1101
|
Zhang H, Li L. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:98-109. [PMID: 23289771 DOI: 10.1111/tpj.12107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs repressing target gene expression post-transcriptionally and are critically involved in various development processes and responses to environmental stresses. MiR408 is highly conserved in land plants and targets several transcripts encoding copper proteins. Although it has been well documented that expression level of miR408 is strongly influenced by a variety of environmental conditions including copper availability, the biological function of this miRNA is still unknown. Here we show that constitutive expression of miR408 results in enhanced growth of seedling and adult plant while knocking down miR408 level by T-DNA insertions or the artificial miRNA technique causes impaired growth. Further, we found that constitutively activated miR408 is able to complement the growth defects of the T-DNA lines. Regarding the molecular mechanism governing miR408 expression, we found that the transcription factors SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) binds to the GTAC motifs in the MIR408 promoter in response to copper deficiency. Interestingly, constitutive activation of miR408 in the spl7 background could partially rescue the severe growth defects of the mutant. Together these results demonstrate that miR408 is a powerful modulator of vegetative growth. Our finding thus reveals a novel control mechanism for vegetative development based on calculated miR408 expression in response to environmental cues.
Collapse
Affiliation(s)
- Huiyong Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
1102
|
Zhang J, Zhang S, Li S, Han S, Wu T, Li X, Qi L. A genome-wide survey of microRNA truncation and 3' nucleotide addition events in larch (Larix leptolepis). PLANTA 2013; 237:1047-56. [PMID: 23232766 DOI: 10.1007/s00425-012-1823-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/26/2012] [Indexed: 05/15/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in numerous developmental and metabolic processes in animals and plants. Although the framework of miRNA biogenesis and function is established, the mechanism of miRNA degradation or modification remains to be investigated in plants. Mature miRNAs may be truncated or added nucleotides to generate variants. A detailed analysis of small RNA deep sequencing data sets resulted in the cloning of a large number of variants derived from larch miRNAs. Many 5'- and/or 3'-end truncated versions of miRNAs suggested that larch miRNAs might be degraded through either 5'-3' or 3'-5'. The relative abundance of variants truncated from 3'-end was higher than that of 5'-end for most miRNAs. The addition of adenine, uridine, and cytidine to the 3'-end of miRNAs was globally present, and the subtle variability in isomiR abundance might be regulated and biologically meaningful. It is the first report for cytidine addition in plant, and our examination of published small RNA deep sequencing data sets of Arabidopsis, rice, and moss suggests that cytidine addition to miRNA 3'-end exists broadly in plants. In addition, the nucleotide addition might be associated with 3'-5' miRNA degradation. Our results provide valuable information for a genome-wide survey of miRNA truncation and modification in larch or plants.
Collapse
Affiliation(s)
- Junhong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
1103
|
Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes. PLANTA 2013; 237:1149-61. [PMID: 23291876 DOI: 10.1007/s00425-012-1833-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/18/2012] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.
Collapse
Affiliation(s)
- Vitthal T Barvkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | | | | | | | | | | | | | | |
Collapse
|
1104
|
Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T. Boron stress responsive microRNAs and their targets in barley. PLoS One 2013; 8:e59543. [PMID: 23555702 PMCID: PMC3608689 DOI: 10.1371/journal.pone.0059543] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 01/08/2023] Open
Abstract
Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress.
Collapse
Affiliation(s)
- Esma Ozhuner
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Serdal Sakcali
- Department of Biology, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Hatice Boke
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- * E-mail:
| |
Collapse
|
1105
|
Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 2013; 280:1717-30. [PMID: 23399101 DOI: 10.1111/febs.12186] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/16/2013] [Accepted: 02/04/2013] [Indexed: 01/25/2023]
Abstract
Evolution of differential regulatory mechanisms can lead to quite distinct physiological attributes. In the present study, we have identified one such regulatory schema that regulates osa-miR408 and responds differentially in drought-sensitive and -tolerant indica rice varieties. A comparison of the drought stress response in drought-sensitive (Pusa Basmati 1 and IR64) and drought-tolerant (Nagina 22 and Vandana) indica rice varieties revealed that, during drought stress, levels of miR408 transcript decrease significantly in sensitive cultivars, whereas they remain elevated in the tolerant cultivars. The trend is reflected in young seedlings, as well as in flag leaf and spikelets of adult plants (heading stage). Members of the plastocyanin-like protein family targeted by miR408 also show the inverse expression profile and thus accumulate at a lower level in tolerant cultivars during drought. Interestingly, some members of this family are implicated in maintaining the cellular redox state and spikelet fertility in Arabidopsis. An investigation of miR408 loci (including promoter) in all four cultivars did not reveal any significant sequence variation indicating an involvement of the upstream regulatory schema. Indeed, a similar variety-specific stress response was found in the Oryza sativa squamosa promoter-binding-like 9 transcription factor that regulates miR408 expression. We further demonstrate that drought-mediated induction of miR408 in Nagina 22 is regulated by [Ca(2+)]cyt levels. However, [Ca(2+)]cyt does not appear to regulate miR408 levels in Pusa Basmati 1, suggesting a variety-specific evolution of regulatory schema in rice.
