1001
|
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16:115-130. [PMID: 27980341 PMCID: PMC6416143 DOI: 10.1038/nrd.2016.245] [Citation(s) in RCA: 985] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
Collapse
Affiliation(s)
- Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive, Room G1120B, Stanford, California 94305-5454, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| |
Collapse
|
1002
|
Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 2017; 8:14346. [PMID: 28146148 PMCID: PMC5296669 DOI: 10.1038/ncomms14346] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3–CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired. Alignment or anisotropic organisation within and between cells enables biological function but is challenging to engineer. Here, the authors align collagen fibres in a pre-strained polydimethylsiloxane mould to generate a 3D scaffold that guides hippocampal neuron axon growth to form CA3–CA1 neural circuits.
Collapse
|
1003
|
Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. Cell Stem Cell 2017; 20:397-406.e5. [PMID: 28132835 DOI: 10.1016/j.stem.2016.12.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/05/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023]
Abstract
The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized, the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV, an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013), productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation, even during early stages of infection, leading to progenitor depletion, disruption of the VZ, impaired neurogenesis, and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.
Collapse
|
1004
|
Flaherty EK, Brennand KJ. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Res 2017; 1655:283-293. [PMID: 26581337 PMCID: PMC4865445 DOI: 10.1016/j.brainres.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a neuropsychological disorder with a strong heritable component; genetic risk for schizophrenia is conferred by both common variants of relatively small effect and rare variants with high penetrance. Genetically engineered mouse models can recapitulate rare variants, displaying some behavioral defects associated with schizophrenia; however, these mouse models cannot recapitulate the full genetic architecture underlying the disorder. Patient-derived human induced pluripotent stem cells (hiPSCs) present an alternative approach for studying rare variants, in the context of all other risk alleles. Genome editing technologies, such as CRISPR-Cas9, enable the generation of isogenic hiPSC lines with which to examine the functional contribution of single variants within any genetic background. Studies of these rare variants using hiPSCs have the potential to identify commonly disrupted pathways in schizophrenia and allow for the identification of new therapeutic targets. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erin K Flaherty
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States.
| |
Collapse
|
1005
|
Matsui T, Nieto-Estévez V, Kyrychenko S, Schneider JW, Hsieh J. Retinoblastoma protein controls growth, survival and neuronal migration in human cerebral organoids. Development 2017; 144:1025-1034. [PMID: 28087635 DOI: 10.1242/dev.143636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/16/2016] [Indexed: 01/22/2023]
Abstract
The tumor suppressor retinoblastoma protein (RB) regulates S-phase cell cycle entry via E2F transcription factors. Knockout (KO) mice have shown that RB plays roles in cell migration, differentiation and apoptosis, in developing and adult brain. In addition, the RB family is required for self-renewal and survival of human embryonic stem cells (hESCs). Since little is known about the role of RB in human brain development, we investigated its function in cerebral organoids differentiated from gene-edited hESCs lacking RB. We show that RB is abundantly expressed in neural stem and progenitor cells in organoids at 15 and 28 days of culture. RB loss promoted S-phase entry in DCX+ cells and increased apoptosis in Sox2+ neural stem and progenitor cells, and in DCX+ and Tuj1+ neurons. Associated with these cell cycle and pro-apoptotic effects, we observed increased CCNA2 and BAX gene expression, respectively. Moreover, we observed aberrant Tuj1+ neuronal migration in RB-KO organoids and upregulation of the gene encoding VLDLR, a receptor important in reelin signaling. Corroborating the results in RB-KO organoids in vitro, we observed ectopically localized Tuj1+ cells in RB-KO teratomas grown in vivo Taken together, these results identify crucial functions for RB in the cerebral organoid model of human brain development.
Collapse
Affiliation(s)
- Takeshi Matsui
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanesa Nieto-Estévez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergii Kyrychenko
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay W Schneider
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
1006
|
Zhu Y, Wang L, Yin F, Yu Y, Wang Y, Shepard MJ, Zhuang Z, Qin J. Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integr Biol (Camb) 2017; 9:968-978. [DOI: 10.1039/c7ib00105c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fetal brain is highly vulnerable to ethanol exposure, which can trigger various long-term neuronal disabilities and cognitive dysfunctions.
