51
|
Abu-Melha S, Edrees MM, Said MA, Riyadh SM, Al-Kaff NS, Gomha SM. Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study. Molecules 2022; 27:488. [PMID: 35056802 PMCID: PMC8777737 DOI: 10.3390/molecules27020488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor's active amino acid residues. The main aim of using in silco molecular docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a-f.
Collapse
Affiliation(s)
- Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (M.M.E.)
| | - Mastoura Mohamed Edrees
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (M.M.E.)
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Musa A. Said
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nadia S. Al-Kaff
- Department of Biology, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| |
Collapse
|
52
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and papain-like protease PLpro of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.05.475095. [PMID: 35018373 PMCID: PMC8750648 DOI: 10.1101/2022.01.05.475095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
|
53
|
Gupte V, Hegde R, Sawant S, Kalathingal K, Jadhav S, Malabade R, Gogtay J. Safety and clinical outcomes of remdesivir in hospitalised COVID-19 patients: a retrospective analysis of active surveillance database. BMC Infect Dis 2022; 22:1. [PMID: 34983406 PMCID: PMC8724590 DOI: 10.1186/s12879-021-07004-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Real-world data on safety and clinical outcomes of remdesivir in COVID-19 management is scant. We present findings of data analysis conducted for assessing the safety and clinical outcomes of remdesivir treatment for COVID-19 in India. METHODS This retrospective analysis used data from an active surveillance programme database of hospitalised patients with COVID-19 who were receiving remdesivir. RESULTS Of the 2329 patients included, 67.40% were men. Diabetes (29.69%) and hypertension (20.33%) were the most common comorbidities. At remdesivir initiation, 2272 (97.55%) patients were receiving oxygen therapy. Remdesivir was administered for 5 days in 65.38% of patients. Antibiotics (64.90%) and steroids (47.90%) were the most common concomitant medications. Remdesivir was overall well tolerated, and total 119 adverse events were reported; most common were nausea and vomiting in 45.40% and increased liver enzymes in 14.28% patients. 84% of patients were cured/improved, 6.77% died and 9.16% showed no improvement in their clinical status at data collection. Subgroup analyses showed that the mortality rate was significantly lower in patients < 60 years old than in those > 60 years old. Amongst patients on oxygen therapy, the cure/improvement rate was significantly higher in those receiving standard low-flow oxygen than in those receiving mechanical ventilation, non-invasive ventilation, or high-flow oxygen. Factors that were associated with higher mortality were age > 60 years, cardiac disease, diabetes high flow oxygen, non-invasive ventilation and mechanical ventilation. CONCLUSION Our analysis showed that remdesivir is well tolerated and has an acceptable safety profile. The clinical outcome of cure/improvement was 84%, with a higher improvement in patients < 60 years old and on standard low-flow oxygen.
Collapse
Affiliation(s)
| | | | | | | | - Sonali Jadhav
- Medical Services, Clinical Trial Group, Cipla Ltd., Mumbai, India
| | | | | |
Collapse
|
54
|
Pagliano P, Sellitto C, Scarpati G, Ascione T, Conti V, Franci G, Piazza O, Filippelli A. An overview of the preclinical discovery and development of remdesivir for the treatment of coronavirus disease 2019 (COVID-19). Expert Opin Drug Discov 2022; 17:9-18. [PMID: 34412564 PMCID: PMC8425432 DOI: 10.1080/17460441.2021.1970743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Remdesivir (RDV) is an inhibitor of the viral RNA-dependent RNA polymerases that are active in some RNA viruses, including the Ebola virus and zoonotic coronaviruses. When severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was identified as the etiologic agent of the coronavirus disease 2019 (COVID-19), several investigations have assessed the potential activity of RDV in inhibiting viral replication, giving rise to hope for an effective treatment. AREAS COVERED In this review, the authors describe the main investigations leading to the discovery of RDV and its subsequent development as an antiviral agent, focusing on the main clinical trials investigating its efficacy in terms of symptom resolution and mortality reduction. EXPERT OPINION RDV is the most widely investigated antiviral drug for the treatment of COVID-19. This attention on RDV activity against SARS-CoV-2 is justified by promising in vitro studies, which demonstrated that RDV was able to suppress viral replication without significant toxicity. Such activity was confirmed by an investigation in an animal model and by the results of preliminary clinical investigations. Nevertheless, the efficacy of RDV in reducing mortality has not been clearly demonstrated.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
55
|
Alhazzani W, Alshahrani M, Alshamsi F, Aljuhani O, Eljaaly K, Hashim S, Alqahtani R, Alsaleh D, Al Duhailib Z, Algethamy H, Al-Musawi T, Alshammari T, Alqarni A, Khoujah D, Tashkandi W, Dahhan T, Almutairi N, Alserehi HA, Al-Yahya M, Al-Judaibi B, Arabi YM, Abualenain J, Alotaibi JM, Al Bshabshe A, Alharbi R, Al-Hameed F, Elhazmi A, Almaghrabi RS, Almaghlouth F, Abedalthagafi M, Al Khathlan N, Al-Suwaidan FA, Bunyan RF, Baw B, Alghamdi G, Al Hazmi M, Mandourah Y, Assiri A, Enani M, Alawi M, Aljindan R, Aljabbary A, Alrbiaan A, Algurashi F, Alsaawi A, Alenazi TH, Alsultan MA, Alqahtani SA, Memish Z, Al-Tawfiq JA, Al-Jedai A. The Saudi Critical Care Society practice guidelines on the management of COVID-19 in the ICU: Therapy section. J Infect Public Health 2022; 15:142-151. [PMID: 34764042 PMCID: PMC8527699 DOI: 10.1016/j.jiph.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU). METHODS The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations. RESULTS The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations. CONCLUSION The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.
Collapse
Affiliation(s)
- Waleed Alhazzani
- Department of Medicine, McMaster University, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada; GUIDE Center, St. Joseph's Healthcare Hamilton, Hamilton, Canada.
