51
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
52
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
53
|
Patrick R, Janbandhu V, Tallapragada V, Tan SSM, McKinna EE, Contreras O, Ghazanfar S, Humphreys DT, Murray NJ, Tran YTH, Hume RD, Chong JJH, Harvey RP. Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies. SCIENCE ADVANCES 2024; 10:eadk8501. [PMID: 38905342 PMCID: PMC11192082 DOI: 10.1126/sciadv.adk8501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analytical pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomyopathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profibrotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.
Collapse
Affiliation(s)
- Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Shannon S. M. Tan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Emily E. McKinna
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Osvaldo Contreras
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Shila Ghazanfar
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Nicholas J. Murray
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yen T. H. Tran
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Robert D. Hume
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- School of Medical Science, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Heart Failure and Diseases of the Aorta, The Baird Institute, Sydney, NSW 2042, Australia
| | - James J. H. Chong
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
54
|
Jou V, Peña SM, Lehoczky JA. Regeneration-specific promoter switching facilitates Mest expression in the mouse digit tip to modulate neutrophil response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598713. [PMID: 38915675 PMCID: PMC11195169 DOI: 10.1101/2024.06.12.598713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sophia M. Peña
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
55
|
Janbandhu V, Tallapragada V, Li JV, Shewale B, Ghazanfar S, Patrick R, Cox CD, Harvey RP. Novel Mouse Model for Selective Tagging, Purification, and Manipulation of Cardiac Myofibroblasts. Circulation 2024; 149:1931-1934. [PMID: 38857329 DOI: 10.1161/circulationaha.123.067754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
- School of Clinical Medicine (V.J., J.V.L., R.P.H.), UNSW Sydney, Kensington, NSW 2052, Australia
| | - Vikram Tallapragada
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
- School of Clinical Medicine (V.J., J.V.L., R.P.H.), UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bharti Shewale
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
| | - Shila Ghazanfar
- School of Mathematics and Statistics, Charles Perkins Centre, and Sydney Precision Data Science Centre, University of Sydney, Camperdown 2006, Australia (S.G.)
| | - Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, QLD, Australia (R.P.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
- School of Biomedical Sciences (C.D.C), UNSW Sydney, Kensington, NSW 2052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia (V.J., V.T., J.V.L., B.S., C.D.C., R.P.H.)
- School of Clinical Medicine (V.J., J.V.L., R.P.H.), UNSW Sydney, Kensington, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia (R.P.H.)
| |
Collapse
|
56
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
57
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
58
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
59
|
Guo H, Li Z, Xiao B, Huang R. M2 macrophage-derived exosomes promote angiogenesis and improve cardiac function after myocardial infarction. Biol Direct 2024; 19:43. [PMID: 38840223 PMCID: PMC11155164 DOI: 10.1186/s13062-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. The intercellular communication in post-infarction angiogenesis remains unclear. METHODS In this study, we explored the role and mechanism of action of M2 macrophage-derived exosomes (M2-exos) in angiogenesis after MI. M2-exos were harvested and injected intramyocardially at the onset of MI. Two distinct endothelial cells (ECs) were cultured with M2-exos to explore the direct effects on angiogenesis. RESULTS We showed that M2-exos improved cardiac function, reduced infarct size, and enhanced angiogenesis after MI. Moreover, M2-exos promoted angiogenesis in vitro; the molecules loaded in the vesicles were responsible for its proangiogenic effects. We further validated that higher abundance of miR-132-3p in M2-exos, which recapitulate their functions, was required for the cardioprotective effects exerted by M2-exos. Mechanistically, miR-132-3p carried by M2-exos down-regulate the expression of THBS1 through direct binding to its 3´UTR and the proangiogenic effects of miR-132-3p were largely reversed by THBS1 overexpression. CONCLUSION Our findings demonstrate that M2-exos promote angiogenesis after MI by transporting miR-132-3p to ECs, and by binding to THBS1 mRNA directly and negatively regulating its expression. These findings highlight the role of M2-exos in cardiac repair and provide novel mechanistic understanding of intercellular communication in post-infarction angiogenesis.
Collapse
Affiliation(s)
- Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zeya Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
| | - Bin Xiao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Beijing, 100050, P. R. China.
| |
Collapse
|
60
|
van Blokland IV, Oelen R, Groot HE, Benjamins JW, Pekayvaz K, Losert C, Knottenberg V, Heinig M, Nicolai L, Stark K, van der Harst P, Franke L, van der Wijst MG. Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004374. [PMID: 38752343 PMCID: PMC11188632 DOI: 10.1161/circgen.123.004374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.
Collapse
Affiliation(s)
- Irene V. van Blokland
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Hilde E. Groot
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
| | - Viktoria Knottenberg
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Matthias Heinig
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
- Department of Informatics, Ludwig-Maximilians Universität München, Munich, Germany (M.H.)
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (P.v.d.H.)
