1101
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
1102
|
Aguilera-Gomez A, Zacharogianni M, van Oorschot MM, Genau H, Grond R, Veenendaal T, Sinsimer KS, Gavis ER, Behrends C, Rabouille C. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation. Cell Rep 2018; 20:935-948. [PMID: 28746877 DOI: 10.1016/j.celrep.2017.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/22/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Margarita Zacharogianni
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Heide Genau
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Rianne Grond
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Groningen, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
1103
|
Clarkson YL, McLaughlin M, Waterfall M, Dunlop CE, Skehel PA, Anderson RA, Telfer EE. Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Sci Rep 2018; 8:6953. [PMID: 29725036 PMCID: PMC5934371 DOI: 10.1038/s41598-018-25116-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/16/2018] [Indexed: 01/31/2023] Open
Abstract
The existence of a population of putative stem cells with germline developmental potential (oogonial stem cells: OSCs) in the adult mammalian ovary has been marked by controversy over isolation methodology and potential for in-vitro transformation, particularly where cell sorting has been based on expression of DEAD box polypeptide 4 (DDX4). This study describes a refined tissue dissociation/fluorescence-activated cell sorting (FACS) protocol for the ovaries of adult women which results in increased cell viability and yield of putative OSCs. A FACS technique incorporating dual-detection of DDX4 with aldehyde dehydrogenase 1 (ALDH1) demonstrates the existence of two sub-populations of small DDX4-positive cells (approx. 7 µm diameter) with ALDH1 activity, distinguished by expression of differentially spliced DDX4 transcripts and of DAZL, a major regulator of germ cell differentiation. These may indicate stages of differentiation from a progenitor population and provide a likely explanation for the expression disparities reported previously. These findings provide a robust basis for the further characterisation of these cells, and exploration of their potential physiological roles and therapeutic application.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
- School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Marie McLaughlin
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
- School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Martin Waterfall
- School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Cheryl E Dunlop
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Skehel
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
1104
|
Abstract
Intracellular environments are heterogeneous milieus comprised of macromolecules, osmolytes, and a range of assemblies that include membrane-bound organelles and membraneless biomolecular condensates. The latter are nonstoichiometric assemblies of protein and RNA molecules. They represent distinct phases and form via intracellular phase transitions. Here, we present insights from recent studies and provide a perspective on how phase transitions that lead to biomolecular condensates might contribute to cellular functions.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
1105
|
Poudyal R, Cakmak FP, Keating CD, Bevilacqua PC. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry. Biochemistry 2018; 57:2509-2519. [PMID: 29560725 PMCID: PMC7276092 DOI: 10.1021/acs.biochem.8b00081] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective focuses on RNA in biological and nonbiological compartments resulting from liquid-liquid phase separation (LLPS), with an emphasis on origins of life. In extant cells, intracellular liquid condensates, many of which are rich in RNAs and intrinsically disordered proteins, provide spatial regulation of biomolecular interactions that can result in altered gene expression. Given the diversity of biogenic and abiogenic molecules that undergo LLPS, such membraneless compartments may have also played key roles in prebiotic chemistries relevant to the origins of life. The RNA World hypothesis posits that RNA may have served as both a genetic information carrier and a catalyst during the origin of life. Because of its polyanionic backbone, RNA can undergo LLPS by complex coacervation in the presence of polycations. Phase separation could provide a mechanism for concentrating monomers for RNA synthesis and selectively partition longer RNAs with enzymatic functions, thus driving prebiotic evolution. We introduce several types of LLPS that could lead to compartmentalization and discuss potential roles in template-mediated non-enzymatic polymerization of RNA and other related biomolecules, functions of ribozymes and aptamers, and benefits or penalties imparted by liquid demixing. We conclude that tiny liquid droplets may have concentrated precious biomolecules and acted as bioreactors in the RNA World.
Collapse
Affiliation(s)
- Raghav Poudyal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Fatma Pir Cakmak
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine D. Keating
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
1106
|
Abstract
To survive, organisms must orchestrate competing biochemical and regulatory processes in time and space. Recent work has suggested that the underlying chemical properties of some biomolecules allow them to self-organize and that life may have exploited this property to organize biochemistry in space and time. Such phase separation is ubiquitous, particularly among the many regulatory proteins that harbor prion-like intrinsically disordered domains. And yet, despite evident regulation by post-translational modification and myriad other stimuli, the biological significance of many phase-separated compartments remains uncertain. Many potential functions have been proposed, but far fewer have been demonstrated. A burgeoning subfield at the intersection of cell biology and polymer physics has defined the biophysical underpinnings that govern the genesis and stability of these particles. The picture is complex: many assemblies are composed of multiple proteins that each have the capacity to phase separate. Here, we briefly discuss this foundational work and survey recent efforts combining targeted biochemical perturbations and quantitative modeling to specifically address the diverse roles that phase separation processes may play in biology.
