1001
|
Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, Sarker SA, Brüssow H. Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 2005; 186:8287-94. [PMID: 15576777 PMCID: PMC532420 DOI: 10.1128/jb.186.24.8287-8294.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-week coliphage survey was conducted in stool samples from 140 Bangladeshi children hospitalized with severe diarrhea. On the Escherichia coli indicator strain K803, all but one phage isolate had 170-kb genomes and the morphology of T4 phage. In spot tests, the individual T4-like phages infected up to 27 out of 40 diarrhea-associated E. coli, representing 22 O serotypes and various virulence factors; only five of them were not infected by any of these new phages. A combination of diagnostic PCR based on g32 (DNA binding) and g23 (major capsid protein) and Southern hybridization revealed that half were T-even phages sensu strictu, while the other half were pseudo-T-even or even more distantly related T4-like phages that failed to cross-hybridize with T4 or between each other. Nineteen percent of the acute stool samples yielded T4-like phages, and the prevalence was lower in convalescent stool samples. T4-like phages were also isolated from environmental and sewage water, but with low frequency and low titers. On the enteropathogenic E. coli strain O127:K63, 14% of the patients yielded phage, all of which were members of the phage family Siphoviridae with 50-kb genomes, showing the morphology of Jersey- and beta-4 like phages and narrow lytic patterns on E. coli O serotypes. Three siphovirus types could be differentiated by lack of cross-hybridization. Only a few stool samples were positive on both indicator strains. Phages with closely related restriction patterns and, in the case of T4-like phages, identical g23 gene sequences were isolated from different patients, suggesting epidemiological links between the patients.
Collapse
|
1002
|
Qiu X, Tiedje JM, Sundin GW. Genome-wide Examination of the Natural Solar Radiation Response in Shewanella oneidensis MR-1. Photochem Photobiol 2005; 81:1559-68. [PMID: 16022560 DOI: 10.1562/2005-04-15-ra-490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that Shewanella oneidensis MR-1 is extremely sensitive to natural solar radiation (NSR). Here we analyzed the global transcriptional profile of MR-1 during a 1-h recovering period after exposure to ambient solar light at a dose that yields about 20% survival rate on a Luria-Bertani (LB) plate. We observed the induction of DNA damage-repair genes, the SOS response as well as detoxification strategies that we previously observed in MR-1 following artificial UV-A irradiation. Few prophage-related genes were induced by natural solar UV radiation, however, in contrast to what was observed following artificial UV-B irradiation. Overall, the cellular response to NSR in MR-1 was more similar to that of UV-A than that of UV-B, but additional genes involved in detoxification were induced compared with induction by either UV-B or UV-A or their sum. Thus, oxidative stress appeared to contribute greatly to the NSR-induced cytotoxic effects in MR-1. A total of 29.1% of genome showed differential expression following NSR exposure, which is much greater than following exposure by UV-B (4.0%), UV-A (8.2%) or their sum (10.7%). Our data suggest that NSR may impact biological processes in a much more complex manner than previously thought.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Center for Microbial Ecology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
1003
|
Parasitism Between Co‐Infecting Bacteriophages. ADV ECOL RES 2005. [DOI: 10.1016/s0065-2504(04)37010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
1004
|
Affiliation(s)
- Roger W Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
1005
|
Serwer P, Hayes SJ, Zaman S, Lieman K, Rolando M, Hardies SC. Improved isolation of undersampled bacteriophages: finding of distant terminase genes. Virology 2004; 329:412-24. [PMID: 15518819 DOI: 10.1016/j.virol.2004.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/16/2004] [Accepted: 08/20/2004] [Indexed: 11/22/2022]
Abstract
Isolation and characterization of new environmental bacteriophages are performed for (1) analyzing microbial evolution and ecology and (2) delivering biological therapy. The sampling of environmental bacteriophages appears, however, to be limited by the procedure (usually liquid enrichment culture) used to propagate them. An alternative, less competitive procedure is developed here for the purpose of isolating new bacteriophages. This procedure involves extraction directly into and then propagation in a dilute agarose gel. Adaptations of this procedure are used to avoid repeated isolation of the same bacteriophage. Some newly isolated bacteriophages grow so poorly that they appear inaccessible to liquid enrichment culture. Four comparatively high titer bacteriophages were isolated and characterized by a genomic sequence survey. Some had genomes with extremely distant relationships to those of other bacteriophages, based on a tree built from the large terminase genes. These methods find novel genomes by rapidly isolating and screening diverse bacteriophages.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
1006
|
Copeland NA, Kleanthous C. The role of an activating peptide in protease-mediated suicide of Escherichia coli K12. J Biol Chem 2004; 280:112-7. [PMID: 15501819 DOI: 10.1074/jbc.m411280200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of latent proteinases ensures that the timing of proteolysis is regulated precisely, a process that generally involves proteolytic excision of a pro-region or a tightly bound inhibitor. Here we define the activation mechanism for Lit, a dormant suicide proteinase in Escherichia coli K-12. Previous work has shown that Gol, a short sequence within the major capsid protein gp23, activates Lit during the latter stages of T4 phage infection. This results in cell death and exclusion of the phage from the culture. The Lit site specifically cleaves the host translation factor EF-Tu (elongation factor Tu) after it has formed a weak complex with Gol, which can be supplied as a 29-residue peptide. Gol is absolutely required for Lit activation. but its role in proteolysis is unknown. Using a purified three-component system and kinetic analysis, we demonstrate that under physiological conditions Lit hydrolyzes its substrate very slowly (k(cat) of approximately 1 s(-1)). Given the abundance of EF-Tu in the cell, this finding is consistent with a cell-killing mechanism in which a few cleaved EF-Tu proteins are able block translating ribosomes from functioning. We also demonstrate that less than half of the 29 Gol residues are needed for Lit activation and that the role of the peptide is not to provide catalytic groups but to influence catalysis indirectly through stabilization of the ternary Lit.Gol.EF-Tu complex. Hence, phage-elicited suicide of E. coli K-12 by Lit is a variant form of "cofactor-induced activation," a mechanism of protease activation that has only been documented previously in pathogen subversion of mammalian hemostasis cascades.
