951
|
Kaneda K, Nambu A, Tokuno H, Takada M. Differential processing patterns of motor information via striatopallidal and striatonigral projections. J Neurophysiol 2002; 88:1420-32. [PMID: 12205163 DOI: 10.1152/jn.2002.88.3.1420] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional loop linking the frontal lobe and the basal ganglia plays an important role in the control of motor behaviors. To delineate the principal features of motor information processing in the cortico-basal ganglia loop, the present study aimed at investigating how corticostriatal inputs from the primary motor cortex (MI) and the supplementary motor area (SMA) are transposed onto the pallidal complex and the substantia nigra. In macaque monkeys, stimulating electrodes were chronically implanted into identified forelimb representations of the MI and SMA. Subsequently, the distribution of neurons exhibiting orthodromic responses was examined in the caudal putamen to demarcate striatal zones receiving inputs separately or confluently from the MI and SMA. Finally, anterograde double labeling was performed by paired injections of tracers into two of three identified zones: the MI-recipient zone, SMA-recipient zone, and the convergent zone. Data have revealed that inputs from the MI-recipient and SMA-recipient striatal zones were substantially segregated in the pallidal complex and that those from the convergent zone were distributed to fill in blanks made by terminal bands derived from the MI and SMA. On the other hand, striatonigral inputs from the SMA-recipient and convergent zones of the putamen largely overlapped, while the input from the MI-recipient zone was minimal. The present results clearly indicate that the mode to process corticostriatal motor information through the striatopallidal and striatonigral projections is target-dependent, such that the parallel versus convergent rules govern the arrangement of striatopallidal or striatonigral inputs, respectively.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo 183-8526, Japan
| | | | | | | |
Collapse
|
952
|
Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J. Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 2002; 450:122-34. [PMID: 12124757 DOI: 10.1002/cne.10312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This anatomic study presents an analysis of the distribution of calbindin immunohistochemistry in the human striatopallidal complex. Entire brains were sectioned perpendicularly to the mid-commissural line into 70-microm-thick sections. Every tenth section was immunostained for calbindin. Calbindin labeling exhibited a gradient on the basis of which three different regions were defined: poorly labeled, strongly labeled, and intermediate. Corresponding contours were traced in individual sections and reformatted as three-dimensional structures. The poorly labeled region corresponded to the dorsal part of the striatum and to the central part of the pallidum. The strongly labeled region included the ventral part of the striatum, the subcommissural part of the external pallidum but also the adjacent portion of its suscommissural part, and the anterior pole of the internal pallidum. The intermediate region was located between the poorly and strongly labeled regions. As axonal tracing and immunohistochemical studies in monkeys show a similar pattern, poorly, intermediate, and strongly labeled regions were considered as the sensorimotor, associative, and limbic territories of the human striatopallidal complex, respectively. However, the boundaries between these territories were not sharp but formed gradients of labeling, which suggests overlapping between adjacent territories. Similarly, the ventral boundary of the striatopallidal complex was blurred, suggesting a structural intermingling with the substantia innominata. This three-dimensional partitioning of the human striatopallidal complex could help to define functional targets for high-frequency stimulation with greater accuracy and help to identify new stimulation sites.
Collapse
Affiliation(s)
- Carine Karachi
- INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
953
|
Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 2002; 110:257-75. [PMID: 11958868 DOI: 10.1016/s0306-4522(01)00546-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ventral striatum is the part of the striatum associated with reward and goal-directed behaviors, which are mediated in part by inputs from the amygdala. The ventral striatum is divided into 'shell' and 'core' subterritories which have different connectional, histochemical and pharmacological properties. Behavioral studies also indicate that subterritories of the ventral striatum are differentially involved in specific goal-directed behaviors. The amygdala is a heterogeneous structure which has multiple nuclei involved in processing emotional information. While the existence of an amygdalostriatal pathway has long been established, the relationship between amygdaloid afferents and specific subterritories of the ventral striatum is not known. In this study we operationally defined the ventromedial striatum as the region receiving cortical inputs primarily from the orbital and medial prefrontal cortex. We placed retrograde tracer injections into subregions of the ventromedial striatum of macaques monkeys to determine the relative contribution of specific amygdaloid inputs to each region. Calbindin-D28k immunostaining was used to further define the shell subterritory of the ventromedial striatum. Based on these definitions, the amygdala innervates the entire ventromedial striatum, and has few to no inputs to the central striatum. The basal and accessory basal nuclei are the major source of input to the ventromedial striatum, innervating both the shell and ventromedial striatum outside the shell. However, a restricted portion of the dorsomedial shell receives few basal nucleus inputs. Afferent inputs from the basal nucleus subdivisions are arranged such that the parvicellular subdivision projects mainly to the ventral shell and core, and the magnocellular subdivision targets the ventral shell and ventromedial putamen. In contrast, the intermediate subdivision of the basal nucleus projects broadly across the ventromedial striatum avoiding only the dorsomedial shell. The shell has a specific set of connections derived from the medial part of the central nucleus and periamygdaloid cortex. Within the shell, the dorsomedial region is distinguished by additional inputs from the medial nucleus. The ventromedial caudate nucleus forms a unique transition zone with the shell, based on inputs from the periamygdaloid cortex. Together, these results indicate that subterritories of the ventromedial striatum are differentially modulated by amygdaloid nuclei which play roles in processing olfactory, visual/gustatory, multimodal sensory, and 'drive'-related stimuli.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | | | |
Collapse
|
954
|
Joel D, Niv Y, Ruppin E. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 2002; 15:535-47. [PMID: 12371510 DOI: 10.1016/s0893-6080(02)00047-3] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and learning guided by a prediction error signal in the actor. We selectively review several actor-critic models of the basal ganglia with an emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses Evolutionary Computation techniques to 'evolve' an optimal RL mechanism, and relate the evolved mechanism to the basic model of the critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the basal ganglia. We return to the actor component of the actor-critic model, which is usually modeled at the striatal level with very little detail. We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and physiological characteristics of basal ganglia-thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the level of the frontal cortex towards the selection of rewarded plans and actions, the reinforcement-driven dimensionality reduction framework may serve as a basis for basal ganglia actor models. We conclude with a short discussion of the dual role of the dopamine signal in RL and in behavioral switching.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | |
Collapse
|
955
|
Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 2002; 34:685-700. [PMID: 12062017 DOI: 10.1016/s0896-6273(02)00718-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.
Collapse
|
956
|
Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 2002; 26:321-52. [PMID: 12034134 DOI: 10.1016/s0149-7634(02)00007-6] [Citation(s) in RCA: 1449] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emotions are multifaceted, but a key aspect of emotion involves the assessment of the value of environmental stimuli. This article reviews the many psychological representations, including representations of stimulus value, which are formed in the brain during Pavlovian and instrumental conditioning tasks. These representations may be related directly to the functions of cortical and subcortical neural structures. The basolateral amygdala (BLA) appears to be required for a Pavlovian conditioned stimulus (CS) to gain access to the current value of the specific unconditioned stimulus (US) that it predicts, while the central nucleus of the amygdala acts as a controller of brainstem arousal and response systems, and subserves some forms of stimulus-response Pavlovian conditioning. The nucleus accumbens, which appears not to be required for knowledge of the contingency between instrumental actions and their outcomes, nevertheless influences instrumental behaviour strongly by allowing Pavlovian CSs to affect the level of instrumental responding (Pavlovian-instrumental transfer), and is required for the normal ability of animals to choose rewards that are delayed. The prelimbic cortex is required for the detection of instrumental action-outcome contingencies, while insular cortex may allow rats to retrieve the values of specific foods via their sensory properties. The orbitofrontal cortex, like the BLA, may represent aspects of reinforcer value that govern instrumental choice behaviour. Finally, the anterior cingulate cortex, implicated in human disorders of emotion and attention, may have multiple roles in responding to the emotional significance of stimuli and to errors in performance, preventing responding to inappropriate stimuli.
Collapse
Affiliation(s)
- Rudolf N Cardinal
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | | | | | | |
Collapse
|
957
|
Neuhoff H, Neu A, Liss B, Roeper J. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 2002; 22:1290-302. [PMID: 11850457 PMCID: PMC6757558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Dopaminergic (DA) midbrain neurons in the substantia nigra (SN) and ventral tegmental area (VTA) are involved in various brain functions such as voluntary movement and reward and are targets in disorders such as Parkinson's disease and schizophrenia. To study the functional properties of identified DA neurons in mouse midbrain slices, we combined patch-clamp recordings with either neurobiotin cell-filling and triple labeling confocal immunohistochemistry, or single-cell RT-PCR. We discriminated four DA subpopulations based on anatomical and neurochemical differences: two calbindin D28-k (CB)-expressing DA populations in the substantia nigra (SN/CB+) or ventral tegmental area (VTA/CB+), and respectively, two calbindin D28-k negative DA populations (SN/CB-, VTA/CB-). VTA/CB+ DA neurons displayed significantly faster pacemaker frequencies with smaller afterhyperpolarizations compared with other DA neurons. In contrast, all four DA populations possessed significant differences in I(h) channel densities and I(h) channel-mediated functional properties like sag amplitudes and rebound delays in the following order: SN/CB- --> VTA/CB- --> SN/CB+ --> VTA/CB+. Single-cell RT-multiplex PCR experiments demonstrated that differential calbindin but not calretinin expression is associated with differential I(h) channel densities. Only in SN/CB- DA neurons, however, I(h) channels were actively involved in pacemaker frequency control. In conclusion, diversity within the DA system is not restricted to distinct axonal projections and differences in synaptic connectivity, but also involves differences in postsynaptic conductances between neurochemically and topographically distinct DA neurons.