| | - Lude Franke
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G.P. van der Wijst
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
61
|
Aguado-Alvaro LP, Garitano N, Pelacho B. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis. Int J Mol Sci 2024; 25:6004. [PMID: 38892192 PMCID: PMC11172550 DOI: 10.3390/ijms25116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
62
|
Ding H, Tong J, Lin H, Ping F, Yao T, Ye Z, Chu J, Yuan D, Wang K, Liu X, Chen F. KLF4 inhibited the senescence-associated secretory phenotype in ox-LDL-treated endothelial cells via PDGFRA/NAMPT/mitochondrial ROS. Aging (Albany NY) 2024; 16:8070-8085. [PMID: 38728249 PMCID: PMC11132013 DOI: 10.18632/aging.205805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-β-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-β-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Tong
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Lin
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fan Ping
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tongqing Yao
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zi Ye
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiapeng Chu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Deqiang Yuan
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangwei Wang
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuebo Liu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fei Chen
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
63
|
Zhang J, Sun D, Liao Y, Cao B, Gao R, Zeng Z, Zheng C, Wei Y, Guo X. Time-Released Black Phosphorus Hydrogel Accelerates Myocardial Repairing through Antioxidant and Motivates Macrophage Polarization Properties. Biomater Res 2024; 28:0029. [PMID: 38720795 PMCID: PMC11077294 DOI: 10.34133/bmr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The improvement of the myocardial microenvironment largely determines the prognosis of myocardial infarction (MI). After MI, early removal of excessive reactive oxygen species (ROS) in the microenvironment can alleviate oxidative stress injury and promote M2 phenotype polarization of macrophages, which is important for advocating myocardial repair. In this study, we combined traditional natural hydrogel materials chitosan (CS) and gelatin (Gel) to encapsulate polydopamine-modified black phosphorus nanosheets (BP@PDA). We designed an injectable composite gel (CS-Gel-BP@PDA) with a time-released ability to achieve in situ sustained-release BP@PDA in the area of MI. Utilizing the inflammation inhibition ability of CS-Gel itself and the high reactive activity of BP@PDA with ROS, continuous improvement of infarct microenvironment and myocardial repair were achieved. The studies in vivo revealed that, compared with the saline group, CS-Gel-BP@PDA group had alleviated myocardial fibrosis and infarct size and importantly improved cardiac function. Immunofluorescence results showed that the ROS level and inflammatory response in the microenvironment of the CS-Gel-BP@PDA group were decreased. In conclusion, our study demonstrated the time-released ability, antioxidative stress activity and macrophage polarization modulation of the novel composite hydrogel CS-Gel-BP@PDA, which provides inspiration for novel therapeutic modalities for MI.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingxin Cao
- Cardiac Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglin Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
64
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
65
|
Tang B, Vadgama A, Redmann B, Hong J. Charting the cellular landscape of pulmonary arterial hypertension through single-cell omics. Respir Res 2024; 25:192. [PMID: 38702687 PMCID: PMC11067161 DOI: 10.1186/s12931-024-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.
Collapse
Affiliation(s)
- Brian Tang
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Arjun Vadgama
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Bryce Redmann
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA.
| |
Collapse
|
66
|
Costa CRR, Chalgoumi R, Baker A, Guillou C, Yamaguti PM, Simancas Escorcia V, Abbad L, Amorin BR, de Lima CL, Cannaya V, Benassarou M, Berdal A, Chatziantoniou C, Cases O, Cosette P, Kozyraki R, Acevedo AC. Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis. Sci Rep 2024; 14:9497. [PMID: 38664418 PMCID: PMC11045870 DOI: 10.1038/s41598-024-59713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Collapse
Affiliation(s)
- Cláudio Rodrigues Rezende Costa
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
- Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil
| | - Rym Chalgoumi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Amina Baker
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Clément Guillou
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Paulo Marcio Yamaguti
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia
| | - Lilia Abbad
- MRS1155, INSERM, Sorbonne Université, 75020, Paris, France
| | - Bruna Rabelo Amorin
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France
| | | | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Pascal Cosette
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.
- Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France.
| | - Ana Carolina Acevedo
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
67
|
Picchio V, Gaetani R, Pagano F, Derevyanchuk Y, Pagliarosi O, Floris E, Cozzolino C, Bernava G, Bordin A, Rocha F, Pereira ARS, Ministro A, Pinto AT, De Falco E, Serino G, Massai D, Tamarat R, Pesce M, Santos SCR, Messina E, Chimenti I. Early Impairment of Paracrine and Phenotypic Features in Resident Cardiac Mesenchymal Stromal Cells after Thoracic Radiotherapy. Int J Mol Sci 2024; 25:2873. [PMID: 38474123 PMCID: PMC10932029 DOI: 10.3390/ijms25052873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Angio Cardio Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo, Italy;
| | - Yuriy Derevyanchuk
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Olivia Pagliarosi
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Giacomo Bernava
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (G.B.); (M.P.)
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Filipe Rocha
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Ana Rita Simões Pereira
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Augusto Ministro
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Ana Teresa Pinto
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (G.S.); (D.M.)
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (G.S.); (D.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Torino, Italy
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Maurizio Pesce
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (G.B.); (M.P.)
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Elisa Messina
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
68
|
Dewar MB, Ehsan F, Izumi A, Zhang H, Zhou YQ, Shah H, Langburt D, Suresh H, Wang T, Hacker A, Hinz B, Gillis J, Husain M, Heximer SP. Defining Transcriptomic Heterogeneity between Left and Right Ventricle-Derived Cardiac Fibroblasts. Cells 2024; 13:327. [PMID: 38391940 PMCID: PMC10887120 DOI: 10.3390/cells13040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments.
Collapse
Affiliation(s)
- Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Fahad Ehsan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Aliya Izumi
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomaterial & Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Haisam Shah
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dylan Langburt
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hamsini Suresh
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
69
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
70
|
Wu X, Zheng L, Reboll MR, Hyde LF, Mass E, Niessen HW, Kosanke M, Pich A, Giannitsis E, Tillmanns J, Bauersachs J, Heineke J, Wang Y, Korf-Klingebiel M, Polten F, Wollert KC. Cysteine-rich with EGF-like domains 2 (CRELD2) is an endoplasmic reticulum stress-inducible angiogenic growth factor promoting ischemic heart repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:186-202. [PMID: 39196188 PMCID: PMC11358006 DOI: 10.1038/s44161-023-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/07/2023] [Indexed: 08/29/2024]
Abstract
Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function. CRELD2 was abundantly expressed and secreted in the heart after MI in mice and patients. Creld2-deficient mice and wild-type mice treated with a CRELD2-neutralizing antibody showed impaired de novo microvessel formation in the infarct border zone and developed severe postinfarction heart failure. CRELD2 protein therapy, conversely, improved heart function after MI. Exposing human coronary artery endothelial cells to recombinant CRELD2 induced angiogenesis, associated with a distinct phosphoproteome signature. These findings identify CRELD2 as an angiogenic growth factor and unravel a link between endoplasmic reticulum stress and ischemic tissue repair.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | - Linqun Zheng
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiology, Shanghai General Hospital, Shanghai, China
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lillian F Hyde
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Hans W Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | | | - Jochen Tillmanns
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yong Wang
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Felix Polten
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany.
