951
|
Kant M, Akış M, Çalan M, Arkan T, Bayraktar F, Dizdaroglu M, İşlekel H. Elevated urinary levels of 8-oxo-2'-deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F 2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair (Amst) 2016; 48:1-7. [PMID: 27769710 PMCID: PMC11274812 DOI: 10.1016/j.dnarep.2016.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022]
Abstract
Prediabetes is the preclinical stage of type 2 diabetes mellitus (T2DM) with intermediate state of hyperglycemia. Hyperglycemia results in a state of oxidative stress, which may contribute to the production of insulin resistance, β-cell dysfunction and long-term complications of diabetes. Novel approaches are required for prevention and treatment of diabetes. New biomarkers that can be used in risk stratification and therapy control as supplementary to current parameters are needed. These biomarkers may facilitate a more individualized and sufficient treatment of diabetes. Therefore, the aim of this study was to investigate the levels of oxidatively induced DNA damage products, 8-oxo-2'-deoxyguanosine (8-oxo-dG) (also known as 8-OH-dG), (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA), and the lipid peroxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α) as reliable oxidative stress markers in patients with prediabetes or T2DM in comparison with healthy volunteers. Urine samples were collected from these subjects. Absolute quantification of 8-oxo-dG, R-cdA, S-cdA and 8-iso-PGF2α was achieved by liquid chromatography-isotope dilution tandem mass spectrometry. The levels of 8-oxo-dG, S-cdA and 8-iso-PGF2α were significantly greater in prediabetes patients than those in healthy volunteers. T2DM patients also had higher levels of 8-oxo-dG than healthy volunteers. No statistically significant difference was observed for R-cdA levels. 8-Oxo-dG levels positively correlated with R-cdA and S-cdA levels for prediabetes and newly diagnosed T2DM. S-cdA levels and HbA1c were found negatively correlated in prediabetes patients. Also 8-iso-PGF2α levels and HbA1c were found negatively correlated in prediabetes patients. These results indicate that oxidatively induced macromolecular damage appears before the establishment of T2DM. Thus, our data suggest that oxidatively induced DNA damage and lipid peroxidation products that were found to be elevated in prediabetic stage may be used as early disease markers in patients at risk for T2DM.
Collapse
Affiliation(s)
- Melis Kant
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey.
| | - Merve Akış
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Mehmet Çalan
- Division of Endocrinology, Izmir Bozkaya Research and Education Hospital, 35170, Izmir, Turkey
| | - Tuğba Arkan
- Division of Endocrinology, Derince Research and Education Hospital, 41900, Kocaeli, Turkey
| | - Fırat Bayraktar
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Hüray İşlekel
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey; Department of Molecular Medicine, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| |
Collapse
|
952
|
Sakudo A, Toyokawa Y, Nakamura T, Yagyu Y, Imanishi Y. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA. Mol Med Rep 2016; 15:396-402. [PMID: 27909733 DOI: 10.3892/mmr.2016.5973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/10/2016] [Indexed: 11/06/2022] Open
Abstract
Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of The Ryukyus, Nishihara, Okinawa 903‑0215, Japan
| | - Yoichi Toyokawa
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of The Ryukyus, Nishihara, Okinawa 903‑0215, Japan
| | - Tetsuji Nakamura
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of The Ryukyus, Nishihara, Okinawa 903‑0215, Japan
| | - Yoshihito Yagyu
- Department of Electrical and Electric Engineering, Sasebo National College of Technology, Nagasaki 857‑1193, Japan
| | | |
Collapse
|
953
|
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol 2016; 7:1831. [PMID: 27899918 PMCID: PMC5110546 DOI: 10.3389/fmicb.2016.01831] [Citation(s) in RCA: 871] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023] Open
Abstract
Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
Collapse
Affiliation(s)
| | - Anu Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| | - Rita S. Majumdar
- Department of Microbiology, Central University of HaryanaMahendragarh, India
| | - Vinod Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| |
Collapse
|
954
|
Hsu YJ, Hsu SC, Hsu CP, Chen YH, Chang YL, Sadoshima J, Huang SM, Tsai CS, Lin CY. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 2016; 228:543-552. [PMID: 27875732 DOI: 10.1016/j.ijcard.2016.11.247] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The longevity regulator Sirtuin 1 is an NAD+-dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. METHODS We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1-/-) and control (Sirt1f/f) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. RESULTS Compared with 6-month-old Sirt1f/f mice, marked impaired contractility was observed in 12-month-old Sirt1-/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1-/- mice compared with those in Sirt1f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1-/- mice injected with a protein disulphide isomerase inhibitor. CONCLUSION The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Superintendent's Office, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
955
|
O'Brien JM, Beal MA, Yauk CL, Marchetti F. Next generation sequencing of benzo(a)pyrene-induced lacZ mutants identifies a germ cell-specific mutation spectrum. Sci Rep 2016; 6:36743. [PMID: 27829668 PMCID: PMC5103183 DOI: 10.1038/srep36743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
De novo mutations are implicated in a variety of genetic diseases and arise primarily in the male germline. We investigated whether male germ cells have unique mechanisms for spontaneous or chemically-induced mutation relative to somatic cells using the MutaMouse model. We recovered lacZ transgenes from sperm 42 days after a 28-day exposure to benzo(a)pyrene (BaP, 100 mg/kg/day) to assess mutations arising in dividing spermatogonia. BaP caused a 3.4-fold increase in lacZ mutant frequency over controls which increased to 4.1-fold after clonal correction. We then used next generation sequencing to compare the spontaneous and BaP-induced mutation spectra in sperm and bone marrow. The spontaneous spectrum in sperm had significantly more G:C to A:T transitions and fewer mutations at A:T basepairs than bone marrow. BaP predominantly induced G:C to T:A transversions in both cell types, and both were enriched for mutations at CpG dinucleotides. However, BaP induced significantly more deletions in sperm, but more G:C to A:T transitions and G:C to C:G transversions in bone marrow. Differences in error-prone translesion DNA synthesis polymerases may underlie the observed spectrum differences between sperm and bone marrow. These findings suggest that mutations in sperm can arise via mechanisms that are unique to male germ cells.
Collapse
Affiliation(s)
- Jason M O'Brien
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
956
|
Han SJ, Jang HS, Noh MR, Kim J, Kong MJ, Kim JI, Park JW, Park KM. Mitochondrial NADP +-Dependent Isocitrate Dehydrogenase Deficiency Exacerbates Mitochondrial and Cell Damage after Kidney Ischemia-Reperfusion Injury. J Am Soc Nephrol 2016; 28:1200-1215. [PMID: 27821630 DOI: 10.1681/asn.2016030349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate, synthesizing NADPH, which is essential for mitochondrial redox balance. Ischemia-reperfusion (I/R) is one of most common causes of AKI. I/R disrupts the mitochondrial redox balance, resulting in oxidative damage to mitochondria and cells. Here, we investigated the role of IDH2 in I/R-induced AKI. I/R injury in mice led to the inactivation of IDH2 in kidney tubule cells. Idh2 gene deletion exacerbated the I/R-induced increase in plasma creatinine and BUN levels and the histologic evidence of tubule injury, and augmented the reduction of NADPH levels and the increase in oxidative stress observed in the kidney after I/R. Furthermore, Idh2 gene deletion exacerbated I/R-induced mitochondrial dysfunction and morphologic fragmentation, resulting in severe apoptosis in kidney tubule cells. In cultured mouse kidney proximal tubule cells, Idh2 gene downregulation enhanced the mitochondrial damage and apoptosis induced by treatment with hydrogen peroxide. This study demonstrates that Idh2 gene deletion exacerbates mitochondrial damage and tubular cell death via increased oxidative stress, suggesting that IDH2 is an important mitochondrial antioxidant enzyme that protects cells from I/R insult.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Mi Ra Noh
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju-Do, Republic of Korea
| | - Min Jung Kong
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and Medical Research Center, College of Medicine, Keimyung University, Daegu, Republic of Korea; and
| | - Jeen-Woo Park
- Department of Biochemistry, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea;
| |
Collapse
|
957
|
Protein carbonyl content: a novel biomarker for aging in HIV/AIDS patients. Braz J Infect Dis 2016; 21:35-41. [PMID: 27821249 PMCID: PMC9425472 DOI: 10.1016/j.bjid.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 12/26/2022] Open
Abstract
Background The major complications of “treated” Human Immunodeficiency Virus (HIV) infection are cardiovascular disease, malignancy, renal disease, liver disease, bone disease, and perhaps neurological complications, which are phenomena of the normal aging process occurring at an earlier age in the HIV-infected population. The present study is aimed to explore protein carbonyl content as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. Objective To investigate the potential of carbonyl content as a biomarker for detecting oxidative Deoxyribonucleic acid (DNA) damage induced Antiretroviral Theraphy (ART) toxicity and/or accelerated aging in HIV/AIDS patients. Methods In this case–control study a total 600 subjects were included. All subjects were randomly selected and grouped as HIV-negative (control group) (n = 300), HIV-infected ART naive (n = 100), HIV-infected on first line ART (n = 100), and HIV-infected on second line ART (n = 100). Seronegative control subjects were age- and sex-matched with the ART naive patients and the two other groups. Carbonyl protein was determined by the method described in Levine et al. DNA damage marker 8-OH-dG was determined using 8-hydroxy-2-deoxy Guanosine StressXpress ELA Kit by StressMarq Biosciences. Results Protein carbonyl content levels and oxidative DNA damage were significantly higher (p < 0.05) in HIV-infected patients on second line ART and HIV-infected patients on first line ART than ART naive patients and controls. In a linear regression analysis, increased protein carbonyl content was positively associated with increased DNA damage (OR: 0.356; 95% CI: 0.287–0.426) p < 0.05. Conclusions Carbonyl content may has a role as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. Larger studies are warranted to elucidate the role of carbonyl content as a biomarker for premature aging in HIV/AIDS patients.