Collapse
Affiliation(s)
- Nikki A Copeland
- Department of Biology, The University of York, Heslington, York YO10 5YW, UK
| | | |
Collapse
|
1007
|
Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 2004; 118:419-29. [PMID: 15315755 DOI: 10.1016/j.cell.2004.07.022] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/23/2004] [Accepted: 06/28/2004] [Indexed: 11/16/2022]
Abstract
The contractile tail of bacteriophage T4 undergoes major structural transitions when the virus attaches to the host cell surface. The baseplate at the distal end of the tail changes from a hexagonal to a star shape. This causes the sheath around the tail tube to contract and the tail tube to protrude from the baseplate and pierce the outer cell membrane and the cell wall before reaching the inner cell membrane for subsequent viral DNA injection. Analogously, the T4 tail can be contracted by treatment with 3 M urea. The structure of the T4 contracted tail, including the head-tail joining region, has been determined by cryo-electron microscopy to 17 A resolution. This 1200 A-long, 20 MDa structure has been interpreted in terms of multiple copies of its approximately 20 component proteins. A comparison with the metastable hexagonal baseplate of the mature virus shows that the baseplate proteins move as rigid bodies relative to each other during the structural change.
Collapse
Affiliation(s)
- Petr G Leiman
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
1008
|
Lehtola MJ, Miettinen IT, Keinänen MM, Kekki TK, Laine O, Hirvonen A, Vartiainen T, Martikainen PJ. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. WATER RESEARCH 2004; 38:3769-79. [PMID: 15350429 DOI: 10.1016/j.watres.2004.06.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 05/17/2004] [Accepted: 06/30/2004] [Indexed: 05/08/2023]
Abstract
We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.
Collapse
Affiliation(s)
- Markku J Lehtola
- Laboratory of Environmental Microbiology, National Public Health Institute, P.O. Box 95, FIN-70701 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
1009
|
Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol 2004; 85:2741-2754. [PMID: 15448335 DOI: 10.1099/vir.0.80320-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of cellular biology in recent decades have highlighted the crucial roles of glycans in numerous important biological processes, raising the concept of glycomics that is now considered as important as genomics, transcriptomics and proteomics. For millions of years, viruses have been co-evolving with their hosts. Consequently, during this co-evolution process, viruses have acquired mechanisms to mimic, hijack or sabotage host processes that favour their replication, including mechanisms to modify the glycome. The importance of the glycome in the regulation of host–virus interactions has recently led to a new concept called ‘glycovirology’. One fascinating aspect of glycovirology is the study of how viruses affect the glycome. Viruses reach that goal either by regulating expression of host glycosyltransferases or by expressing their own glycosyltransferases. This review describes all virally encoded glycosyltransferases and discusses their established or putative functions. The description of these enzymes illustrates several intriguing aspects of virology and provides further support for the importance of glycomics in biological processes.
Collapse
Affiliation(s)
- Nicolas Markine-Goriaynoff
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | - Haralambos Korres
- School of Biochemistry & Molecular Biology, Faculty of Science, Australian National University, Canberra, ACT 0200, Australia
| | - Naresh Verma
- School of Biochemistry & Molecular Biology, Faculty of Science, Australian National University, Canberra, ACT 0200, Australia
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
1010
|
Sano E, Carlson S, Wegley L, Rohwer F. Movement of viruses between biomes. Appl Environ Microbiol 2004; 70:5842-6. [PMID: 15466522 PMCID: PMC522096 DOI: 10.1128/aem.70.10.5842-5846.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 06/17/2004] [Indexed: 11/20/2022] Open
Abstract
Viruses are abundant in all known ecosystems. In the present study, we tested the possibility that viruses from one biome can successfully propagate in another. Viral concentrates were prepared from different near-shore marine sites, lake water, marine sediments, and soil. The concentrates were added to microcosms containing dissolved organic matter as a food source (after filtration to allow 100-kDa particles to pass through) and a 3% (vol/vol) microbial inoculum from a marine water sample (after filtration through a 0.45-microm-pore-size filter). Virus-like particle abundances were then monitored using direct counting. Viral populations from lake water, marine sediments, and soil were able to replicate when they were incubated with the marine microbes, showing that viruses can move between different ecosystems and propagate. These results imply that viruses can laterally transfer DNA between microbes in different biomes.
Collapse
Affiliation(s)
- Emiko Sano
- Center for Microbial Sciences, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | | | | | | |
Collapse
|
1011
|
Anesio AM, Hollas C, Granéli W, Laybourn-Parry J. Influence of humic substances on bacterial and viral dynamics in freshwaters. Appl Environ Microbiol 2004; 70:4848-54. [PMID: 15294823 PMCID: PMC492460 DOI: 10.1128/aem.70.8.4848-4854.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter(-1). In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey, no correlation was found between virus abundance and DOC concentration, yet there was a significant positive correlation between bacterial abundance and DOC concentration. A negative correlation was found between the virus-to-bacteria ratio and DOC level. These results are in agreement with our findings in the laboratory, where virus counts were significantly lower in treatments with fulvic acid additions than in a control (mean, 67.4% +/- 6.5% of the control). Virus counts did not differ significantly among the control and treatments with glucose, indicating that it was the type of organic carbon and not quantity which had an impact on viruses. Results from this study suggest that the way viruses control bacterial assemblages in humic lakes is different from the mechanism in clear water systems.
Collapse
Affiliation(s)
- Alexandre M Anesio
- School of Biosciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | |
Collapse
|
1012
|
Abstract
In tropical freshwater reservoirs of Sri Lanka, which are linked in an aquatic network, bacterial abundance and production as well as virus abundance, frequency of viral infection and virus production were investigated together with a set of nutrient species (Kjeldahl-N, NO3-N, total P, soluble P, PO4-P). At two characteristic seasons (wet season, dry season), samples were taken from two types of reservoirs (new upland impoundment and ancient, shallow lowland reservoir), each during 4 days at various depths of the entire water columns. Kjeldahl-N and total P were greatly elevated in the wind-mixed water body of the shallow impoundment during the dry season, whereas the deeper reservoir type exhibited no obvious seasonality. In SYBR green trade mark -stained samples, bacterial abundance showed no seasonal pattern in either reservoir type. Bacterial secondary production, however, was significantly elevated in the entire water column of the shallow impoundment under wind-mixed conditions in the dry season. Highest abundance of virus particles and elevated frequency of bacteria containing mature phages were also observed in the shallow reservoir during the dry season indicating favourable conditions for virus propagation. Data from this aquatic network show that most virus parameters, such as abundance or frequency of visibly infected cells, were positively linked to bacterial abundance and production, but also to organic nitrogen or some phosphorus species. We calculated that between 13.2% and 46.1% of the bacterial standing stocks would be subjected to virus-mediated mortality. Estimates of bacteriophage production revealed that from 10 x 10(9) up to 98 x 10(9) phages were produced per litre and day. Bacteria and viruses in the studied tropical freshwater system appear to be linked to various environmental conditions and may affect processes at the ecosystem scale.