Collapse
Affiliation(s)
- Roseeta D Mutum
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
1106
|
Jia F, Rock CD. MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 81:447-60. [PMID: 23341152 PMCID: PMC3581712 DOI: 10.1007/s11103-013-0015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing and/or translational inhibition. miRNAs can arise from the "exon" of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5'-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. Arabidopsis lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution.
Collapse
|
1107
|
Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T, Nogueira RM, Endres L, Menossi M. Effects of drought on the microtranscriptome of field-grown sugarcane plants. PLANTA 2013; 237:783-98. [PMID: 23129215 PMCID: PMC3579473 DOI: 10.1007/s00425-012-1795-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Sugarcane (Saccharum spp.) is the most promising crop for renewable energy. Among the diverse stresses that affect plant productivity, drought stress frequently causes losses in sugarcane fields. Although several studies have addressed plant responses to drought using controlled environments, plant responses under field conditions are largely unknown. Recently, microRNA (miRNA)-mediated post-transcriptional regulation has been described as an important and decisive component in vegetal development and stress resistance modulation. The role of miRNAs in sugarcane responses to drought under field conditions is currently not known. Two sugarcane cultivars differing in drought tolerance were grown in the field with and without irrigation (rainfed) for 7 months. By using small RNA deep sequencing, we were able to identify 18 miRNA families comprising 30 mature miRNA sequences. Among these families, we found 13 mature miRNAs that were differentially expressed in drought-stressed plants. Seven miRNAs were differentially expressed in both cultivars. The target genes for many of the differentially expressed mature miRNAs were predicted, and some of them were validated by quantitative reverse transcription PCR. Among the targets, we found transcription factors, transporters, proteins associated with senescence, and proteins involved with flower development. All of these data increase our understanding of the role of miRNAs in the complex regulation of drought stress in field-grown sugarcane, providing valuable tools to develop new sugarcane cultivars tolerant to drought stress.
Collapse
Affiliation(s)
- Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Thaís H. Ferreira
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Raphael S. Mattos
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Lara I. Dias
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Andrea A. Hoshino
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Monalisa S. Carneiro
- Departamento de Biotecnologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, SP Brazil
| | - Glaucia M. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tercílio Calsa
- Laboratório de Genômica e Proteômica de Plantas, Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE Brazil
| | - Rejane M. Nogueira
- Laboratório de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE Brazil
| | - Laurício Endres
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| |
Collapse
|
1108
|
Yi R, Zhu Z, Hu J, Qian Q, Dai J, Ding Y. Identification and expression analysis of microRNAs at the grain filling stage in rice(Oryza sativa L.)via deep sequencing. PLoS One 2013; 8:e57863. [PMID: 23469249 PMCID: PMC3585941 DOI: 10.1371/journal.pone.0057863] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/27/2013] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to play crucial roles in the regulation of plant development. In this study, high-throughput RNA-sequencing technology was used to identify novel miRNAs, and to reveal miRNAs expression patterns at different developmental stages during rice (Oryza sativa L.) grain filling. A total of 434 known miRNAs (380, 402, 390 and 392 at 5, 7, 12 and 17 days after fertilization, respectively.) were obtained from rice grain. The expression profiles of these identified miRNAs were analyzed and the results showed that 161 known miRNAs were differentially expressed during grain development, a high proportion of which were up-regulated from 5 to 7 days after fertilization. In addition, sixty novel miRNAs were identified, and five of these were further validated experimentally. Additional analysis showed that the predicted targets of the differentially expressed miRNAs may participate in signal transduction, carbohydrate and nitrogen metabolism, the response to stimuli and epigenetic regulation. In this study, differences were revealed in the composition and expression profiles of miRNAs among individual developmental stages during the rice grain filling process, and miRNA editing events were also observed, analyzed and validated during this process. The results provide novel insight into the dynamic profiles of miRNAs in developing rice grain and contribute to the understanding of the regulatory roles of miRNAs in grain filling.