Collapse
Affiliation(s)
- Henrike Neuhoff
- H.N. and A.N. contributed equally to this work. Correspondence should be addressed to Dr. Jochen Roeper, Medical Research Council, Anatomical Neuropharmacology Unit, Oxford University, Mansfield Road, Oxford OX1 3TH, UK. E-mail:. H. Neuhoff's present address: Scientific Services, Morphology, Zentrum für Molekulare Neurobiologie Hamburg, D-20251 Hamburg, Germany. A. Neu's present address: Institute for Neural Signaltransduction, Zentrum für Molekulare Neurobiologie Hamburg, D-20251 Hamburg, Germany
| | - Axel Neu
- H.N. and A.N. contributed equally to this work. Correspondence should be addressed to Dr. Jochen Roeper, Medical Research Council, Anatomical Neuropharmacology Unit, Oxford University, Mansfield Road, Oxford OX1 3TH, UK. E-mail:. H. Neuhoff's present address: Scientific Services, Morphology, Zentrum für Molekulare Neurobiologie Hamburg, D-20251 Hamburg, Germany. A. Neu's present address: Institute for Neural Signaltransduction, Zentrum für Molekulare Neurobiologie Hamburg, D-20251 Hamburg, Germany
| | | | | |
Collapse
|
958
|
Core and Shell of the Nucleus Accumbens are Interconnected Via Intrastriatal Projections. ADVANCES IN BEHAVIORAL BIOLOGY 2002. [DOI: 10.1007/978-1-4615-0715-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
959
|
Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 2001; 11:689-95. [PMID: 11741019 DOI: 10.1016/s0959-4388(01)00270-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Albin-DeLong 'box and arrow' model has long been the accepted standard model for the basal ganglia network. However, advances in physiological and anatomical research have enabled a more detailed neural network approach. Recent computational models hold that the basal ganglia use reinforcement signals and local competitive learning rules to reduce the dimensionality of sparse cortical information. These models predict a steady-state situation with diminished efficacy of lateral inhibition and low synchronization. In this framework, Parkinson's disease can be characterized as a persistent state of negative reinforcement, inefficient dimensionality reduction, and abnormally synchronized basal ganglia activity.
Collapse
Affiliation(s)
- I Bar-Gad
- Department of Physiology, the Center for Neural Computation and the Eric Roland Center for Neurodegenerative Diseases, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
960
|
Takada M, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Hatanaka N, Nambu A. Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 2001; 14:1633-50. [PMID: 11860458 DOI: 10.1046/j.0953-816x.2001.01789.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cingulate motor areas reside within regions lining the cingulate sulcus and are divided into rostral and caudal parts. Recent studies suggest that the rostral and caudal cingulate motor areas participate in distinct aspects of motor function: the former plays a role in higher-order cognitive control of movements, whereas the latter is more directly involved in their execution. Here, we investigated the organization of cingulate motor areas inputs to the basal ganglia in the macaque monkey. Identified forelimb representations of the rostral and caudal cingulate motor areas were injected with different anterograde tracers and the distribution patterns of labelled terminals were analysed in the striatum and the subthalamic nucleus. Corticostriatal inputs from the rostral and caudal cingulate motor areas were located within the rostral striatum, with the highest density in the striatal cell bridges and the ventrolateral portions of the putamen, respectively. There was no substantial overlap between these input zones. Similarly, a certain segregation of input zones from the rostral and caudal cingulate motor areas occurred along the mediolateral axis of the subthalamic nucleus. It has also been revealed that corticostriatal and corticosubthalamic input zones from the rostral cingulate motor area considerably overlapped those from the presupplementary motor area, while the input zones from the caudal cingulate motor area displayed a large overlap with those from the primary motor cortex. The present results indicate that a parallel design underlies motor information processing in the cortico-basal ganglia loop derived from the rostral and caudal cingulate motor areas.