Collapse
Affiliation(s)
- Yujuan Zhu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Li Wang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- Key Laboratory of Separation Sciences for Analytical Chemistry
| | - Fangchao Yin
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Yue Yu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Yaqing Wang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Matthew J. Shepard
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- National Institutes of Health
- Bethesda
- USA
- Department of Neurological Surgery
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- National Institutes of Health
- Bethesda
- USA
| | - Jianhua Qin
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
1007
|
Hester ME, Hood AB. Generation of Cerebral Organoids Derived from Human Pluripotent Stem Cells. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-7024-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
1008
|
Xu JC, Fan J, Wang X, Eacker SM, Kam TI, Chen L, Yin X, Zhu J, Chi Z, Jiang H, Chen R, Dawson TM, Dawson VL. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci Transl Med 2016; 8:333ra48. [PMID: 27053772 DOI: 10.1126/scitranslmed.aad0623] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells or human inducible pluripotent stem cells that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid to FOXG1(+) neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuronal cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and poly(ADP-ribose) polymerase (PARP) (a cell death pathway called parthanatos that is distinct from apoptosis, necroptosis, and other forms of cell death). Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons.
Collapse
Affiliation(s)
- Jin-Chong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Fan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xueqing Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen M Eacker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juehua Zhu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Zhikai Chi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haisong Jiang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1009
|
Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 2016; 420:199-209. [PMID: 27402594 PMCID: PMC5161139 DOI: 10.1016/j.ydbio.2016.06.037] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.
Collapse
Affiliation(s)
- Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom.
| |
Collapse
|
1010
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
1011
|
Ostrem B, Di Lullo E, Kriegstein A. oRGs and mitotic somal translocation - a role in development and disease. Curr Opin Neurobiol 2016; 42:61-67. [PMID: 27978479 DOI: 10.1016/j.conb.2016.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022]
Abstract
The evolution of the human brain has been characterized by an increase in the size of the neocortex. Underlying this expansion is a significant increase in the number of neurons produced by neural stem cells during early stages of cortical development. Here we highlight recent advances in our understating of these cell populations, consisting of ventricular radial glia and outer radial glia. We highlight how gene expression studies have identified molecular signatures for radial glial cell populations and outline what has been learned about the mechanisms underlying the characteristic mode of division observed in outer radial glia cells, mitotic somal translocation. Understanding the significance of this behavior may help us explain human cortical expansion and further elucidate neurodevelopmental diseases.
Collapse
Affiliation(s)
- Bridget Ostrem
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
1012
|
Abstract
The re-emergence of Zika virus (ZIKV) and its suspected link with various disorders in newborns and adults led the World Health Organization to declare a global health emergency. In response, the stem cell field quickly established platforms for modeling ZIKV exposure using human pluripotent stem cell-derived neural progenitors and brain organoids, fetal tissues, and animal models. These efforts provided significant insight into cellular targets, pathogenesis, and underlying biological mechanisms of ZIKV infection as well as platforms for drug testing. Here we review the remarkable progress in stem cell-based ZIKV research and discuss current challenges and future opportunities.
Collapse
Affiliation(s)
- Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1013
|
Hassouna I, Ott C, Wüstefeld L, Offen N, Neher RA, Mitkovski M, Winkler D, Sperling S, Fries L, Goebbels S, Vreja IC, Hagemeyer N, Dittrich M, Rossetti MF, Kröhnert K, Hannke K, Boretius S, Zeug A, Höschen C, Dandekar T, Dere E, Neher E, Rizzoli SO, Nave KA, Sirén AL, Ehrenreich H. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatry 2016; 21:1752-1767. [PMID: 26809838 PMCID: PMC5193535 DOI: 10.1038/mp.2015.212] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
Abstract
Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a 15N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated 15N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.