Collapse
Affiliation(s)
- Peter Peduzzi
- University of Vienna, Institute of Ecology and Conservation Biology, Division of Limnology, Althanstr. 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
1013
|
Wen K, Ortmann AC, Suttle CA. Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 2004; 70:3862-7. [PMID: 15240256 PMCID: PMC444834 DOI: 10.1128/aem.70.7.3862-3867.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus enumeration by epifluorescence microscopy (EFM) is routinely done on preserved, refrigerated samples. Concerns about obtaining accurate and reproducible estimates led us to examine procedures for counting viruses by EFM. Our results indicate that aldehyde fixation results in rapid decreases in viral abundance. By 1 h postfixation, the abundance dropped by 16.4% +/- 5.2% (n = 6), and by 4 h, the abundance was 20 to 35% lower. The average loss rates for glutaraldehyde- and formaldehyde-fixed samples over the first 2 h were 0.12 and 0.13 h(-1), respectively. By 16 days, viral abundance had decreased by 72% (standard deviation, 6%; n = 6). Aldehyde fixation of samples followed by storage at 4 degrees C, for even a few hours, resulted in large underestimates of viral abundance. The viral loss rates were not constant, and in glutaraldehyde- and formaldehyde-fixed samples they decreased from 0.13 and 0.17 h(-1) during the first hour to 0.01 h(-1) between 24 and 48 h. Although decay rates changed over time, the abundance was predicted by using separate models to describe decay over the first 8 h and decay beyond 8 h. Accurate estimates of abundance were easily made with unfixed samples stained with Yo-Pro-1, SYBR Green I, or SYBR Gold, and slides could be stored at -20 degrees C for at least 2 weeks or, for Yo-Pro-1, at least 1 year. If essential, samples can be fixed and flash frozen in liquid nitrogen upon collection and stored at -86 degrees C. Determinations performed with fixed samples result in large underestimates of abundance unless slides are made immediately or samples are flash frozen. If protocols outlined in this paper are followed, EFM yields accurate estimates of viral abundance.
Collapse
Affiliation(s)
- Kevin Wen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
1014
|
|
1015
|
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560-602, table of contents. [PMID: 15353570 PMCID: PMC515249 DOI: 10.1128/mmbr.68.3.560-602.2004] [Citation(s) in RCA: 1122] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | | | | |
Collapse
|
1016
|
Affiliation(s)
- Kay D Bidle
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
1017
|
Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol 2004; 70:2941-51. [PMID: 15128555 PMCID: PMC404444 DOI: 10.1128/aem.70.5.2941-2951.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.
Collapse
Affiliation(s)
- Yvan Bettarel
- Laboratoire de Biologie des Protistes, UMR CNRS 6023, Université Blaise Pascal (Clermont-Ferrand II), 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
1018
|
Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H. Phage-host interaction: an ecological perspective. J Bacteriol 2004; 186:3677-86. [PMID: 15175280 PMCID: PMC419959 DOI: 10.1128/jb.186.12.3677-3686.2004] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
1019
|
Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127-81. [PMID: 15109783 DOI: 10.1016/j.femsre.2003.08.001] [Citation(s) in RCA: 946] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 07/22/2003] [Accepted: 08/05/2003] [Indexed: 11/24/2022] Open
Abstract
The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Department of Biological Oceanography, Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
1020
|
Breitbart M, Miyake JH, Rohwer F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09654.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
1021
|
Dorigo U, Jacquet S, Humbert JF. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl Environ Microbiol 2004; 70:1017-22. [PMID: 14766584 PMCID: PMC348939 DOI: 10.1128/aem.70.2.1017-1022.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of the natural freshwater community of cyanophages and its variations over time have been investigated for the first time in the surface waters of the largest natural lake in France. This was done by random screening of clone libraries for the g20 gene and by denaturing gradient gel electrophoresis (DGGE). Nucleotide sequence analysis revealed 35 distinct cyanomyovirus g20 genotypes among the 47 sequences analyzed. Phylogenetic analyses showed that these sequences fell into seven genetically distinct operational taxonomic units (OTUs). The distances between these OTUs were comparable to those reported between marine clusters. Moreover, some of these freshwater cyanophage sequences were genetically more closely related to marine cyanophage sequences than to other freshwater sequences. Both approaches for the g20 gene (sequencing and DGGE analysis) showed that there was a clear seasonal pattern of variation in the composition of the cyanophage community that could reflect changes in its biological, chemical, and/or physical environment.
Collapse
Affiliation(s)
- Ursula Dorigo
- Equipe de Microbiologie Aquatique, Station INRA d'Hydrobiologie Lacustre, UMR CARRTEL, 74203 Thonon Cedex, France
| | | | | |
Collapse
|
1022
|
Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F. Phage community dynamics in hot springs. Appl Environ Microbiol 2004; 70:1633-40. [PMID: 15006788 PMCID: PMC368299 DOI: 10.1128/aem.70.3.1633-1640.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In extreme thermal environments such as hot springs, phages are the only known microbial predators. Here we present the first study of prokaryotic and phage community dynamics in these environments. Phages were abundant in hot springs, reaching concentrations of a million viruses per milliliter. Hot spring phage particles were resistant to shifts to lower temperatures, possibly facilitating DNA transfer out of these extreme environments. The phages were actively produced, with a population turnover time of 1 to 2 days. Phage-mediated microbial mortality was significant, making phage lysis an important component of hot spring microbial food webs. Together, these results show that phages exert an important influence on microbial community structure and energy flow in extreme thermal environments.