Collapse
Affiliation(s)
- Rong Yi
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixuan Zhu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jihong Hu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Qian Qian
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jincheng Dai
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
1109
|
Lei J, Techa-Angkoon P, Sun Y. Chain-RNA: a comparative ncRNA search tool based on the two-dimensional chain algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:274-285. [PMID: 23929857 DOI: 10.1109/tcbb.2012.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Noncoding RNA (ncRNA) identification is highly important to modern biology. The state-of-the-art method for ncRNA identification is based on comparative genomics, in which evolutionary conservations of sequences and secondary structures provide important evidence for ncRNA search. For ncRNAs with low sequence conservation but high structural similarity, conventional local alignment tools such as BLAST yield low sensitivity. Thus, there is a need for ncRNA search methods that can incorporate both sequence and structural similarities. We introduce chain-RNA, a pairwise structural alignment tool that can effectively locate cross-species conserved RNA elements with low sequence similarity. In chain-RNA, stem-loop structures are extracted from dot plots generated by an efficient local-folding algorithm. Then, we formulate stem alignment as an extended 2D chain problem and employ existing chain algorithms. Chain-RNA is tested on a data set containing annotated ncRNA homologs and is applied to novel ncRNA search in a transcriptomic data set. The experimental results show that chain-RNA has better tradeoff between sensitivity and false positive rate in ncRNA prediction than conventional sequence similarity search tools and is more time efficient than structural alignment tools. The source codes of chain-RNA can be downloaded at http://sourceforge.net/projects/chain-rna/ or at http://www.cse.msu.edu/~leijikai/chain-rna/.
Collapse
Affiliation(s)
- Jikai Lei
- Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
1110
|
Qiao M, Xiang F. A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. PLANT SIGNALING & BEHAVIOR 2013; 8:e23479. [PMID: 23333958 PMCID: PMC3676518 DOI: 10.4161/psb.23479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 05/22/2023]
Abstract
Plant miRNAs, the critical regulator of gene expression, involve many development processes in vivo. However, the roles of miRNAs in plant cell proliferation and redifferntiation in vitro remain unknown. To determine better the molecular mechanism of these processes, we have recently reported that a set of miRNAs with different expression patterns between cells of totipotent and non-totipotent Arabidopsis calli. Some of these were specifically up- or downregulated during callus formation or shoot regeneration, and other development. Among them, miR160, and one of its target genes, ARF10, regulated Arabidopsis in vitro shoot regeneration via WUS, CLV3 and CUC1/ 2. The miR160-overexpressing, 35S transgenic lines, exhibited reduced shoot regeneration efficiency. The mARF10, a miR160-resistant form of ARF10, showed a high level of shoot regeneration ability. In the transgenic, expression of the above shoot meristem-specific genes was elevated, which is consistent with the improved shoot regeneration. In contrast, the ARF10 deficient knockout mutant produced fewer regenerated shoot. However, overexpressors of ARF10 were only marginally more efficient than the wild type with the respect to shoot regeneration. Our observation strongly supports that proper shoot regeneration from in vitro cultured cells requires the miR160-directed negative influence of ARF10. The enhanced expression of ARF10 is likely to have contributed to the improved regeneration ability.