Collapse
Affiliation(s)
- I Hassouna
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany,On leave of absence from Physiology
Unit, Zoology Department, Faculty of Science, Menoufia University,
Al Minufya, Egypt
| | - C Ott
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - L Wüstefeld
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - N Offen
- Department of Neurosurgery,
University of Würzburg, Würzburg,
Germany
| | - R A Neher
- Evolutionary Dynamics and Biophysics,
Max Planck Institute for Developmental Biology,
Tübingen, Germany
| | - M Mitkovski
- Light Microscopy Facility, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - D Winkler
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - S Sperling
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - L Fries
- Department of Neurosurgery,
University of Würzburg, Würzburg,
Germany
| | - S Goebbels
- Department of Neurogenetics, Max
Planck Institute of Experimental Medicine,
Göttingen, Germany
| | - I C Vreja
- Department of Neuro- and Sensory
Physiology, University Medical Center
Göttingen, Germany,International Max Planck Research
School Molecular Biology, Göttingen,
Germany
| | - N Hagemeyer
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - M Dittrich
- Department of Bioinformatics,
Biocenter, University of Würzburg, Würzburg,
Germany
| | - M F Rossetti
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - K Kröhnert
- Department of Neuro- and Sensory
Physiology, University Medical Center
Göttingen, Germany
| | - K Hannke
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - S Boretius
- Department of Diagnostic Radiology,
Christian-Albrechts-Universität, Kiel,
Germany
| | - A Zeug
- Cellular Neurophysiology, Hannover
Medical School, Hannover, Germany
| | - C Höschen
- Department of Ecology and Ecosystem
Management, Lehrstuhl für Bodenkunde, Technische Universität
München, Freising-Weihenstephan,
Germany
| | - T Dandekar
- Department of Bioinformatics,
Biocenter, University of Würzburg, Würzburg,
Germany
| | - E Dere
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany
| | - E Neher
- Department of Membrane Biophysics,
Max Planck Institute for Biophysical Chemistry,
Göttingen, Germany,DFG Center for Nanoscale Microscopy
and Molecular Physiology of the Brain, Göttingen,
Germany
| | - S O Rizzoli
- Department of Neuro- and Sensory
Physiology, University Medical Center
Göttingen, Germany,DFG Center for Nanoscale Microscopy
and Molecular Physiology of the Brain, Göttingen,
Germany
| | - K-A Nave
- Department of Neurogenetics, Max
Planck Institute of Experimental Medicine,
Göttingen, Germany,DFG Center for Nanoscale Microscopy
and Molecular Physiology of the Brain, Göttingen,
Germany
| | - A-L Sirén
- Department of Neurosurgery,
University of Würzburg, Würzburg,
Germany
| | - H Ehrenreich
- Clinical Neuroscience, Max Planck
Institute of Experimental Medicine, Göttingen,
Germany,DFG Center for Nanoscale Microscopy
and Molecular Physiology of the Brain, Göttingen,
Germany,Clinical Neuroscience, Max Planck Institute of
Experimental Medicine, Hermann-Rein-Str.3,
Göttingen
37075, Germany. E-mail:
| |
Collapse
|
1014
|
Bell S, Peng H, Crapper L, Kolobova I, Maussion G, Vasuta C, Yerko V, Wong TP, Ernst C. A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing. Stem Cells Transl Med 2016; 6:886-896. [PMID: 28170165 PMCID: PMC5442775 DOI: 10.1002/sctm.16-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/15/2016] [Accepted: 10/26/2016] [Indexed: 12/29/2022] Open
Abstract
The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution, which enables the concurrent development of clonal knockout or knock‐in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology, allows for the development of appropriate control lines for use in rare neurodevelopmental disease research, and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine2017;6:886–896
Collapse
Affiliation(s)
- Scott Bell
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Huashan Peng
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Liam Crapper
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Ilaria Kolobova
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Gilles Maussion
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Cristina Vasuta
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Tak Pan Wong
- Departments of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada.,Departments of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Human Genetics, McGill University, Montreal, Quebec, H4H 1R3, Canada
| |
Collapse
|
1015
|
Pamies D, Barreras P, Block K, Makri G, Kumar A, Wiersma D, Smirnova L, Zang C, Bressler J, Christian KM, Harris G, Ming GL, Berlinicke CJ, Kyro K, Song H, Pardo CA, Hartung T, Hogberg HT. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:362-376. [PMID: 27883356 PMCID: PMC6047513 DOI: 10.14573/altex.1609122] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
Human in vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. We have developed a reproducible iPSC-derived human 3D brain microphysiological system (BMPS), comprised of differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over eight weeks and show the critical elements of neuronal function: synaptogenesis and neuron-to-neuron (e.g., spontaneous electric field potentials) and neuronal-glial interactions (e.g., myelination), which mimic the microenvironment of the central nervous system, rarely seen in vitro before. The BMPS shows 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglial function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. The BMPS provides a suitable and reliable model to investigate neuron-neuroglia function as well as pathogenic mechanisms in neurotoxicology.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Katharina Block
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Georgia Makri