Collapse
Affiliation(s)
- Mya Breitbart
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
1023
|
Coombs JM, Barkay T. Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 2004; 70:1698-707. [PMID: 15006795 PMCID: PMC368364 DOI: 10.1128/aem.70.3.1698-1707.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus Pseudomonas. Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.
Collapse
Affiliation(s)
- J M Coombs
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
1024
|
Rinta-Kanto JM, Lehtola MJ, Vartiainen T, Martikainen PJ. Rapid enumeration of virus-like particles in drinking water samples using SYBR green I-staining. WATER RESEARCH 2004; 38:2614-2618. [PMID: 15159165 DOI: 10.1016/j.watres.2004.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 02/23/2004] [Accepted: 03/05/2004] [Indexed: 05/24/2023]
Abstract
We studied the suitability of SYBR green I-staining for determining total counts of virus-like particles and bacteria in drinking water. Low background fluorescence and lack of unspecific staining made drinking water samples an excellent matrix for SYBR green I-staining. Direct microscopic count method is a rapid and economical tool for assessing the total number of virus-like particles in aquatic samples, compared to culture-dependent or molecular biology methods. We applied this method to show the efficiency of a large-scale drinking water purification process in the removal of virus-like particles and bacteria from lake water.
Collapse
Affiliation(s)
- Johanna M Rinta-Kanto
- Department of Environmental Health, National Public Health Institute, P.O. Box 95, FIN-70701 Kuopio, Finland
| | | | | | | |
Collapse
|
1025
|
Lisle JT, Priscu JC. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2004; 47:427-39. [PMID: 15037960 DOI: 10.1007/s00248-003-1007-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 03/21/2003] [Indexed: 05/20/2023]
Abstract
The McMurdo Dry Valleys of Antarctica form the coldest and driest ecosystem on Earth. Within this region there are a number of perennially ice-covered (3-6 m thick) lakes that support active microbial assemblages and have a paucity of metazoans. These lakes receive limited allochthonous input of carbon and nutrients, and primary productivity is limited to only 6 months per year owing to an absence of sunlight during the austral winters. In an effort to establish the role that bacteria and their associated viruses play in carbon and nutrient cycling in these lakes, indigenous bacteria, free bacteriophage, and lysogen abundances were determined. Total bacterial abundances (TDC) ranged from 3.80 x 10(4) to 2.58 x 10(7) cells mL(-1) and virus-like particle (VLP) abundances ranged from 2.26 x 10(5) to 5.56 x 10(7) VLP mL(-1). VLP abundances were significantly correlated (P < 0.05) with TDC, bacterial productivity (TdR), chlorophyll a (Chl a), and soluble reactive phosphorus (SRP). Lysogenic bacteria, determined by induction with mitomycin C, made up between 2.0% and 62.5% of the total population of bacteria when using significant decreases and increases in TDC and VLP abundances, respectively, and 89.5% when using increases in VLP abundances as the sole criterion for a successful induction event. The contribution of viruses released from induced lysogens contributed <0.015% to the total viral production rate. Carbohydrate and protein based organic aggregates were abundant within the water column of the lakes and were heavily colonized by bacteria and VLPs. Alkaline phosphatase activity was detected within the matrix of the aggregates, implying phosphorus deficiency and consortial nutrient exchanges among microorganisms.
Collapse
Affiliation(s)
- J T Lisle
- USGS, Center for Coastal and Watershed Research, St Petersburg, FL 33701, USA.
| | | |
Collapse
|
1026
|
Abedon ST, Hyman P, Thomas C. Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 2004; 69:7499-506. [PMID: 14660403 PMCID: PMC310036 DOI: 10.1128/aem.69.12.7499-7506.2003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For obligately lytic bacteriophage (phage) a trade-off exists between fecundity (burst size) and latent period (a component of generation time). This trade-off occurs because release of phage progeny from infected bacteria coincides with destruction of the machinery necessary to produce more phage progeny. Here we employ phage mutants to explore issues of phage latent-period evolution as a function of the density of phage-susceptible bacteria. Theory suggests that higher bacterial densities should select for shorter phage latent periods. Consistently, we have found that higher host densities (>/== approximately 10(7) bacteria/ml) can enrich stocks of phage RB69 for variants that display shorter latent periods than the wild type. One such variant, dubbed sta5, displays a latent period that is approximately 70 to 80% of that of the wild type-which is nearly as short as the RB69 eclipse period-and which has a corresponding burst size that is approximately 30% of that of the wild type. We show that at higher host densities (>/== approximately 10(7) bacteria/ml) the sta5 phage can outcompete the RB69 wild type, though only under conditions of direct (same-culture) competition. We interpret this advantage as corresponding to slightly faster sta5 population growth, resulting in multifold increases in mutant frequency during same-culture growth. The sta5 advantage is lost, however, given indirect (different-culture) competition between the wild type and mutant or given same-culture competition but at lower densities of phage-susceptible bacteria (</= approximately 10(6) bacteria/ml). From these observations we suggest that phage displaying very short latent periods may be viewed as specialists for propagation when bacteria within cultures are highly prevalent and transmission between cultures is easily accomplished.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, Ohio State University, Mansfield, Ohio, USA.
| | | | | |
Collapse
|
1027
|
Oppenheim AB, Rattray AJ, Bubunenko M, Thomason LC, Court DL. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Virology 2004; 319:185-9. [PMID: 14980479 DOI: 10.1016/j.virol.2003.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 11/03/2003] [Accepted: 11/03/2003] [Indexed: 11/22/2022]
Abstract
We demonstrate that the bacteriophage lambda Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage lambda to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis.