Collapse
|
1111
|
Liu N, Yang J, Guo S, Xu Y, Zhang M. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS One 2013; 8:e57359. [PMID: 23468976 PMCID: PMC3582568 DOI: 10.1371/journal.pone.0057359] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted watermelon, and its relevance to diverse biological processes and environmental adaptation.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Jinghua Yang
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, People’s Republic of China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, People’s Republic of China
- * E-mail: (YX); (MZ)
| | - Mingfang Zhang
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
- * E-mail: (YX); (MZ)
| |
Collapse
|
1112
|
Lelandais-Brière C, Sorin C, Crespi M, Hartmann C. [Non-coding RNAs involved in plant responses to environmental constraints]. Biol Aujourdhui 2013; 206:313-22. [PMID: 23419258 DOI: 10.1051/jbio/2012032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Indexed: 12/20/2022]
Abstract
In recent years, in addition to mRNAs, the non-protein-coding RNAs (or ncRNAs) have emerged as a major part of the eukaryotic transcriptome. New genomic approaches allowed the discovery of many novel long and small ncRNAs that may be linked to the generation of evolutionary complexity in multicellular organisms. Many long ncRNAs are regulated by abiotic stresses although only very few long ncRNAs have been functionally analyzed. On the other hand, small RNAs act in the regulation of gene expression at transcriptional or post-transcriptional level and several among them have been linked to abiotic stress responses. Here we describe various ncRNAs associated with environmental stress responses such as to salt, cold or nutrient deprivation. The understanding of these RNA networks may reveal novel mechanisms involved in plant adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France - Institut des Sciences du Végétal ISV, CNRS, UPR2355, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
1113
|
Korir NK, Li X, Xin S, Wang C, Changnian S, Kayesh E, Fang J. Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) 'Jiangshu14'. Mol Biol Rep 2013; 40:3503-21. [PMID: 23408149 DOI: 10.1007/s11033-012-2425-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/18/2012] [Indexed: 01/22/2023]
Abstract
Presence of selected tomato (Solanum lycopersicon) microRNAs (sly-miRNAs) was validated and their expression profiles established in roots, stems, leaves, flowers and fruits of tomato variety Jiangshu14 by quantitative RT-PCR (qRT-PCR). In addition conservation characteristics these sly-miRNAs were analyzed and target genes predicted bioinformatically. Results indicate that some of these miRNAs are specific to tomato while most are conserved in other plant species. Predicted sly-miRNA targets genes were shown to be targeted by either by a single or more miRNAs and are involved in diverse processes in tomato plant growth and development. All the 36 miRNAs were present in the cDNA of mixed tissues and qRT-PCR revealed that some of these sly-miRNAs are ubiquitous in tomato while others have tissue-specific expression. The experimental validation and expression profiling as well target gene prediction of these miRNAs in tomato as done in this study can add to the knowledge on the important roles played by these sly-miRNAs in the growth and development, environmental stress tolerance as well as pest and disease resistance in tomatoes and related species. In addition these findings broaden the knowledge of small RNA-mediated regulation in S. lycopersicon. It is recommended that experimental validation of the target genes be done so as to give a much more comprehensive information package on these miRNAs in tomato and specifically in the selected variety.
Collapse
Affiliation(s)
- Nicholas Kibet Korir
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | |
Collapse
|
1114
|
Abstract
Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88 percent of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1 percent transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.
Collapse
|
1115
|
Horn R, Chudobova I, Hänsel U, Herwartz D, Koskull-Döring PV, Schillberg S. Simultaneous Treatment with Tebuconazole and Abscisic Acid Induces Drought and Salinity Stress Tolerance in Arabidopsis thaliana by Maintaining Key Plastid Protein Levels. J Proteome Res 2013; 12:1266-81. [DOI: 10.1021/pr300931u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ruth Horn
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | - Ivana Chudobova
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | | | - Denise Herwartz
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | | | - Stefan Schillberg
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| |
Collapse
|
1116
|
Bellieny-Rabelo D, Oliveira AEA, Venancio TM. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS One 2013; 8:e55127. [PMID: 23390519 PMCID: PMC3563651 DOI: 10.1371/journal.pone.0055127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).
Collapse
Affiliation(s)
- Daniel Bellieny-Rabelo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
1117
|
Liu P, Yan K, Lei YX, Xu R, Zhang YM, Yang GD, Huang JG, Wu CA, Zheng CC. Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing. Genomics 2013; 101:149-56. [DOI: 10.1016/j.ygeno.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 01/13/2023]
|
1118
|
Vishwakarma NP, Jadeja VJ. Identification of miRNA encoded by Jatropha curcas from EST and GSS. PLANT SIGNALING & BEHAVIOR 2013; 8:e23152. [PMID: 23299511 PMCID: PMC3657014 DOI: 10.4161/psb.23152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 05/30/2023]
Abstract
miRNAs are endogenous approx 22 nucleotide RNA which mediates transcriptional or Post-transcriptional gene regulation and play a critical role in diverse aspects of plant development. miRNA identification in wet lab have various constraints, it is time consuming and expensive. It also faces the limitation of identifying miRNAs expressed at specific time and/or at special conditions. Due to the nature of strong conservation of miRNA in plant species, the use of comparative genomics approach for expressed sequence tags (ESTs), Genome Survey Sequence (GSS) and structural feature criteria filter has paved the way toward the identification of conserved miRNAs from the plant species whose genomes are not yet available in public domain. To identify the novel miRNA from Jatropha curcas, a total of 46862 EST sequences and 1569 GSS were searched for homology to previously known viridiplantae 2502 mature miRNA. After predicting the RNA secondary structure, 24 new potential miRNA were identified in J. curcas. Using the newly identified miRNA sequences, a total of 78 potential target genes were identified for 3 miRNA families. Most of the miRNA targeted genes were predicted to encode transcription factors that regulate cell growth and development, signaling, and metabolism. These findings considerably broaden the scope of understanding the functions of miRNA in J. curcas.