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Anupama Kumar
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Daphne Wiersma
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Lenna Smirnova
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Ce Zang
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Joseph Bressler
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Baltimore, USA
| | - Kimberly M Christian
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Guo-Li Ming
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | | | - Kelly Kyro
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA.,University of Konstanz, Konstanz, Germany
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
1016
|
Mini-Brains Make Big Leaps for Studying Human Neural Development and Disease. Epilepsy Curr 2016; 16:402-404. [PMID: 27857624 DOI: 10.5698/1535-7511-16.6.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
1017
|
Chen C, Kim WY, Jiang P. Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells. JCI Insight 2016; 1:e88632. [PMID: 27882348 DOI: 10.1172/jci.insight.88632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The creation of a humanized chimeric mouse nervous system permits the study of human neural development and disease pathogenesis using human cells in vivo. Humanized glial chimeric mice with the brain and spinal cord being colonized by human glial cells have been successfully generated. However, generation of humanized chimeric mouse brains repopulated by human neurons to possess a high degree of chimerism have not been well studied. Here we created humanized neuronal chimeric mouse brains by neonatally engrafting the distinct and highly neurogenic human induced pluripotent stem cell (hiPSC)-derived rosette-type primitive neural progenitors. These neural progenitors predominantly differentiate to neurons, which disperse widely throughout the mouse brain with infiltration of the cerebral cortex and hippocampus at 6 and 13 months after transplantation. Building upon the hiPSC technology, we propose that this potentially unique humanized neuronal chimeric mouse model will provide profound opportunities to define the structure, function, and plasticity of neural networks containing human neurons derived from a broad variety of neurological disorders.
Collapse
Affiliation(s)
- Chen Chen
- Department of Developmental Neuroscience, Munroe-Meyer Institute
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute
| | - Peng Jiang
- Department of Developmental Neuroscience, Munroe-Meyer Institute.,Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
1018
|
Heterozygous STXBP1 Mutations Associated With Ohtahara Syndrome: Two Littles Make a Lot. Epilepsy Curr 2016; 16:330-332. [PMID: 27799865 DOI: 10.5698/1535-7511-16.5.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
1019
|
Collins SJ, Haigh CL. Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochem Biophys 2016; 75:3-13. [PMID: 27796787 DOI: 10.1007/s12013-016-0768-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
The ability to model brain tissue in three-dimensions offers new potential for elucidating functional cellular interactions and corruption of such functions during pathogenesis. Many protocols now exist for growing neurones in three-dimensions and these vary in complexity and cost. Herein, we describe a straight-forward method for generating three-dimensional, terminally differentiated central nervous system cultures from adult murine neural stem cells. The protocol requires no specialist equipment, is not labour intensive or expensive and produces mature cultures within 10 days that can survive beyond a month. Populations of functional glutamatergic neurones could be identified within cultures. Additionally, the three dimensional neuronal cultures can be used to investigate tissue changes during the development of neurodegenerative disease where demonstration of hallmark features, such as plaque generation, has not previously been possible using two-dimensional cultures of neuronal cells. Using a prion model of acquired neurodegenerative disease, biochemical changes indicative of prion pathology were induced within 2-3 weeks in the three dimensional cultures. Our findings show that tissue differentiated in this simplified three dimensional culture model is physiologically competent to model central nervous system cellular behaviour as well as manifest the functional failures and pathological changes associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
1020
|
Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci 2016; 19:1397-1407. [DOI: 10.1038/nn.4409] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
|
1021
|
The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med 2016; 22:1220-1228. [DOI: 10.1038/nm.4214] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022]
|
1022
|
Muffat J, Li Y, Jaenisch R. CNS disease models with human pluripotent stem cells in the CRISPR age. Curr Opin Cell Biol 2016; 43:96-103. [PMID: 27768957 DOI: 10.1016/j.ceb.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 10/02/2016] [Indexed: 12/31/2022]
Abstract
In vitro differentiation of human pluripotent stem cells provides a systematic platform to investigate the physiological development and function of the human nervous system, as well as the etiology and consequence when these processes go awry. Recent development in three-dimensional (3D) organotypic culture systems allows modeling of the complex structure formation of the human CNS, and the intricate interactions between various resident neuronal and glial cell types. Combined with an ever-expanding genome editing and regulation toolkit such as CRISPR/Cas9, it is now a possibility to study human neurological disease in the relevant molecular, cellular and anatomical context. In this article, we review recent progress in 3D neural culture and the implications for disease modeling.