Collapse
Affiliation(s)
- Alan K. Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Raymond A. Futia
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| |
Collapse
|
1107
|
Li XH, Chavali PL, Pancsa R, Chavali S, Babu MM. Function and Regulation of Phase-Separated Biological Condensates. Biochemistry 2018; 57:2452-2461. [PMID: 29392932 DOI: 10.1021/acs.biochem.7b01228] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Achieving functional specificity while minimizing cost to fitness is a key constraint during evolution. Formation of biological condensates by liquid-liquid phase separation (LLPS) appears to serve as an important regulatory mechanism to generate moderate specificity in molecular recognition while maintaining a reasonable cost for fitness in terms of design complexity. Formation of biological condensates serves as a unique mechanism of molecular recognition achieving some level of specificity without a huge cost to fitness. Rapid formation of biological condensates in vivo induced by specific cellular or environmental triggers has been shown to be an important mechanism for increasing cellular fitness. Here we discuss the functions and regulation of biological condensates, especially those formed by LLPS, involving interactions between proteins and nucleic acids. These condensates are spatially isolated within the cytosol or nucleus and can facilitate specific biochemical functions under conditions such as stress. The misregulation of biological condensates resulting in nondynamic aggregates has been implicated in a number of diseases. Understanding the functional importance of biological condensates and their regulation opens doors for development of therapies targeting dysfunctional biological condensates, as well as spatiotemporal engineering of functions in cells.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Pavithra L Chavali
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Rita Pancsa
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - M Madan Babu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| |
Collapse
|
1108
|
Zhou HX, Nguemaha V, Mazarakos K, Qin S. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation? Trends Biochem Sci 2018; 43:499-516. [PMID: 29716768 DOI: 10.1016/j.tibs.2018.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 11/26/2022]
Abstract
Intracellular membraneless organelles and their myriad cellular functions have garnered tremendous recent interest. It is becoming well accepted that they form via liquid-liquid phase separation (LLPS) of protein mixtures (often including RNA), where the organelles correspond to a protein-rich droplet phase coexisting with a protein-poor bulk phase. The major protein components contain disordered regions and often also RNA-binding domains, and the disordered fragments on their own easily undergo LLPS. By contrast, LLPS for structured proteins has been observed infrequently. The contrasting phase behaviors can be explained by modeling disordered and structured proteins, respectively, as polymers and colloids. These physical models also provide a better understanding of the regulation of droplet formation by cellular signals and its dysregulation leading to diseases.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Valery Nguemaha
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Konstantinos Mazarakos
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
1109
|
St George-Hyslop P, Lin JQ, Miyashita A, Phillips EC, Qamar S, Randle SJ, Wang G. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Res 2018; 1693:11-23. [PMID: 29723523 PMCID: PMC6018615 DOI: 10.1016/j.brainres.2018.04.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
Some intrinsically disordered proteins undergo reversible phase separation/gelation. Reversible phase separation/gelation underpins function of membraneless organelles. fALS-FUS mutations increase propensity of FUS to form highly stable condensates. Changes in arginine methylation and FUS chaperones in FTLD-FUS have similar effects. Stable fibrillar condensates sequester cargo and impair RNP granule function.
Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada.
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Emma C Phillips
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Suzanne J Randle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
1110
|
Dzuricky M, Roberts S, Chilkoti A. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry 2018; 57:2405-2414. [PMID: 29683665 DOI: 10.1021/acs.biochem.8b00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Stefan Roberts
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
1111
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
1112
|
Feng Z, Zeng M, Chen X, Zhang M. Neuronal Synapses: Microscale Signal Processing Machineries Formed by Phase Separation? Biochemistry 2018; 57:2530-2539. [DOI: 10.1021/acs.biochem.8b00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
1113
|
Synaptic Paths to Neurodegeneration: The Emerging Role of TDP-43 and FUS in Synaptic Functions. Neural Plast 2018; 2018:8413496. [PMID: 29755516 PMCID: PMC5925147 DOI: 10.1155/2018/8413496] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein-43 KDa (TDP-43) and fused in sarcoma (FUS) as the defining pathological hallmarks for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coupled with ALS-FTD-causing mutations in both genes, indicate that their dysfunctions damage the motor system and cognition. On the molecular level, TDP-43 and FUS participate in the biogenesis and metabolism of coding and noncoding RNAs as well as in the transport and translation of mRNAs as part of cytoplasmic mRNA-ribonucleoprotein (mRNP) granules. Intriguingly, many of the RNA targets of TDP-43 and FUS are involved in synaptic transmission and plasticity, indicating that synaptic dysfunction could be an early event contributing to motor and cognitive deficits in ALS and FTD. Furthermore, the ability of the low-complexity prion-like domains of TDP-43 and FUS to form liquid droplets suggests a potential mechanism for mRNP assembly and conversion. This review will discuss the role of TDP-43 and FUS in RNA metabolism, with an emphasis on the involvement of this process in synaptic function and neuroprotection. This will be followed by a discussion of the potential phase separation mechanism for forming RNP granules and pathological inclusions.
Collapse
|
1114
|
Neuronal RNP granules: from physiological to pathological assemblies. Biol Chem 2018; 399:623-635. [DOI: 10.1515/hsz-2018-0141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Neuronal cells rely on macro- and micro-cellular compartmentalization to rapidly process information, and respond locally to external stimuli. Such a cellular organization is achieved via the assembly of neuronal ribonucleoprotein (RNP) granules, dynamic membrane-less organelles enriched in RNAs and associated regulatory proteins. In this review, we discuss how these high-order structures transport mRNAs to dendrites and axons, and how they contribute to the spatio-temporal regulation of localized mRNA translation. We also highlight how recent biophysical studies have shed light on the mechanisms underlying neuronal RNP granule dynamic assembly, remodeling and maturation, in both physiological and pathological contexts.