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
71
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
72
|
Shin K, Begeman IJ, Cao J, Kang J. leptin b and its regeneration enhancer illustrate the regenerative features of zebrafish hearts. Dev Dyn 2024; 253:91-106. [PMID: 36495292 PMCID: PMC10256838 DOI: 10.1002/dvdy.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| |
Collapse
|
73
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
74
|
Yang X, Li X, Guo Z, Zhang Z, Song X, Zhang M, Han X, He L, Zhou B. Generation and characterization of PDGFRα-GFP knock-in mice for visualization of PDGFRα + fibroblasts in vivo. Biochem Biophys Res Commun 2023; 687:149215. [PMID: 37949027 DOI: 10.1016/j.bbrc.2023.149215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The platelet-derived growth factor (PDGF) and its receptor, PDGFRα, are critical for tissue development and injury repair. To track PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expresses green fluorescent protein (GFP) under the control of the PDGFRα promoter. This genetic tool enabled us to detect PDGFRα expression in various organs during both neonatal and adult stages. Additionally, we confirmed the correlation between endogenous PDGFRα and transgenic PDGFRα expression using mouse injury models, showing the potential of this genetic reporter for studying PDGFRα-mediated signaling pathways and developing therapeutic strategies. Overall, the PDGFRα-GFP knock-in mouse line serves as a valuable tool for investigating the biology of PDGFRα and its role in normal development and disease.
Collapse
Affiliation(s)
- Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihou Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zhuonan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xin Song
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
75
|
Ramos TAR, Urquiza-Zurich S, Kim SY, Gillette TG, Hill JA, Lavandero S, do Rêgo TG, Maracaja-Coutinho V. Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development. Cell Death Dis 2023; 14:841. [PMID: 38110334 PMCID: PMC10728149 DOI: 10.1038/s41419-023-06296-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
Collapse
Grants
- R01 HL155765 NHLBI NIH HHS
- R01 HL126012 NHLBI NIH HHS
- R01 HL147933 NHLBI NIH HHS
- R01 HL128215 NHLBI NIH HHS
- R01 HL120732 NHLBI NIH HHS
- Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (SL), FONDECYT 1200490 (SL)
- the NIH: HL-120732 (JAH), HL-128215 (JAH), HL-126012 (JAH), HL-147933, (JAH), HL-155765 (JAH), 14SFRN20510023 (JAH), 14SFRN20670003 (JAH), Leducq grant number 11CVD04 (JAH), Cancer Prevention and Research Institute of Texas grant RP110486P3 (JAH)
- Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (VMC) and FONDECYT 1211731 (VMC).
Collapse
Affiliation(s)
- Thaís A R Ramos
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sebastián Urquiza-Zurich
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Soo Young Kim
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.
| | - Thaís G do Rêgo
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil.
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil.
| |
Collapse
|
76
|
Fernandes I, Funakoshi S, Hamidzada H, Epelman S, Keller G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat Commun 2023; 14:8183. [PMID: 38081833 PMCID: PMC10713677 DOI: 10.1038/s41467-023-43312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiac fibroblasts play an essential role in the development of the heart and are implicated in disease progression in the context of fibrosis and regeneration. Here, we establish a simple organoid culture platform using human pluripotent stem cell-derived epicardial cells and ventricular cardiomyocytes to study the development, maturation, and heterogeneity of cardiac fibroblasts under normal conditions and following treatment with pathological stimuli. We demonstrate that this system models the early interactions between epicardial cells and cardiomyocytes to generate a population of fibroblasts that recapitulates many aspects of fibroblast behavior in vivo, including changes associated with maturation and in response to pathological stimuli associated with cardiac injury. Using single cell transcriptomics, we show that the hPSC-derived organoid fibroblast population displays a high degree of heterogeneity that approximates the heterogeneity of populations in both the normal and diseased human heart. Additionally, we identify a unique subpopulation of fibroblasts possessing reparative features previously characterized in the hearts of model organisms. Taken together, our system recapitulates many aspects of human cardiac fibroblast specification, development, and maturation, providing a platform to investigate the role of these cells in human cardiovascular development and disease.
Collapse
Affiliation(s)
- Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Peter Munk Cardiac Centre, University Health Networ, Toronto, ON, M5G1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
77
|
D'Cruz R, Kim YK, Mulder J, Ibeh N, Jiang N, Tian Y, Rosenblum ND. Hedgehog signalling in Foxd1+ embryonic kidney stromal progenitors controls nephron formation via Cxcl12 and Wnt5a. J Pathol 2023; 261:385-400. [PMID: 37772431 DOI: 10.1002/path.6195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are characterised by a spectrum of structural and histologic abnormalities and are the major cause of childhood kidney failure. During kidney morphogenesis, the formation of a critical number of nephrons is an embryonic process supported, in part, by signalling between nephrogenic precursors and Foxd1-positive stromal progenitor cells. Low nephron number and abnormal patterning of the stroma are signature pathological features among CAKUT phenotypes with decreased kidney function. Despite their critical contribution to CAKUT pathogenesis, the mechanisms that underlie a low nephron number and the functional contribution of a disorganised renal stroma to nephron number are both poorly defined. Here, we identify a primary pathogenic role for increased Hedgehog signalling in embryonic renal stroma in the genesis of congenital low nephron number. Pharmacologic activation of Hedgehog (Hh) signalling in human kidney organoid tissue decreased the number of nephrons and generated excess stroma. The mechanisms underlying these pathogenic effects were delineated in genetic mouse models in which Hh signalling was constitutively activated in a cell lineage-specific manner. Cre-mediated excision of Ptch1 in Foxd1+ stromal progenitor cells, but not in Six2+ nephrogenic precursor cells, generated kidney malformation, identifying the stroma as a driver of low nephron number. Single-cell RNA sequencing analysis identified Cxcl12 and Wnt5a as downstream targets of increased stromal Hh signalling, findings supported by analysis in human kidney organoids. In vivo deficiency of Cxcl12 or Wnt5a in mice with increased stromal Hh signalling improved nephron endowment. These results demonstrate that dysregulated Hh signalling in embryonic renal stromal cells inhibits nephron formation in a manner dependent on Cxcl12 and Wnt5a. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Robert D'Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Jaap Mulder
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
| | - Neke Ibeh
- Princess Margaret Cancer Centre, Unity Health Network, Toronto, Canada
| | - Nan Jiang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Yilin Tian
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
78
|
Hardy SA, Liesinger L, Patrick R, Poettler M, Rech L, Gindlhuber J, Mabotuwana NS, Ashour D, Stangl V, Bigland M, Murtha LA, Starkey MR, Scherr D, Hansbro PM, Hoefler G, Campos Ramos G, Cochain C, Harvey RP, Birner-Gruenberger R, Boyle AJ, Rainer PP. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1539-1554. [PMID: 38205347 PMCID: PMC10774582 DOI: 10.1016/j.jacbts.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 01/12/2024]
Abstract
Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.