Collapse
Affiliation(s)
- M Takada
- Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
961
|
Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:129-38. [PMID: 11690609 DOI: 10.1016/s0165-0173(01)00088-1] [Citation(s) in RCA: 515] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The argument advanced in this review is that drug addiction can be understood in terms of normal learning and memory systems of the brain which, through the actions of chronically self-administered drugs, are pathologically subverted, thereby leading to the establishment of compulsive drug-seeking habits, strengthened by the motivational impact of drug-associated stimuli and occurring at the expense of other sources of reinforcement. We review data from our studies that have utilized procedures which reveal the various influences of pavlovian stimuli on goal-directed behaviour, namely discriminated approach, pavlovian-to-instrumental transfer and conditioned reinforcement, in order to demonstrate their overlapping and also unique neural bases. These fundamental studies are also reviewed in the context of the neural and psychological mechanisms underlying drug-seeking behaviour that is under the control of drug-associated environmental stimuli. The ways in which such drug-seeking behaviour becomes compulsive and habitual, as well as the propensity for relapse to drug-seeking even after long periods of relapse, are discussed in terms of the aberrant learning set in train by the effects of self-administered drugs on plastic processes in limbic cortical-ventral striatal systems.
Collapse
Affiliation(s)
- B J Everitt
- Department of Experimental Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, UK.
| | | | | |
Collapse
|
962
|
Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 2001; 104:807-27. [PMID: 11440812 DOI: 10.1016/s0306-4522(01)00112-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier. From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, NY 14642, USA
| | | |
Collapse
|
963
|
Lipina SJ, Colombo JA. Dissociated functional recovery in parkinsonian monkeys following transplantation of astroglial cells. Brain Res 2001; 911:176-80. [PMID: 11511388 DOI: 10.1016/s0006-8993(01)02682-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bilateral astroglial transplantation into the neostriatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys resulted in significant performance improvement in a spatial delayed response task, but failed to modify perseveration in an object retrieval detour task, or to improve motor clinical rating. Results suggest that brain circuits subserving various motor and cognitive performances can be functionally dissociated, and that remaining resources for the reorganization of neural circuits involved in spatial working memory performance in parkinsonian monkeys, appear to be responsive to striatal transplantation of subcultured, fetal striatal astroglial cells.
Collapse
Affiliation(s)
- S J Lipina
- Unidad de Neurobiología Aplicada (UNA) (CEMIC-CONICET), Av. Galván 4102, 1431 Buenos Aires, Argentina
| | | |
Collapse
|
964
|
Abstract
The thalamus has long been thought to convey subcortical information to the cortex. Indeed, models of basal ganglia function attribute the primary role for the thalamus to a simple relay of information processed in the basal ganglia to the cortex. The thalamic nuclear groups that are associated primarily with this function are the ventral anterior and ventral lateral nuclei and the mediodorsal thalamic nucleus. However, recent studies have shown that the corticothalamic projection is important for the dynamics of the thalamocortical processing. Furthermore, the relay nuclei that carry basal ganglia output to the cortex have recently been shown to project back to the basal ganglia directly. These two recent developments indicate a more dynamic role for the thalamus in basal ganglia information processing than a passive relay.
Collapse
Affiliation(s)
- S Haber
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, New York 14642, USA.
| | | |
Collapse
|
965
|
Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001; 30:819-28. [PMID: 11430814 DOI: 10.1016/s0896-6273(01)00319-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine-deficient (DD) mice cannot synthesize dopamine (DA) in dopaminergic neurons due to selective inactivation of the tyrosine hydroxylase gene in those neurons. These mice become hypoactive and hypophagic and die of starvation by 4 weeks of age. We used gene therapy to ascertain where DA replacement in the brain restores feeding and other behaviors in DD mice. Restoration of DA production within the caudate putamen restores feeding on regular chow and nest-building behavior, whereas restoration of DA production in the nucleus accumbens restores exploratory behavior. Replacement of DA to either region restores preference for sucrose or a palatable diet without fully rescuing coordination or initiation of movement. These data suggest that a fundamental difference exists between feeding for sustenance and the ability to prefer rewarding substances.
Collapse
Affiliation(s)
- M S Szczypka
- Howard Hughes Medical Institute and, Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
966
|
|
967
|
Carta AR, Gerfen CR, Steiner H. Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. Neuroreport 2000; 11:2395-9. [PMID: 10943692 DOI: 10.1097/00001756-200008030-00012] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Central effects of psychostimulants such as cocaine are predominantly mediated by dopamine receptors. We have used mice with a targeted deletion of the D3 dopamine receptor subtype to investigate the role of this receptor in the regulation of gene expression in striatal neurons and behavior by acute and repeated treatment with cocaine (25 mg/kg). In mice lacking D3 receptors, acute administration of cocaine has more pronounced stimulatory effects on c-fos and dynorphin expression in the dorsal and ventral striatum. The behavioral response to cocaine is also increased in these mice. These findings indicate that the D3 receptor plays an inhibitory role in the action of cocaine on behavior and gene regulation in the striatum.
Collapse
Affiliation(s)
- A R Carta
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|