Collapse
Affiliation(s)
- Julien Muffat
- Whitehead Institute for Biomedical Research, 9Cambridge Center, Cambridge, MA 02142, United States
| | - Yun Li
- Whitehead Institute for Biomedical Research, 9Cambridge Center, Cambridge, MA 02142, United States
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9Cambridge Center, Cambridge, MA 02142, United States.
| |
Collapse
|
1023
|
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicol In Vitro 2016; 38:124-135. [PMID: 27729293 DOI: 10.1016/j.tiv.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023]
Abstract
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells, the possibility of generating human in vitro models has gained interest, as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues, using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers, paralleled by an increase in markers specific for mature neurons, astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons, but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required, these results indicate its potential usefulness for in vitro neurotoxicity testing.
Collapse
|
1024
|
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0163072. [PMID: 27684569 PMCID: PMC5042502 DOI: 10.1371/journal.pone.0163072] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug.
Collapse
|
1025
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
1026
|
Yan Y, Bejoy J, Xia J, Guan J, Zhou Y, Li Y. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomater 2016; 42:114-126. [PMID: 27345135 DOI: 10.1016/j.actbio.2016.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. METHODS By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. RESULTS Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. CONCLUSIONS This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. STATEMENT OF SIGNIFICANCE Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Junfei Xia
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
1027
|
Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks. Sci Rep 2016; 6:33285. [PMID: 27619889 PMCID: PMC5020407 DOI: 10.1038/srep33285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/19/2016] [Indexed: 01/27/2023] Open
Abstract
The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells.
Collapse
|
1028
|
Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes. PLoS One 2016; 11:e0161969. [PMID: 27622770 PMCID: PMC5021368 DOI: 10.1371/journal.pone.0161969] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD.
Collapse
|
1029
|
Grabiec M, Hříbková H, Vařecha M, Střítecká D, Hampl A, Dvořák P, Sun YM. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res 2016; 17:330-341. [PMID: 27608170 DOI: 10.1016/j.scr.2016.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/13/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022] Open
Abstract
This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6+/Ki67+ neural stem cells and the emergence of MAP2+ neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Vařecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Střítecká
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvořák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
1030
|
Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 2016; 21:1167-79. [PMID: 27240529 PMCID: PMC4995546 DOI: 10.1038/mp.2016.89] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
Major programs in psychiatric genetics have identified >150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes.
Collapse
|
1031
|
Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61. [PMID: 27050589 DOI: 10.1038/nm.4071] [Citation(s) in RCA: 557] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies.
Collapse
|
1032
|
Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2016; 129:66-73. [PMID: 27570101 DOI: 10.1016/j.brainresbull.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023]
Abstract
Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States.
