready to use for PBMC transcriptomic data using our Shiny app (https://github.com/giannimonaco/ABIS). We benchmarked different deconvolution and normalization methods and validated the resources in independent cohorts. Our work has research, clinical, and diagnostic value by making it possible to effectively associate observations in bulk transcriptomics data to specific immune subsets.
Collapse
Affiliation(s)
- Gianni Monaco
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK; Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland.
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Seri Mustafah
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | | | | | | | - Michele Ceccarelli
- BIOGEM Research Center, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK.
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia; Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
93
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
94
|
Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cell 2019; 172:910-923.e16. [PMID: 29474919 DOI: 10.1016/j.cell.2018.01.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
Abstract
To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced.
Collapse
|
95
|
Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, Mirea DM, Ramakrishna M, Harvey RF, Dezi V, Thomas GH, Willis AE, Lilley KS. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat Biotechnol 2019; 37:169-178. [PMID: 30607034 DOI: 10.1038/s41587-018-0001-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | - Mie Monti
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Dan-Mircea Mirea
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
96
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
97
|
Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells. Cell Syst 2018; 7:398-411.e6. [DOI: 10.1016/j.cels.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/28/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
|
98
|
Imami K, Milek M, Bogdanow B, Yasuda T, Kastelic N, Zauber H, Ishihama Y, Landthaler M, Selbach M. Phosphorylation of the Ribosomal Protein RPL12/uL11 Affects Translation during Mitosis. Mol Cell 2018; 72:84-98.e9. [PMID: 30220558 DOI: 10.1016/j.molcel.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/09/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation.
Collapse
Affiliation(s)
- Koshi Imami
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan.
| | - Miha Milek
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Boris Bogdanow
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Tomoharu Yasuda
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Nicolai Kastelic
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
99
|
Stonyte V, Boye E, Grallert B. Regulation of global translation during the cell cycle. J Cell Sci 2018; 131:jcs.220327. [PMID: 30072440 DOI: 10.1242/jcs.220327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
It is generally accepted that global translation varies during the cell cycle and is low during mitosis. However, addressing this issue is challenging because it involves cell synchronization, which evokes stress responses that, in turn, affect translation rates. Here, we have used two approaches to measure global translation rates in different cell-cycle phases. First, synchrony in different cell-cycle phases was obtained involving the same stress, by using temperature-sensitive mutants. Second, translation and DNA content were measured by flow cytometry in exponentially growing, single cells. We found no major variation in global translation rates through the cell cycle in either fission yeast or mammalian cells. We also measured phosphorylation of eukaryotic initiation factor-2α, an event that is thought to downregulate global translation in mitosis. In contrast with the prevailing view, eIF2α phosphorylation correlated poorly with downregulation of global translation and ectopically induced eIF2α phosphorylation inhibited global translation only at high levels.
Collapse
Affiliation(s)
- Vilte Stonyte
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| |
Collapse
|
100
|
Alber AB, Paquet ER, Biserni M, Naef F, Suter DM. Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates. Mol Cell 2018; 71:1079-1091.e9. [DOI: 10.1016/j.molcel.2018.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|