Collapse
|
1115
|
Milin AN, Deniz AA. Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry 2018; 57:2470-2477. [PMID: 29569441 DOI: 10.1021/acs.biochem.8b00001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.
Collapse
Affiliation(s)
- Anthony N Milin
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
1116
|
Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, Laskowski PR, MacKenzie D, Kamath T, Commins C, Vanderburg C, Roe AD, Fan Z, Molliex AM, Hernandez-Vega A, Muller D, Hyman AA, Mandelkow E, Taylor JP, Hyman BT. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 2018; 37:e98049. [PMID: 29472250 PMCID: PMC5881631 DOI: 10.15252/embj.201798049] [Citation(s) in RCA: 735] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid-liquid phase separation (LLPS) under cellular conditions and that phase-separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho-tau isolated from human Alzheimer brain. Droplet-like tau can also be observed in neurons and other cells. We found that tau droplets become gel-like in minutes, and over days start to spontaneously form thioflavin-S-positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Bahareh Eftekharzadeh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Katharina Tepper
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katarzyna M Zoltowska
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pawel R Laskowski
- Department for Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danny MacKenzie
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tarun Kamath
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Charles Vanderburg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Allyson D Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amandine M Molliex
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Daniel Muller
- Department for Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Anthony A Hyman
- Department for Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Max-Planck Institute for Metabolism Research, Hamburg Outstation c/o DESY, Hamburg, Germany
- CAESAR Research Center, Bonn, Germany
| | - J Paul Taylor
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
1117
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
1118
|
Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, Dormann D. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018; 173:706-719.e13. [DOI: 10.1016/j.cell.2018.03.004] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
|
1119
|
Ma B, Nguyen TD, Pryamitsyn VA, Olvera de la Cruz M. Ionic Correlations in Random Ionomers. ACS NANO 2018; 12:2311-2318. [PMID: 29493221 DOI: 10.1021/acsnano.7b07432] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the electrostatic interactions in ion-containing polymers is crucial to better design shape memory polymers and ion-conducting membranes for multiple energy storage and conversion applications. In molten polymers, the dielectric permittivity is low, generating strong ionic correlations that lead to clustering of the charges. Here, we investigate the influence of electrostatic interactions on the nanostructure of randomly charged polymers (ionomers) using coarse-grained molecular dynamics simulations. Densely packed branched structures rich in charged species are found as the strength of the electrostatic interactions increases. Polydispersity in charge fraction and composition combined with ion correlations leads to percolated nanostructures with long-range fluctuations. We identify the percolation point at which the ionic branched nanostructures percolate and offer a rigorous investigation of the statistics of the shape of the aggregates. The extra degree of freedom introduced by the charge polydispersity leads to bicontinuous structures with a broad range of compositions, similar to neutral A-B random copolymers, as well as to desirable percolated ionic structure in randomly charged-neutral diblock copolymers. These findings provide insight into the design of conducting and robust nanostructures in ion-containing polymers.
Collapse
|
1120
|
Abstract
Liquid-liquid phase separation seems to play critical roles in the compartmentalization of cells through the formation of biomolecular condensates. Many proteins with low-complexity regions are found in these condensates, and they can undergo phase separation in vitro in response to changes in temperature, pH, and ion concentration. Low-complexity regions are thus likely important players in mediating compartmentalization in response to stress. However, how the phase behavior is encoded in their amino acid composition and patterning is only poorly understood. We discuss here that polymer physics provides a powerful framework for our understanding of the thermodynamics of mixing and demixing and for how the phase behavior is encoded in the primary sequence. We propose to classify low-complexity regions further into subcategories based on their sequence properties and phase behavior. Ongoing research promises to improve our ability to link the primary sequence of low-complexity regions to their phase behavior as well as the emerging miscibility and material properties of the resulting biomolecular condensates, providing mechanistic insight into this fundamental biological process across length scales.