| | - Jessy V van Asperen
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| |
Collapse
|
1033
|
Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. Stem Cell Reports 2016; 7:557-570. [PMID: 27569063 PMCID: PMC5032182 DOI: 10.1016/j.stemcr.2016.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022] Open
Abstract
Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain. Human induced neural stem cell (hiNSC) lines can be passaged and cryopreserved Rapid and robust media-independent differentiation in as few as 4 days hiNSCs contribute to both central and peripheral nervous systems in vivo Demonstration of utility in innervated muscle co-culture and 3D human brain model
Collapse
|
1034
|
Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016; 10:1148-1158. [DOI: 10.1002/prca.201600021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Juliana M. Nascimento
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Sheila Garcia
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Verônica M. Saia-Cereda
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Aline G. Santana
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Caroline Brandao-Teles
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Giuliana S. Zuccoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danielle G. Junqueira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Paulo A. Baldasso
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Juliana S. Cassoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
1035
|
Mason JO, Price DJ. Building brains in a dish: Prospects for growing cerebral organoids from stem cells. Neuroscience 2016; 334:105-118. [PMID: 27506142 DOI: 10.1016/j.neuroscience.2016.07.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/27/2022]
Abstract
The recent development of organoid techniques, in which embryonic brain-like tissue can be grown from human or mouse stem cells in vitro offers the potential to transform the way in which brain development is studied. In this review, we summarize key aspects of the embryonic development of mammalian forebrains, focussing in particular on the cerebral cortex and highlight significant differences between mouse and primates, including human. We discuss recent work using cerebral organoids that has revealed key similarities and differences between their development and that of the brain in vivo. Finally, we outline the ways in which cerebral organoids can be used in combination with CRISPR/Cas9 genome editing to unravel genetic mechanisms that control embryonic development of the cerebral cortex, how this can help us understand the causes of neurodevelopmental disorders and some of the key challenges which will have to be resolved before organoids can become a mainstream tool to study brain development.
Collapse
Affiliation(s)
- John O Mason
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - David J Price
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
1036
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
1037
|
Chiocchetti AG, Haslinger D, Stein JL, de la Torre-Ubieta L, Cocchi E, Rothämel T, Lindlar S, Waltes R, Fulda S, Geschwind DH, Freitag CM. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders. Transl Psychiatry 2016; 6:e864. [PMID: 27483382 PMCID: PMC5022076 DOI: 10.1038/tp.2016.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- A G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - D Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - J L Stein
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - L de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - E Cocchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - T Rothämel
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - S Lindlar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - R Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - S Fulda
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - D H Geschwind
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
1038
|
Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 2016; 19:248-257. [PMID: 27476966 DOI: 10.1016/j.stem.2016.07.005] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/22/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases.
Collapse
Affiliation(s)
- Junghyun Jo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yixin Xiao
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alfred Xuyang Sun
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore
| | - Engin Cukuroglu
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Hoang-Dai Tran
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zi Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Tzuen Yih Saw
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Hidayat Lokman
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Younghwan Lee
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eng King Tan
- National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore.
| |
Collapse
|
1039
|
Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol 2016; 43:22-29. [PMID: 27474805 DOI: 10.1016/j.ceb.2016.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/21/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Reliable disease models are needed in order to improve quality of healthcare. This includes gaining better understanding of disease mechanisms, developing new therapeutic interventions and personalizing treatment. Up-to-date, the majority of our knowledge about disease states comes from in vivo animal models and in vitro cell culture systems. However, it has been exceedingly difficult to model disease at the tissue level. Since recently, the gap between cell line studies and in vivo modeling has been narrowing thanks to progress in biomaterials and stem cell research. Development of reliable 3D culture systems has enabled a rapid expansion of sophisticated in vitro models. Here we focus on some of the latest advances and future perspectives in 3D organoids for human disease modeling.
Collapse
Affiliation(s)
- Pawel J Schweiger
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
1040
|
Mahla RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016; 2016:6940283. [PMID: 27516776 PMCID: PMC4969512 DOI: 10.1155/2016/6940283] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
1041
|
Treweek JB, Gradinaru V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Curr Opin Biotechnol 2016; 40:193-207. [PMID: 27393829 DOI: 10.1016/j.copbio.2016.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
The scientific community has learned a great deal from imaging small and naturally transparent organisms such as nematodes and zebrafish. The consequences of genetic mutations on their organ development and survival can be visualized easily and with high-throughput at the organism-wide scale. In contrast, three-dimensional information is less accessible in mammalian subjects because the heterogeneity of light-scattering tissue elements renders their organs opaque. Likewise, genetically labeling desired circuits across mammalian bodies is prohibitively slow and costly via the transgenic route. Emerging breakthroughs in viral vector engineering, genome editing tools, and tissue clearing can render larger opaque organisms genetically tractable and transparent for whole-organ cell phenotyping, tract tracing and imaging at depth.