Collapse
Affiliation(s)
| | - Vasant J. Jadeja
- Department of Microbiology; Shree M. & N. Virani Science College; Rajkot, Gujarat, India
| |
Collapse
|
1119
|
Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. THE PLANT CELL 2013; 25:715-27. [PMID: 23424246 PMCID: PMC3608788 DOI: 10.1105/tpc.112.105882] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/13/2013] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in numerous developmental and physiological processes in animals and plants. The elaborate mechanism of miRNA biogenesis involves transcription and multiple processing steps. Here, we report the identification of a pair of evolutionarily conserved NOT2_3_5 domain-containing-proteins, NOT2a and NOT2b (previously known as At-Negative on TATA less2 [NOT2] and VIRE2-INTERACTING PROTEIN2, respectively), as components involved in Arabidopsis thaliana miRNA biogenesis. NOT2 was identified by its interaction with the Piwi/Ago/Zwille domain of DICER-LIKE1 (DCL1), an interaction that is conserved between rice (Oryza sativa) and Arabidopsis thaliana. Inactivation of both NOT2 genes in Arabidopsis caused severe defects in male gametophytes, and weak lines show pleiotropic defects reminiscent of miRNA pathway mutants. Impairment of NOT2s decreases the accumulation of primary miRNAs and mature miRNAs and affects DCL1 but not HYPONASTIC LEAVES1 (HYL1) localization in vivo. In addition, NOT2b protein interacts with polymerase II and other miRNA processing factors, including two cap binding proteins, CBP80/ABH1, CBP20, and SERRATE (SE). Finally, we found that the mRNA levels of some protein coding genes were also affected. Therefore, these results suggest that NOT2 proteins act as general factors to promote the transcription of protein coding as well as miRNA genes and facilitate efficient DCL1 recruitment in miRNA biogenesis.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianfeng Gu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Chen
- Howard Hughes Medical Institute, Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
1120
|
Hu Z, Jiang Q, Ni Z, Chen R, Xu S, Zhang H. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:160-76. [PMID: 23131131 DOI: 10.1111/jipb.12002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.
Collapse
Affiliation(s)
- Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
1121
|
Xu F, Liu Q, Chen L, Kuang J, Walk T, Wang J, Liao H. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics 2013; 14:66. [PMID: 23368765 PMCID: PMC3673897 DOI: 10.1186/1471-2164-14-66] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/11/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Phosphorus (P) plays important roles in plant growth and development. MicroRNAs involved in P signaling have been identified in Arabidopsis and rice, but P-responsive microRNAs and their targets in soybean leaves and roots are poorly understood. RESULTS Using high-throughput sequencing-by-synthesis (SBS) technology, we sequenced four small RNA libraries from leaves and roots grown under phosphate (Pi)-sufficient (+Pi) and Pi-depleted (-Pi) conditions, respectively, and one RNA degradome library from Pi-depleted roots at the genome-wide level. Each library generated ~21.45-28.63 million short sequences, resulting in ~20.56-27.08 million clean reads. From those sequences, a total of 126 miRNAs, with 154 gene targets were computationally predicted. This included 92 new miRNA candidates with 20-23 nucleotides that were perfectly matched to the Glycine max genome 1.0, 70 of which belong to 21 miRNA families and the remaining 22 miRNA unassigned into any existing miRNA family in miRBase 18.0. Under both +Pi and -Pi conditions, 112 of 126 total miRNAs (89%) were expressed in both leaves and roots. Under +Pi conditions, 12 leaf- and 2 root-specific miRNAs were detected; while under -Pi conditions, 10 leaf- and 4 root-specific miRNAs were identified. Collectively, 25 miRNAs were induced and 11 miRNAs were repressed by Pi starvation in soybean. Then, stem-loop real-time PCR confirmed expression of four selected P-responsive miRNAs, and RLM-5' RACE confirmed that a PHO2 and GmPT5, a kelch-domain containing protein, and a Myb transcription factor, respectively are targets of miR399, miR2111, and miR159e-3p. Finally, P-responsive cis-elements in the promoter regions of soybean miRNA genes were analyzed at the genome-wide scale. CONCLUSIONS Leaf- and root-specific miRNAs, and P-responsive miRNAs in soybean were identified genome-wide. A total of 154 target genes of miRNAs were predicted via degradome sequencing and computational analyses. The targets of miR399, miR2111, and miR159e-3p were confirmed. Taken together, our study implies the important roles of miRNAs in P signaling and provides clues for deciphering the functions for microRNA/target modules in soybean.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Luying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiebin Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Thomas Walk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