Collapse
Affiliation(s)
- Erik W Martin
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105-3678 , United States
| | - Tanja Mittag
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105-3678 , United States
| |
Collapse
|
1121
|
Lin YH, Forman-Kay JD, Chan HS. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry 2018; 57:2499-2508. [PMID: 29509422 DOI: 10.1021/acs.biochem.8b00058] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liquid-liquid phase separation and related condensation processes of intrinsically disordered proteins (IDPs), proteins with intrinsically disordered regions, and nucleic acids underpin various condensed-liquid droplets or gel-like assemblies in the cellular environment. Collectively referred to as condensates, these bodies provide spatial/temporal compartmentalization, often serving as hubs for regulated biomolecular interactions. Examples include certain extracellular materials, transcription complexes, and membraneless organelles such as germ and stress granules and the nucleolus. They are critically important to cellular function; thus misregulation of their assembly is implicated in many diseases. Biomolecular condensates are complex entities. Our understanding of their inner workings is only in its infancy. Nonetheless, insights into basic biophysical principles of their assembly can be gained by applying analytical theories to elucidate how IDP phase behaviors are governed by the properties of the multivalent, solvent-mediated interactions entailed by the proteins' amino acid sequences. Here we briefly review the background of the pertinent polymer theories and outline the approximations that enable a tractable theoretical account of the dependence of IDP phase behaviors on the charge pattern of the IDP sequence. Of relevance to the homeostatic assembly of compositionally and functionally distinct condensates in the cellular context, theory indicates that the propensity for populations of different IDP sequences to mix or demix upon phase separation is affected by the similarity or dissimilarity of the sequence charge patterns. We also explore prospects of extending analytical theories to account for dynamic aspects of biomolecular condensates and to incorporate effects of cation-π, π-π, and temperature-dependent hydrophobic interactions on IDP phase properties.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Julie D Forman-Kay
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | | |
Collapse
|
1122
|
Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 2018; 293:6090-6098. [PMID: 29511089 DOI: 10.1074/jbc.ac117.001037] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/05/2018] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells contain distinct organelles, but not all of these compartments are enclosed by membranes. Some intrinsically disordered proteins mediate membraneless organelle formation through liquid-liquid phase separation (LLPS). LLPS facilitates many biological functions such as regulating RNA stability and ribonucleoprotein assembly, and disruption of LLPS pathways has been implicated in several diseases. Proteins exhibiting LLPS typically have low sequence complexity and specific repeat motifs. These motifs promote multivalent connections with other molecules and the formation of higher-order oligomers, and their removal usually prevents LLPS. The intrinsically disordered C-terminal domain of TAR DNA-binding protein 43 (TDP-43), a protein involved in motor neuron disease and dementia lacks a dominant LLPS motif, however, and how this domain forms condensates is unclear. Using extensive mutagenesis of TDP-43, we demonstrate here that three tryptophan residues and, to a lesser extent, four other aromatic residues are most important for TDP-43 to undergo LLPS. Our results also suggested that only a few residues may be required for TDP-43 LLPS because the α-helical segment (spanning ∼20 residues) in the middle part of the C-terminal domain tends to self-assemble, reducing the number of motifs required for forming a multivalent connection. Our results indicating that a self-associating α-helical element with a few key residues regulates condensate formation highlight a different type of LLPS involving intrinsically disordered regions. The C-terminal domain of TDP-43 contains ∼50 disease-related mutations, with no clear physicochemical link between them. We propose that they may disrupt LLPS indirectly by interfering with the key residues identified here.
Collapse
Affiliation(s)
- Hao-Ru Li
- From the Institute of Biochemistry and Molecular Biology and
| | - Wan-Chin Chiang
- From the Institute of Biochemistry and Molecular Biology and
| | - Po-Chun Chou
- From the Institute of Biochemistry and Molecular Biology and
| | - Won-Jing Wang
- From the Institute of Biochemistry and Molecular Biology and
| | - Jie-Rong Huang
- From the Institute of Biochemistry and Molecular Biology and .,the Institute of Biomedical Informatics, National Yang-Ming University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| |
Collapse
|
1123
|
Sun D, Wu R, Zheng J, Li P, Yu L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 2018; 28:405-415. [PMID: 29507397 PMCID: PMC5939046 DOI: 10.1038/s41422-018-0017-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/28/2023] Open
Abstract
Misfolded proteins can be degraded by selective autophagy. The prevailing view is that ubiquitin-tagged misfolded proteins are assembled into aggregates by the scaffold protein p62, and the aggregates are then engulfed and degraded by autophagosomes. Here we report that p62 forms droplets in vivo which have liquid-like properties such as high sphericity, the ability to undergo fusion, and recovery after photobleaching. Recombinant p62 does not undergo phase separation in vitro; however, adding a K63 polyubiquitin chain to p62 induces p62 phase separation, which results in enrichment of high-molecular weight ubiquitin signals in p62 droplets. Mixing recombinant p62 with cytosol from p62−/− cells also results in p62 phase separation in a polyubiquitination-dependent manner. Mechanistically, p62 phase separation is dependent on p62 polymerization, the interaction between p62 and ubiquitin, and the valence of the polyubiquitin chain. Moreover, p62 phase separation can be regulated by post-translational modifications such as phosphorylation. Finally, we demonstrate that disease-associated mutations in p62 can affect phase separation. We propose that polyubiquitin chain-induced p62 phase separation drives autophagic cargo concentration and segregation.
Collapse
Affiliation(s)
- Daxiao Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongbo Wu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingxiang Zheng
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Science, Center for Nano/Micro-Mechanics and Multidisciplinary Innovation Research, Beijing, 100084, China.
| |
Collapse
|
1124
|
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science 2018; 357:357/6357/eaaf4382. [PMID: 28935776 DOI: 10.1126/science.aaf4382] [Citation(s) in RCA: 2583] [Impact Index Per Article: 369.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.