Collapse
|
958
|
Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun 2016; 7:13171. [PMID: 27786175 PMCID: PMC5080445 DOI: 10.1038/ncomms13171] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4+ stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60+ escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche. It is unclear what role mitochondrial function plays in maintaining intestinal epithelial cell (IEC) homeostasis. Here, the authors deplete a mitochondrial chaperone, heat shock protein 60 (HSP60) in IEC and observe a loss of stemness and cell proliferation, and suggest this is accompanied by a compensatory release of WNT-related factors.
Collapse
|
959
|
Friedenreich CM, Pialoux V, Wang Q, Shaw E, Brenner DR, Waltz X, Conroy SM, Johnson R, Woolcott CG, Poulin MJ, Courneya KS. Effects of exercise on markers of oxidative stress: an Ancillary analysis of the Alberta Physical Activity and Breast Cancer Prevention Trial. BMJ Open Sport Exerc Med 2016; 2:e000171. [PMID: 27900199 PMCID: PMC5125419 DOI: 10.1136/bmjsem-2016-000171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Oxidative stress may contribute to cancer aetiology through several mechanisms involving damage to DNA, proteins and lipids leading to genetic mutations and genomic instability. The objective of this study was to determine the effects of aerobic exercise on markers of oxidative damage and antioxidant enzymes in postmenopausal women. METHODS The Alberta Physical Activity and Breast Cancer Prevention Trial (ALPHA) was a two-centre, two-armed randomised trial of 320 inactive, healthy, postmenopausal women aged 50-74 years. Participants were randomly assigned to a year-long exercise intervention (225 min/week) or a control group while being asked to maintain a normal diet. Fasting blood samples were obtained and plasma concentrations of two oxidative damage markers (8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostaglandin F2α (8-Iso-PGF2α)) and two antioxidant enzymes (superoxide dismutase and catalase) were measured at baseline, 6 months and 12 months. Intention-to-treat (ITT) and per-protocol analyses were performed using linear mixed models adjusted for baseline biomarker concentrations. A further exercise adherence analysis, based on mean minutes of exercise per week, was also performed. RESULTS In the ITT and per-protocol analyses, the exercise intervention did not have any statistically significant effect on either oxidative damage biomarkers or antioxidant enzyme activity. CONCLUSIONS A year-long aerobic exercise intervention did not have a significant impact on oxidative stress in healthy, postmenopausal women. TRIAL REGISTRATION NUMBER NCT00522262.
Collapse
Affiliation(s)
- Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology , Université Claude Bernard Lyon 1, University of Lyon , Villeurbanne , France
| | - Qinggang Wang
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Eileen Shaw
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xavier Waltz
- Departments of Physiology and Pharmacology and Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shannon M Conroy
- Cancer Prevention Institute of California , Fremont, California , USA
| | - Rhys Johnson
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Christy G Woolcott
- Departments of Pediatrics and Obstetrics and Gynecology, Faculty of Medicine , Dalhousie University , Halifax, Nova Scotia , Canada
| | - Marc J Poulin
- Departments of Physiology and Pharmacology and Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Kerry S Courneya
- Faculty of Physical Education and Recreation , University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
960
|
Song B, Shen M, Jiang D, Malla S, Mosa IM, Choudhary D, Rusling JF. Microfluidic array for simultaneous detection of DNA oxidation and DNA-adduct damage. Analyst 2016; 141:5722-5729. [PMID: 27517117 PMCID: PMC5048564 DOI: 10.1039/c6an01237j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exposure to chemical pollutants and pharmaceuticals may cause health issues caused by metabolite-related toxicity. This paper reports a new microfluidic electrochemical sensor array with the ability to simultaneously detect common types of DNA damage including oxidation and nucleobase adduct formation. Sensors in the 8-electrode screen-printed carbon array were coated with thin films of metallopolymers osmium or ruthenium bipyridyl-poly(vinylpyridine) chloride (OsPVP, RuPVP) along with DNA and metabolic enzymes by layer-by-layer electrostatic assembly. After a reaction step in which test chemicals and other necessary reagents flow over the array, OsPVP selectively detects oxidized guanines on the DNA strands, and RuPVP detects DNA adduction by metabolites on nucleobases. We demonstrate array performance for test chemicals including 17β-estradiol (E2), its metabolites 4-hydroxyestradiol (4-OHE2), 2-hydroxyestradiol (2-OHE2), catechol, 2-nitrosotoluene (2-NO-T), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 2-acetylaminofluorene (2-AAF). Results revealed DNA-adduct and oxidation damage in a single run to provide a metabolic-genotoxic chemistry screen. The array measures damage directly in unhydrolyzed DNA, and is less expensive, faster, and simpler than conventional methods to detect DNA damage. The detection limit for oxidation is 672 8-oxodG per 106 bases. Each sensor requires only 22 ng of DNA, so the mass detection limit is 15 pg (∼10 pmol) 8-oxodG.
Collapse
Affiliation(s)
- Boya Song
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | | | |
Collapse
|
961
|
Koh SA, Sanders K, Burton P. Effect of male age on oxidative stress markers in human semen. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/2058915816673242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study conducted a comprehensive analysis of oxidative stress markers in human semen within the context of assisted reproductive technology (ART) and investigated if these markers varied according to male age. 148 semen samples were collected from 139 men presenting at Concept Fertility Centre, Western Australia, from 2009 to 2012. Semen analyses were performed and demographic information including smoking status and abstinence period was collected. Reactive oxygen species production, lipid peroxidation, oxidative DNA damage (8-hydroxy-2′-deoxyguanosine (8-OHdG)), total antioxidant capacity and DNA fragmentation ( terminal deoxynucleotidyl transferase-mediated deoxyuridine diphosphate nick-end labelling) were measured as markers of oxidative stress. Semen parameters and oxidative stress markers were compared against age as a continuous variable, and between males <40 and males ≥40 years of age. Older males aged ≥40 years exhibited higher levels of sperm oxidative DNA damage (8-OHdG) compared to younger males ( p = 0.029), but no other oxidative stress marker significantly varied with age. An age-related decrease in sperm concentration ( p = 0.011) and motility ( p = 0.015) was observed after processing. Lower sperm concentration and reduced motility pre- and post-semen processing were significantly correlated with elevated oxidative DNA damage (all p < 0.001). Our results suggest that oxidative stress may be an important mediator between male age and fertility. This is concerning within the context of an ageing ART cohort, as sperm oxidative DNA damage is associated with a range of suboptimal fertility outcomes.
Collapse
Affiliation(s)
- Su-Ann Koh
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Katherine Sanders
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Peter Burton
- Concept Fertility Centre, Subiaco, WA, Australia
| |
Collapse
|
962
|
Serdar B, Brindley S, Dooley G, Volckens J, Juarez-colunga E, Gan R. Short-term markers of DNA damage among roofers who work with hot asphalt. Environ Health 2016; 15:99. [PMID: 27765036 PMCID: PMC5072307 DOI: 10.1186/s12940-016-0182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. The overall goal of this project was to investigate the usefulness of phosphorylated histone H2AX (γH2AX) as a short-term biomarker of DNA damage among roofers. METHODS Blood, urine, and dermal wipe samples were collected from 20 roofers who work with hot asphalt before and after 6 h of work on Monday and Thursday of the same week (4 sampling periods). Particle-bound and gas-phase PAHs were collected using personal monitors during work hours. γH2AX was quantified in peripheral lymphocytes using flow cytometry and 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed in urine using ELISA. General linear mixed models were used to evaluate associations between DNA damage and possible predictors (such as sampling period, exposure levels, work- and life-style factors). Differences in mean biomarker and DNA damage levels were tested via ANOVA contrasts. RESULTS Exposure measurements did not show an association with any of the urinary biomarkers or the measures of DNA damage. Naphthalene was the most abundant PAH in gas-phase, while benzo(e)pyrene was the most abundant particle-bound PAH. Post-shift levels of γH2AX and 8-OHdG were higher on both study days, when compared to pre-shift levels. Cigarette smoking was a predictor of γH2AX and urinary creatinine was a predictor of urinary 8-OHdG. Between-subject variance to total variance ratio was 35.3 % for γH2ax and 4.8 % for 8-OHdG. CONCLUSION γH2AX is a promising biomarker of DNA damage in occupational epidemiology studies. It has a lower within-subject variation than urinary 8-OHdG and can easily be detected in large scale groups. Future studies that explore the kinetics of H2AX phosphorylation in relation to chemical exposures may reveal the transient and persistent nature of this sensitive biomarker of early DNA damage.