| | - Mohammed Alshahrani
- Department of Emergency and Critical Care, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaher Hashim
- Department of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Rakan Alqahtani
- Department of Critical Care Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Doaa Alsaleh
- Department of Population Health Science and Policy, Icahn's School of Medicine at Mount Sinai, NYC, USA; King Abdullah International Medical Research Center, NGHA, Riyadh, Saudi Arabia
| | - Zainab Al Duhailib
- Critical Care Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Algethamy
- Department of Anesthesia and Critical Care, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Al-Musawi
- Department of Critical Care Medicine, Dr Sulaiman AlHabib Hospital, AlKhobar, Saudi Arabia; Royal College of Surgeons in Ireland- Medical University of Bahrain, Bahrain
| | - Thamir Alshammari
- Medication Safety Research Chair, King Saud University, Riyadh, Saudi Arabia; College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Abdullah Alqarni
- Department of Emergencies, Disasters, and Medical Transportation, Ministry of Health, Riyadh, Saudi Arabia
| | - Danya Khoujah
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wail Tashkandi
- Department of Surgery, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Critical Care, Fakeeh Care Group, Jeddah, Saudi Arabia
| | - Talal Dahhan
- Critical Care Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, USA
| | - Najla Almutairi
- Department of Emergencies, Disasters, and Medical Transportation, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Maytha Al-Yahya
- Department of Emergency Medicine, King AbdulAziz Medical City (KAMC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Yaseen M Arabi
- King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Jameel Abualenain
- Department of Emergency Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawaher M Alotaibi
- Department of Medicine, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia
| | - Ali Al Bshabshe
- Department of Medicine/Adult Critical Care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Reham Alharbi
- Critical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Fahad Al-Hameed
- Department of Intensive Care, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Alyaa Elhazmi
- Dr. Sulaiman Al-Habib Medical Group, Critical Care Department, Riyadh, Saudi Arabia
| | - Reem S Almaghrabi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Fatma Almaghlouth
- Respiratory Care Department, Faculty of Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Noor Al Khathlan
- Respiratory Care Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal A Al-Suwaidan
- Clinical Excellence Administration and King Fahad Medical City, Second Health Cluster in Riyadh, Ministry of Health, Saudi Arabia
| | - Reem F Bunyan
- Center for Improving Value in Health, Saudi Arabia; Department of Neurology, King Fahad Specialist Hospital Dammam, Saudi Arabia
| | - Bandar Baw
- Department of Medicine, McMaster University, Canada; Department of Emergency Medicine, King AbdulAziz Medical City (KAMC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ghassan Alghamdi
- Department of Medicine and Intensive Care, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Manal Al Hazmi
- Department of Medicine, King Fahad Specialist-Dammam, E1 Cluster, Dammam, Saudi Arabia
| | - Yasser Mandourah
- General Directorate of Military Medical Services, Ministry of Defense, Saudi Arabia
| | - Abdullah Assiri
- Infection Prevention and Control, Ministry of Health, Riyadh, Saudi Arabia
| | - Mushira Enani
- Section of Infectious Diseases Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maha Alawi
- Department of Medical Microbiology, Parasitology, Infection Control and Environmental Health Unit, King Abdulaziz Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Aljabbary
- Department of Intensive Care, Security Forces Hospital Program in Riyadh, Saudi Arabia
| | - Abdullah Alrbiaan
- Critical Care Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahd Algurashi
- Division of Anesthesia and Critical Care, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Abdulmohsen Alsaawi
- Department of Emergency Medicine, King AbdulAziz Medical City (KAMC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Thamer H Alenazi
- King Abdulaziz Medical City, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Saleh A Alqahtani
- Liver Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, USA
| | - Ziad Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, & College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jaffar A Al-Tawfiq
- Infectious Disease Division, Indiana University School of Medicine, IN, USA; Infectious Disease Division, Johns Hopkins University School of Medicine, Baltimore, USA; Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ahmed Al-Jedai
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia; Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Maheshwari M, Athiraman H. Bradycardia Related to Remdesivir During COVID-19: Persistent or Permanent? Cureus 2021; 13:e19919. [PMID: 34956798 PMCID: PMC8675592 DOI: 10.7759/cureus.19919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Remdesivir is an antiviral that inhibits RNA-dependent RNA polymerases of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a cornerstone of therapy for hospitalized patients with coronavirus disease 2019 (COVID-19), especially those worsening from a respiratory standpoint despite being started on antibiotics, dexamethasone, zinc, and vitamin C. This is a case report describing two COVID-19-positive patients with bradycardia after starting remdesivir. Once remdesivir was discontinued, one patient corrected to normal sinus rhythm, and the other continued with persistent bradycardia.
Collapse
|
57
|
Riccio AA, Sullivan ED, Copeland WC. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. J Biol Chem 2021; 298:101518. [PMID: 34942146 PMCID: PMC8685350 DOI: 10.1016/j.jbc.2021.101518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the core replication complex of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are nonstructural protein 14 (NSP14), a bifunctional enzyme with an N-terminal 3′-to-5′ exoribonuclease (ExoN) and a C-terminal N7-methyltransferase, and its accessory protein, NSP10. The difficulty in producing pure and high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from Escherichia coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe that NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosylhomocysteine. Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analog intermediate of remdesivir does not inhibit NSP14 activity; and second, S-adenosylhomocysteine modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure–function studies of SARS-CoV-2 replication fidelity for the treatment of coronavirus disease 2019.
Collapse
Affiliation(s)
- Amanda A Riccio
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Eric D Sullivan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709.
| |
Collapse
|
58
|
Abstract
Background COVID-19 is an ongoing viral pandemic produced by SARS-CoV-2. In light of in vitro efficacy, several medications were repurposed for its management. During clinical use, many of these medications produced inconsistent results or had varying limitations. Objective The purpose of this literature review is to explain the variable efficacy or limitations of Lopinavir/Ritonavir, Remdesivir, Hydroxychloroquine, and Favipiravir in clinical settings. Method A study of the literature on the pharmacodynamics (PD), pharmacokinetics (PK), safety profile, and clinical trials through academic databases using relevant search terms. Results & discussion The efficacy of an antiviral drug against COVID-19 is associated with its ability to achieve therapeutic concentration in the lung and intestinal tissues. This efficacy depends on the PK properties, particularly protein binding, volume of distribution, and half-life. The PK and PD of the model drugs need to be integrated to predict their limitations. Conclusion Current antiviral drugs have varying pharmacological constraints that may associate with limited efficacy, especially in severe COVID-19 patients, or safety concerns.
Collapse
|
59
|
Pivniouk V, Pivniouk O, DeVries A, Uhrlaub JL, Michael A, Pivniouk D, VanLinden SR, Conway MY, Hahn S, Malone SP, Ezeh P, Churko JM, Anderson D, Kraft M, Nikolich-Zugich J, Vercelli D. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression. J Allergy Clin Immunol 2021; 149:923-933.e6. [PMID: 34902435 PMCID: PMC8660661 DOI: 10.1016/j.jaci.2021.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Background Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. Objectives We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. Methods ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein–pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. Results OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein–pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. Conclusions OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.
Collapse
|
60
|
Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021; 30:413-429. [PMID: 34854327 DOI: 10.1080/1061186x.2021.2013852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.
Collapse
Affiliation(s)
- Shubham Mule
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Khaled Greish
- Nanomedicine Unit, College of Medicine and Medical Sciences, Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
61
|
Sahakijpijarn S, Moon C, Warnken ZN, Maier EY, DeVore JE, Christensen DJ, Koleng JJ, Williams RO. In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. Int J Pharm X 2021; 3:100073. [PMID: 34977555 PMCID: PMC8683664 DOI: 10.1016/j.ijpx.2021.100073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Remdesivir dry powder for inhalation was previously developed using thin film freezing (TFF). A single-dose 24-h pharmacokinetic study in hamsters demonstrated that pulmonary delivery of TFF remdesivir can achieve plasma remdesivir and GS-441524 levels higher than the reported EC50s of both remdesivir and GS-441524 (in human epithelial cells) over 20 h. The half-life of GS-4412524 following dry powder insufflation was about 7 h, suggesting the dosing regimen would be twice-daily administration. Although the remdesivir-Captisol® (80/20 w/w) formulation showed faster and greater absorption of remdesivir and GS-4412524 in the lung, remdesivir-leucine (80/20 w/w) exhibited a greater Cmax with shorter Tmax and lower AUC of GS-441524, indicating lower total drug exposure is required to achieve a high effective concentration against SAR-CoV-2. In conclusion, remdesivir dry powder for inhalation would be a promising alternative dosage form for the treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zachary N Warnken
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA
| | - Jennie E DeVore
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA
| | | | | | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
62
|
Zarkesh K, Entezar-Almahdi E, Ghasemiyeh P, Akbarian M, Bahmani M, Roudaki S, Fazlinejad R, Mohammadi-Samani S, Firouzabadi N, Hosseini M, Farjadian F. Drug-based therapeutic strategies for COVID-19-infected patients and their challenges. Future Microbiol 2021; 16:1415-1451. [PMID: 34812049 PMCID: PMC8610072 DOI: 10.2217/fmb-2021-0116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging epidemic-prone diseases have introduced numerous health and economic challenges in recent years. Given current knowledge of COVID-19, herd immunity through vaccines alone is unlikely. In addition, vaccination of the global population is an ongoing challenge. Besides, the questions regarding the prevalence and the timing of immunization are still under investigation. Therefore, medical treatment remains essential in the management of COVID-19. Herein, recent advances from beginning observations of COVID-19 outbreak to an understanding of the essential factors contributing to the spread and transmission of COVID-19 and its treatment are reviewed. Furthermore, an in-depth discussion on the epidemiological aspects, clinical symptoms and most efficient medical treatment strategies to mitigate the mortality and spread rates of COVID-19 is presented.