Collapse
Affiliation(s)
- Sean A. Hardy
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Patrick
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Maria Poettler
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nishani S. Mabotuwana
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mark Bigland
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Malcolm R. Starkey
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel Scherr
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine 1, University Hospital of Würzburg, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Richard P. Harvey
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J. Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter P. Rainer
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| |
Collapse
|
79
|
Kattih B, Boeckling F, Shumliakivska M, Tombor L, Rasper T, Schmitz K, Hoffmann J, Nicin L, Abplanalp WT, Carstens DC, Arsalan M, Emrich F, Holubec T, Walther T, Puntmann VO, Nagel E, John D, Zeiher AM, Dimmeler S. Single-nuclear transcriptome profiling identifies persistent fibroblast activation in hypertrophic and failing human hearts of patients with longstanding disease. Cardiovasc Res 2023; 119:2550-2562. [PMID: 37648651 DOI: 10.1093/cvr/cvad140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 09/01/2023] Open
Abstract
AIMS Cardiac fibrosis drives the progression of heart failure in ischaemic and hypertrophic cardiomyopathy. Therefore, the development of specific anti-fibrotic treatment regimens to counteract cardiac fibrosis is of high clinical relevance. Hence, this study examined the presence of persistent fibroblast activation during longstanding human heart disease at a single-cell resolution to identify putative therapeutic targets to counteract pathological cardiac fibrosis in patients. METHODS AND RESULTS We used single-nuclei RNA sequencing with human tissues from two samples of one healthy donor, and five hypertrophic and two failing hearts. Unsupervised sub-clustering of 7110 nuclei led to the identification of 7 distinct fibroblast clusters. De-convolution of cardiac fibroblast heterogeneity revealed a distinct population of human cardiac fibroblasts with a molecular signature of persistent fibroblast activation and a transcriptional switch towards a pro-fibrotic extra-cellular matrix composition in patients with established cardiac hypertrophy and heart failure. This sub-cluster was characterized by high expression of POSTN, RUNX1, CILP, and a target gene adipocyte enhancer-binding protein 1 (AEBP1) (all P < 0.001). Strikingly, elevated circulating AEBP1 blood level were also detected in a validation cohort of patients with confirmed cardiac fibrosis and hypertrophic cardiomyopathy by cardiac magnetic resonance imaging (P < 0.01). Since endogenous AEBP1 expression was increased in patients with established cardiac hypertrophy and heart failure, we assessed the functional consequence of siRNA-mediated AEBP1 silencing in human cardiac fibroblasts. Indeed, AEBP1 silencing reduced proliferation, migration, and fibroblast contractile capacity and α-SMA gene expression, which is a hallmark of fibroblast activation (all P < 0.05). Mechanistically, the anti-fibrotic effects of AEBP1 silencing were linked to transforming growth factor-beta pathway modulation. CONCLUSION Together, this study identifies persistent fibroblast activation in patients with longstanding heart disease, which might be detected by circulating AEBP1 and therapeutically modulated by its targeted silencing in human cardiac fibroblasts.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Felicitas Boeckling
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Mariana Shumliakivska
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tina Rasper
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Katja Schmitz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Centre for Cardiovascular Imaging, Institute of Experimental and Translational Cardiovascular Imaging, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Wesley T Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Daniel C Carstens
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Mani Arsalan
- Goethe University Frankfurt, University Hospital, Department of Cardiovascular Surgery, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Fabian Emrich
- Goethe University Frankfurt, University Hospital, Department of Cardiovascular Surgery, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Tomas Holubec
- Goethe University Frankfurt, University Hospital, Department of Cardiovascular Surgery, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Thomas Walther
- Goethe University Frankfurt, University Hospital, Department of Cardiovascular Surgery, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Valentina O Puntmann
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Centre for Cardiovascular Imaging, Institute of Experimental and Translational Cardiovascular Imaging, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eike Nagel
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Centre for Cardiovascular Imaging, Institute of Experimental and Translational Cardiovascular Imaging, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
80
|
Xu Y, Jiang K, Su F, Deng R, Cheng Z, Wang D, Yu Y, Xiang Y. A transient wave of Bhlhe41 + resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep 2023; 42:113174. [PMID: 37751357 DOI: 10.1016/j.celrep.2023.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The immune system plays a critical role during myocardial injury, contributing to repair and remodeling post myocardial infarction (MI). The myocardial infarct and border zone exhibit high heterogeneity, in turn leading to reconstructing macrophage subsets and specific functions. Here we use a combination of single-cell RNA sequencing, spatial transcriptomes, and reporter mice to characterize temporal-spatial dynamics of cardiac macrophage subtype in response to MI. We identify that transient appearance of monocyte-derived Bhlhe41+ Mφs in the "developing" infarct zone peaked at day 7, while other monocyte-derived macrophages are identified in "old" infarct zone. Functional characterization by co-culture of Bhlhe41+ Mφs with cardiomyocytes and fibroblasts or depletion of Bhlhe41+ Mφs unveils a crucial contribution of Bhlhe41+ Mφs in suppression of myofibroblast activation. This work highlights the importance of Bhlhe41+ Mφ phenotype and plasticity in preventing excessive fibrosis and limiting the expansion of developing infarct area.