Collapse
Affiliation(s)
- Berrin Serdar
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mail Stop B119-V20, 12850 East Montview Boulevard, Rm. V20-3126, Aurora, CO 80045 USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Greg Dooley
- Analytical Toxicology Laboratory, Center for Environmental Medicine, Colorado State University, Fort Collins, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, USA
| | - Elizabeth Juarez-colunga
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Ryan Gan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| |
Collapse
|
963
|
Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod Toxicol 2016; 66:93-98. [PMID: 27751756 DOI: 10.1016/j.reprotox.2016.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
Bisphenol-A (BPA) exposure occurs commonly and may adversely impact pregnancy. Endocrine disruption is posited as the primary mechanism of action, but oxidative stress and inflammation pathways may also be important. We investigated associations between BPA exposure and oxidative stress and inflammation in 482 pregnant women. Participants were recruited early in pregnancy and provided urine and plasma at up to four visits. We measured total BPA and two biomarkers of oxidative stress (8-hydroxydeoxyguanosine and 8-isoprostane) in urine from each visit. Inflammation markers, including C-reactive protein and four cytokines were measured in plasma from the same time points. In adjusted models, an interquartile range increase in BPA was associated with significant increases in both oxidative stress biomarkers (5-9% increase). Additionally, we observed significantly higher IL-6 concentrations in association with an interquartile range increase in BPA (8.95% increase). These systemic changes consequent to BPA exposure may mediate adverse birth outcomes and/or fetal development.
Collapse
|
964
|
Gan L, Yang B, Mei H. The effect of iron dextran on the transcriptome of pig hippocampus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
965
|
Baker JK, Long SM, Hassell KL, Pettigrove VJ, Gagnon MM. Health Status of Sand Flathead (Platycephalus bassensis), Inhabiting an Industrialised and Urbanised Embayment, Port Phillip Bay, Victoria as Measured by Biomarkers of Exposure and Effects. PLoS One 2016; 11:e0164257. [PMID: 27711198 PMCID: PMC5053506 DOI: 10.1371/journal.pone.0164257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Port Phillip Bay, Australia, is a large semi-closed bay with over four million people living in its catchment basin. The Bay receives waters from the Yarra River which drains the city of Melbourne, as well as receiving the discharges of sewage treatment plants and petrochemical and agricultural chemicals. A 1999 study demonstrated that fish inhabiting Port Phillip Bay showed signs of effects related to pollutant exposure despite pollution management practices having been implemented for over a decade. To assess the current health status of the fish inhabiting the Bay, a follow up survey was conducted in 2015. A suite of biomarkers of exposure and effects were measured to determine the health status of Port Phillip Bay sand flathead (Platycephalus bassensis), namely ethoxyresorufin-O-deethylase (EROD) activity, polycyclic aromatic hydrocarbons (PAH) biliary metabolites, carboxylesterase activity (CbE) and DNA damage (8-oxo-dG). The reduction in EROD activity in the present study suggests a decline in the presence of EROD activity-inducing chemicals within the Bay since the 1990s. Fish collected in the most industrialised/urbanised sites did not display higher PAH metabolite levels than those in less developed areas of the Bay. Ratios of PAH biliary metabolite types were used to indicate PAH contaminant origin. Ratios indicated fish collected at Corio Bay and Hobsons Bay were subjected to increased low molecular weight hydrocarbons of petrogenic origin, likely attributed to the close proximity of these sites to oil refineries, compared to PAH biliary metabolites in fish from Geelong Arm and Mordialloc. Quantification of DNA damage indicated a localised effect of exposure to pollutants, with a 10-fold higher DNA damage level in fish sampled from the industrial site of Corio Bay relative to the less developed site of Sorrento. Overall, integration of biomarkers by multivariate analysis indicated that the health of fish collected in industrialised areas was compromised, with biologically significant biomarkers of effects (LSI, CF and DNA damage) discriminating between individuals collected in industrialised areas from observations made in fish collected in less developed areas of the Bay.
Collapse
Affiliation(s)
- Jarrad K. Baker
- Department of Environment & Agriculture, Curtin University, Bentley, Western Australia, Australia, 6102
| | - Sara M. Long
- Centre for Aquatic Pollution Identification and Management (CAPIM), Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Kathryn L. Hassell
- Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Vincent J. Pettigrove
- Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Marthe M. Gagnon
- Department of Environment & Agriculture, Curtin University, Bentley, Western Australia, Australia, 6102
| |
Collapse
|
966
|
Yang J, Li G, Huang Y, Ye L, Zhou Y, Zhao G, Lei Y, Chen X, Wang K, Chen Y, Dai C, Zhang Y. [Association of Inorganics Accumulation with the Activation of NF-κB Signaling Pathway and the iNOS Expression of Lung Tissue in Xuanwei Lung Cancer Patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:30-7. [PMID: 26805735 PMCID: PMC5999801 DOI: 10.3779/j.issn.1009-3419.2016.01.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
背景与目的 室内空气污染不仅会诱发哮喘,也会导致慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD),甚至促进肺癌发生。随着宣威肺癌的病因学研究,发现室内空气污染最终造成肺部无机颗粒物的沉积,这些物质可以造成肺泡细胞损伤、信号通路激活,最终促进肿瘤的发生。本研究旨在探讨宣威肺癌患者肺部中无机杂质的赋存以及核转录因子(nuclear factor κB, NF-κB) -诱导型一氧化氮合成酶(inducible nitric oxide synthase, iNOS)信号通路的激活情况。 方法 选取48例2013年12月-2014年11月在昆明医科大学第三附属医院行手术治疗的宣威肺癌患者与其他地区的肺癌患者作为研究对象,用透射电镜(transmission electron microscope, TME)对患者术后标本进行超微结构的观察,探究无机颗粒物的赋存情况;对患者的血清行细胞因子检测;对术后的标本行免疫组化以及蛋白质印迹(Western blot),了解NF-κB-p65蛋白以及iNOS蛋白的表达;对肺癌组织中和尿液中的8-OHdG赋存进行检测。 结果 在宣威肺癌患者癌旁组织的肺泡Ⅱ型细胞、巨噬细胞中可见到大量纳米级无机物赋存;对无机物进行元素分析,含有硅(Silicon, Si)成分;宣威地区患者血清中白介素(interleukin, IL) -1β(31.50±19.16) pg/mL较其他地区肺癌患者(11.33±6.94) pg/mL高,差异有统计学意义(P < 0.01);宣威肺癌与其他地区肺癌患者的术后病理组织中癌组织有NF-κB-p65和iNOS表达,较非宣威地区明显升高;癌旁和正常组织之间未见明显差异;宣威肺癌组织和尿液8-OHdG较非宣威地区肺癌患者高,肺癌患者尿液中的8-OhdG(40.124±8.597) ng/mgCr与其他地区患者(25.673±7.986) ng/mgCr相比,差异有统计学意义(P < 0.05)。 结论 肺部无机物的赋存以及NF-κB-iNOS信号通路的激活可能促进了宣威肺癌的发生。
Collapse
Affiliation(s)
- Jiapeng Yang
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Guangjian Li
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Yunchao Huang
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Lianhua Ye
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Yongchun Zhou
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Yujie Lei
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Xiaobo Chen
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Kun Wang
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Ying Chen
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Chun Dai
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| | - Yanjun Zhang
- Department of Thoracic Surgery 1 Ward, The Third Affiliated Hospital of Kunming Medical University/Yunnan Provincial Tumor Hospital/Yunnan Key Laboratory of Lung Cancer, Kunming 650118, China
| |
Collapse
|
967
|
Cheng P, Kuang F, Ju G. Aescin reduces oxidative stress and provides neuroprotection in experimental traumatic spinal cord injury. Free Radic Biol Med 2016; 99:405-417. [PMID: 27596954 DOI: 10.1016/j.freeradbiomed.2016.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Aescin has many physiological functions that are highly relevant to spinal cord injury (SCI), including anti-inflammation, anti-oxidation, anti-oedema, and enhancing vascular tone. The present study investigated the putative therapeutic value of aescin in SCI, with a focus on its neuroprotective, anti-inflammatory, and anti-oxidative properties. Sodium aescinate (1.0mg/kg body weight) or equivalent volume of saline was administered 30min after injury by intravenous injection, with an additional dose daily for seven consecutive days after moderate SCI in rats. After contusion injury of the 8th thoracic (T8) spinal cord, aescin-treated rats developed less severe hind limb weakness than saline controls, as assayed by the Basso-Beattie-Bresnahan scale, the beam walking test, and a footprint analysis. The improved locomotor outcomes in aescin-treated rats corresponded to markedly decreased immune response, oxidative stress, neuronal loss, axon demyelination, spinal cord swelling, and cell apoptosis, measured around T8 after impact. Our data suggest aescin treatment as a novel, early, neuroprotective approach in SCI. Given the known safety of aescin in clinical applications, the results of this study suggest that it is a good candidate for SCI treatment in humans.
Collapse
Affiliation(s)
- Peng Cheng
- Institute of Neurosciences, PLA Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China; Department of Neurology, PLA 425th Hospital, 86 Sanya Bay Road, Sanya 572000, China.
| | - Fang Kuang
- Institute of Neurosciences, PLA Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China
| | - Gong Ju
- Institute of Neurosciences, PLA Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
968
|
Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers. Bioanalysis 2016; 8:2023-43. [DOI: 10.4155/bio-2016-0108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. Results: A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC–MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Conclusion: Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.