Collapse
Affiliation(s)
- Khatereh Zarkesh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Entezar-Almahdi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Bahmani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Roudaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hosseini
- Department of Manufacturing & Industrial Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
63
|
Bai B, Arutyunova E, Khan MB, Lu J, Joyce MA, Saffran HA, Shields JA, Kandadai AS, Belovodskiy A, Hena M, Vuong W, Lamer T, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Med Chem 2021; 12:1722-1730. [PMID: 34778773 PMCID: PMC8529539 DOI: 10.1039/d1md00247c] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Tragically, the death toll from the COVID-19 pandemic continues to rise, and with variants being observed around the globe new therapeutics, particularly direct-acting antivirals that are easily administered, are desperately needed. Studies targeting the SARS-CoV-2 3CL protease, which is critical for viral replication, with different peptidomimetics and warheads is an active area of research for development of potential drugs. To date, however, only a few publications have evaluated the nitrile warhead as a viral 3CL protease inhibitor, with only modest activity reported. This article describes our investigation of P3 4-methoxyindole peptidomimetic analogs with select P1 and P2 groups with a nitrile warhead that are potent inhibitors of SARS-CoV-2 3CL protease and demonstrate in vitro SARS-CoV-2 antiviral activity. A selectivity for SARS-CoV-2 3CL protease over human cathepsins B, S and L was also observed with the nitrile warhead, which was superior to that with the aldehyde warhead. A co-crystal structure with SARS-CoV-2 3CL protease and a reversibility study indicate that a reversible, thioimidate adduct is formed when the catalytic sulfur forms a covalent bond with the carbon of the nitrile. This effort also identified efflux as a property limiting antiviral activity of these compounds, and together with the positive attributes described these results provide insight for further drug development of novel nitrile peptidomimetics targeting SARS-CoV-2 3CL protease.
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta Edmonton Alberta T6G 2H7 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of Alberta Edmonton Alberta T6G 2H7 Canada
| | - Jimmy Lu
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Holly A Saffran
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Justin A Shields
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Howard S Young
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta Edmonton Alberta T6G 2H7 Canada
- Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - James A Nieman
- Li Ka Shing Applied Virology Institute, University of Alberta Edmonton Alberta T6G 2E1 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton Alberta T6G 2E1 Canada
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW If developed using rigorous methods and produced in a timely manner, clinical practice guidelines have the potential to improve patient outcomes. Although the COVID-19 pandemic has highlighted the challenges involved in generating reliable clinical guidance, it has also provided an opportunity to address these challenges. RECENT FINDINGS New research addressing drugs for COVID-19 is being produced at unprecedented rates. Incorporating this new knowledge into patient care can be daunting for the average clinician. In collaboration with the BMJ and MAGIC, the WHO has developed a living guideline initiative with the goal of providing rapid and trustworthy clinical guidance in response to practice-changing evidence. As new evidence becomes available, it is incorporated into a living network meta-analysis that informs these guidelines, which are iteratively updated. Until this point, the group has generated guidelines addressing the use of corticosteroids, remdesivir, hydroxychloroquine, lopinavir/ritonavir, and ivermectin for COVID-19. SUMMARY We provide an example of how rapid and rigorous guidelines can be accomplished, even in the setting of a pandemic, capitalizing on expertise, large and dedicated teams, and focused scope. We highlight the benefits of multifaceted knowledge dissemination through multiple formats to ensure global dissemination and in order to maximize impact.
Collapse
Affiliation(s)
- Bram Rochwerg
- Department of Medicine
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Leticia Kawano-Dourado
- HCor Research Institute, Hospital do Coração, São Paulo, Brazil
- INSERM 1152, University of Paris, Paris, France
| | - Nida Qadir
- David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
65
|
Vasudevan K, Thirumal Kumar D, Udhaya Kumar S, Saleem A, Nagasundaram N, Siva R, Tayubi IA, George Priya Doss C, Zayed H. A computational overview on phylogenetic characterization, pathogenic mutations, and drug targets for Ebola virus disease. Curr Opin Pharmacol 2021; 61:28-35. [PMID: 34563987 DOI: 10.1016/j.coph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
The World Health Organization declared Ebola virus disease (EVD) as the major outbreak in the 20th century. EVD was first identified in 1976 in South Sudan and the Democratic Republic of the Congo. EVD was transmitted from infected fruit bats to humans via contact with infected animal body fluids. The Ebola virus (EBOV) has a genome size of ∼18,959 bp. It encodes seven distinct proteins: nucleoprotein (NP), glycoprotein (GP), viral proteins VP24, VP30, VP35, matrix protein VP40, and polymerase L is considered a prime target for potential antiviral strategies. The current US FDA-approved anti-EVD vaccine, ERVERBO, and the other equally effective anti-EBOV combinations of three fully human monoclonal antibodies such as REGN-EB3, primarily target the envelope glycoprotein. This work elaborates on the EBOV's phylogenetic structure and the crucial mutations associated with viral pathogenicity.
Collapse
Affiliation(s)
- Karthick Vasudevan
- School of Applied Sciences, Reva University, Bengaluru, Karnataka, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Aisha Saleem
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - N Nagasundaram
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
66
|
COVID-19: potential therapeutics for pediatric patients. Pharmacol Rep 2021; 73:1520-1538. [PMID: 34458951 PMCID: PMC8403523 DOI: 10.1007/s43440-021-00316-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The global spread of COVID-19 has imparted significant economic, medical, and social burdens. Like adults, children are affected by this pandemic. However, milder clinical symptoms are often experienced by them. Only a minimal proportion of the affected patients may develop severe and complicated COVID-19. Supportive treatment is recommended in all patients. Antiviral and immunomodulatory medications are spared for hospitalized children with respiratory distress or severe to critical disease. Up till now, remdesivir is the only USFDA-approved anti-COVID-19 medication indicated in the majority of symptomatic patients with moderate to severe disease. Dexamethasone is solely recommended in patients with respiratory distress maintained on oxygen or ventilatory support. The use of these medications in pediatric patients is founded on evidence deriving from adult studies. No randomized controlled trials (RCTs) involving pediatric COVID-19 patients have assessed these medications' efficacy and safety, among others. Similarly, three novel monoclonal anti-SARS-CoV-2 spike protein antibodies, bamlanivimab, casirivimab and imdevimab, have been recently authorized by the USFDA. Nonetheless, their efficacy has not been demonstrated by multiple RCTs. In this review, we aim to dissect the various potential therapeutics used in children with COVID-19. We aspire to provide a comprehensive review of the available evidence and display the mechanisms of action and the pharmacokinetic properties of the studied therapeutics. Our review offers an efficient and practical guide for treating children with COVID-19.
Collapse
|
67
|
Buehrle DJ, Sutton RR, McCann EL, Lucas AE. A Review of Treatment and Prevention of Coronavirus Disease 2019 among Solid Organ Transplant Recipients. Viruses 2021; 13:1706. [PMID: 34578287 PMCID: PMC8471770 DOI: 10.3390/v13091706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Therapeutic management of solid organ transplant (SOT) recipients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), may challenge healthcare providers given a paucity of clinical data specific to this cohort. Herein, we summarize and review the studies that have formed the framework for current COVID-19 consensus management guidelines. Our review focuses on COVID-19 treatment options including monoclonal antibody products, antiviral agents such as remdesivir, and immunomodulatory agents such as corticosteroids, interleukin inhibitors, and kinase inhibitors. We highlight the presence or absence of clinical data of these therapeutics related to the SOT recipient with COVID-19. We also describe data surrounding COVID-19 vaccination of the SOT recipient. Understanding the extent and limitations of observational and clinical trial data for the prevention and treatment of COVID-19 specific to the SOT population is crucial for optimal management. Although minimal data exist on clinical outcomes among SOT recipients treated with varying COVID-19 therapeutics, reviewing these agents and the studies that have led to their inclusion or exclusion in clinical management of COVID-19 highlights the need for further studies of these therapeutics in SOT patients with COVID-19.
Collapse
Affiliation(s)
- Deanna J. Buehrle
- Department of Medicine, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA;
| | - Robert R. Sutton
- Department of Pharmacy, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (R.R.S.); (E.L.M.)
| | - Erin L. McCann
- Department of Pharmacy, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (R.R.S.); (E.L.M.)
| | - Aaron E. Lucas
- Department of Medicine, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA;
| |
Collapse
|
68
|
Zhai G, Li M, Wang Y, Wu J. Drug-Induced Liver Disturbance During the Treatment of COVID-19. Front Pharmacol 2021; 12:719308. [PMID: 34483929 PMCID: PMC8416279 DOI: 10.3389/fphar.2021.719308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, at the end of 2019. The World Health Organization named the resulting infectious disease as coronavirus disease-2019 (COVID-19). Many studies concluded that patients infected with SARS-CoV-2 have different degrees of liver disturbance. However, the relationship between the drugs used for COVID-19 treatment and liver disturbance remains controversial. It is essential to evaluate the potential liver damage caused by various drugs in order to help guide clinical practice. This review analyzed the effect of drugs on hepatic function during the treatment of COVID-19.