Collapse
Affiliation(s)
- Yue Xu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fanghua Su
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruhua Deng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyang Cheng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Wang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
81
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
82
|
Li Y, Liu J, Zhang Y, Mao M, Wang H, Ma Y, Chen Z, Zhang Y, Liao C, Chang X, Gao Q, Guo J, Ye Y, Ai F, Liu X, Zhao X, Tian W, Yang H, Ji W, Tan T, Zhu L. A comprehensive evaluation of spontaneous pelvic organ prolapse in rhesus macaques as an ideal model for the study of human pelvic organ prolapse. Sci Bull (Beijing) 2023; 68:2434-2447. [PMID: 37714805 DOI: 10.1016/j.scib.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Pelvic organ prolapse (POP) seriously affects a woman's quality of life, and the treatment complications are severe. Although new surgical treatments are being developed, the host tissue responses and safety need to be evaluated in preclinical trials. However, there is a lack of suitable animal models, as most quadrupeds exhibit different structural and pathological changes. In this study, 72 elderly rhesus macaques (Macaca mulatta) were physically examined, and the incidence of spontaneous POP was similar to that in humans. The vaginal wall from five control monkeys and four monkeys with POP were selected for further analysis. Verhoeff-van Gieson staining showed that elastin content decreased significantly in monkeys with POP compared with control samples. Immunohistological staining revealed that the smooth muscle bundles in monkey POP appeared disorganized, and the number of large muscle bundles decreased significantly. The collagen I/III ratio in monkey POP also significantly decreased, as revealed by Sirius Red staining. These histological and biochemical changes in monkeys with POP were similar to those in humans with POP. Moreover, we generated a single-cell transcriptomic atlas of the prolapsed monkey vagina. Cross-species analysis between humans and monkeys revealed a comparable cellular composition. Notably, a differential gene expression analysis determined that dysregulation of the extracellular matrix and an immune disorder were the conserved molecular mechanisms. The interplay between fibroblasts and macrophages contributed to human and monkey POP. Overall, this study represents a comprehensive evaluation of spontaneous POP in rhesus macaques and demonstrates that monkeys are a suitable animal model for POP research.
Collapse
Affiliation(s)
- Yaqian Li
- Medical Science Research Center, the State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Meng Mao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yidi Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Youyue Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Chengmin Liao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoqing Chang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Qianqian Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianbin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fangfang Ai
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xudong Liu
- Medical Science Research Center, the State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyue Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weijie Tian
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
83
|
Smart CD, Fehrenbach DJ, Wassenaar JW, Agrawal V, Fortune NL, Dixon DD, Cottam MA, Hasty AH, Hemnes AR, Doran AC, Gupta DK, Madhur MS. Immune profiling of murine cardiac leukocytes identifies triggering receptor expressed on myeloid cells 2 as a novel mediator of hypertensive heart failure. Cardiovasc Res 2023; 119:2312-2328. [PMID: 37314125 PMCID: PMC10597637 DOI: 10.1093/cvr/cvad093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
| | - Daniel J Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), 2215 Garland Avenue, P415D MRB IV, Nashville, TN 37232, USA
| | - Jean W Wassenaar
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Vineet Agrawal
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Niki L Fortune
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Debra D Dixon
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Amanda C Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center (VUMC), Medical Center North A-5121, 1161 21st Ave South, Nashville, TN 37232, USA
| | - Deepak K Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meena S Madhur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), 2215 Garland Avenue, P415D MRB IV, Nashville, TN 37232, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center (VUMC), Medical Center North A-5121, 1161 21st Ave South, Nashville, TN 37232, USA
| |
Collapse
|
84
|
Chen W, Li C, Chen Y, Bin J, Chen Y. Cardiac cellular diversity and functionality in cardiac repair by single-cell transcriptomics. Front Cardiovasc Med 2023; 10:1237208. [PMID: 37920179 PMCID: PMC10619858 DOI: 10.3389/fcvm.2023.1237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiac repair after myocardial infarction (MI) is orchestrated by multiple intrinsic mechanisms in the heart. Identifying cardiac cell heterogeneity and its effect on processes that mediate the ischemic myocardium repair may be key to developing novel therapeutics for preventing heart failure. With the rapid advancement of single-cell transcriptomics, recent studies have uncovered novel cardiac cell populations, dynamics of cell type composition, and molecular signatures of MI-associated cells at the single-cell level. In this review, we summarized the main findings during cardiac repair by applying single-cell transcriptomics, including endogenous myocardial regeneration, myocardial fibrosis, angiogenesis, and the immune microenvironment. Finally, we also discussed the integrative analysis of spatial multi-omics transcriptomics and single-cell transcriptomics. This review provided a basis for future studies to further advance the mechanism and development of therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
85
|
Wang W, Li X, Ding X, Xiong S, Hu Z, Lu X, Zhang K, Zhang H, Hu Q, Lai KS, Chen Z, Yang J, Song H, Wang Y, Wei L, Xia Z, Zhou B, He Y, Pu J, Liu X, Ke R, Wu T, Huang C, Baldini A, Zhang M, Zhang Z. Lymphatic endothelial transcription factor Tbx1 promotes an immunosuppressive microenvironment to facilitate post-myocardial infarction repair. Immunity 2023; 56:2342-2357.e10. [PMID: 37625409 DOI: 10.1016/j.immuni.2023.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.