Collapse
|
969
|
Pimentel-Gutiérrez HJ, Bobadilla-Morales L, Barba-Barba CC, Ortega-De-La-Torre C, Sánchez-Zubieta FA, Corona-Rivera JR, González-Quezada BA, Armendáriz-Borunda JS, Silva-Cruz R, Corona-Rivera A. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB. Oncol Lett 2016; 12:4117-4124. [PMID: 27895780 DOI: 10.3892/ol.2016.5217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) accounts for 30% of all pediatric cancers. Currently available treatments exhibit toxicity and certain patients may develop resistance. Thus, less toxic and chemoresistance-reversal agents are required. In the present study, the potential effect of curcumin, a component of Curcuma longa, as a pharmacological co-adjuvant of several chemotherapeutic agents against ALL, including prednisone, 6-mercaptopurine, dexamethasone, cyclophosphamide, l-asparaginase, vincristine, daunorubicin, doxorubicin, methotrexate and cytarabine, was investigated in the REH ALL cell line cultures treated in combination with chemotherapeutic agents and curcumin. The results of cell viability, gene expression and activation of NF-κB and caspase 3 indicated that curcumin potentiates the anticancer effects of the aforementioned chemotherapeutic agents in the REH ALL cell line. Following treatment with the above chemotherapeutic agents, curcumin enhanced caspase-3 activation and downregulated nuclear factor-kappa B (NF-κB) activation. Curcumin also downregulated the oxidative stress induced by certain chemotherapies. Notably, curcumin did not affect the gene expression of cell survival proteins such as B-cell lymphoma (Bcl)-2, Bcl-extra large, survivin, c-Myc and cyclin D1, which are regulated by the NF-κB transcription factor. In conclusion, curcumin has the potential to improve the effect of chemotherapeutic agents against ALL.
Collapse
Affiliation(s)
- Helia Judith Pimentel-Gutiérrez
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México; Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Lucina Bobadilla-Morales
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México; Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - César Cenobio Barba-Barba
- Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Citlalli Ortega-De-La-Torre
- Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Fernando Antonio Sánchez-Zubieta
- Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Jorge Román Corona-Rivera
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México; Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Betsy Annel González-Quezada
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Juan S Armendáriz-Borunda
- Molecular Biology and Gene Therapy Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Rocío Silva-Cruz
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Alfredo Corona-Rivera
- Cytogenetics, Genotoxicity and Biomonitoring Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', PhD Program in Molecular Biology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México; Cytogenetics Unit, Pediatric Hematology and Oncology Service, Pediatric Division, Civil Hospital of Guadalajara, Guadalajara, Jalisco 44340, México
| |
Collapse
|
970
|
Yan J, Liu Y, Zhao Q, Li J, Mao A, Li H, Di C, Zhang H. 56Fe irradiation-induced cognitive deficits through oxidative stress in mice. Toxicol Res (Camb) 2016; 5:1672-1679. [PMID: 30090466 DOI: 10.1039/c6tx00282j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022] Open
Abstract
The rapid growth of manned space flight results in more concerns about health risks and an urgent need for health assessment for space travel. The cosmic environment is complicated and full of radiation. Because of their strong biological effects, heavy ions such as 56Fe ions are considered to be an important component of these lethal galactic rays. Due to the importance of brain function to astronauts, we explored the long-term effects and potential mechanisms of 56Fe ion radiation on mice brains containing the hippocampus. In our study, radiation doses were carried out with 0.5 Gy, 1 Gy or 2 Gy. One month after whole-body 56Fe ion exposure, the Morris water maze test was performed to assess the ability of spatial learning and memory. A histological study was used for pathology analysis of the hippocampus. Alteration of oxidative stress was reflected by MDA and GSH and oxidative DNA damage marked by 8-OHdG was detected by biochemical and immunofluorescence methods. In our results, irradiated groups exhibited significant changes in behavioral performance and also showed loose and edematous arrangement in the pathological characteristics. Furthermore, whole brain levels of MDA, GSH and 8-OHdG increased in the irradiated groups. In addition, increased expression of 8-OHdG can also be detected by immunofluorescence in the hippocampus. Our findings revealed a linkage between radiation-induced oxidative stress and behavioral deficits. This may suggest an underlying mechanism of brain tissue protection and risk assessment in manned space flight.
Collapse
Affiliation(s)
- Jiawei Yan
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China
| | - Yang Liu
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Qiuyue Zhao
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China
| | - Jie Li
- School of Stomatology , Lanzhou University , Lanzhou 730000 , PR China
| | - Aihong Mao
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China.,Institute of Gansu Medical Science Research , Lanzhou 730050 , PR China
| | - Hongyan Li
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Cuixia Di
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Hong Zhang
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| |
Collapse
|
971
|
Teng Y, Li X, Yang K, Li X, Zhang Z, Wang L, Deng Z, Song B, Yan Z, Zhang Y, Lu K, Yu P. Synthesis and antioxidant evaluation of desmethylxanthohumol analogs and their dimers. Eur J Med Chem 2016; 125:335-345. [PMID: 27688188 DOI: 10.1016/j.ejmech.2016.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022]
Abstract
Four ring-closed analogs of natural prenylated chalcone desmethylxanthohumol (1) and their dimers were synthesized from the commercially available 1-(2,4,6-trihydroxyphenyl)ethan-1-one in five and six linear steps, respectively. The structures of the eight new derivatives were confirmed using1H NMR, 13C NMR and HRMS. The antioxidant activity of the new chalcone derivatives were evaluated in a PC12 cell model of H2O2-induced oxidative damage. The SAR studies suggested that the catechol motif was essential for the antioxidant activity. Moreover, the dimers showed better antioxidant activity than their corresponding monomers did. Among them, compound 14d was the most potent and increased PC12 cell viability from 25% to 85%. Flow cytometric analysis showed that compound 14d, the most potent compound, decreased the apoptotic PC12 cell percentage and significantly reduced the LDH release and 8-OHdG generation but increased the GSH levels in H2O2-treated PC12 cells. Furthermore, compound 14d had a higher FRAP value than that of gallic acid. It also reduced the stable ABTS+ free radical with a lower EC50 than that of gallic acid.
Collapse
Affiliation(s)
- Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuzhe Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ke Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuehui Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zijun Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Luyao Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhijie Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Binbin Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhihong Yan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 place Jussieu, 75005, Paris, France
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
972
|
Oh B, Figtree G, Costa D, Eade T, Hruby G, Lim S, Elfiky A, Martine N, Rosenthal D, Clarke S, Back M. Oxidative stress in prostate cancer patients: A systematic review of case control studies. Prostate Int 2016; 4:71-87. [PMID: 27689064 PMCID: PMC5031904 DOI: 10.1016/j.prnil.2016.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common cancer in men in Western countries. In-vitro and in-vivo studies suggest that oxidative stress (OS) and antioxidants play a key role in the pathogenesis of chronic diseases including PCa, which is promoted by the production of reactive oxygen species and impaired antioxidant defense mechanisms. This study evaluates the association between OS and men with PCa. METHODS A literature search was carried out on Medline, PubMed, and ScienceDirect databases, as well as manual searches from inception up to August 2015 using the keywords "Oxidative stress" or "Reactive oxygen species" or "Lipid peroxidation" AND "Prostate cancer." All studies including data on the measurement of OS biomarkers in PCa were included. RESULTS Twenty-three case control studies were retrieved with sample sizes ranging from 15 to 3,613 (6,439 participants in total). Markers of OS were significantly higher in patients with PCa compared with control groups in 21 studies. Two self-controlled case studies comparing OS between PCa cells and non-PCa cells in tissue biopsies found OS to be statistically higher in PCa cancer cells. Results on markers of antioxidant capacity (superoxide dismutase, catalase, glutathione, glutathione reductase, glutathione peroxidase, uric acid, lutein, lycopene, beta carotein, vitamin A, vitamin C, vitamin E, and total antioxidants) were not completely consistent in their association with PCa. CONCLUSIONS Upregulated OS profiles and impairment of antioxidant defense systems may play a role in men with PCa. To confirm these findings, robust clinical trials utilizing a personalized approach which monitors both OS and antioxidant markers during therapy are warranted.
Collapse
Affiliation(s)
- Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Medical School, Sydney, NSW, Australia
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gemma Figtree
- Oxidative Signaling Group, Department of Cardiology, Kolling Institute, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Daniel Costa
- Pain Management Research Institute, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Medical School, Sydney, NSW, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Medical School, Sydney, NSW, Australia
| | - Stephanie Lim
- Department of Medical Oncology, Liverpool Hospital, Ingham Institute for Applied Medical Research, NSW, Australia
| | - Aymen Elfiky
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Neil Martine
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David Rosenthal
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Medical School, Sydney, NSW, Australia
| | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Medical School, Sydney, NSW, Australia
| |
Collapse
|
973
|
Albert BB, Vickers MH, Gray C, Reynolds CM, Segovia SA, Derraik JGB, Lewandowski PA, Garg ML, Cameron-Smith D, Hofman PL, Cutfield WS. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance. Am J Physiol Regul Integr Comp Physiol 2016; 311:R497-504. [DOI: 10.1152/ajpregu.00005.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
Abstract
Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring.