Collapse
Affiliation(s)
- Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Meifen Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Wang
- Department of Infection Management, Suzhou Hosptial Affiliated to Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
69
|
Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Han KY, O’Brien A, Tomatsidou A, Meyer B, Vignuzzi M, Missiakas D, Botten JW, Brooke CB, Lee H, Baker SC, Mounce BC, Heaton NS, Severson WE, Palmer KE, Dickinson BC, Joachimiak A, Randall G, Tay S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 2021; 373:931-936. [PMID: 34285133 PMCID: PMC8809056 DOI: 10.1126/science.abg5827] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).
Collapse
Affiliation(s)
- Nir Drayman
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| | - Jennifer K. DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Krysten A. Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Kemin Tan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Natalia Ivanovna Maltseva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Siquan Chen
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Steve Dvorkin
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kevin Furlong
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Mason R. Firpo
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Emily A. Bruce
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Madaline M. Schmidt
- Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Jedrzejczak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | | | - Brooke Schuster
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vishnu Nair
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kyu-yeon Han
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bjoern Meyer
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Jason W. Botten
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Christopher B. Brooke
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Lee
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Susan C. Baker
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - William E. Severson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Savaş Tay
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| |
Collapse
|
70
|
Desgens-Martin V, Keller AA. COVID-19 Treatment Agents: Do They Pose an Environmental Risk? ACS ES&T WATER 2021; 1:1555-1565. [PMID: 37566378 PMCID: PMC8204912 DOI: 10.1021/acsestwater.1c00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 05/14/2023]
Abstract
The end of 2019 was marked by reports of a previously unknown virus causing coronavirus disease 19 (COVID-19). With over 800 new daily hospitalizations at the peak in Los Angeles (LA) County, the potential for high use of COVID-19 treatment agents, remdesivir and dexamethasone, warranted a screening assessment of their fate and toxicity risk for aquatic organisms. We predicted environmental concentrations (PECs) using the ChemFate model and hospitalizations data and compared them to predicted ecotoxicity concentrations generated using Ecological Structure Activity Relationships (ECOSAR) to assess risk to potentially exposed organisms. The lowest predicted toxicity thresholds were between 2 and 11 orders of magnitude greater than the highest PECs for freshwater and saltwater. We conclude that had all eligible patients in LA County been given the recommended treatment regimen, exposure of aquatic organisms in regional water bodies to remdesivir, dexamethasone, and their evaluated metabolites would not be likely to be affected based on ECOSAR predictions. Conservative, protective assumptions were used for this screening analysis, considering limited toxicity information. Modeling tools thus serve to predict environmental concentrations and estimate ecotoxicity risks of novel treatment agents and can provide useful preliminary data to assess and manage ecological health risks.
Collapse
Affiliation(s)
- Violaine Desgens-Martin
- Bren School of Environmental Science and Management, University
of California at Santa Barbara, Santa Barbara, California 93106,
United States
| | - Arturo A. Keller
- Bren School of Environmental Science and Management, University
of California at Santa Barbara, Santa Barbara, California 93106,
United States
| |
Collapse
|
71
|
Alamer A, Alrashed AA, Alfaifi M, Alosaimi B, AlHassar F, Almutairi M, Howaidi J, Almutairi W, Mohzari Y, Sulaiman T, Al-jedai A, Alajami HN, Alkharji F, Alsaeed A, Alali AH, Baredhwan AA, Abraham I, Almulhim AS. Effectiveness and safety of favipiravir compared to supportive care in moderately to critically ill COVID-19 patients: a retrospective study with propensity score matching sensitivity analysis. Curr Med Res Opin 2021; 37:1085-1097. [PMID: 33890544 PMCID: PMC8146299 DOI: 10.1080/03007995.2021.1920900] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Favipiravir is a repurposed drug to treat coronavirus 2019 (COVID-19). Due to a lack of available real-world data, we assessed its effectiveness and safety in moderately to critically ill COVID-19 patients. METHODS This retrospective study was conducted in two public/specialty hospitals in Saudi Arabia. We included patients ≥18 years) admitted April-August 2020 with confirmed SARS-CoV-2 diagnosed by real-time polymerase chain reaction (RT-PCR) from nasopharyngeal swab. Patients received either favipiravir (1800 mg or 1600 mg twice daily loading dose, followed by 800 mg or 600 mg twice daily) or supportive-care treatment. Patients were excluded if they were outside the study period, classified as having a mild form of the disease per WHO criteria, or had an incomplete patient file. Kaplan-Meier (KM) models were used to estimate median time to discharge. Discharge ratios, progression to mechanical ventilation, and mortality outcomes were estimated across the severity spectrum using Cox proportional-hazards models. As a sensitivity analysis, we performed propensity score-matching (PSM) analysis. RESULTS Overall, median time to discharge was 10 days (95%CI = 9-10) in the favipiravir arm versus 15 days (95%CI = 14-16) in the supportive-care arm. The accelerated discharge benefit was seen across the COVID-19 spectrum of severity. The adjusted discharge ratio was 1.96 (95%CI = 1.56-2.46). Progression to mechanical ventilation was slower with favipiravir (HRadj = 0.10, 95%CI = 0.04-0.29). There was no significant effect on mortality (HRadj = 1.56, 95%CI = 0.73-3.36). There was a statistically non-significant trend toward worse outcomes in the critical category (HRadj = 2.80, 95%CI = 0.99-7.89). Age was an independent risk factor for mortality in mechanically ventilated patients. PSM analyses confirmed these findings. CONCLUSION Favipiravir was associated with clinical benefits, including accelerated discharge rate and less progression to mechanical ventilation; however, no overall mortality benefits were seen across the severity spectrum.
Collapse
Affiliation(s)
- Ahmad Alamer
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
- Department of Clinical Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ahmed A. Alrashed
- Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mashael Alfaifi
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fatimah AlHassar
- Department of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Malak Almutairi
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Jude Howaidi
- Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wedad Almutairi
- Department of Clinical Pharmacy, Shaqra University, Riyadh, Saudi Arabia
| | - Yahya Mohzari
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Tarek Sulaiman
- Department of Infectious Diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ahmed Al-jedai
- Ministry of Health, Deputyship of Therapeutic Affairs, Riyadh, Saudi Arabia
- Alfaisal University, Colleges of Pharmacy and Medicine, Riyadh, Saudi Arabia
| | - Hamdan N. Alajami
- Pharmaceutical Services Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Fatima Alkharji
- Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alsaeed
- Neurology Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Alaa H. Alali
- Department of Infectious Diseases, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Abdulaziz S. Almulhim
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
72
|
Ünlü B, Simsek R, Köse SBE, Yirün A, Erkekoglu P. Neurological Effects of Sars-Cov-2 And Neurotoxicity of Antiviral Drugs Against Covid-19. Mini Rev Med Chem 2021; 22:213-231. [PMID: 34191697 DOI: 10.2174/1389557521666210629100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is caused by different SARS viruses. In 2020, novel coronavirus (SARS-CoV-2) led to an ongoing pandemic, known as "Coronavirus Disease 2019 (COVID-19)". The disease can spread among individuals through direct (via saliva, respiratory secretions or secretion droplets) or indirect (through contaminated objects or surfaces) contact. The pandemic has spread rapidly from Asia to Europe and later to America. It continues to affect all parts of the world at an increasing rate. There have been over 92 million confirmed cases of COVID-19 by mid-January 2021. The similarity of homological sequences between SARS-CoV-2 and other SARS-CoVs is high. In addition, clinical symptoms of SARS-CoV-2 and other SARS viruses show similarities. However, some COVID-19 cases show neurologic signs like headache, loss of smell, hiccups and encephalopathy. The drugs used in the palliative treatment of the disease also have some neurotoxic effects. Currently, there are approved vaccines for COVID-19. However, there is a need for specific therapeutics against COVID-19. This review will describe the neurological effects of SARS-CoV-2 and the neurotoxicity of COVID-19 drugs used in clinics. Drugs used in the treatment of COVID-19 will be evaluated by their mechanism of action and their toxicological effects.