Collapse
Affiliation(s)
- Jennifer Brooke Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
1042
|
Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016; 89:248-68. [PMID: 26796689 DOI: 10.1016/j.neuron.2015.12.008] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics and Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
1043
|
Seidel D, Obendorf J, Englich B, Jahnke HG, Semkova V, Haupt S, Girard M, Peschanski M, Brüstle O, Robitzki AA. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens Bioelectron 2016; 86:277-286. [PMID: 27387257 DOI: 10.1016/j.bios.2016.06.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.
Collapse
Affiliation(s)
- Diana Seidel
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Janine Obendorf
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Beate Englich
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Mathilde Girard
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Oliver Brüstle
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
1044
|
Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, Goldwurm S, Meyer M, Lagarkova M, Kiselev S, Koistinaho J, Roybon L. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis 2016; 2:16009. [PMID: 28725696 PMCID: PMC5516589 DOI: 10.1038/npjparkd.2016.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients' own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson's disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.
Collapse
Affiliation(s)
- Staffan Holmqvist
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Šárka Lehtonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Margarita Chumarina
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Katja A Puttonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Carla Azevedo
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olga Lebedeva
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Marika Ruponen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mehdi Djelloul
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Biobanks, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Lagarkova
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergei Kiselev
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Jari Koistinaho
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
1045
|
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73:13-31. [PMID: 26657644 PMCID: PMC5930170 DOI: 10.1016/j.mcn.2015.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sandra Siegert
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
1046
|
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 2016; 165:1238-1254. [PMID: 27118425 PMCID: PMC4900885 DOI: 10.1016/j.cell.2016.04.032] [Citation(s) in RCA: 1513] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.
Collapse
Affiliation(s)
- Xuyu Qian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxi M Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Riverhill High School, Clarksville, MD 21029, USA
| | - Christopher Hadiono
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Byram Hills High School, Armonk, NY 10504, USA
| | - Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Bing Yao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gregory R Hamersky
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fadi Jacob
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chun Zhong
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Jeang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Clear Lake High School, Harris, TX 77058, USA
| | - Li Lin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jai Thakor
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel A Berg
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ce Zhang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Chickering
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Nauen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheng-Ying Ho
- Division of Pathology, Children's National Medical Center, George Washington University, Washington, DC 20010, USA; Pathology and Pediatrics, George Washington University, Washington, DC 20010, USA
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1047
|
A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep 2016; 6:24953. [PMID: 27112667 PMCID: PMC4844952 DOI: 10.1038/srep24953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems.
Collapse
|
1048
|
Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ 2016; 58:481-91. [PMID: 27111774 DOI: 10.1111/dgd.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
1049
|
Csete M. Can We Talk? A Necessary Conversation Between Anesthesiologists and Stem Cell Biologists. Anesth Analg 2016; 122:1242-4. [PMID: 27101482 DOI: 10.1213/ane.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marie Csete
- From the Huntington Medical Research Institutes, Pasadena, California
| |
Collapse
|
1050
|
Begum AN, Hong Y. A Novel Method for the Generation of Region-Specific Neurons and Neural Networks from Human Pluripotent Stem Cells. JOURNAL OF STEM CELL RESEARCH & THERAPY 2016; 1:1-3. [PMID: 33409004 PMCID: PMC7784482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. We have reported a novel culture condition and method for generating neuronal progenitors and neural networks from human embryonic and induced pluripotent stem cells without any genetic manipulation. Neurospheres generated under 10% CO2 with Supplemented Knockout Serum Replacement Medium (SKSRM) had doubled the expression of NESTIN, PAX6 and FOXG1 genes compared to the neurospheres generated under 5% CO2. Furthermore, an additional step (AdStep) was introduced to fragment the neurospheres, which increased the expression of neuronal progenitor genes NEUROD1, NEUROG2, TBR1, TBR2, and NOTCH1 and the formation of the neuroepithelial-type cells. With the supplements, neuronal progenitors further differentiated into different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic, dopaminergic and purkinje neurons within 27-40 days, which is faster than traditional neurodifferentiation protocols (42-60 days). Furthermore, our in vivo studies indicated that neuronal progenitors derived under our culture conditions with "AdStep" showed significantly increased neurogenesis in Severe Combined Immunodeficiency (SCID) mouse brains. This neurosphere-based neurodifferentiation protocol is a valuable tool for studies neurogenesis, neuronal transplantation and high throughput screening assays.
Collapse
Affiliation(s)
- Aynun N Begum
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|