Collapse
Affiliation(s)
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | - Paul A. Lewandowski
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia; and
| | - Manohar L. Garg
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | | | - Paul L. Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
974
|
Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2016; 32:215-232. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA,
| | - Christa W Wright
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1/Room 1309, Boston, MA 02115, USA
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Maria Moreno-Villanueva
- Department of Biology, University of Konstanz, Molecular Toxicology Group, D-78457 Konstanz, Germany
| | - Hanna L Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giel Hendriks
- Toxys, Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Christopher M Sims
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Neenu Singh
- Faculty of Health and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK and
| | - Shareen H Doak
- Swansea University Medical School, Institute of Life Science, Centre for NanoHealth, Swansea University Medical School, Wales SA2 8PP, UK
| |
Collapse
|
975
|
Al-Rasheed N, Faddah L, Al-Rasheed N, Bassiouni YA, Hasan IH, Mahmoud AM, Mohamad RA, Yacoub HI. Protective Effects of Silymarin, Alone or in Combination with Chlorogenic Acid and/or Melatonin, Against Carbon Tetrachloride-induced Hepatotoxicity. Pharmacogn Mag 2016; 12:S337-45. [PMID: 27563222 PMCID: PMC4971954 DOI: 10.4103/0973-1296.185765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the hepatoprotective effects of silymarin (SIL), alone and combined with chlorogenic acid (CA) and/or melatonin (ME), using a rat model of carbon tetrachloride (CCl4)-induced injury. MATERIALS AND METHODS Hepatotoxicity was induced by a single dose of CCl4 (1 ml/kg, IP). One day after, rats were received SIL (200 mg/kg) alone or in combination with CA (60 mg/kg) and/or ME (20 mg/kg) for 21 days. RESULTS SIL significantly decreased serum alanine aminotransferase, inflammatory cytokines, and vascular endothelial growth factor levels. Histological alterations, fibrogenesis, oxidative DNA damage, inflammatory mediators, and caspase-3 activity were significantly attenuated in SIL treated CCl4-intoxicated rats. On the other hand, cytochrome P450 2E1 activity showed a significant decrease in the liver of CCl4-intoxicated rats, an effect that was reversed following treatment with SIL. All beneficial effects of SIL were markedly potentiated when combined with CA and/or ME. CONCLUSIONS These data indicate that SIL, alone and combined with CA and/or ME, protected the liver against CCl4-induced hepatotoxicity via attenuating inflammation, oxidative DNA damage, apoptosis, and fibrotic changes. The significantly intensified hepatoprotective effects of SIL when combined with both CA and ME suggest a possible synergism. These synergistic effects need to be further confirmed using detailed studies. SUMMARY Silymarin, chlorogenic acid and melatonin possess in vivo hepatoprotective activitySilymarin, chlorogenic acid and melatonin attenuate fibrogenesis, oxidative DNA damage, inflammation and apoptosisChlorogenic acid and melatonin enhance the hepatoprotective effect of silymarin. Abbreviations used: SIL: silymarin, CA: chlorogenic acid, ME: melatonin, CCl4: carbon tetrachloride, CYP2E1, cytochrome P450 2E1, ALT: alanine aminotransferase, IL-6: interleukin 6, IFN-γ: interferon gamma, VEGF: vascular endothelial growth factor, TNF-α: tumor necrosis factor alpha, CRP: C-reactive protein, 8-OxodG: 8-Oxo-2'-deoxyguanosine, TGF-B1: transforming growth factor beta 1, HSCs: hepatic stellate cells.
Collapse
Affiliation(s)
- Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Faddah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yieldez A Bassiouni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Zoology, Division of Physiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Raeesa A Mohamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hazar I Yacoub
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
976
|
Mutlu E, Gao L, Collins LB, Walker NJ, Hartwell HJ, Olson JR, Sun W, Gold A, Ball LM, Swenberg JA. Polychlorinated Biphenyls Induce Oxidative DNA Adducts in Female Sprague-Dawley Rats. Chem Res Toxicol 2016; 29:1335-1344. [PMID: 27436759 PMCID: PMC5020703 DOI: 10.1021/acs.chemrestox.6b00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) are organic chemicals that were traditionally produced and widely used in industry as mixtures and are presently formed as byproducts of pigment and dye manufacturing. They are known to persist and bioaccumulate in the environment. Some have been shown to induce liver cancer in rodents. Although the mechanism of the toxicity of PCBs is unknown, it has been shown that they increase oxidative stress, including lipid peroxidation. We hypothesized that oxidative stress-induced DNA damage could be a contributor for PCB carcinogenesis and analyzed several DNA adducts in female Sprague-Dawley rats exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and a binary mixture (PCB 126 + 153) for 14, 31, and 53 wks. Eight adducts were measured to profile oxidative DNA lesions, including 8-oxo-deoxyguanosine (8-oxo-dG), 1,N(6)-ethenodeoxyadenosine (1,N(6)-εdA), N(2),3-ethenoguanine (N(2),3-εG), 1,N(2)-ethenodeoxyguanosine (1,N(2)-εdG), as well as malondialdehyde (M1dG), acrolein (AcrdG), crotonaldehyde (CrdG), and 4-hydroxynonenal-derived dG adducts (HNEdG) by LC-MS/MS analysis. Statistically significant increases were observed for 8-oxo-dG and 1,N(6)-εdA concentrations in hepatic DNA of female rats exposed to the binary mixture (1000 ng/kg/day + 1000 μg/kg/day) but not in rats exposed to PCB 126 (1000 ng/kg/day) or PCB 153 (1000 μg/kg/day) for 14 and 31 wks. However, exposure to PCB 126 (1000 ng/kg/day) for 53 wks significantly increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, and M1dG. Exposure to PCB 153 (1000 μg/kg/day) for 53 wks increased 8-oxo-dG, and 1,N(6)-εdA. Exposure to the binary mixture for 53 wks increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, 1,N(2)-εdG, and N(2),3-εG significantly above control groups. Increased hepatic oxidative DNA adducts following exposure to PCB 126, PCB 153, or the binary mixture shows that an increase in DNA damage may play an important role in hepatic toxicity and carcinogenesis in female Sprague-Dawley rats.
Collapse
Affiliation(s)
- Esra Mutlu
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Lina Gao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leonard B. Collins
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nigel J. Walker
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James R. Olson
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York 14214, United States
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Louise M. Ball
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
977
|
Moulin M, Ferreiro A. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin Cell Dev Biol 2016; 64:213-223. [PMID: 27531051 DOI: 10.1016/j.semcdb.2016.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Because of their contractile activity and their high oxygen consumption and metabolic rate, skeletal muscles continually produce moderate levels of reactive oxygen and nitrogen species (ROS/RNS), which increase during exercise and are buffered by multiple antioxidant systems to maintain redox homeostasis. Imbalance between ROS/RNS production and elimination results in oxidative stress (OxS), which has been implicated in ageing and in numerous human diseases, including cancer, diabetes or age-related muscle loss (sarcopenia). The study of redox homeostasis in muscle was hindered by its lability, by the many factors influencing technical OxS measures and by ROS/RNS important roles in signaling pathways and adaptative responses to muscle contraction and effort, which make it difficult to define a threshold between physiological signaling and pathological conditions. In the last years, new tools have been developed that facilitate the study of these key mechanisms, and deregulation of redox homeostasis has emerged as a key pathogenic mechanism and potential therapeutic target in muscle conditions. This is in particular the case for early-onset myopathies, genetic muscle diseases which present from birth or early childhood with muscle weakness interfering with ambulation and often with cardiac or respiratory failure leading to premature death. Inherited defects of the reductase selenoprotein N in SEPN1-related myopathy leads to chronic OxS of monogenic origin as a primary disease pathomechanism. In myopathies associated with mutations of the genes encoding the calcium channel RyR1, the extracellular matrix protein collagen VI or the sarcolemmal protein dystrophin (Duchenne Muscular Dystrophy), OxS has been identified as a relevant secondary pathophysiological mechanism. OxS being drug-targetable, it represents an interesting therapeutic target for these incurable conditions, and following preclinical correction of the cell or animal model phenotype, the first clinical trials with the antioxidants N-acetylcysteine (SEPN1- and RYR1-related myopathies) or epigallocatechin-gallate (DMD) have been launched recently. In this review, we provide an overview of the mechanisms involved in redox regulation in skeletal muscle, the technical tools available to measure redox homeostasis in muscle cells, the bases of OxS as a primary or secondary pathomechanism in early-onset myopathies and the innovative clinical trials with antioxidants which are currently in progress for these so-far untreatable infantile muscle diseases. Progress in our knowledge of redox homeostasis defects in these rare muscle conditions may be useful as a model paradigm to understand and treat other conditions in which OxS is involved, including prevalent conditions with major socioeconomic impact such as insulin resistance, cachexia, obesity, sarcopenia or ageing.
Collapse
Affiliation(s)
- Maryline Moulin
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250, Paris Cedex 13, France.
| | - Ana Ferreiro
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250, Paris Cedex 13, France; AP-HP, Centre de Référence Maladies Neuromusculaires Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France.
| |
Collapse
|
978
|
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 2016; 7:52517-52529. [PMID: 27232756 PMCID: PMC5239570 DOI: 10.18632/oncotarget.9593] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations.