Collapse
Affiliation(s)
- Yongdae Shin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
1125
|
Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH, Rohatgi R, Shewmaker F, Naik MT, Mittag T, Ayala YM, Fawzi NL. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 2018; 37:e97452. [PMID: 29438978 PMCID: PMC5830921 DOI: 10.15252/embj.201797452] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/20/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is an RNA-binding protein active in splicing that concentrates into membraneless ribonucleoprotein granules and forms aggregates in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Although best known for its predominantly disordered C-terminal domain which mediates ALS inclusions, TDP-43 has a globular N-terminal domain (NTD). Here, we show that TDP-43 NTD assembles into head-to-tail linear chains and that phosphomimetic substitution at S48 disrupts TDP-43 polymeric assembly, discourages liquid-liquid phase separation (LLPS) in vitro, fluidizes liquid-liquid phase separated nuclear TDP-43 reporter constructs in cells, and disrupts RNA splicing activity. Finally, we present the solution NMR structure of a head-to-tail NTD dimer comprised of two engineered variants that allow saturation of the native polymerization interface while disrupting higher-order polymerization. These data provide structural detail for the established mechanistic role of the well-folded TDP-43 NTD in splicing and link this function to LLPS. In addition, the fusion-tag solubilized, recombinant form of TDP-43 full-length protein developed here will enable future phase separation and in vitro biochemical assays on TDP-43 function and interactions that have been hampered in the past by TDP-43 aggregation.
Collapse
Affiliation(s)
- Ailin Wang
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | - Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon N Rhoads
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - Ashley N Reeb
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Ramirez Montero
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
1126
|
Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL, Banerjee PR, Phillips AH, Park CG, Deniz AA, Kriwacki RW. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat Commun 2018; 9:842. [PMID: 29483575 PMCID: PMC5827731 DOI: 10.1038/s41467-018-03255-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jaclyn A Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Christopher B Stanley
- Biology and Biomedical Sciences Group, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paulo L Onuchic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
1127
|
RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci U S A 2018; 115:2734-2739. [PMID: 29483269 DOI: 10.1073/pnas.1800038115] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein-protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein-protein and RNA-RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA-RNA assembly in cells could lead to disease.
Collapse
|
1128
|
Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature 2018; 555:61-66. [PMID: 29466338 DOI: 10.1038/nature25762] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.
Collapse
Affiliation(s)
- Alessandro Borgia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Madeleine B Borgia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Vera M Kissling
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Pétur O Heidarsson
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Catarina B Fernandes
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Karin J Buholzer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
1129
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
1130
|
Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 2018; 7:31486. [PMID: 29424691 PMCID: PMC5847340 DOI: 10.7554/elife.31486] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing.
Collapse
Affiliation(s)
| | - Paul Andrew Chong
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brian Tsang
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Tae Hun Kim
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Alaji Bah
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Patrick Farber
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hong Lin
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Julie Deborah Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
1131
|
Bräuer S, Zimyanin V, Hermann A. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2018; 125:591-613. [PMID: 29417336 DOI: 10.1007/s00702-018-1851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
The hallmark of age-related neurodegenerative diseases is the appearance of cellular protein deposits and spreading of this pathology throughout the central nervous system. Growing evidence has shown the involvement and critical role of proteins with prion-like properties in the formation of these characteristic cellular aggregates. Prion-like domains of such proteins with their proposed function in the organization of membraneless organelles are prone for misfolding and promoting further aggregation. Spreading of these toxic aggregates between cells and across tissues can explain the progression of clinical phenotypes and pathology in a stereotypical manner, characteristic for almost every neurodegenerative disease. Here, we want to review the current evidence for the role of prion-like mechanisms in classical neurodegenerative diseases and ALS in particular. We will also discuss an intriguingly central role of the protein TDP-43 in the majority of cases of this devastating disease.
Collapse
Affiliation(s)
- S Bräuer
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Neurology, Städtisches Klinikum Dresden, 01129, Dresden, Germany
| | - V Zimyanin
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - A Hermann
- Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany.
| |
Collapse
|
1132
|
Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, Parker R. Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly. Cell Rep 2018; 22:1401-1412. [PMID: 29425497 PMCID: PMC5824733 DOI: 10.1016/j.celrep.2018.01.036] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic cells contain large RNA-protein assemblies referred to as RNP granules, whose assembly is promoted by both traditional protein interactions and intrinsically disordered protein domains. Using RNP granules as an example, we provide evidence for an assembly mechanism of large cellular structures wherein specific protein-protein or protein-RNA interactions act together with promiscuous interactions of intrinsically disordered regions (IDRs). This synergistic assembly mechanism illuminates RNP granule assembly and explains why many components of RNP granules, and other large dynamic assemblies, contain IDRs linked to specific protein-protein or protein-RNA interaction modules. We suggest assemblies based on combinations of specific interactions and promiscuous IDRs are common features of eukaryotic cells.