Collapse
Affiliation(s)
- Büşra Ünlü
- TOBB University, Bioengineering Department, Ankara, Turkey
| | - Rahime Simsek
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye 06100, Ankara, Turkey
| | - Selinay Başak Erdemli Köse
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Anıl Yirün
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|
73
|
Trends in the development of remdesivir based inventions against COVID-19 and other disorders: A patent review. J Infect Public Health 2021; 14:1075-1086. [PMID: 34243049 PMCID: PMC8236076 DOI: 10.1016/j.jiph.2021.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
The development of remdesivir has been a breakthrough for COVID-19 treatment. It has been approved in about 50 countries, including Saudi Arabia, since 2020. The generic structure of remdesivir was first disclosed in 2009. This patent review summarizes the remdesivir based inventions to treat/prevent COVID-19 and other disorders from 2009 to May 16, 2021, emphasizing the patents related to medical and pharmaceutical sciences. The primary patents/patent applications of remdesivir are related to its compositions, new combinations with other therapeutic agents, delivery systems, and new indications. The inventive combinations have displayed synergistic effects against COVID-19, whereas the delivery systems/compositions have improved patient compliance. The inventions related to new indications of remdesivir to treat Ebola, hepatitis, idiopathic pulmonary fibrosis, diabetic nephropathy, and cardiovascular complications enhance its therapeutic area. Many new innovative combinations and delivery systems of remdesivir are anticipated to provide better treatment for COVID-19.
Collapse
|
74
|
Stroever SJ, Ostapenko D, Scatena R, Pusztai D, Coritt L, Frimpong AA, Nee P. Medication Use Among Patients With COVID-19 in a Large, National Dataset: Cerner Real-World Data™. Clin Ther 2021; 43:e173-e196. [PMID: 33958234 PMCID: PMC8049452 DOI: 10.1016/j.clinthera.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The outbreak of coronavirus disease 2019 (COVID-19) required clinicians to use knowledge of therapeutic mechanisms of established drugs to piece together treatment regimens. The purpose of this study is to examine the trends in medication use among patients with COVID-19 across the United States using a national dataset. METHODS We conducted a cross-sectional study of the COVID-19 cohort in the Cerner Real-World Data warehouse, which includes deidentified patient information for encounters associated with COVID-19 from December 1, 2019, through June 30, 2020. The primary variables of interest were medications given to patients during their inpatient COVID-19 treatment. We also identified demographic characteristics, calculated the proportion of patients with each medication, and stratified data by demographic variables. FINDINGS Our sample included 51,169 inpatients from every region of the United States. Males and females were equally represented, and most patients were white and non-Hispanic. The largest proportion of patients were older than 45 years. Corticosteroids were used the most among all patients (56.5%), followed by hydroxychloroquine (17.4%), tocilizumab (3.1%), and lopinavir/ritonavir (1.1%). We found substantial variation in medication use by region, race, ethnicity, sex, age, and insurance status. IMPLICATIONS Variations in medication use are likely attributable to multiple factors, including the timing of the pandemic by region in the United States and processes by which medications are introduced and disseminated. This study is the first of its kind to assess trends in medication use in a national dataset and is the first large, descriptive study of pharmacotherapy in hospitalized patients with COVID-19. It provides an important glimpse into prescribing patterns during a pandemic.
Collapse
Affiliation(s)
| | - Daniel Ostapenko
- Department of Innovation and Research, Nuvance Health, Danbury, Connecticut
| | - Robyn Scatena
- Department of Critical Care, Nuvance Health, Norwalk, Connecticut
| | - Daniel Pusztai
- Department of Pharmacy, Norwalk Hospital, Norwalk, Connecticut
| | - Lauren Coritt
- University of Vermont, Larner College of Medicine, Burlington, Vermond
| | - Akua A Frimpong
- University of Vermont, Larner College of Medicine, Burlington, Vermond
| | - Paul Nee
- Department of Infectious Diseases, Nuvance Health, Danbury, Connecticut
| |
Collapse
|
75
|
Chemotherapy vs. Immunotherapy in combating nCOVID19: An update. Hum Immunol 2021; 82:649-658. [PMID: 34020832 PMCID: PMC8130497 DOI: 10.1016/j.humimm.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
The nCOVID-19 pandemic initiated its course of contagion from the city of Wuhan and now it has spread all over the globe. SARS-CoV-2 is the causative virus and the infection as well as its symptoms are distributed across the multi-organ perimeters. Interactions between the host and virus governs the induction of ‘cytokine storm’ resulting various immunopathological consequences leading to death. Till now it has caused tens of millions of casualties and yet no credible cure has emerged to vision. This article presents a comprehensive overview on the two most promising remedial approaches that are being attempted for the management, treatment, and plausible cure of nCOVID-19. In this context, chemotherapeutic approach primarily aims to interrupt the interactions between the host and the virus causing inhibition of its entry into the host cell and/or its proliferation and suppressing the inflammatory milieu in the infected patients. On the other side, immunotherapeutic approaches aim to modulate the host immunity by fine tuning the inflammatory signaling cascades to achieve phylaxis from the virus and restoring immune-homeostasis. Considering most of the path-breaking findings, combinatorial therapy involving of chemotherapeutics as well as vaccine could usher to be a hope for all of us to eradicate the crisis
Collapse
|
76
|
Singh P, Singh D, Sa P, Mohapatra P, Khuntia A, K Sahoo S. Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine (Lond) 2021; 16:1219-1235. [PMID: 33998837 PMCID: PMC8127834 DOI: 10.2217/nnm-2021-0004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outbreak of SARS-CoV-2 infection has presented the world with an urgent demand for advanced diagnostics and therapeutics to prevent, treat and control the spread of infection. Nanotechnology seems to be highly relevant in this emergency due to the unique physicochemical properties of nanomaterials which offer versatile chemical functionalization to create advanced biomedical tools. Here, nano-intervention is discussed for designing effective strategies in developing advanced personal protective equipment kits, disinfectants, rapid and cost-effective diagnostics and therapeutics against the infection. We have also highlighted the nanoparticle-based vaccination approaches and how nanoparticles can regulate the host immune system against infection. Overall, this review discusses various nanoformulations that have shown clinical relevance or can be explored in the fight against COVID-19.
Collapse
Affiliation(s)
- Priya Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Deepika Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Pratikshya Sa
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Auromira Khuntia
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Regional Center for Biotechnology, Pali, Haryana, 121001, India
| | - Sanjeeb K Sahoo
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
77
|
Pannone G, Caponio VCA, De Stefano IS, Ramunno MA, Meccariello M, Agostinone A, Pedicillo MC, Troiano G, Zhurakivska K, Cassano T, Bizzoca ME, Papagerakis S, Buonaguro FM, Advani S, Muzio LL. Lung histopathological findings in COVID-19 disease - a systematic review. Infect Agent Cancer 2021; 16:34. [PMID: 34001199 PMCID: PMC8127295 DOI: 10.1186/s13027-021-00369-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
Since December 2019, the global burden of the COVID-19 pandemic has increased rapidly and has impacted nearly every country in the world, affecting those who are elderly or with underlying comorbidities or immunocompromised states. Aim of this systematic review is to summarize lung histopathological characteristics of COVID-19, not only for diagnostic purpose but also to evaluate changes that can reflect pathophysiological pathways that can inform clinicians of useful treatment strategies. We identified following histopathological changes among our patients:: hyaline membranes; endothelial cells/ interstitial cells involvement; alveolar cells, type I pneumocytes/ type II pneumocytes involvement; interstitial and/ or alveolar edema; evidence of hemorrhage, of inflammatory cells, evidence of microthrombi; evidence of fibrin deposition and of viral infection in the tissue samples.The scenario with proliferative cell desquamation is typical of Acute Respiratory Distress Syndrome (ARDS) that can be classified as diffuse alveolar damage (DAD) and not DAD-ARDS. The proposed pathological mechanism concerns the role of both innate and adaptive components of the immune system. COVID-19 lethal cases present themselves as a heterogeneous disease, characterized by the different simultaneous presence of different histological findings, which reflect histological phases with corresponding different pathological pathways (epithelial, vascular and fibrotic changes), in the same patient.