Collapse
Affiliation(s)
- Wenfeng Wang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiao Li
- Gene Editing Laboratory, The Texas Heart Institute, Houston, TX 77030, USA
| | - Xiaoning Ding
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shanshan Xiong
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhenlei Hu
- Department of Cardiovascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xuan Lu
- Silver Snake (Shanghai) Medical Science and Technique Co., Ltd., Shanghai 200030, China
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaa Seng Lai
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongxiang Chen
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junjie Yang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hejie Song
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ye Wang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lu Wei
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zeyang Xia
- Department of Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Rongqin Ke
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Tao Wu
- Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Antonio Baldini
- Institute of Genetics and Biophysics "ABT," CNR, Naples 80131, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, Naples 80131, Italy
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Zhen Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
86
|
Wang L, Li Z, Wan R, Pan X, Li B, Zhao H, Yang J, Zhao W, Wang S, Wang Q, Yan P, Ma C, Yuan H, Zhao M, Rosas I, Ding C, Sun B, Yu G. Single-Cell RNA Sequencing Provides New Insights into Therapeutic Roles of Thyroid Hormone in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:456-469. [PMID: 37402274 PMCID: PMC10557923 DOI: 10.1165/rcmb.2023-0080oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease without an effective cure. Herein, we explore the role of 3,5,3'-triiodothyronine (T3) administration on lung alveolar regeneration and fibrosis at the single-cell level. T3 supplementation significantly altered the gene expression in fibrotic lung tissues. Immune cells were rapidly recruited into the lung after the injury; there were much more M2 macrophages than M1 macrophages in the lungs of bleomycin-treated mice; and M1 macrophages increased slightly, whereas M2 macrophages were significantly reduced after T3 treatment. T3 enhanced the resolution of pulmonary fibrosis by promoting the differentiation of Krt8+ transitional alveolar type II epithelial cells into alveolar type I epithelial cells and inhibiting fibroblast activation and extracellular matrix production potentially by regulation of Nr2f2. In addition, T3 regulated the crosstalk of macrophages with fibroblasts, and the Pros1-Axl signaling axis significantly facilitated the attenuation of fibrosis. The findings demonstrate that administration of a thyroid hormone promotes alveolar regeneration and resolves fibrosis mainly by regulation of the cellular state and cell-cell communication of alveolar epithelial cells, macrophages, and fibroblasts in mouse lungs in comprehensive ways.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Bin Li
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Weiming Zhao
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Chi Ma
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- School of Life Sciences, Fudan University, Shanghai, China; and
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| | - Chen Ding
- School of Life Sciences, Fudan University, Shanghai, China; and
| | - Baofa Sun
- College of Life Science, Nankai University, Tianjin, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, and
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
87
|
Garvin AM, Katwa LC. Primary cardiac fibroblast cell culture: methodological considerations for physiologically relevant conditions. Am J Physiol Heart Circ Physiol 2023; 325:H869-H881. [PMID: 37624100 DOI: 10.1152/ajpheart.00224.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Primary cardiac fibroblast (CF) tissue culture is a necessary tool for interrogating specific signaling mechanisms that dictate the phenotypic heterogeneity observed in vivo in different disease states. Traditional approaches that use tissue culture plastic and nutrient-rich medium have been shown to induce CF activation and, therefore, alter CF subpopulation composition. This shift away from in vivo phenotypes complicate the interpretation of results through the lens of the animal model. As the field works to identify CF diversity, these methodological flaws have begun to be addressed and more studies are focused on the dynamic interaction of CFs with their environment. This review focuses on the aspects of tissue culture that impact CF activation and, therefore, require consideration when designing in vitro experiments. The complexity of CF biology overlaid onto diverse model systems highlight the need for study-specific optimization and validation.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
88
|
Sasaki T, Kuse Y, Nakamura S, Shimazawa M, Hara H. Progranulin deficiency exacerbates cardiac remodeling after myocardial infarction. FASEB Bioadv 2023; 5:395-411. [PMID: 37810172 PMCID: PMC10551273 DOI: 10.1096/fba.2023-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Myocardial infarction (MI) is a lethal disease that causes irreversible cardiomyocyte death and subsequent cardiovascular remodeling. We have previously shown that the administration of recombinant progranulin (PGRN) protects against myocardial ischemia and reperfusion injury. However, the post-MI role of PGRN remains unclear. In the present study, we investigated the effects of PGRN deficiency on cardiac remodeling after MI. Wild-type and PGRN-knockout mice were subjected to MI by ligation of the left coronary artery for histological, electrophysiological, and protein expression analysis. Cardiac macrophage subpopulations were analyzed by flow cytometry. Bone marrow-derived macrophages (BMDMs) were acquired and treated with LPS + IFN-γ and IL-4 to evaluate mRNA levels and phagocytic ability. PGRN expression was gradually increased in the whole heart at 1, 3, and 7 days after MI. Macrophages abundantly expressed PGRN at the border areas at 3 days post-MI. PGRN-knockout mice showed higher mortality, increased LV fibrosis, and severe arrhythmia following MI. PGRN deficiency increased the levels of CD206 and MerTK expression and macrophage infiltration in the infarcted myocardium, which was attributed to a larger subpopulation of cardiac CCR2+ Ly6Clow CD11b+ macrophages. PGRN-deficient BMDMs exhibited higher TGF-β, IL-4R, and lower IL-1β, IL-10 and increased acute phagocytosis following stimulation of LPS and IFN-γ. PGRN deficiency reduced survival and increased cardiac fibrosis following MI with the induction of abnormal subpopulation of cardiac macrophages early after MI, thereby providing insight into the relationship between properly initiating cardiac repair and macrophage polarization after MI.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
- Laboratory of Collaborative Research for Innovative Drug DiscoveryGifu Pharmaceutical UniversityGifuJapan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
- Laboratory of Collaborative Research for Innovative Drug DiscoveryGifu Pharmaceutical UniversityGifuJapan
| |
Collapse
|
89
|
Murtha LA, Hardy SA, Mabotuwana NS, Bigland MJ, Bailey T, Raguram K, Liu S, Ngo DT, Sverdlov AL, Tomin T, Birner-Gruenberger R, Hume RD, Iismaa SE, Humphreys DT, Patrick R, Chong JJH, Lee RJ, Harvey RP, Graham RM, Rainer PP, Boyle AJ. Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction. Sci Rep 2023; 13:14995. [PMID: 37696945 PMCID: PMC10495317 DOI: 10.1038/s41598-023-41894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1-/-) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3-6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct.