Collapse
Affiliation(s)
- David S W Protter
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Bhalchandra S Rao
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Briana Van Treeck
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yuan Lin
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Mizoue
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
1133
|
Das S, Eisen A, Lin YH, Chan HS. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. J Phys Chem B 2018; 122:5418-5431. [DOI: 10.1021/acs.jpcb.7b11723] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adam Eisen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
1134
|
Csizmok V, Forman-Kay JD. Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol 2018; 48:58-67. [DOI: 10.1016/j.sbi.2017.10.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
|
1135
|
Yuwen T, Brady JP, Kay LE. Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance R1ρ Experiments: Application to Studies of Protein Phase Separation. J Am Chem Soc 2018; 140:2115-2126. [DOI: 10.1021/jacs.7b09576] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tairan Yuwen
- Departments
of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jacob P. Brady
- Departments
of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lewis E. Kay
- Departments
of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Hospital for Sick Children, Program in Molecular Medicine, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
1136
|
Abstract
Processing bodies (P-bodies) are cytoplasmic ribonucleoprotein (RNP) granules primarily composed of translationally repressed mRNAs and proteins related to mRNA decay, suggesting roles in post-transcriptional regulation. P-bodies are conserved in eukaryotic cells and exhibit properties of liquid droplets. However, the function of P-bodies in translational repression and/or mRNA decay remains contentious. Here we review recent advances in our understanding of the molecular composition of P-bodies, the interactions and processes that regulate P-body liquid-liquid phase separation (LLPS), and the cellular localization of mRNA decay machinery, in the context of how these discoveries refine models of P-body function.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Zhenkun Na
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Sarah A Slavoff
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06529 , United States
| |
Collapse
|
1137
|
Cascarina SM, Paul KR, Ross ED. Manipulating the aggregation activity of human prion-like proteins. Prion 2018; 11:323-331. [PMID: 28934062 DOI: 10.1080/19336896.2017.1356560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Considerable advances in understanding the protein features favoring prion formation in yeast have facilitated the development of effective yeast prion prediction algorithms. Here we discuss a recent study in which we systematically explored the utility of the yeast prion prediction algorithm PAPA for designing mutations to modulate the aggregation activity of the human prion-like protein hnRNPA2B1. Mutations in hnRNPA2B1 cause multisystem proteinopathy in humans, and accelerate aggregation of the protein in vitro. Additionally, mutant hnRNPA2B1 forms cytoplasmic inclusions when expressed in Drosophila, and the mutant prion-like domain can substitute for a portion of a yeast prion domain in supporting prion activity in yeast. PAPA was quite successful at predicting the effects of PrLD mutations on prion activity in yeast and on in vitro aggregation propensity. Additionally, PAPA successfully predicted the effects of most, but not all, mutations in the PrLD of the hnRNPA2B1 protein when expressed in Drosophila. These results suggest that PAPA is quite effective at predicting the effects of mutations on intrinsic aggregation propensity, but that intracellular factors can influence aggregation and prion-like activity in vivo. A more complete understanding of these intracellular factors may inform the next generation of prion prediction algorithms.
Collapse
Affiliation(s)
- Sean M Cascarina
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| | - Kacy R Paul
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| | - Eric D Ross
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
1138
|
Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA. ATP as a biological hydrotrope. Science 2018; 356:753-756. [PMID: 28522535 DOI: 10.1126/science.aaf6846] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Abstract
Hydrotropes are small molecules that solubilize hydrophobic molecules in aqueous solutions. Typically, hydrotropes are amphiphilic molecules and differ from classical surfactants in that they have low cooperativity of aggregation and work at molar concentrations. Here, we show that adenosine triphosphate (ATP) has properties of a biological hydrotrope. It can both prevent the formation of and dissolve previously formed protein aggregates. This chemical property is manifested at physiological concentrations between 5 and 10 millimolar. Therefore, in addition to being an energy source for biological reactions, for which micromolar concentrations are sufficient, we propose that millimolar concentrations of ATP may act to keep proteins soluble. This may in part explain why ATP is maintained in such high concentrations in cells.
Collapse
Affiliation(s)
- Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Shambaditya Saha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jie Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Yamuna Krishnan
- Department of Chemistry and Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL 60637, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
1139
|
Dine E, Toettcher JE. Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles. Biochemistry 2018; 57:2432-2436. [PMID: 29373016 DOI: 10.1021/acs.biochem.7b01173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has recently become clear that large-scale macromolecular self-assembly is a rule, rather than an exception, of intracellular organization. A growing number of proteins and RNAs have been shown to self-assemble into micrometer-scale clusters that exhibit either liquid-like or gel-like properties. Given their proposed roles in intracellular regulation, embryo development, and human disease, it is becoming increasingly important to understand how these membraneless organelles form and to map their functional consequences for the cell. Recently developed optogenetic systems make it possible to acutely control cluster assembly and disassembly in live cells, driving the separation of proteins of interest into liquid droplets, hydrogels, or solid aggregates. Here we propose that these approaches, as well as their evolution into the next generation of optogenetic biophysical tools, will allow biologists to determine how the self-assembly of membraneless organelles modulates diverse biochemical processes.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| | - Jared E Toettcher
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
1140
|
Dignon GL, Zheng W, Kim YC, Best RB, Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput Biol 2018; 14:e1005941. [PMID: 29364893 PMCID: PMC5798848 DOI: 10.1371/journal.pcbi.1005941] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/05/2018] [Accepted: 12/23/2017] [Indexed: 12/29/2022] Open
Abstract
Membraneless organelles important to intracellular compartmentalization have recently been shown to comprise assemblies of proteins which undergo liquid-liquid phase separation (LLPS). However, many proteins involved in this phase separation are at least partially disordered. The molecular mechanism and the sequence determinants of this process are challenging to determine experimentally owing to the disordered nature of the assemblies, motivating the use of theoretical and simulation methods. This work advances a computational framework for conducting simulations of LLPS with residue-level detail, and allows for the determination of phase diagrams and coexistence densities of proteins in the two phases. The model includes a short-range contact potential as well as a simplified treatment of electrostatic energy. Interaction parameters are optimized against experimentally determined radius of gyration data for multiple unfolded or intrinsically disordered proteins (IDPs). These models are applied to two systems which undergo LLPS: the low complexity domain of the RNA-binding protein FUS and the DEAD-box helicase protein LAF-1. We develop a novel simulation method to determine thermodynamic phase diagrams as a function of the total protein concentration and temperature. We show that the model is capable of capturing qualitative changes in the phase diagram due to phosphomimetic mutations of FUS and to the presence or absence of the large folded domain in LAF-1. We also explore the effects of chain-length, or multivalency, on the phase diagram, and obtain results consistent with Flory-Huggins theory for polymers. Most importantly, the methodology presented here is flexible so that it can be easily extended to other pair potentials, be used with other enhanced sampling methods, and may incorporate additional features for biological systems of interest. Liquid liquid phase separation (LLPS) of low-complexity protein sequences has emerged as an important research topic due to its relevance to membraneless organelles and intracellular compartmentalization. However a molecular level understanding of LLPS cannot be easily obtained by experimental methods due to difficulty of determining structural properties of phase separated protein assemblies, and of choosing appropriate mutations. Here we advance a coarse-grained computational framework for accessing the long time scale phase separation process and for obtaining molecular details of LLPS, in conjunction with state of the art enhanced sampling methods. We are able to qualitatively capture the changes of the phase diagram due to specific mutations, inclusion of a folded domain, and variation of chain length. The model is flexible and can be used with different knowledge-based potential energy functions, as we demonstrate. We expect a wide application of the presented framework for advancing our understanding of the formation of liquid-like protein assemblies.