Collapse
Affiliation(s)
- Amos B Oppenheim
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
1028
|
Abstract
Viruses can influence the genetic diversity of prokaryotes in various ways. They can affect the community composition of prokaryotes by 'killing the winner' and keeping in check competitive dominants. This may sustain species richness and the amount of information encoded in genomes. Viruses can also transfer (viral and host) genes between species. Such mechanisms have probably influenced the speciation of prokaryotes. Whole-genome sequencing has clearly revealed the importance of (virus-mediated) gene transfer. However, its significance for the ecological performance of aquatic microbial communities is only poorly studied, although the few available reports indicate a large potential. Here, we present data supporting the hypothesis that viral genes and viral activity generate genetic variability of prokaryotes and are a driving force for ecological functioning and evolutionary change.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Laboratoire d'Océanographie de Villefranche, Biogeochemistry, Functional Diversity and Microbial Ecology Group, BP 28, 06234 Villefranche-sur-Mer, France.
| | | |
Collapse
|
1029
|
Abstract
Phytoplankton population dynamics are the result of imbalances between reproduction and losses. Losses include grazing, sinking, and natural mortality. As the importance of microbes in aquatic ecology has been recognized, so has the potential significance of viruses as mortality agents for phytoplankton. The field of algal virus ecology is steadily changing and advancing as new viruses are isolated and new methods are developed for quantifying the impact of viruses on phytoplankton dynamics and diversity. With this development, evidence is accumulating that viruses can control phytoplankton dynamics through reduction of host populations, or by preventing algal host populations from reaching high levels. The identification of highly specific host ranges of viruses is changing our understanding of population dynamics. Viral-mediated mortality may not only affect algal species succession, but may also affect intraspecies succession. Through cellular lysis, viruses indirectly affect the fluxes of energy, nutrients, and organic matter, especially during algal bloom events when biomass is high. Although the importance of viruses is presently recognized, it is apparent that many aspects of viral-mediated mortality of phytoplankton are still poorly understood. It is imperative that future research addresses the mechanisms that regulate virus infectivity, host resistance, genotype richness, abundance, and the fate of viruses over time and space.
Collapse
Affiliation(s)
- Corina P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, P.O. Box 59, NL-1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
1030
|
Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 2004; 70:1506-13. [PMID: 15006772 PMCID: PMC368280 DOI: 10.1128/aem.70.3.1506-1513.2004] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 11/25/2003] [Indexed: 11/20/2022] Open
Abstract
The development of sensitive nucleic acid stains, in combination with flow cytometric techniques, has allowed the identification and enumeration of viruses in aquatic systems. However, the methods used in flow cytometric analyses of viruses have not been consistent to date. A detailed evaluation of a broad range of sample preparations to optimize counts and to promote the consistency of methods used is presented here. The types and concentrations of dyes, fixatives, dilution media, and additives, as well as temperature and length of incubation, dilution factor, and storage conditions were tested. A variety of different viruses, including representatives of phytoplankton viruses, cyanobacteriophages, coliphages, marine bacteriophages, and natural mixed marine virus communities were examined. The conditions that produced optimal counting results were fixation with glutaraldehyde (0.5% final concentration, 15 to 30 min), freezing in liquid nitrogen, and storage at -80 degrees C. Upon thawing, samples should be diluted in Tris-EDTA buffer (pH 8), stained with SYBR Green I (a 5 x 10(-5) dilution of commercial stock), incubated for 10 min in the dark at 80 degrees C, and cooled for 5 min prior to analysis. The results from examinations of storage conditions clearly demonstrated the importance of low storage temperatures (at least -80 degrees C) to prevent strong decreases (occasionally 50 to 80% of the total) in measured total virus abundance with time.
Collapse
Affiliation(s)
- Corina P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg, The Netherlands.
| |
Collapse
|
1031
|
Williamson KE, Wommack KE, Radosevich M. Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 2004; 69:6628-33. [PMID: 14602622 PMCID: PMC262263 DOI: 10.1128/aem.69.11.6628-6633.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An essential first step in investigations of viruses in soil is the evaluation of viral recovery methods suitable for subsequent culture-independent analyses. In this study, four elution buffers (10% beef extract, 250 mM glycine buffer, 10 mM sodium pyrophosphate, and 1% potassium citrate) and three enumeration techniques (plaque assay, epifluorescence microscopy [EFM], and transmission electron microscopy [TEM]) were compared to determine the best method of extracting autochthonous bacteriophages from two Delaware agricultural soils. Beef extract and glycine buffer were the most effective in eluting viable phages inoculated into soils (up to 29% recovery); however, extraction efficiency varied significantly with phage strain. Potassium citrate eluted the highest numbers of virus-like particles from both soils based on enumerations by EFM (mean, 5.3 x 10(8) g of dry soil(-1)), but specific soil-eluant combinations posed significant problems to enumeration by EFM. Observations of virus-like particles under TEM gave confidence that the particles were, in fact, phages, but TEM enumerations yielded measurements of phage abundance (mean, 1.5 x 10(8) g of dry soil(-1)) that were about five times lower. Clearly, the measurement of phage abundance in soils varies with both the extraction and enumeration methodology; thus, it is important to assess multiple extraction and enumeration approaches prior to undertaking ecological studies of phages in a particular soil.
Collapse
Affiliation(s)
- Kurt E Williamson
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
1032
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, dsDNA viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. Its 330-kb genome contains approximately 373 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are unexpected for a virus, e.g., ornithine decarboxylase, hyaluronan synthase, GDP-D-mannose 4,6 dehydratase, and a potassium ion channel protein. In addition to their large genome size, the chlorella viruses have other features that distinguish them from most viruses. These features include: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases. (b) The viruses encode at least some, if not all, of the enzymes required to glycosylate their proteins. (c) PBCV-1 has at least three types of introns, a self-splicing intron in a transcription factor-like gene, a spliceosomal processed intron in its DNA polymerase gene, and a small intron in one of its tRNA genes. (d) Many chlorella virus-encoded proteins are either the smallest or among the smallest proteins of their class. (e) Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history.
Collapse
Affiliation(s)
- James L Van Etten
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA.
| |
Collapse
|
1033
|
Brussaard CPD, Noordeloos AAM, Sandaa RA, Heldal M, Bratbak G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 2004; 319:280-91. [PMID: 14980488 DOI: 10.1016/j.virol.2003.10.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 10/03/2003] [Accepted: 10/23/2003] [Indexed: 11/27/2022]
Abstract
We report the isolation of the first double-stranded (ds) RNA virus in the family Reoviridae that infects a protist (microalga Micromonas pusilla, Prasinophyceae). The dsRNA genome was composed of 11 segments ranging between 0.8 and 5.8 kb, with a total size of approximately 25.5 kb. The virus (MpRNAV-01B) could not be assigned to the genus level because host type, genome size, and number of segments smaller than 2 kb did not correspond to either of the two existing 11-segmented dsRNA genera Rotavirus and Aquareovirus. MpRNAV-01B has a particle size of 65-80 nm, a narrow host range, a latent period of 36 h, and contains five major proteins (120, 95, 67, 53, and 32 kDa). MpRNAV-01B was stable to freeze-thawing, resistant to chloroform, ether, nonionic detergents, chelating and reducing agents. The virus was inactivated at temperatures above 35 degrees C and by ionic detergent, ethanol, acetone, and acidic conditions (pH 2-5).