Collapse
Affiliation(s)
- Lucy A Murtha
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Sean A Hardy
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Nishani S Mabotuwana
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Mark J Bigland
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Taleah Bailey
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kalyan Raguram
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Saifei Liu
- Department of Cardiology and Clinical Pharmacology, Basil Hetzel Institute, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Doan T Ngo
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Cardiology and Clinical Pharmacology, Basil Hetzel Institute, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Aaron L Sverdlov
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Cardiology and Clinical Pharmacology, Basil Hetzel Institute, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, UNSW, Sydney, Kensington, NSW, Australia
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, UNSW, Sydney, Kensington, NSW, Australia
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, UNSW, Sydney, Kensington, NSW, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Randall J Lee
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Edyth and Eli Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, UNSW, Sydney, Kensington, NSW, Australia
- School of Biotechnology and Molecular Bioscience, UNSW, Sydney, Kensington, NSW, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, UNSW, Sydney, Kensington, NSW, Australia
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
90
|
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, Ramírez de Acuña F, Franco D, Aránega AE. Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. J Cardiovasc Dev Dis 2023; 10:376. [PMID: 37754805 PMCID: PMC10531887 DOI: 10.3390/jcdd10090376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts. Although several studies have provided evidence regarding cell fate determination in the epicardium, to date, it is unclear whether epicardium-derived cells (EPDCs) come from specific, and predetermined, epicardial cell subpopulations or if they are derived from a common progenitor. In recent years, different approaches have been used to study cell heterogeneity within the epicardial layer using different experimental models. However, the data generated are still insufficient with respect to revealing the complexity of this epithelial layer. In this review, we summarize the previous works documenting the cellular composition, molecular signatures, and diversity within the developing and adult epicardium.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Amelia Eva Aránega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| |
Collapse
|
91
|
Zhuang L, Zong X, Yang Q, Fan Q, Tao R. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine 2023; 95:104744. [PMID: 37556943 PMCID: PMC10433018 DOI: 10.1016/j.ebiom.2023.104744] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear. METHODS IL-34 knock-out mice were used to determine the role of IL-34 on cardiac remodeling after IR surgery. Then, immunofluorescence, flow cytometry assays, and RNA-seq analysis were performed to explore the underlying mechanisms of IL-34-induced macrophage recruitment and polarization, and further heart failure after IR. FINDINGS By re-analyzing single-cell RNA-seq and single-nucleus RNA-seq data of murine and human ischemic hearts, we showed that IL-34 expression was upregulated after IR. IL-34 knockout mitigated cardiac remodeling, cardiac dysfunction, and fibrosis after IR and vice versa. RNA-seq analysis revealed that IL-34 deletion correlated negatively with immune responses and chemotaxis after IR injury. Consistently, immunofluorescence and flow cytometry assays demonstrated that IL-34 deletion attenuated macrophage recruitment and CCR2+ macrophage polarization. Mechanistically, IL-34 deficiency repressed both the canonical and noncanonical NF-κB signaling pathway, leading to marked reduction of P-IKKβ and P-IκBα kinase levels; downregulation of NF-κB p65, RelB, and p52 expression, which drove the decline in chemokine CCL2 expression. Finally, IL-34 and CCL2 levels were increased in the serum of acute coronary syndrome patients, with a positive correlation between circulating IL-34 and CCL2 levels in clinical patients. INTERPRETATION In conclusion, IL-34 sustains NF-κB pathway activation to elicit increased CCL2 expression, which contributes to macrophage recruitment and polarization, and subsequently exacerbates cardiac remodeling and heart failure post-IR. Strategies targeting IL-34-centered immunomodulation may provide new therapeutic approaches to prevent and reverse cardiac remodeling and heart failure in clinical MI patients after percutaneous coronary intervention. FUNDING This study was supported by the National Nature Science Foundation of China (81670352 and 81970327 to R T, 82000368 to Q F).
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao Zong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Rong Tao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
92
|
Aghagolzadeh P, Plaisance I, Bernasconi R, Treibel TA, Pulido Quetglas C, Wyss T, Wigger L, Nemir M, Sarre A, Chouvardas P, Johnson R, González A, Pedrazzini T. Assessment of the Cardiac Noncoding Transcriptome by Single-Cell RNA Sequencing Identifies FIXER, a Conserved Profibrogenic Long Noncoding RNA. Circulation 2023; 148:778-797. [PMID: 37427428 DOI: 10.1161/circulationaha.122.062601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Parisa Aghagolzadeh
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Riccardo Bernasconi
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, United Kingdom (T.A.T.)
| | - Carlos Pulido Quetglas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Tania Wyss
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland (T.W.)
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Leonore Wigger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Mohamed Nemir
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Switzerland (A.S.)
| | - Panagiotis Chouvardas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Rory Johnson
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain (A.G.)
- CIBERCV, Madrid, Spain (A.G.)
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| |
Collapse
|
93
|
Huang X, Fu Y, Lee H, Zhao Y, Yang W, van de Leemput J, Han Z. Single-cell profiling of the developing embryonic heart in Drosophila. Development 2023; 150:dev201936. [PMID: 37526610 PMCID: PMC10482008 DOI: 10.1242/dev.201936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.