Collapse
Affiliation(s)
- Gregory L. Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Wenwei Zheng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
1141
|
Grousl T, Ungelenk S, Miller S, Ho CT, Khokhrina M, Mayer MP, Bukau B, Mogk A. A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. J Cell Biol 2018; 217:1269-1285. [PMID: 29362223 PMCID: PMC5881502 DOI: 10.1083/jcb.201708116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The facilitated aggregation of misfolded proteins is a proteostasis strategy important for cell function and viability, but the molecular mechanisms are poorly understood. Grousl et al. reveal how the intrinsically disordered domains of the small heat shock protein Hsp42 promote and control the aggregation of misfolded proteins during stress conditions in yeast. Chaperones with aggregase activity promote and organize the aggregation of misfolded proteins and their deposition at specific intracellular sites. This activity represents a novel cytoprotective strategy of protein quality control systems; however, little is known about its mechanism. In yeast, the small heat shock protein Hsp42 orchestrates the stress-induced sequestration of misfolded proteins into cytosolic aggregates (CytoQ). In this study, we show that Hsp42 harbors a prion-like domain (PrLD) and a canonical intrinsically disordered domain (IDD) that act coordinately to promote and control protein aggregation. Hsp42 PrLD is essential for CytoQ formation and is bifunctional, mediating self-association as well as binding to misfolded proteins. Hsp42 IDD confines chaperone and aggregase activity and affects CytoQ numbers and stability in vivo. Hsp42 PrLD and IDD are both crucial for cellular fitness during heat stress, demonstrating the need for sequestering misfolded proteins in a regulated manner.
Collapse
Affiliation(s)
- Tomas Grousl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Sophia Ungelenk
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Stephanie Miller
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Chi-Ting Ho
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Maria Khokhrina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
1142
|
Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. Nat Commun 2018; 9:312. [PMID: 29358748 PMCID: PMC5778076 DOI: 10.1038/s41467-017-02757-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Upon stress, profound post-transcriptional adjustments of gene expression occur in spatially restricted, subcellular, membraneless compartments, or ribonucleoprotein (RNP) granules, which are formed by liquid phase separation of RNA-binding proteins with low complexity sequence domains (LCDs). Here, we show that Rbfox1 is an LCD-containing protein that aggregates into liquid droplets and amyloid-like fibers and promiscuously joins different nuclear and cytoplasmic RNP granules. Using Drosophila oogenesis as an in vivo system for stress response, we demonstrate a mechanism by which Rbfox1 promotes cell survival. The stress-dependent miRNA miR-980 acts to buffer Rbfox1 levels, since it targets only those Rbfox1 transcripts that contain extended 3′UTRs. Reduced miR-980 expression during stress leads to increased Rbfox1 levels, widespread formation of various RNP granules, and increased cell viability. We show that human RBFOX proteins also contain multiple LCDs and form membraneless compartments, suggesting that the RNP granule-linked control of cellular adaptive responses may contribute to a wide range of RBFOX-associated pathologies in humans. Rbfox1, a pro-survival RNA-binding protein, is expressed in a complex manner and mediates diverse developmental processes. Here, the authors observe alternative splicing of Rbfox1 and stress-dependent regulation by miR-980 in Drosophila ovaries and Rbfox1 localisation in ribonucleoprotein granules in human cells.
Collapse
|
1143
|
Zaslavsky BY, Uversky VN. In Aqua Veritas: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry 2018; 57:2437-2451. [PMID: 29303563 DOI: 10.1021/acs.biochem.7b01215] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the common practice of presenting structures of biological molecules on an empty background and the assumption that interactions between biological macromolecules take place within the inert solvent, water represents an active component of various biological processes. This Perspective addresses indispensable, yet mostly ignored, roles of water in biological liquid-liquid phase transitions and in the biogenesis of various proteinaceous membrane-less organelles. We point out that changes in the structure of water reflected in the changes in its abilities to donate and/or accept hydrogen bonds and participate in dipole-dipole and dipole-induced dipole interactions in the presence of various solutes (ranging from small molecules to synthetic polymers and biological macromolecules) might represent a driving force for the liquid-liquid phase separation, define partitioning of various solutes in formed phases, and define the exceptional ability of intrinsically disordered proteins to be engaged in the formation of proteinaceous membrane-less organelles.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
1144
|
Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J, Fawzi NL. Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol Cell 2018; 69:465-479.e7. [PMID: 29358076 DOI: 10.1016/j.molcel.2017.12.022] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/21/2023]
Abstract
hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.