Collapse
Affiliation(s)
- Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | | | - Ilenia Sara De Stefano
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Antonietta Ramunno
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Mario Meccariello
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Alessio Agostinone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Carmela Pedicillo
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Tommaso Cassano
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Eleonora Bizzoca
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, Health Sciences Center, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit Istituto Nazionale, Tumori IRCCS "Fondazione Pascale", 80131, Naples, Italy
| | - Shailesh Advani
- Georgetown University School of Medicine, Georgetown University, Washington, DC, USA
| | - Lorenzo Lo Muzio
- Department of Clinic and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
78
|
Boutzoukas AE, Benjamin DK, Zimmerman KO. Remdesivir: Preliminary Data and Clinical Use Versus Recommended Use. Pediatrics 2021; 147:e2021050212. [PMID: 33883244 PMCID: PMC8085993 DOI: 10.1542/peds.2021-050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angelique E Boutzoukas
- Duke Clinical Research Institute and Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Daniel K Benjamin
- Duke Clinical Research Institute and Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Kanecia O Zimmerman
- Duke Clinical Research Institute and Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
79
|
Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021; 28:3152-3159. [PMID: 33649700 PMCID: PMC7901282 DOI: 10.1016/j.sjbs.2021.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023] Open
Abstract
Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
80
|
March RJ. The FDA and the COVID-19: A political economy perspective. SOUTHERN ECONOMIC JOURNAL 2021; 87:1210-1228. [PMID: 33821046 PMCID: PMC8012986 DOI: 10.1002/soej.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This article utilizes a political economy framework to examine how FDA regulations impacted the U.S. healthcare sector's ability to address COVID-19. I specifically examine the developing COVID-19 testing, the approval of the medication remdesivir, and COVID-19 vaccines. By examining periods before and after the FDA issued Emergency Use Authorizations (EUAs), my analysis finds that the FDA's regulations enacted before the COVID-19 pandemic began strongly restricted clinician and patient access to COVID-19 testing, remdesivir treatment, and approving vaccines. After the FDA issued EUAs, the healthcare sector quickly adopted COVID-19 testing and remdesivir with little evidence of negative consequences. These findings contribute to the economics literature examining the FDA and contemporary COVID-19 policy research.
Collapse
Affiliation(s)
- Raymond J. March
- Center for the Study of Public Choice and Private EnterpriseNorth Dakota State UniversityFargoNorth DakotaUSA
| |
Collapse
|
81
|
Efficacy and safety of COVID-19 vaccines: a systematic review. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33691913 PMCID: PMC7969187 DOI: 10.7499/j.issn.1008-8830.2101133] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate systematically the efficacy and safety of COVID-19 vaccines. METHODS PubMed, Embase, Cochrane Library, Clinicaltrial.gov, CNKI, Wanfang Data, China Biomedical Literature Service System, and China Clinical Trial Registry were searched for randomized controlled trials of COVID-19 vaccines published up to December 31, 2020. The Cochrane bias risk assessment tool was used to assess the quality of studies. A qualitative analysis was performed on the results of clinical trials. RESULTS Thirteen randomized, blinded, controlled trials, which involved the safety and efficacy of 11 COVID-19 vaccines, were included. In 10 studies, the 28-day seroconversion rate of subjects exceeded 80%. In two 10 000-scale clinical trials, the vaccines were effective in 95% and 70.4% of the subjects, respectively. The seroconversion rate was lower than 60% in only one study. In six studies, the proportion of subjects who had an adverse reaction within 28 days after vaccination was lower than 30%. This proportion was 30%-50% in two studies and > 50% in the other two studies. Most of the adverse reactions were mild to moderate and resolved within 24 hours after vaccination. The most common local adverse reaction was pain or tenderness at the injection site, and the most common systemic adverse reaction was fatigue, fever, or bodily pain. The immune response and incidence of adverse reactions to the vaccines were positively correlated with the dose given to the subjects. The immune response to the vaccines was worse in the elderly than in the younger population. In 6 studies that compared single-dose and double-dose vaccination, 4 studies showed that double-dose vaccination produced a stronger immune response than single-dose vaccination. CONCLUSIONS Most of the COVID-19 vaccines appear to be effective and safe. Double-dose vaccination is recommended. However, more research is needed to investigate the long-term efficacy and safety of the vaccines and the influence of dose, age, and production process on the protective efficacy.
Collapse
|
82
|
XING K, TU XY, LIU M, LIANG ZW, CHEN JN, LI JJ, JIANG LG, XING FQ, JIANG Y. Efficacy and safety of COVID-19 vaccines: a systematic review. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:221-228. [PMID: 33691913 PMCID: PMC7969187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 08/09/2024]
Abstract
OBJECTIVE To evaluate systematically the efficacy and safety of COVID-19 vaccines. METHODS PubMed, Embase, Cochrane Library, Clinicaltrial.gov, CNKI, Wanfang Data, China Biomedical Literature Service System, and China Clinical Trial Registry were searched for randomized controlled trials of COVID-19 vaccines published up to December 31, 2020. The Cochrane bias risk assessment tool was used to assess the quality of studies. A qualitative analysis was performed on the results of clinical trials. RESULTS Thirteen randomized, blinded, controlled trials, which involved the safety and efficacy of 11 COVID-19 vaccines, were included. In 10 studies, the 28-day seroconversion rate of subjects exceeded 80%. In two 10 000-scale clinical trials, the vaccines were effective in 95% and 70.4% of the subjects, respectively. The seroconversion rate was lower than 60% in only one study. In six studies, the proportion of subjects who had an adverse reaction within 28 days after vaccination was lower than 30%. This proportion was 30%-50% in two studies and > 50% in the other two studies. Most of the adverse reactions were mild to moderate and resolved within 24 hours after vaccination. The most common local adverse reaction was pain or tenderness at the injection site, and the most common systemic adverse reaction was fatigue, fever, or bodily pain. The immune response and incidence of adverse reactions to the vaccines were positively correlated with the dose given to the subjects. The immune response to the vaccines was worse in the elderly than in the younger population. In 6 studies that compared single-dose and double-dose vaccination, 4 studies showed that double-dose vaccination produced a stronger immune response than single-dose vaccination. CONCLUSIONS Most of the COVID-19 vaccines appear to be effective and safe. Double-dose vaccination is recommended. However, more research is needed to investigate the long-term efficacy and safety of the vaccines and the influence of dose, age, and production process on the protective efficacy.
Collapse
Affiliation(s)
- Kai XING
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Xiao-Yan TU
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Miao LIU
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Zhang-Wu LIANG
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Jiang-Nan CHEN
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Jiao-Jiao LI
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Li-Guo JIANG
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Fu-Qiang XING
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| | - Yi JIANG
- />Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China武汉大学人民医院儿科, 湖北武汉 430060
| |
Collapse
|
83
|
Bobkova NV. The Balance between Two Branches of RAS Can Protect from Severe COVID-19 Course. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2021; 15:36-51. [PMID: 33643542 PMCID: PMC7897458 DOI: 10.1134/s1990747821010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has swept the world and required the mobilization of scientists and clinicians around the world to combat this serious disease. Along with SARS-CoV-2 virology research, understanding of the fundamental physiological processes, molecular and cellular mechanisms and intracellular signaling pathways underlying the clinical manifestations of COVID-19 is important for effective therapy of this disease. The review describes in detail the interaction of the components of the renin-angiotensin system (RAS) and receptors of end-glycosylated products (RAGE), which plays a special role in normal lung physiology and in pathological conditions in COVID-19, including the development of acute respiratory distress syndrome and "cytokine storm". A separate section is devoted to the latest developments aimed at correcting the dysfunction of the RAS caused by the binding of the virus to angiotensin converting enzyme 2 (ACE2)- the central element of this system. Analysis of published theoretical, clinical, and experimental data indicates the need for a complex treatment to prevent a severe course of COVID-19 using MasR agonists, blockers of the AT1R and NF-κB signaling pathway, as well as compounds with neuroprotective and neuroregenerative effects.