Collapse
Affiliation(s)
- C P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg, The Netherlands.
| | | | | | | | | |
Collapse
|
1034
|
Gastrich MD, Leigh-Bell JA, Gobler CJ, Roger Anderson O, Wilhelm SW, Bryan M. Viruses as potential regulators of regional brown tide blooms caused by the alga,Aureococcus anophagefferens. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf02803565] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
1035
|
Winter C, Smit A, Herndl GJ, Weinbauer MG. Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Appl Environ Microbiol 2004; 70:804-13. [PMID: 14766558 PMCID: PMC348926 DOI: 10.1128/aem.70.2.804-813.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 10/31/2003] [Indexed: 11/20/2022] Open
Abstract
During cruises in the tropical Atlantic Ocean (January to February 2000) and the southern North Sea (December 2000), experiments were conducted to monitor the impact of virioplankton on archaeal and bacterial community richness. Prokaryotic cells equivalent to 10 to 100% of the in situ abundance were inoculated into virus-free seawater, and viruses equivalent to 35 to 360% of the in situ abundance were added. Batch cultures with microwave-inactivated viruses and without viruses served as controls. The apparent richness of archaeal and bacterial communities was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA gene fragments. Although the estimated richness of the prokaryotic communities generally was greatly reduced within the first 24 h of incubation due to confinement, the effects of virus amendment were detected at the level of individual operational taxonomic units (OTUs) in the T-RFLP patterns of both groups, Archaea and Bacteria. One group of OTUs was detected in the control samples but was absent from the virus-treated samples. This negative response of OTUs to virus amendment probably was caused by viral lysis. Additionally, we found OTUs not responding to the amendments, and several OTUs exhibited variable responses to the addition of inactive or active viruses. Therefore, we conclude that individual members of pelagic archaeal and bacterial communities can be differently affected by the presence of virioplankton.
Collapse
Affiliation(s)
- Christian Winter
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | | | | | | |
Collapse
|
1036
|
Abstract
There are several unusual features about phage when you first encounter them as a biologist. They are small, but conform to one of a few morphological types. Next their genomes can be composed of DNA or RNA and be single or double stranded. Finally they are numerically more abundant than prokaryotes and a significant proportion of them form an association in their microbial host populations termed lysogeny. The latter findings indicate that they are numerically significant in microbial populations. Since bacterial and phage abundance or lack of it is related in environments, this implies that the phage populations 'titrate' their hosts, and more probably the host's physiological status. Microbial populations wax and wane with nutritional inputs and there is a dynamic relationship between phage population sizes and host numbers and physiology. Overlay this with the different phage life cycle strategies, exemplified at the extremes by phage lambda (temperate) and phage T4 (virulent), then it becomes apparent that phage are a component in nutrient cycling in ecology. But their contribution does not stop there. Many are capable of transduction, moving DNA from one cell into another. So they can also aid the evolutionary progress of microbial populations by allowing them to share genes, just as gene exchange via plasmids and transformation does. Our perception of bacteria has been derived from pure culture studies and we are just being able to appreciate how subtle their ecological interactions are. This is no less true of the studies on bacteriophage, which are almost all based on laboratory experimentation, where the hosts are physiologically stressed by growing in 'high nutritional and optimum conditions'. The natural environment is naturally discontinuous and life evolved in this. Thus our perceptions of bacteriophage and their life cycle patterns derived from laboratory experimentation may be a little off the mark when we come to understand how they and their hosts interact in the niches available to them. It is worth just considering this as you read the article, as I suspect phage behaviours are more intimately involved in, and moderated by the physiological stresses in the life cycle of bacteria than we currently believe.
Collapse
|
1037
|
Mesyanzhinov VV. Bacteriophage T4: Structure, Assembly, and Initiation Infection Studied in Three Dimensions. Adv Virus Res 2004; 63:287-352. [PMID: 15530564 DOI: 10.1016/s0065-3527(04)63005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya S., 117997 Moscow, Russia
| |
Collapse
|
1038
|
Jiang S, Steward G, Jellison R, Chu W, Choi S. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. MICROBIAL ECOLOGY 2004; 47:9-17. [PMID: 15259265 DOI: 10.1007/s00248-003-1023-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mono Lake is a large (180 km2), alkaline (pH approximately 10), moderately hypersaline (70-85 g kg(-1)) lake lying at the western edge of the Great Basin. An episode of persistent chemical stratification (meromixis) was initiated in 1995 and has resulted in depletion of oxygen and accumulation of ammonia and sulfide beneath the chemocline. Although previous studies have documented high bacterial abundances and marked seasonal changes in phytoplankton abundance and community composition, there have been no previous reports on the occurrence of viruses in this unique lake. Based on the high concentrations and diversity of microbial life in this lake, we hypothesized that planktonic viruses are also abundant and diverse. To examine the abundance and distribution of viruses and bacteria, water samples were collected from four stations along 5 to 15 vertical depths at each station. Viral abundance ranged from 1 x 10(8) to 1 x 10(9) mL(-1), among the highest observed in any natural aquatic system examined so far. Increases (p < 0.1) in viral densities were observed in the anoxic bottom water at multiple stations. However, regression analysis indicated that viral abundance could not be predicted by any single environmental parameter. Pulsed field gel electrophoresis revealed a diverse viral community in Mono Lake with genome sizes ranging from approximately 14 to >400 kb with most of the DNA in the 30 to 60 kb size range. Cluster analysis grouped the anoxic bottom-water viral community into a unique cluster differentiating it from surface and mid-water viral communities. A hybridization study using an indigenous viral isolate as a probe revealed an episodic pattern of temporal phage distribution with strong niche stratification between oxic and anoxic waters.