1122
|
Xia Z, Huynh T, Ren P, Zhou R. Large domain motions in Ago protein controlled by the guide DNA-strand seed region determine the Ago-DNA-mRNA complex recognition process. PLoS One 2013; 8:e54620. [PMID: 23382927 PMCID: PMC3558513 DOI: 10.1371/journal.pone.0054620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022] Open
Abstract
The recognition mechanism and cleavage activity of argonaute (Ago), miRNA, and mRNA complexes are the core processes to the small non-coding RNA world. The 5′ nucleation at the ‘seed’ region (position 2–8) of miRNA was believed to play a significant role in guiding the recognition of target mRNAs to the given miRNA family. In this paper, we have performed all-atom molecular dynamics simulations of the related and recently revealed Ago-DNA:mRNA ternary complexes to study the dynamics of the guide-target recognition and the effect of mutations by introducing “damaging” C·C mismatches at different positions in the seed region of the DNA-RNA duplex. Our simulations show that the A-form-like helix duplex gradually distorts as the number of seed mismatches increases and the complex can survive no more than two such mismatches. Severe distortions of the guide-target heteroduplex are observed in the ruinous 4-sites mismatch mutant, which give rise to a bending motion of the PAZ domain along the L1/L2 “hinge-like” connection segment, resulting in the opening of the nucleic-acid-binding channel. These long-range interactions between the seed region and PAZ domain, moderated by the L1/L2 segments, reveal the central role of the seed region in the guide-target strands recognition: it not only determines the guide-target heteroduplex’s nucleation and propagation, but also regulates the dynamic motions of Ago domains around the nucleic-acid-binding channel.
Collapse
Affiliation(s)
- Zhen Xia
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, New York, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Tien Huynh
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, New York, United States of America
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, New York, United States of America
- Department of Chemistry, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
1123
|
Ye K, Chen Y, Hu X, Guo J. Computational identification of microRNAs and their targets in apple. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
1124
|
Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X. Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. Int J Mol Sci 2013; 14:2717-38. [PMID: 23358256 PMCID: PMC3588011 DOI: 10.3390/ijms14022717] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 01/02/2023] Open
Abstract
Both symbiosis between legumes and rhizobia and nitrogen fixation in functional nodules are dramatically affected by salt stress. Better understanding of the molecular mechanisms that regulate the salt tolerance of functional nodules is essential for genetic improvement of nitrogen fixation efficiency. microRNAs (miRNAs) have been implicated in stress responses in many plants and in symbiotic nitrogen fixation (SNF) in soybean. However, the dynamic regulation of miRNAs in functioning nodules during salt stress response remains unknown. We performed deep sequencing of miRNAs to understand the miRNA expression profile in normal or salt stressed-soybean mature nodules. We identified 110 known miRNAs belonging to 61 miRNA families and 128 novel miRNAs belonging to 64 miRNA families. Among them, 104 miRNAs were dramatically differentially expressed (>2-fold or detected only in one library) during salt stress. qRT-PCR analysis of eight miRNAs confirmed that these miRNAs were dynamically regulated in response to salt stress in functional soybean nodules. These data significantly increase the number of miRNAs known to be expressed in soybean nodules, and revealed for the first time a dynamic regulation of miRNAs during salt stress in functional nodules. The findings suggest great potential for miRNAs in functional soybean nodules during salt stress.