Collapse
Affiliation(s)
- N. V. Bobkova
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
84
|
Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, Adam GC, Flynn J, McKenna P, Swaminathan G, Hazuda DJ, Olsen DB. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog 2021; 17:e1009225. [PMID: 33596266 PMCID: PMC7888651 DOI: 10.1371/journal.ppat.1009225] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.
Collapse
Affiliation(s)
- Nicholas Murgolo
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, United States of America
| | - Bonnie Howell
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Daniel Klein
- Department of Computational and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Kenneth Koeplinger
- Department of Pharmacokinetics, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Linda A. Lieberman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, United States of America
| | - Gregory C. Adam
- Department of Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Jessica Flynn
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Philip McKenna
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, United States of America
| | - Daria J. Hazuda
- Discovery Biology & Translational Medicine, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - David B. Olsen
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| |
Collapse
|
85
|
Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021; 104:107851. [PMID: 33556646 PMCID: PMC7837617 DOI: 10.1016/j.jmgm.2021.107851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 μs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.
Collapse
|
86
|
Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Mol Cell Biochem 2021; 476:1891-1895. [PMID: 33483858 PMCID: PMC7822399 DOI: 10.1007/s11010-021-04054-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/23/2022]
Abstract
Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.
Collapse
|
87
|
Adekanmbi O, Ilesanmi O, Lakoh S. Ebola: A review and focus on neurologic manifestations. J Neurol Sci 2021; 421:117311. [PMID: 33493959 DOI: 10.1016/j.jns.2021.117311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/15/2022]
Abstract
Ebolavirus disease (EVD) is a severe, highly contagious, and often fatal systemic disease in human and non-human primates. Zoonotic and human-to-human transmission have been well documented. Ebolaviruses are endemic to Equatorial and West Africa and there have been over 20 outbreaks in sub-Saharan Africa since 1976. The largest known outbreak of EVD occurred between 2013 and 2016 across several West African countries. It resulted in 28,646 suspected and confirmed cases and 11,323 deaths. There are 5 species within the genus Ebolavirus with 4 of them being clinically significant. In patients with EVD, neurologic manifestations range from mild symptoms such as confusion to severe neurologic diseases such as meningitis and encephalitis. Altered mental status, from mild confusion to delirium with hallucinations, may also occur. Rare neuropsychiatric manifestations of EVD include psychological or cognitive symptoms, including short-term memory loss, insomnia, and depression or anxiety. Although Ebolavirus RNA has been detected in cerebrospinal fluid, the body of knowledge around the pathogenic mechanisms of neurological disease is not yet fully understood. Studies are needed to understand the acute and chronic neuronal pathologic as well as biochemical cerebrospinal fluid changes in Ebolavirus infection.
Collapse
Affiliation(s)
- Olukemi Adekanmbi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - Olayinka Ilesanmi
- Department of Community Medicine, University of Ibadan, Ibadan, Nigeria; Department of Community Medicine, University College Hospital, Ibadan, Nigeria.
| | - Sulaiman Lakoh
- Department of Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone; Department of Medicine, University of Sierra Leone Teaching Hospitals Complex, Sierra Leone
| |
Collapse
|
88
|
Lee C, Choi WJ. Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Arch Pharm Res 2021; 44:99-116. [PMID: 33398692 PMCID: PMC7781412 DOI: 10.1007/s12272-020-01301-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
The novel beta coronavirus (SARS-CoV-2, designated as COVID-19) that is responsible for severe acute respiratory syndrome has devastated the global economy and health care system. Since COVID-19 changed the definition of “normal” in ordinary life around the world, the development of effective therapeutics and preventive measures is desperately needed to fight SARS-CoV-2 infection and restore normalcy. A clear understanding of COVID-19 pathogenesis is crucial in providing the scientific rationale necessary to develop anti-COVID19 drugs and vaccines. According to the most recently published literature, COVID-19 pathogenesis was postulated to occur in three sequential phases: pulmonary, proinflammatory, and prothrombic. Herein, virus-host interactions, potential pathogenic mechanisms, and clinical manifestations are described for each phase. Additionally, based on this pathogenesis model, various therapeutic strategies involving current clinical trials are presented with an explanation of their modes of action and example drugs. This review is a thorough, updated summary of COVID-19 pathogenesis and the therapeutic options available for this disease.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang, 10326, Republic of Korea.
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
89
|
Hong S, Chang J, Jeong K, Lee W. Raloxifene as a treatment option for viral infections. J Microbiol 2021; 59:124-131. [PMID: 33527314 PMCID: PMC7849956 DOI: 10.1007/s12275-021-0617-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused corona virus disease 2019 (COVID-19) pandemic and led to mass casualty. Even though much effort has been put into development of vaccine and treatment methods to combat COVID-19, no safe and efficient cure has been discovered. Drug repurposing or drug repositioning which is a process of investigating pre-existing drug candidates for novel applications outside their original medical indication can speed up the drug development process. Raloxifene is a selective estrogen receptor modulator (SERM) that has been approved by FDA in 1997 for treatment and prevention of postmenopausal osteoporosis and cancer. Recently, raloxifene demonstrates efficacy in treating viral infections by Ebola, influenza A, and hepatitis C viruses and shows potential for drug repurposing for the treatment of SARS-CoV-2 infection. This review will provide an overview of raloxifene's mechanism of action as a SERM and present proposed mechanisms of action in treatment of viral infections.
Collapse
Affiliation(s)
- Subin Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - JuOae Chang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Kwiwan Jeong
- Bio-center, Gyeonggido Business & Science Accelerator, Suwon, 16229 Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
90
|
Pal M, Musib D, Roy M. Transition metal complexes as potential tools against SARS-CoV-2: an in silicoapproach. NEW J CHEM 2021. [DOI: 10.1039/d0nj04578k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Screening of selected transition metal-based antiviral agents,in silico, predicted the potential inhibition of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 which emerged as the potential drug candidate for COVID-19.
Collapse
Affiliation(s)
- Maynak Pal
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Dulal Musib
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Mithun Roy
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| |
Collapse
|
91
|
Cusinato J, Cau Y, Calvani AM, Mori M. Repurposing drugs for the management of COVID-19. Expert Opin Ther Pat 2020; 31:295-307. [PMID: 33283567 DOI: 10.1080/13543776.2021.1861248] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 represents a serious health issue worldwide, with more than 61 million cases and more than 1.4 million deaths since the beginning of the epidemic near the end of 2019. The scientific community strongly responded to this emergency situation with massive research efforts, mostly focused on diagnosis and clinical investigation of therapeutic solutions. In this scenario, drug repurposing played a crucial role in accelerating advanced clinical testing and shortening the time to access the regulatory review.Areas covered: This review covers the main and most successful drug repurposing approaches from a design, clinical, and regulatory standpoint. Available patents on repurposed drugs are also discussed.Expert opinion: Drug repurposing proved highly successful in response to the current pandemic, with remdesivir becoming the first specific antiviral drug approved for the treatment of COVID-19. In parallel, a number of drugs such as corticosteroids and low molecular weight heparin (LMWH) are used to treat hospitalized COVID-19 patients, while clinical testing of additional therapeutic options is ongoing. It is reasonably expected that these research efforts will deliver optimized and specific therapeutic tools that will increase the preparedness of health systems to possible future epidemics.