Collapse
Affiliation(s)
- S Jiang
- Environmental Analysis and Design, University of California, Irvine, CA 92696, USA.
| | | | | | | | | |
Collapse
|
1039
|
Chiura HX, Umitsu M. Isolation and Characterisation of Broad-Host Range Gene Transporter Particles from Geo-Thermal Vent of the Toyoha Mine. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroshi Xavier Chiura
- Department of Biology, Division of Natural Sciences, International Christian University
| | - Masataka Umitsu
- Department of Biology, Division of Natural Sciences, International Christian University
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
1040
|
Affiliation(s)
- Hiroshi Xavier Chiura
- Department of Biology, Division of Natural Sciences, International Christian University
| |
Collapse
|
1041
|
Stopar D, Cerne A, Zigman M, Poljsak-Prijatelj M, Turk V. Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. MICROBIAL ECOLOGY 2004; 47:1-8. [PMID: 15259264 DOI: 10.1007/s00248-002-3009-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epifluorescence microscopy and transmission electron microscopy were applied to study virioplankton community in the Gulf of Trieste (northern Adriatic Sea). The total viral abundance was in a range between 2.5 x 10(9)/L and 2.9 x 10(10)/L and was positively correlated with trophic status of the environment. Viruslike particles were significantly correlated with bacterial abundance in all samples studied. Correlations with other physicochemical or biological parameters were not significant. The data suggest that, because of the substantial fraction of tailed viruses present (26%), bacteriophages are an important component of the virioplankton community in the Gulf of Trieste. The abundance of viruslike particles in the seawater changed at hour intervals in a range from 1.3 x 10(9)/L to 5.1 x 10(9)/L. A significant fraction (71%) of the bacterial isolates was inducible in vitro by mitomycin C, and a high occurrence (51%) of lysogenic isolates with more than one phage morphotype present in the lysate was detected. The presence of lysogenic bacteria in the seawater was confirmed in situ with a mitomycin C induction experiment on the natural bacterial population. Results suggest that virioplankton is an abundant component of the microbial community in the Gulf of Trieste.
Collapse
Affiliation(s)
- D Stopar
- Biotechnical Faculty, Department of Food Technology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
1042
|
Seguritan V, Feng IW, Rohwer F, Swift M, Segall AM. Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J Bacteriol 2003; 185:6434-47. [PMID: 14563879 PMCID: PMC219397 DOI: 10.1128/jb.185.21.6434-6447.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two bacteriophages of an environmental isolate of Vibrio parahaemolyticus were isolated and sequenced. The VP16T and VP16C phages were separated from a mixed lysate based on plaque morphology and exhibit 73 to 88% sequence identity over about 80% of their genomes. Only about 25% of their predicted open reading frames are similar to genes with known functions in the GenBank database. Both phages have cos sites and open reading frames encoding proteins closely related to coliphage lambda's terminase protein (the large subunit). Like in coliphage lambda and other siphophages, a large operon in each phage appears to encode proteins involved in DNA packaging and capsid assembly and presumably in host lysis; we refer to this as the structural operon. In addition, both phages have open reading frames closely related to genes encoding DNA polymerase and helicase proteins. Both phages also encode several putative transcription regulators, an apparent polypeptide deformylase, and a protein related to a virulence-associated protein, VapE, of Dichelobacter nodosus. Despite the similarity of the proteins and genome organization, each of the phages also encodes a few proteins not encoded by the other. We did not identify genes closely related to genes encoding integrase proteins belonging to either the tyrosine or serine recombinase family, and we have no evidence so far that these phages can lysogenize the V. parahaemolyticus strain 16 host. Surprisingly for active lytic viruses, the two phages have a codon usage that is very different than that of the host, suggesting the possibility that they may be relative newcomers to growth in V. parahaemolyticus. The DNA sequences should allow us to characterize the lifestyles of VP16T and VP16C and the interactions between these phages and their host at the molecular level, as well as their relationships to other marine and nonmarine phages.
Collapse
Affiliation(s)
- Victor Seguritan
- Department of Biology. Center for Microbial Sciences. Microchemical Core Facility, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
1043
|
Vrede K, Stensdotter U, Lindström ES. Viral and bacterioplankton dynamics in two lakes with different humic contents. MICROBIAL ECOLOGY 2003; 46:406-415. [PMID: 14502419 DOI: 10.1007/s00248-003-2009-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 04/28/2003] [Indexed: 05/24/2023]
Abstract
Viral and bacterioplankton dynamics were investigated, together with the temporal variation of phage-infected bacterioplankton in two oligotrophic lakes, one humic and the other clearwater. Bacterial abundance was significantly higher in the humic lake, while the abundance of virus-like particles (VLP) was significantly higher in the clearwater lake. There were no differences in either the frequency of infected bacterial cells (FIC), or in burst size between the lakes. Because of the higher bacterial abundance in the humic lake, a larger number of bacteria were lyzed in this lake. FIC showed large seasonal changes, varying between 9 and 43%, which covers almost the entire range of previously published data from both lacustrine and marine environments. The temporal changes in VLP abundance and FIC were slow in both the humic and clearwater lakes. The burst size was low in both lakes (average value, nine in each case), probably because of the oligotrophic status of the lakes. The chlorophyll a concentrations were higher and positively correlated with VLP numbers in the clearwater lake, indicating that a significant proportion of the viruses in this lake may be phytoplankton viruses.
Collapse
Affiliation(s)
- K Vrede
- Department of Limnology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 20, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
1044
|
Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. MICROBIAL ECOLOGY 2003; 46:337-347. [PMID: 14502409 DOI: 10.1007/s00248-002-1041-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 11/15/2002] [Indexed: 05/24/2023]
Abstract
Virus production in oxic surface sediments and virioplankton sorption to suspended particles was estimated across three stations in the Southern California region (33.4 degrees N, 118.6 degrees W). Viriobenthos production was estimated using a sterile sediment and filtered porewater dilution technique that targeted production from both attached bacteria and bacteria living free in the porewater, and attached bacteria alone. Potential virus production rates by bacteria free in the porewater ranged from 1.7 to 4.6 x 10(8) VLP cm(-3) h(-1), while attached bacteria had slower potential production rates of between 0.4 and 1.1 x 10(8) VLP cm(-3) h(-1), suggesting turnover rates of viruses in sediments (1-5 h) which are significantly higher than those of virioplankton (approximately 24-48 h). Virioplankton adsorbed to small (<150 microm) suspended sediments at stations with high ambient suspended solid concentrations. Virioplankton scavenging rates combined with published sedimentation rates demonstrate that this mechanism of virus arrival could only account for 0.01% of daily benthic virus production. Calculated mortality rates of benthic bacteria (4-14% h(-1)) suggest viruses may play an important role in sediment carbon cycling.