Collapse
Affiliation(s)
- Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yulong Fu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wendy Yang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
94
|
Arolkar G, Kumar SK, Wang H, Gonzalez KM, Kumar S, Bishnoi B, Rios Coronado PE, Woo YJ, Red-Horse K, Das S. Dedifferentiation and Proliferation of Artery Endothelial Cells Drive Coronary Collateral Development in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1455-1477. [PMID: 37345524 PMCID: PMC10364966 DOI: 10.1161/atvbaha.123.319319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Collateral arteries act as natural bypasses which reroute blood flow to ischemic regions and facilitate tissue regeneration. In an injured heart, neonatal artery endothelial cells orchestrate a systematic series of cellular events, which includes their outward migration, proliferation, and coalescence into fully functional collateral arteries. This process, called artery reassembly, aids complete cardiac regeneration in neonatal hearts but is absent in adults. The reason for this age-dependent disparity in artery cell response is completely unknown. In this study, we investigated if regenerative potential of coronary arteries is dictated by their ability to dedifferentiate. METHODS Single-cell RNA sequencing of coronary endothelial cells was performed to identify differences in molecular profiles of neonatal and adult endothelial cells in mice. Findings from this in silico analyses were confirmed with in vivo experiments using genetic lineage tracing, whole organ immunostaining, confocal imaging, and cardiac functional assays in mice. RESULTS Upon coronary occlusion, neonates showed a significant increase in actively cycling artery cells and expressed prominent dedifferentiation markers. Data from in silico pathway analyses and in vivo experiments suggested that upon myocardial infarction, cell cycle reentry of preexisting neonatal artery cells, the subsequent collateral artery formation, and recovery of cardiac function are dependent on arterial VegfR2 (vascular endothelial growth factor receptor-2). This subpopulation of dedifferentiated and proliferating artery cells was absent in nonregenerative postnatal day 7 or adult hearts. CONCLUSIONS These data indicate that adult artery endothelial cells fail to drive collateral artery development due to their limited ability to dedifferentiate and proliferate.
Collapse
Affiliation(s)
- Gauri Arolkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Sneha K. Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Hanjay Wang
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Karen M. Gonzalez
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
| | - Suraj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | | | - Y. Joseph Woo
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
- Howard Hughes Medical Institute, Chevy Chase, MD (K.R.-H.)
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| |
Collapse
|
95
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
96
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
97
|
Wei KH, Lin IT, Chowdhury K, Lim KL, Liu KT, Ko TM, Chang YM, Yang KC, Lai SL(B. Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration. eLife 2023; 12:e84679. [PMID: 37498060 PMCID: PMC10411971 DOI: 10.7554/elife.84679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Zebrafish exhibit a robust ability to regenerate their hearts following injury, and the immune system plays a key role in this process. We previously showed that delaying macrophage recruitment by clodronate liposome (-1d_CL, macrophage-delayed model) impairs neutrophil resolution and heart regeneration, even when the infiltrating macrophage number was restored within the first week post injury (Lai et al., 2017). It is thus intriguing to learn the regenerative macrophage property by comparing these late macrophages vs. control macrophages during cardiac repair. Here, we further investigate the mechanistic insights of heart regeneration by comparing the non-regenerative macrophage-delayed model with regenerative controls. Temporal RNAseq analyses revealed that -1d_CL treatment led to disrupted inflammatory resolution, reactive oxygen species homeostasis, and energy metabolism during cardiac repair. Comparative single-cell RNAseq profiling of inflammatory cells from regenerative vs. non-regenerative hearts further identified heterogeneous macrophages and neutrophils, showing alternative activation and cellular crosstalk leading to neutrophil retention and chronic inflammation. Among macrophages, two residential subpopulations (hbaa+ Mac and timp4.3+ Mac 3) were enriched only in regenerative hearts and barely recovered after +1d_CL treatment. To deplete the resident macrophage without delaying the circulating macrophage recruitment, we established the resident macrophage-deficient model by administrating CL earlier at 8 d (-8d_CL) before cryoinjury. Strikingly, resident macrophage-deficient zebrafish still exhibited defects in revascularization, cardiomyocyte survival, debris clearance, and extracellular matrix remodeling/scar resolution without functional compensation from the circulating/monocyte-derived macrophages. Our results characterized the diverse function and interaction between inflammatory cells and identified unique resident macrophages prerequisite for zebrafish heart regeneration.
Collapse
Affiliation(s)
- Ke-Hsuan Wei
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kaushik Chowdhury
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Khai Lone Lim
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Kuan-Ting Liu
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tai-Ming Ko
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Shih-Lei (Ben) Lai
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
98
|
Liu X, Burke RM, Lighthouse JK, Baker CD, Dirkx RA, Kang B, Chakraborty Y, Mickelsen DM, Twardowski J, Mello SS, Ashton JM, Small EM. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload. Circ Res 2023; 133:271-287. [PMID: 37409456 PMCID: PMC10361635 DOI: 10.1161/circresaha.121.320324] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ryan M. Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet K. Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, NY, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian Kang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yashoswini Chakraborty
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Twardowski
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
99
|
Ghigo A, Ameri P. p53 at the Intersection of Cardiac Fibroblast Proliferation and Activation: Answers and Questions. Circ Res 2023; 133:288-290. [PMID: 37471487 DOI: 10.1161/circresaha.123.323209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone," University of Torino, Italy (A.G.)
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Italy (P.A.)
- Cardiovascular Disease Unit, Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genova, Italy (P.A.)
| |
Collapse
|
100
|
Xie B, Gao D, Zhou B, Chen S, Wang L. New discoveries in the field of metabolism by applying single-cell and spatial omics. J Pharm Anal 2023; 13:711-725. [PMID: 37577385 PMCID: PMC10422156 DOI: 10.1016/j.jpha.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Single-cell multi-Omics (SCM-Omics) and spatial multi-Omics (SM-Omics) technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs. Since its emergence in 2009, single-cell RNA sequencing (scRNA-seq) has yielded many groundbreaking new discoveries. The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience, developmental biology, and cancer research, especially for assessing tumor heterogeneity and T-cell infiltration. In recent years, the application of these methods in the study of metabolic diseases has also increased. The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate, and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention. Here, we review the evolution of SCM-Omics and SM-Omics technologies, and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases, including obesity, diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases. This review concludes with an overview of the current status of this emerging field and the outlook for its future.
Collapse
Affiliation(s)
- Baocai Xie
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Biqiang Zhou
- Department of Geriatric & Spinal Pain Multi-Department Treatment, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Shi Chen
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|