Collapse
Affiliation(s)
- Jacopo Cusinato
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ylenia Cau
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Hospital Pharmacy School, Florence, Italy
| | - Anna Maria Calvani
- AOU Anna Meyer Children's University Hospital, Hospital Pharmacy, AOU Anna Meyer Children's University Hospital, Florence, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
92
|
Dangerfield TL, Huang NZ, Johnson KA. Remdesivir Is Effective in Combating COVID-19 because It Is a Better Substrate than ATP for the Viral RNA-Dependent RNA Polymerase. iScience 2020; 23:101849. [PMID: 33283177 PMCID: PMC7695572 DOI: 10.1016/j.isci.2020.101849] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently being treated using Remdesivir, a nucleoside analog that inhibits the RNA-dependent-RNA polymerase (RdRp). However, the enzymatic mechanism and efficiency of Remdesivir have not been determined, and reliable screens for new inhibitors are urgently needed. Here we present our work to optimize expression in E. coli, followed by purification and kinetic analysis of an untagged NSP12/7/8 RdRp complex. Pre-steady-state kinetic analysis shows that our reconstituted RdRp catalyzes fast (kcat = 240–680 s−1) and processive (koff = 0.013 s−1) RNA polymerization. The specificity constant (kcat/Km) for Remdesivir triphosphate (RTP) incorporation (1.29 μM−1s−1) is higher than that for the competing ATP (0.74 μM−1 s−1). This work provides the first robust analysis of RNA polymerization and RTP incorporation by the SARS-CoV-2 RdRp and sets the standard for development of informative enzyme assays to screen for new inhibitors. Co-expression of NSP12/7/8 with chaperones in E. coli gives soluble SARS CoV2 RdRp Tag-free RdRp complex catalyzes fast and processive RNA polymerization Polymerization rates are sufficient to replicate the 30 kb genome in 2 min Remdesivir is incorporated with a specificity constant twice that observed for ATP
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, The University of Texas at Austin, 100 W. 24th Street, Stop 5000, MBB 3.122, Austin, TX 78712, USA
| | - Nathan Z Huang
- Department of Molecular Biosciences, The University of Texas at Austin, 100 W. 24th Street, Stop 5000, MBB 3.122, Austin, TX 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, 100 W. 24th Street, Stop 5000, MBB 3.122, Austin, TX 78712, USA
| |
Collapse
|
93
|
|
94
|
Abstract
The recent emergence of a new coronavirus (severe acute respiratory syndrome coronavirus‑2, SARS-CoV-2) that is transmitted efficiently among humans and can result in serious disease and/or death has become a global threat to public health and economy. In this article, we describe some of the most important characteristics of this new virus (including gaps in our understanding) and provide a perspective of ongoing activities for developing virus-specific countermeasures, such as vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Franz X Heinz
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
95
|
Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac Adverse Events With Remdesivir in COVID-19 Infection. Cureus 2020; 12:e11132. [PMID: 33240723 PMCID: PMC7682945 DOI: 10.7759/cureus.11132] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since December 2019, coronavirus has gradually progressed to a pandemic with no efficacious treatment. Remdesivir is an antiviral medication and inhibitor of viral RNA dependent RNA polymerase with inhibitory action against SARS-CoV virus. Two patients diagnosed with coronavirus infection with worsening respiratory status were initiated with multimodality therapy with antibiotics, steroids and remdesivir. After initiation of remdesivir, the patients' developed bradycardia, with one of the two also showing signs of worsening QT interval. This reverted upon stopping remdesvir therapy. The prevalence of bradycardia with prolonged QT interval is not well-known yet with this medication.
Collapse
Affiliation(s)
| | | | | | - John Parker
- Obstetrics and Gynaecology, AdventHealth Altamonte, Altamonte Springs, USA
| |
Collapse
|
96
|
Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of COVID-19. Front Vet Sci 2020; 7:584673. [PMID: 33195610 PMCID: PMC7644464 DOI: 10.3389/fvets.2020.584673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring coronaviral infections have been studied for several decades in the context of companion and production animals, and central nervous system involvement is a common finding, particularly in cats with feline infectious peritonitis (FIP). These companion and production animal coronaviruses have many similarities to recent human pandemic-associated coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV2 (COVID-19). Neurological involvement is being increasingly recognized as an important clinical presentation in human COVID-19 patients, often associated with para-infectious processes, and potentially with direct infection within the CNS. Recent breakthroughs in the treatment of coronaviral infections in cats, including neurological FIP, have utilized antiviral drugs similar to those currently in human COVID-19 clinical trials. Differences in specific coronavirus and host factors are reflected in major variations in incidence and mechanisms of CNS coronaviral infection and pathology between species; however, broad lessons relating to treatment of coronavirus infection present within the CNS may be informative across species.
Collapse
Affiliation(s)
- Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
97
|
Lucchetta M, Pellegrini M. Finding disease modules for cancer and COVID-19 in gene co-expression networks with the Core&Peel method. Sci Rep 2020; 10:17628. [PMID: 33077837 PMCID: PMC7573595 DOI: 10.1038/s41598-020-74705-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Genes are organized in functional modules (or pathways), thus their action and their dysregulation in diseases may be better understood by the identification of the modules most affected by the disease (aka disease modules, or active subnetworks). We describe how an algorithm based on the Core&Peel method is used to detect disease modules in co-expression networks of genes. We first validate Core&Peel for the general task of functional module detection by comparison with 42 methods participating in the Disease Module Identification DREAM challenge. Next, we use four specific disease test cases (colorectal cancer, prostate cancer, asthma, and rheumatoid arthritis), four state-of-the-art algorithms (ModuleDiscoverer, Degas, KeyPathwayMiner, and ClustEx), and several pathway databases to validate the proposed algorithm. Core&Peel is the only method able to find significant associations of the predicted disease module with known validated relevant pathways for all four diseases. Moreover, for the two cancer datasets, Core&Peel detects further eight relevant pathways not discovered by the other methods used in the comparative analysis. Finally, we apply Core&Peel and other methods to explore the transcriptional response of human cells to SARS-CoV-2 infection, finding supporting evidence for drug repositioning efforts at a pre-clinical level.
Collapse
Affiliation(s)
- Marta Lucchetta
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy.
| |
Collapse
|
98
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
99
|
Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Comput Biol Med 2020; 126:104054. [PMID: 33074111 PMCID: PMC7554297 DOI: 10.1016/j.compbiomed.2020.104054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
The repurposing of FDA approved drugs is presently receiving attention for COVID-19 drug discovery. Previous studies revealed the binding potential of several FDA-approved drugs towards specific targets of SARS-CoV-2; however, limited studies are focused on the structural and molecular basis of interaction of these drugs towards multiple targets of SARS-CoV-2. The present study aimed to predict the binding potential of six FDA drugs towards fifteen protein targets of SARS-CoV-2 and propose the structural and molecular basis of the interaction by molecular docking and dynamic simulation. Based on the literature survey, fifteen potential targets of SARS-CoV-2, and six FDA drugs (Chloroquine, Hydroxychloroquine, Favipiravir, Lopinavir, Remdesivir, and Ritonavir) were selected. The binding potential of individual drug towards the selected targets was predicted by molecular docking in comparison with the binding of the same drugs with their usual targets. The stabilities of the best-docked conformations were confirmed by molecular dynamic simulation and energy calculations. Among the selected drugs, Ritonavir and Lopinavir showed better binding towards the prioritized targets with minimum binding energy (kcal/mol), cluster-RMS, number of interacting residues, and stabilizing forces when compared with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, later drugs demonstrated better binding when compared to the binding with their usual targets. Remdesvir showed better binding to the prioritized targets in comparison with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, but showed lesser binding potential when compared to the interaction between Ritonavir and Lopinavir and the prioritized targets. The structural and molecular basis of interactions suggest that the FDA drugs can be repurposed towards multiple targets of SARS-CoV-2, and the present computational models provide insights on the scope of repurposed drugs against COVID-19. Molecular mechanism of the binding of six drugs to multiple targets of SARS-CoV-2. Highlight the scope of repurposing of six drugs towards 15 targets of SARS-CoV-2. Ritonavir and Lopinavir possessed significant binding potential towards multiple targets. MD studies showed that the repurposing of these drugs to selected targets provide future insights.
Collapse
|
100
|
Drayman N, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Botten JW, Brooke CB, Baker SC, Mounce BC, Heaton NS, Dickinson BC, Jaochimiak A, Randall G, Tay S. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908976 DOI: 10.1101/2020.08.31.274639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.
Collapse
|