Collapse
Affiliation(s)
- I Hewson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA.
| | | |
Collapse
|
1045
|
Frederickson CM, Short SM, Suttle CA. The physical environment affects cyanophage communities in British Columbia inlets. MICROBIAL ECOLOGY 2003; 46:348-357. [PMID: 14502416 DOI: 10.1007/s00248-003-1010-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 03/27/2003] [Indexed: 05/24/2023]
Abstract
Little is known about the natural distribution of viruses that infect the photosynthetically important group of marine prokaryotes, the cyanobacteria. The current investigation reveals that the structure of cyanophage communities is dependent on water column structure. PCR was used to amplify a fragment of the cyanomyovirus gene (g) 20, which codes for the portal vertex protein. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified g20 gene fragments was used to examine variations in cyanophage community structure in three inlets in British Columbia, Canada. Qualitative examination of denaturing gradient gels revealed cyanophage community patterns that reflected the physical structure of the water column as indicated by temperature and salinity. Based on mobility of PCR fragments in the DGGE gels, some cyanophages appeared to be widespread, while others were observed only at specific depths. Cyanophage communities within Salmon Inlet were more related to one another than to communities from either Malaspina Inlet or Pendrell Sound. As well, surface communities in Malaspina Inlet and Pendrell Sound were different when compared to communities at depth. In the same two locations, distinct differences in community composition were observed in communities that coincided with depths of high chlorophyll fluorescence. The observed community shifts over small distances (only a few meters in depth or inlets separated by less than 100 km) support the idea that cyanophage communities separated by small spatial scales develop independently of each other as a result isolation by water column stratification or land mass separation, which may ultimately lead to changes in the distribution or composition of the host community.
Collapse
Affiliation(s)
- C M Frederickson
- Department of Earth and Ocean Sciences, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
1046
|
Bettstetter M, Peng X, Garrett RA, Prangishvili D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology 2003; 315:68-79. [PMID: 14592760 DOI: 10.1016/s0042-6822(03)00481-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel virus, AFV1, of the hyperthermophilic archaeal genus Acidianus. Filamentous virions are covered with a lipid envelope and contain at least five different proteins with molecular masses in the range of 23-130 kDa and a 20.8-kb-long linear double-stranded DNA. The virus has been assigned to the family Lipothrixviridae on the basis of morphotypic characteristics. Host range is confined to several strains of Acidianus and the virus persists in its hosts in a stable carrier state. The latent period of virus infection is about 4 h. Viral DNA was sequenced and sequence similarities were found to the lipothrixvirus SIFV, the rudiviruses SIRV1 and SIRV2, as well as to conjugative plasmids and chromosomes of the genus Sulfolobus. Exceptionally for the linear genomes of archaeal viruses, many short direct repeats, with the sequence TTGTT or close variants thereof, are closely clustered over 300 bp at each end of the genome. They are reminiscent of the telomeric ends of linear eukaryal chromosomes.
Collapse
Affiliation(s)
- Marcus Bettstetter
- Department of Microbiology, Archaea Centre, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
1047
|
Borriss M, Helmke E, Hanschke R, Schweder T. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 2003; 7:377-84. [PMID: 12820036 DOI: 10.1007/s00792-003-0334-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 04/30/2003] [Indexed: 10/26/2022]
Abstract
Phage-host systems from extreme cold environments have rarely been surveyed. This study is concerned with the isolation and characterization of three different phage-host systems from Arctic sea ice and melt pond samples collected north-west of Svalbard (Arctic). On the basis of 16S rDNA sequences, the three bacterial phage hosts exhibited the greatest similarity to the species Shewanella frigidimarina (96.0%), Flavobacterium hibernum (94.0%), and Colwellia psychrerythraea (98.4%), respectively. The host bacteria are psychrophilic with good growth at 0 degrees C, resulting in a rapid formation of visible colonies at this temperature. The phages showed an even more pronounced adaptation to cold temperatures than the bacteria, with growth maxima below 14 degrees C and good plaque formation at 0 degrees C. Transmission electron microscopy (TEM) examinations revealed that the bacteriophages belonged to the tailed, double-stranded DNA phage families Siphoviridae and Myoviridae. All three phages were host-specific.
Collapse
Affiliation(s)
- Michael Borriss
- Institut für Marine Biotechnologie, Rathenau Strasse 49a, 17489, Greifswald, Germany
| | | | | | | |
Collapse
|
1048
|
Abstract
Comparative genomic studies of bacteriophages, especially the tailed phages, together with environmental studies, give a dramatic new picture of the size, genetic structure and dynamics of this population. Sequence comparisons reveal some of the detailed mechanisms by which these viruses evolve and influence the evolution of their bacterial and archaeal hosts. We see rampant horizontal exchange of sequences among genomes, mediated by both homologous and nonhomologous recombination. High frequency exchange among phages occupying similar ecological niches leads to a high degree of mosaic diversity in local populations. Horizontal exchange also takes place at lower frequency across the entire span of phage sequence space.
Collapse
Affiliation(s)
- Roger W Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
1049
|
Ravantti JJ, Gaidelyte A, Bamford DH, Bamford JKH. Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage. Virology 2003; 313:401-14. [PMID: 12954208 DOI: 10.1016/s0042-6822(03)00295-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships-virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. The new member of this proposed lineage, bacteriophage Bam35, is morphologically indistinguishable from PRD1. It infects gram-positive hosts that evolutionarily separated from gram-negative bacteria more than one billion years ago. For example, it can be inferred from structural analysis of the coat protein sequence that the fold is very similar to that of PRD1. This and other observations made here support the idea that a common early ancestor for Bam35, PRD1, and adenoviruses existed.
Collapse
Affiliation(s)
- Janne J Ravantti
- Department of Computer Science, P.O. Box 26, (Teollisuuskatu 23), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
1050
|
Abstract
Bacterial benefactors—and other prokaryotic pursuits
Collapse
Affiliation(s)
- Ariane Toussaint
- Belgian Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | |
Collapse
|