Collapse
Affiliation(s)
- Ritesh Kotecha
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - J. Luis Espinoza
- Department of Hematology Oncology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
979
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
980
|
Zeng L, Ma H, Pan S, You J, Zhang G, Yu Z, Sheng G, Fu J. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicol In Vitro 2016; 34:35-44. [DOI: 10.1016/j.tiv.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 12/18/2022]
|
981
|
Sun J, Shen R, Schrock MS, Liu J, Pan X, Quimby D, Zanesi N, Druck T, Fong LY, Huebner K. Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation. Cancer Med 2016; 5:2032-42. [PMID: 27185213 PMCID: PMC4873604 DOI: 10.1002/cam4.768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice. Fhit protein expression is lost in >50% of human cancers, including skin SCCs, and Fhit-deficient mice show increased sensitivity to carcinogen induction of tumors. We hypothesized that: (1) the skin cancer burdens would be reduced by Zn supplementation; (2) Fhit(-/-) (Fhit, murine fragile histidine triad gene) mice would show increased susceptibility to skin tumor induction versus wild-type mice. 30 weeks after initiating treatment, the tumor burden was increased ~2-fold in Fhit(-/-) versus wild-type mice (16.2 versus 7.6 tumors, P < 0.001); Zn supplementation significantly reduced tumor burdens in Fhit(-/-) mice (males and females combined, 16.2 unsupplemented versus 10.3 supplemented, P = 0.001). Most importantly, the SCC burden was reduced after Zn supplementation in both strains and genders of mice, most significantly in the wild-type males (P = 0.035). Although the mechanism(s) of action of Zn supplementation in skin tumor prevention is not known in detail, the Zn-supplemented tumors showed evidence of reduced DNA damage and some cohorts showed reduced inflammation scores. The results suggest that mild Zn supplementation should be tested for prevention of skin cancer in high-risk human cohorts.
Collapse
Affiliation(s)
- Jin Sun
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
- Present address: Department of PathologyMolecular PathologyThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Rulong Shen
- Department of PathologyCollege of MedicineColumbusOhio
| | - Morgan S. Schrock
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
- Biomedical Sciences Graduate ProgramColumbusOhio
| | - James Liu
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
- Present address: Beaumont‐Oakland University Medical SchoolGrosse PointeMichigan
| | - Xueliang Pan
- Department of Biomedical InformaticsCenter for BiostatisticsThe Ohio State UniversityColumbusOhio
| | - Donald Quimby
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
- Present address: University of CincinnatiDepartment of Internal MedicineCincinnatiOhio
| | - Nicola Zanesi
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Teresa Druck
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Louise Y. Fong
- Department of Pathology, Anatomy & Cell BiologySidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State University Comprehensive Cancer CenterColumbusOhio
| |
Collapse
|
982
|
Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol 2016; 32:543-561. [PMID: 27473378 DOI: 10.1007/s10565-016-9354-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Protection against ionizing radiation (IR) and sensitization of cancer cells to IR are apparently contrasting phenomena. However, curcumin takes on these contrasting roles leading to either protection or enhanced apoptosis in different irradiated cells. Here we studied whether pretreatment with free curcumin or a novel dendrosomal nanoformulation of curcumin (DNC) could exert protective/sensitizing effects on irradiated THP-1 leukemia cells. We employed assays including MTT viability, clonogenic survival, DNA fragmentation, PI/Annexin V flow cytometry, antioxidant system (ROS, TBARS for lipid peroxidation, 8-OHdG and γH2AX for DNA damage, glutathione, CAT and GPx activity, enzymes gene expression), ELISA (NF-κB and Nrf2 binding, TNF-α release), caspase assay, siRNA silencing of caspase-3, and western blotting to illustrate the observed protective role of curcumin in comparison with the opposite sensitizing role of its nanoformulation at a similar 10 μM concentration. The in vivo relevance of this concentration was determined via intraperitoneal administration in mice. Curcumin significantly enhanced the antioxidant defense, while DNC induced apoptosis and reduced viability as well as survival of irradiated THP-1 cells. Nrf2 binding showed an early rise and fall in DNC-treated cells, despite a gradual increase in curcumin-treated cells. We also demonstrated that DNC induced apoptosis in THP-1 cells via caspase-3 activation; whereas in combination with radiation, DNC alternatively employed a caspase-independent apoptosis pathway involving cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- Behrooz Soltani
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran
| | - Nasser Ghaemi
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran. .,School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
983
|
Loeffler DA, Klaver AC, Coffey MP, Aasly JO, LeWitt PA. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress. Front Aging Neurosci 2016; 8:178. [PMID: 27507943 PMCID: PMC4960228 DOI: 10.3389/fnagi.2016.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
Age-associated declines in protein homeostasis mechanisms (“proteostasis”) are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = –0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = –0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: –0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain.
Collapse
Affiliation(s)
- David A Loeffler
- Departments of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Andrea C Klaver
- Departments of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Mary P Coffey
- Departments of Biostatistics, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak MI, USA
| | - Jan O Aasly
- Department of Neurology, St. Olav's Hospital Trondheim, Norway
| | - Peter A LeWitt
- Department of Neurology, Henry Ford West Bloomfield Hospital, West Bloomfield TownshipMI, USA; Department of Neurology, Wayne State University School of Medicine, DetroitMI, USA
| |
Collapse
|
984
|
Al-Saleh I, Elkhatib R, Al-Rouqi R, Abduljabbar M, Eltabache C, Al-Rajudi T, Nester M. Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant's neurodevelopment. Int J Hyg Environ Health 2016; 219:898-914. [PMID: 27453562 DOI: 10.1016/j.ijheh.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023]
Abstract
This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995μg/l, 0.716μg/l, 0.118μg/g dw, 0.101μg/g dw, 0.635μg/l, and 0.884μg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132μg/g dw, 0.091μg/g dw, and 2.341μg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during pregnancy and/or neonatal life, promoted oxidative stress that might have played a role in infant neurodevelopmental delays that we reported previously. The results confirmed that the interaction between infant's MeHg in hair and 8-OHdG and MDA levels was significantly associated with a delay in DDST-II performance (ß=-0.188, p=0.028). This finding provides an insight into the potential consequences of Hg-induced oxidative stress to infant's cognitive neurodevelopment for the first time. This observation still needs future studies to be validated. Given the low MeHg levels in our population, these findings are of particular importance.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Michael Nester
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
985
|
Qiong W, Yong-Liang Z, Ying-Hui L, Shan-Guang C, Jiang-Hui G, Yi-Xi C, Ning J, Xin-Min L. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:9-16. [PMID: 27103112 DOI: 10.1016/j.jep.2016.03.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is vital for astronauts to develop effective countermeasures to prevent their decline of cognitive performance in microgravity to make space-flight missions successful. The traditional Chinese herbal formula Kai Xin San (KXS) has been used to treat amnesia for thousands years. It is a traditional complex prescription comprising of ginseng (Panax ginseng C. A. Meyer), hoelen (Poria cocos (Schw.) Wolf), polygala (Polygala tenaifolia Willd), and acorus (Acorus tatarinowii Schott). Previous study showed KXS could improve CMS-induced memory impairment in rats. MATERIAL AND METHODS In this paper, a unique environmental factor-microgravity (weightlessness) was simulated as hindlimb suspension (HLS) by tail in rats for two weeks as the HLS animal model. The KXS at the doses of 0.3 or 0.6g/kg p.o. daily was administrated to HLS rats for two weeks at the same time of HLS, the memory behavior tests were investigated with Morris water maze (MWM) and Shuttle Box (SB) test. The levels of ROS, 8-OHdG and 3-nitrotyrosine (3-NT) in the serum, and AChE and ChAT activity in the brain of rats were determined by ELISA or biochemical analysis. RESULTS After HLS for two weeks, the escape latency and the swimming distance were significantly increased in the MWM test in rats in the HLS group, compared with control group. The percent of swimming distance in target quadrant and the number of target crossing was significantly decreased in rats in the HLS group compared with the control group. Performance in the SB test showed, the numbers and the distance of active avoidance was decreased from day 4 to day 7, the time spent in electric area was increased in rats in the HLS group compared with the control group. Administration of KXS 0.3 or 0.6g/kg to the HLS rats for two weeks significantly reduced the escape latency and the swimming distance, increased the percentage of swimming distance in target quadrant and the number of target crossings (P<0.01, compared with the HLS group) in the MWM test. Similar treatment with KXS increased the numbers and the distance of active avoidance (P<0.01, compared with the HLS group) and reduced the time spent in electric area after training 3 days in the SB test (P<0.01, compared with the HLS group). The HLS induced the increase of the ROS, 8-OHdG and 3-NT in the serum of rats, but has little influence on the AChE, ChAT activity in the brain. Only the AChE activity in the cortex and the ChAT activity in the hippocampus had some changes in rats in the HLS model group. After administration of KXS 0.6g/kg for two weeks, the abnormal levels of ROS, 8-OHdG, 3-NT were found reversed in the serum of rats (P<0.05, compared with HLS model group). And KXS 0.3g/kg was found reversed the increased AChE activity in the cortex. CONCLUSIONS Experimental results from this study show that KXS may improve memory deficiency induced by HLS, its mechanisms are major related to antioxidant activities, rather than the central cholinergic system.