Collapse
Affiliation(s)
- Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Charlene V Chabata
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Rute Silva
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
1145
|
Marianelli AM, Miller BM, Keating CD. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization. SOFT MATTER 2018; 14:368-378. [PMID: 29265152 DOI: 10.1039/c7sm02146a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid-liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature (TC). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles.
Collapse
Affiliation(s)
- A M Marianelli
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
1146
|
Nakashima KK, Baaij JF, Spruijt E. Reversible generation of coacervate droplets in an enzymatic network. SOFT MATTER 2018; 14:361-367. [PMID: 29199758 DOI: 10.1039/c7sm01897e] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cells can control the assembly and disassembly of membraneless organelles by enzymatic processes, but similar control has not been achieved in vitro yet. Here we develop ATP-based coacervate droplets as artificial membraneless organelles that can be fully controlled by two cooperating enzymes. Droplets can be generated within a minute following the addition of phosphoenolpyruvate as a substrate, and they can be dissolved within tens of seconds by adding glucose as the second substrate. We show how the rates of droplet generation and dissolution can be tuned by varying the enzyme and substrate concentrations, and we support our findings with a kinetic model of the underlying enzymatic reaction network. As all steps of the coacervate droplet life cycle, including nucleation, coarsening, and dissolution, occur under the same reaction conditions, the cycle can be repeated multiple times. In addition, by carefully balancing the rates of both enzymatic reactions, our system can be programmed to either form or dissolve droplets at specified times, acting as a chemical timer.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | |
Collapse
|
1147
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 593] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
1148
|
IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr Opin Struct Biol 2018; 49:36-43. [PMID: 29306779 DOI: 10.1016/j.sbi.2017.12.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) have critical roles in a diverse array of cellular functions. Of relevance here is that they are components of macromolecular complexes, where their conformational flexibility helps mediate interactions with binding partners. IDPs often interact with their binding partners through short sequence motifs, commonly repeated within the disordered regions. As such, multivalent interactions are common for IDPs and their binding partners within macromolecular complexes. Here we discuss the importance of IDP multivalency in three very different macromolecular assemblies: biomolecular condensates, the nuclear pore, and the cytoskeleton.
Collapse
|
1149
|
Fernandes N, Eshleman N, Buchan JR. Stress Granules and ALS: A Case of Causation or Correlation? ADVANCES IN NEUROBIOLOGY 2018; 20:173-212. [PMID: 29916020 DOI: 10.1007/978-3-319-89689-2_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. These aggregates are linked to ALS pathogenesis. Recent evidence has suggested that stress granules may aid the formation of ALS protein aggregates. Here, we summarize current understanding of stress granules, focusing on assembly and clearance. We also assess the evidence linking alterations in stress granule formation and dynamics to ALS protein aggregates and disease pathology.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
1150
|
Apicco DJ, Ash PEA, Maziuk B, LeBlang C, Medalla M, Al Abdullatif A, Ferragud A, Botelho E, Ballance HI, Dhawan U, Boudeau S, Cruz AL, Kashy D, Wong A, Goldberg LR, Yazdani N, Zhang C, Ung CY, Tripodis Y, Kanaan NM, Ikezu T, Cottone P, Leszyk J, Li H, Luebke J, Bryant CD, Wolozin B. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 2018; 21:72-80. [PMID: 29273772 PMCID: PMC5745051 DOI: 10.1038/s41593-017-0022-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
Emerging studies suggest a role for tau in regulating the biology of RNA binding proteins (RBPs). We now show that reducing the RBP T-cell intracellular antigen 1 (TIA1) in vivo protects against neurodegeneration and prolongs survival in transgenic P301S Tau mice. Biochemical fractionation shows co-enrichment and co-localization of tau oligomers and RBPs in transgenic P301S Tau mice. Reducing TIA1 decreased the number and size of granules co-localizing with stress granule markers. Decreasing TIA1 also inhibited the accumulation of tau oligomers at the expense of increasing neurofibrillary tangles. Despite the increase in neurofibrillary tangles, TIA1 reduction increased neuronal survival and rescued behavioral deficits and lifespan. These data provide in vivo evidence that TIA1 plays a key role in mediating toxicity and further suggest that RBPs direct the pathway of tau aggregation and the resulting neurodegeneration. We propose a model in which dysfunction of the translational stress response leads to tau-mediated pathology.
Collapse
Affiliation(s)
- Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Brandon Maziuk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Chelsey LeBlang
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Maria Medalla
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Emily Botelho
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Heather I Ballance
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Uma Dhawan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Anna Lourdes Cruz
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Aria Wong
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lisa R Goldberg
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Neema Yazdani
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Choong Y Ung
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yorghos Tripodis
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Leszyk
- Department of Biochemistry and Molecular Pathology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Luebke
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|