Collapse
Affiliation(s)
- Zhanghui Dong
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Graduate School of Chinese Academy of Sciences, 19A Yuquanlu Shijingshanqu, Beijing 100049, China
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Lei Shi
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; E-Mail:
| | - Liang Chen
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Zhaoming Cai
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Graduate School of Chinese Academy of Sciences, 19A Yuquanlu Shijingshanqu, Beijing 100049, China
| | - Youning Wang
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
| | - Jingbo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences; Beijing 100093, China; E-Mail:
| | - Xia Li
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, Hebei, China; E-Mails: (Z.D.); (L.S.); (L.C.); (Z.C.); (Y.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0311-8587-1744; Fax: +86-0311-8581-5093
| |
Collapse
|
1125
|
Hajdarpašić A, Ruggenthaler P. Analysis of miRNA expression under stress in Arabidopsis thaliana. Bosn J Basic Med Sci 2013; 12:169-76. [PMID: 22938544 DOI: 10.17305/bjbms.2012.2471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, 21-24 nucleotides long, non-coding RNAs involved in the post-transcriptional regulation of gene expression. Using the array analysis on Arabidopsis thaliana infected with the Oil-seed Rape Mosaic Virus (ORMV), we have found 28 up-regulated miRNAs. From them, six were selected for further validation by Northern blot analysis: miRNA172a, miRNA161, miRNA167a&b, miRNA168a&b, miRNA171a, and miRNA159. In addition, 29 miRNAs were detected in plants exposed to drought stress, 13 of those detected miRNAs were up-regulated and 16 down-regulated miRNAs. Out of 29 differentially expressed miRNAs during the abiotic stress, six miRNAs (167a&b, 168a&b, 173, 171b&c, 399d and 447c) were chosen for Northern blot and RT-PCR analysis to confirm the array results. Interestingly, four out of these six miRNAs, 171b&c, 168a&b, 399d, and 447c, showed very high abundance of pri-miRNAs and pre-miRNAs. Furthermore, mature forms of miRNAs171b&c, 399d, and 447c, were not detectable in the rosette leaves, indicating that miRNA processing is tissue specific. In conclusion, using the array analysis we show that 28 miRNAs are involved in the plant response to viral infection and 29 miRNAs are involved in the regulation of drought stress. We also demonstrate that at least some miRNAs involved in the stress response in Arabidopsis thaliana are regulated at the maturation level. One such example is miRNA 171b&c. This miRNA is transcribed in all tissues, evidenced by its detected pri and pre-miRNA forms; however, its mature form is constitutively or transiently expressed depending on the tissue type.
Collapse
Affiliation(s)
- Aida Hajdarpašić
- Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria.
| | | |
Collapse
|
1126
|
Robinson JM, Sperling EA, Bergum B, Adamski M, Nichols SA, Adamska M, Peterson KJ. The identification of microRNAs in calcisponges: independent evolution of microRNAs in basal metazoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:84-93. [PMID: 23349041 DOI: 10.1002/jez.b.22485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/29/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
We present the discovery of microRNAs (miRNAs) in the calcisponges Sycon and Leucosolenia (phylum Calcarea), and potential miRNAs in the homoscleromorph Oscarella carmela (Phylum Homoscleromorpha), expanding the complement of poriferan miRNAs previously known only from the siliceous sponges (demosponges and hexactinellids). Comparison of these miRNAs with those previously described from silicisponges and eumetazoans reveals that these newly described miRNAs are novel, with each metazoan lineage (Silicea, Calcarea, Homoscleromorpha, and Eumetazoa) characterized by a unique and non-overlapping repertoire of miRNAs (or potential miRNAs as in the case of the homoscleromorphs). Because each group is characterized by a unique repertoire of miRNAs, miRNAs cannot be used to help resolve the contentious issue of sponge mono- versus paraphyly. Further, because all sponges are characterized by a similar repertoire of tissue types and body plan organisation, we hypothesize that the lack of conserved miRNAs amongst the three primary sponge lineages is evidence that cellular differentiation and cell type specificity in sponges are not dependent upon conserved miRNAs, contrary to many known cases in eumetazoans. Finally, we suggest that miRNAs evolved multiple times independently not only among eukaryotes, but even within animals, independently evolved miRNAs representing molecular exaptations of RNAi machinery into pre-existing gene regulatory networks. The role(s) miRNAs play though in sponge biology and evolution remains an open question.