Collapse
Affiliation(s)
- Wang Qiong
- Sichuan Medical University, Luzhou 646000, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhang Yong-Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Li Ying-Hui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chen Shan-Guang
- National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Gao Jiang-Hui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chen Yi-Xi
- Sichuan Medical University, Luzhou 646000, China
| | - Jiang Ning
- Sichuan Medical University, Luzhou 646000, China
| | - Liu Xin-Min
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
986
|
Xiao X, Yuan D, Wang YX, Zhan XA. The Protective Effects of Different Sources of Maternal Selenium on Oxidative Stressed Chick Embryo Liver. Biol Trace Elem Res 2016; 172:201-208. [PMID: 26554950 DOI: 10.1007/s12011-015-0541-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
The experiment was conducted to investigate the protective effects of different sources of maternal selenium (Se) on oxidative stressed chick embryo. A total of 270 Lingnan Yellow broiler breeders were randomly allocated into three treatments with five replicates for 18 birds each. Breeders were fed with basal diet (BD) including 0.04 mg/kg Se or BD supplemented with sodium selenite (SS) or selenomethionine (SM) at a level of 0.15 mg Se/kg. The rearing experiment lasted for 8 weeks after an 8-week pre-test. Twenty eggs were collected from each replicate during the last 10-day, then incubated in a commercial incubator. On embryonic 17th, fertile eggs were transferred into 39.5 °C temperature stimulation for 6 h. Afterward, five eggs were randomly selected from each replicate for collecting chick embryo sample. The results showed that Se supplementation in the diet of breeders resulted in lower reactive oxygen species (ROS), heat shock protein 70 (HSP70), malondialdehyde (MDA), carbonyl and 8-hydroxydeoxyguanosine (8-OHdG) concentrations and higher glutathione peroxidase (GPx), total superoxide dismutase (T-SOD), and catalase (CAT) activities in heat stress treated chick embryo (P < 0.05), and ROS, MDA, carbonyl, 8-OHdG concentrations in SM treatment were lower than those in SS treatment (P < 0.05). Se supplementation elevated cellular glutathione peroxidase (GPx1) mRNA level and activity, cytoplasmic thioredoxin reductase (TrxR1) activity and selenoprotein P (SelP) mRNA and protein level (P < 0.05), and maternal SM showed a higher value than maternal SS in upregulating GPx1, TrxR1, and SelP mRNA levels as well as GPx1 and TrxR1 activities or SelP protein level (P < 0.05). This study indicated that maternal Se can enhance antioxidative capacity and reduce ROS concentration and oxidative damage by upregulating the expression of antioxidative selenoprotein, and maternal SM is superior to SS in heat stress treated chick embryo.
Collapse
Affiliation(s)
- Xue Xiao
- Feed Science Institute, College of Animal Science, Zhejiang University, No.866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Dong Yuan
- Feed Science Institute, College of Animal Science, Zhejiang University, No.866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yong-Xia Wang
- College of Animal Science and Technology, Zhejiang A and F University, Linan, 311300, People's Republic of China
| | - Xiu-An Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, No.866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
987
|
Heavy metal exposure, in combination with physical activity and aging, is related with oxidative stress in Japanese women from a rural agricultural community. SPRINGERPLUS 2016; 5:885. [PMID: 27386333 PMCID: PMC4920733 DOI: 10.1186/s40064-016-2430-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/26/2016] [Indexed: 11/10/2022]
Abstract
This study aimed to evaluate the relationships between oxidative stress and heavy metal exposure (lead [Pb] and cadmium [Cd]), as well as co-factors such as physical activity and age, in Japanese women. This study was conducted with female subjects from a rural agricultural community in Japan. Subjects were asked to complete lifestyle-related questionnaires and undergo a group health examination. Physical activity, alcohol consumption, body mass index, and other demographic information were collected. Blood and urine samples were collected to measure urinary 8-hydroxydeoxyguanosine (8-OHdG) levels and blood and urinary Cd and Pb concentrations. Urine samples were analyzed using high performance liquid chromatography and flameless atomic absorption spectrometry; blood samples were analyzed using inductively coupled plasma-mass spectrometry. Age, physical activity, and blood and urinary Cd and Pb concentrations were included in structural equation modeling analysis. Two latent factors for heavy metal exposure and physical activity were produced to predict the total influence of the variables. The final model was good: CMIN/DF = 0.775, CFI = 1.000, GFI = 0.975, AGFI = 0.954, RMSEA = 0.000. 8-OHdG levels were positively associated with heavy metal exposure, physical activity, and age (standard β of path analysis: 0.33, 0.38, and 0.20, respectively). Therefore, oxidative stress is associated with both, environmental and lifestyle factors, in combination with aging.
Collapse
|
988
|
Martins GV, Marques AC, Fortunato E, Sales MGF. 8-hydroxy-2'-deoxyguanosine (8-OHdG) biomarker detection down to picoMolar level on a plastic antibody film. Biosens Bioelectron 2016; 86:225-234. [PMID: 27376193 DOI: 10.1016/j.bios.2016.06.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 01/12/2023]
Abstract
An innovative biosensor assembly relying on a simple and straightforward in-situ construction is presented to monitor urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) down to the pmol/L level. The sensing film of the biosensor consisted of a molecularly imprinted polymer (MIP) layer for 8-OHdG assembled on a gold electrode through electropolymerization of monomer combined with the template. The analytical features of the resulting biosensor were assessed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Some experimental parameters such as the initial concentration of the monomer and the ratio template-monomer were investigated and optimized in order to finely tune the performance of the MIP-based sensor. Under optimal conditions, the developed biosensor was able to rebind 8-OHdG with a linear response against EIS from 0.1 to 100pg/ml 3.5-3500 pM. The interference of coexisting species was tested, also with calibrations on urine samples, and good selectivity towards 8-OHdG was obtained. RAMAN spectroscopy, FTIR and SEM evaluations of the prepared films confirmed the formation of a polyphenol thin-film on the electrode surface. The presence and distribution of the imprinted cavities on the MIP layer was confirmed by confocal microscopy imaging of the film, after a post-treatment with Fluorescein Isothiocyanate (FITC) labeled 8-OHdG antibody. Overall, this label-free biosensor for urinary 8-OHdG detection constitutes a promising low-cost alternative to the conventional immunoassay approaches, due to its simplicity, stability, high sensitivity and selectivity for biological sample assays, opening new doors for other applications.
Collapse
Affiliation(s)
- Gabriela V Martins
- BioMark/CINTESIS-ISEP, School of Engineering of the Polytechnique School of Porto, 4200-072 Porto, Portugal; i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana C Marques
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Goreti F Sales
- BioMark/CINTESIS-ISEP, School of Engineering of the Polytechnique School of Porto, 4200-072 Porto, Portugal.
| |
Collapse
|
989
|
Abstract
It is now well established that reactive oxygen species (ROS) play a dual role as both deleterious and beneficial species. In fact, ROS act as secondary messengers in intracellular signalling cascades; however, they can also induce cellular senescence and apoptosis. Aging is an intricate phenomenon characterized by a progressive decline in physiological functions and an increase in mortality, which is often accompanied by many pathological diseases. ROS are involved in age-associated damage to macromolecules, and this may cause derangement in ROS-mediated cell signalling, resulting in stress and diseases. Moreover, the role of oxidative stress in age-related sarcopenia provides strong evidence for the important contribution of physical activity to limit this process. Regular physical activity is considered a preventive measure against oxidative stress-related diseases. The aim of this review is to summarize the currently available studies investigating the effects of chronic and/or acute physical exercise on the oxidative stress process in healthy elderly subjects. Although studies on oxidative stress and physical activity are limited, the available information shows that acute exercise increases ROS production and oxidative stress damage in older adults, whereas chronic exercise could protect elderly subjects from oxidative stress damage and reinforce their antioxidant defences. The available studies reveal that to promote beneficial effects of physical activity on oxidative stress, elderly subjects require moderate-intensity training rather than high-intensity exercise.
Collapse
|
990
|
Graczyk H, Lewinski N, Zhao J, Sauvain JJ, Suarez G, Wild P, Danuser B, Riediker M. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Part Fibre Toxicol 2016; 13:31. [PMID: 27286820 PMCID: PMC4901438 DOI: 10.1186/s12989-016-0143-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/03/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. METHODS Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. RESULTS Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). CONCLUSION A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is recommended that additional exposure metrics such as PNC are considered for occupational risk assessments. Our findings highlight the importance of increasing awareness of TIG welding fume toxicity, especially given the realities of welding workplaces that may lack ventilation; and beliefs among interviewed welders that TIG represents a cleaner and safer welding process.
Collapse
Affiliation(s)
- Halshka Graczyk
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Nastassja Lewinski
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jiayuan Zhao
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA, 02115, USA
| | - Jean-Jacques Sauvain
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Guillaume Suarez
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Pascal Wild
- Department of Scientific Management, National Institute for Research and Security, INRS, Vandoeuvre, 54500, France
| | - Brigitta Danuser
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Michael Riediker
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland. .,SAFENANO, IOM Singapore, Singapore, 048622, Singapore.
| |
Collapse
|
991
|
Kanazawa K, Sakamoto M, Kanazawa K, Ishigaki Y, Aihara Y, Hashimoto T, Mizuno M. Lipid peroxides as endogenous oxidants forming 8-oxo-guanosine and lipid-soluble antioxidants as suppressing agents. J Clin Biochem Nutr 2016; 59:16-24. [PMID: 27499574 PMCID: PMC4933685 DOI: 10.3164/jcbn.15-122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
The oxidation of guanosine to 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA is closely associated with induction of various diseases, but the endogenous oxidant species involved remains unclear. Hydrogen peroxides (H2O2) have been considered to be the oxidant, while lipid peroxides are another possible oxidant because generated easily in bio-membranes surrounding DNA. The oxidant potency was compared between lipid peroxides and H2O2. Linoleic acid hydroperoxides (LOOH) formed 8-oxo-dG at a higher level than H2O2 in guanosine or double-stranded DNA. In the presence of a physiological concentration of Fe(2+) to produce hydroxyl radicals, LOOH was also a stronger oxidant. In a lipid micelle, LOOH markedly produced 8-oxo-dG at a concentration one-tenth of that of H2O2. Upon adding to rat hepatic mitochondria, phosphatidylcholine hydroperoxides produced 8-oxo-dG abundantly. Employing HepG2 cells after pretreated with glutathione peroxidase inhibitor, LOOH formed 8-oxo-dG more abundantly than H2O2. Then, antioxidants to suppress the 8-oxo-dG formation were examined, when the nuclei of pre-incubated HepG2 with antioxidants were exposed to LOOH. Water-soluble ascorbic acid, trolox, and N-acetyl cysteine showed no or weak antioxidant potency, while lipid-soluble 2,6-dipalmitoyl ascorbic acid, α-tocopherol, and lipid-soluble phytochemicals exhibited stronger potency. The present study shows preferential formation of 8-oxo-dG upon LOOH and the inhibition by lipid-soluble antioxidants.
Collapse
Affiliation(s)
- Kazuki Kanazawa
- School of Agricultural Regional Vitalization, Kibi International University, Sareo 370-1, Sichi, Minami Awaji 656-0484, Japan
| | - Miku Sakamoto
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Ko Kanazawa
- School of Agricultural Regional Vitalization, Kibi International University, Sareo 370-1, Sichi, Minami Awaji 656-0484, Japan
| | - Yoriko Ishigaki
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yoshiko Aihara
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Hashimoto
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Masashi Mizuno
- Laboratory of Food and Nutritional Chemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
992
|
Niedzwiedz A, Borowicz H, Januszewska L, Markiewicz-Gorka I, Jaworski Z. Serum 8-hydroxy-2-deoxyguanosine as a marker of DNA oxidative damage in horses with recurrent airway obstruction. Acta Vet Scand 2016; 58:38. [PMID: 27267076 PMCID: PMC4895991 DOI: 10.1186/s13028-016-0215-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background It has been reported that equine recurrent airway obstruction (RAO) is a state of oxidative stress. Oxidant-antioxidant imbalance is known to increase the conversion of deoxyguanosine to 8-hydroxy-2-deoxyguanosine (8-OHdG) in DNA. 8-OHdG can easily be measured using ELISA tests in serum or urine samples. In this study, we analysed serum 8-OHdG levels in horses with recurrent airway obstruction and in healthy controls. Results The study material consisted of seven healthy horses and seven horses with symptomatic RAO. All horses were exposed to moldy hay and straw for 48 h to induce clinical exacerbation of RAO. The serum 8-OHdG levels were determined using the ELISA Highly Sensitive 8-OHdG kit. The difference between the levels of 8-OHdG in healthy and RAO-affected horses was significant. The median level of 8-OHdG was 0.044 ng/ml in the healthy controls versus 0.498 ng/ml in RAO horses (P = 0.0021). Conclusions The results of the study strongly suggest that DNA damage coexists in the course of equine RAO. We therefore propose that future research should aim at the development of new drugs that target pro-inflammatory molecules, since DNA damage appears to be the result of chronic inflammation.
Collapse
|
993
|
Villa-Correa YA, Isaza-Guzmán DM, Tobón-Arroyave SI. Influence of Periodontal Clinical Status on Salivary Levels of Glutathione Reductase. J Periodontol 2016; 87:716-24. [PMID: 26777764 DOI: 10.1902/jop.2016.150618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Inadequate antioxidant balance may play a role in the excessive tissue breakdown in periodontitis. Because aggressive periodontitis (AgP) not only differs from chronic periodontitis (CP) in terms of clinical manifestations, this study investigates whether the salivary levels of glutathione reductase (GR) may be linked with periodontal status. METHODS Saliva samples from patients with CP (n = 121), patients with AgP (n = 18), and healthy controls (n = 69) were collected. Periodontal status was assessed by criteria based on probing depth, clinical attachment level, and extent and severity of periodontal breakdown. GR salivary levels were analyzed by spectrophotometry. The association among GR concentration and CP or AgP was analyzed individually and adjusted for confounding using multivariate binary logistic regression models. RESULTS GR levels not only differed significantly between the two periodontitis groups, being significantly greater in patients with AgP, but also were significantly greater than those observed in healthy controls. Synchronously, positive significant correlations between salivary GR concentration and clinical parameters were observed. After binary logistic regression analysis, both GR salivary levels ≥15.38 and ≥24.20 mU/mL were associated independently with CP and AgP, respectively. A significant interaction effect was also detected between increased GR salivary concentration and aging in the CP group. CONCLUSIONS Increased GR salivary concentration may be a strong/independent prognostic indicator of the amount and extent of oxidative stress-induced periodontal damage in both CP and AgP. Likewise, saliva samples might reflect an interactive effect of GR levels associated with the aging-related cumulative characteristics of periodontal damage in CP.
Collapse
Affiliation(s)
| | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
994
|
Lazarus RS, Rattner BA, McGowan PC, Hale RC, Karouna-Renier NK, Erickson RA, Ottinger MA. Chesapeake Bay fish-osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1560-75. [PMID: 26822899 DOI: 10.1002/etc.3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p'-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p'-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population. Environ Toxicol Chem 2016;35:1560-1575. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Rebecca S Lazarus
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
- Marine-Estuarine Environmental Sciences Program and Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
| | - Peter C McGowan
- Chesapeake Bay Field Office, US Fish and Wildlife Service, Annapolis, Maryland, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, USA
| | | | - Richard A Erickson
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin, USA
| | - Mary Ann Ottinger
- Marine-Estuarine Environmental Sciences Program and Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
995
|
|
996
|
Sisto R, Botti T, Cerini L, Sanjust F, Tranfo G, Bonanni RC, Paci E, Pigini D, Moleti A. Oxidative stress biomarkers and otoacoustic emissions in humans exposed to styrene and noise. Int J Audiol 2016; 55:523-31. [PMID: 27146376 DOI: 10.1080/14992027.2016.1177215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluating the correlation between otoacoustic emission levels, styrene exposure, and oxidative stress biomarkers concentration in styrene-exposed subjects, to investigate the role of oxidative stress in outer hair cell damage. DESIGN Distortion product otoacoustic emissions were measured in the exposed workers and in a control group. Separation between the distortion and reflection otoacoustic components was performed by time-frequency-domain filtering. The urinary concentration of the DNA and RNA oxidation products, namely 8-oxo-7,8-dihydroguanine (oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxodGuo), and 8-oxo-7,8-dihydroguanosine (oxoGuo), were evaluated. STUDY SAMPLE Nine subjects exposed to styrene in a fiberglass factory, eight control subjects. The two groups were statistically equivalent in mean age. RESULTS Statistically significant differences were found in the distortion component levels between the exposed and the control group. High levels of the oxidative damage biomarkers were found in the workers exposed to high levels of styrene. Significant negative correlation was found between the otoacoustic emission distortion component levels and the concentration of the oxoGuo biomarker. CONCLUSIONS Exposure-induced damage of the cochlear amplifier is shown in the mid-frequency range, confirming animal experiments, in which hair cells in the cochlear middle turn were damaged. Hearing damage is consistent with the outer hair cell apoptosis pathway associated with oxidative stress.
Collapse
Affiliation(s)
- R Sisto
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - T Botti
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - L Cerini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - F Sanjust
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - G Tranfo
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - R C Bonanni
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - E Paci
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - D Pigini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - A Moleti
- b Physics Department, University of Roma Tor Vergata , Roma (Italy)
| |
Collapse
|
997
|
Horie M, Sugino S, Kato H, Tabei Y, Nakamura A, Yoshida Y. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. Toxicol Mech Methods 2016; 26:284-94. [DOI: 10.1080/15376516.2016.1175530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
998
|
Lu S, Ren L, Fang J, Ji J, Liu G, Zhang J, Zhang H, Luo R, Lin K, Fan R. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8484-8491. [PMID: 26782679 DOI: 10.1007/s11356-016-6104-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lu Ren
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Jianzhang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Jiajia Ji
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guihua Liu
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianqing Zhang
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Huimin Zhang
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ruorong Luo
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kai Lin
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
999
|
Abstract
OBJECTIVE The objective of this study was to investigate the relationship between asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, oxidative-nitrosative damage, and glucoregulation in acute pancreatitis (AP). METHODS The study evaluated serum levels of ADMA, nitrotyrosine, and urinary 8-hydroxydeoxyguanosine in 40 male patients hospitalized for AP at baseline and at 2 and 10 days of treatment, respectively. The patients were classified into a mild and a moderately severe AP group (MAP and MSAP, respectively) according to Atlanta classification criteria. Glycemic status was evaluated by a 75-g oral glucose tolerance test 1 month after AP onset. Forty age-matched healthy subjects served as control subjects. RESULTS Significant decrease of ADMA and increased levels of nitrotyrosine and urinary 8-hydroxydeoxyguanosine were found in MSAP, but not in MAP at baseline, with ADMA correction toward control levels at the 10th day of treatment. Fructosamine was found to significantly influence ADMA levels (r = -0.362, P = 0.002). After AP recovery, either impaired glucose tolerance or diabetes was identified with the oral glucose tolerance test in 10.5% and 92.8% of patients with MAP and MSAP, respectively. CONCLUSIONS Insufficient inhibition of nitric oxide synthesis, through reduced bioavailability of ADMA, might be a novel significant contributory factor to the severity of AP and subsequent development of hyperglycemia.
Collapse
|
1000
|
Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats. Behav Brain Res 2016; 305:65-75. [DOI: 10.1016/j.bbr.2016.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|