Collapse
Affiliation(s)
- Jeffrey M Robinson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
1127
|
Li D, Wang L, Liu X, Cui D, Chen T, Zhang H, Jiang C, Xu C, Li P, Li S, Zhao L, Chen H. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS One 2013; 8:e55107. [PMID: 23359822 PMCID: PMC3554676 DOI: 10.1371/journal.pone.0055107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
Seed germination plays a pivotal role during the life cycle of plants. As dry seeds imbibe water, the resumption of energy metabolism and cellular repair occur and miRNA-mediated gene expression regulation is involved in the reactivation events. This research was aimed at understanding the role of miRNA in the molecular control during seed imbibition process. Small RNA libraries constructed from dry and imbibed maize seed embryos were sequenced using the Illumina platform. Twenty-four conserved miRNA families were identified in both libraries. Sixteen of them showed significant expression differences between dry and imbibed seeds. Twelve miRNA families, miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397, were significantly down-regulated; while four families, miR398, miR408, miR528 and miR529, were significantly up-regulated in imbibed seeds compared to that in dry seeds. Furthermore, putative novel maize miRNAs and their target genes were predicted. Target gene GO analysis was performed for novel miRNAs that were sequenced more than 50 times in the normalized libraries. The result showed that carbohydrate catabolic related genes were specifically enriched in the dry seed, while in imbibed seed target gene enrichment covered a broad range of functional categories including genes in amino acid biosynthesis, isomerase activity, ligase activity and others. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs and the predicted target genes. Our data suggested that diverse and complex miRNAs are involved in the seed imbibition process. That miRNA are involved in plant hormone regulation may play important roles during the dry-imbibed seed transition.
Collapse
Affiliation(s)
- Detao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Liwen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xu Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Dezhou Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Tingting Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Hua Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Chuan Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Chunyan Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Peng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Song Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
1128
|
Bliss BJ, Wanke S, Barakat A, Ayyampalayam S, Wickett N, Wall PK, Jiao Y, Landherr L, Ralph PE, Hu Y, Neinhuis C, Leebens-Mack J, Arumuganathan K, Clifton SW, Maximova SN, Ma H, dePamphilis CW. Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC PLANT BIOLOGY 2013; 13:13. [PMID: 23347749 PMCID: PMC3621149 DOI: 10.1186/1471-2229-13-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/12/2012] [Indexed: 05/15/2023]
Abstract
BACKGROUND Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.
Collapse
Affiliation(s)
- Barbara J Bliss
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- USDA ARS PBARC, 64 Nowelo St., Hilo, HI 96720, USA
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, D-01062, Dresden, Germany
| | - Abdelali Barakat
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- 100 Jordan Hall, Clemson University, Clemson, SC, 29634, USA
| | | | - Norman Wickett
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- Chicago Botanic Garden, Glencoe, IL, 27709, USA
| | - P Kerr Wall
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- BASF Plant Science, 26 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Yuannian Jiao
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Lena Landherr
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Paula E Ralph
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Hu
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, D-01062, Dresden, Germany
| | - Jim Leebens-Mack
- Department of Plant Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathiravetpilla Arumuganathan
- Benaroya Research Institute at Virginia Mason, Flow Cytometry and Imaging Core Laboratory, 1201 Ninth Avenue, Seattle, WA, 98101, USA
| | - Sandra W Clifton
- The Genome Institute,Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO, 63108, USA
- Stephenson Research and Technology Center, Advanced Center for Genome Technology, University of Oklahoma, 101 David L. Boren Blvd, Norman, OK, 73019, USA
| | - Siela N Maximova
- Department of Horticulture, 421 Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Genetic Engineering and the Institute of Plant Biology, the Center for Evolutionary Biology, the School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Claude W dePamphilis
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
1129
|
Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res 2013; 23:604-15. [PMID: 23335364 PMCID: PMC3613578 DOI: 10.1101/gr.139758.112] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of what is presently known about how miRNAs regulate gene expression comes from studies that characterized the regulatory effect of miRNA binding sites located in the 3′ untranslated regions (UTR) of mRNAs. In recent years, there has been increasing evidence that miRNAs also bind in the coding region (CDS), but the implication of these interactions remains obscure because they have a smaller impact on mRNA stability compared with miRNA-target interactions that involve 3′ UTRs. Here we show that miRNA-complementary sites that are located in both CDS and 3′-UTRs are under selection pressure and share the same sequence and structure properties. Analyzing recently published data of ribosome-protected fragment profiles upon miRNA transfection from the perspective of the location of miRNA-complementary sites, we find that sites located in the CDS are most potent in inhibiting translation, while sites located in the 3′ UTR are more efficient at triggering mRNA degradation. Our study suggests that miRNAs may combine targeting of CDS and 3′ UTR to flexibly tune the time scale and magnitude of their post-transcriptional regulatory effects.
Collapse
Affiliation(s)
- Jean Hausser
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
1130
|
The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 2013; 14:1114-21. [PMID: 23131918 DOI: 10.1038/ncb2613] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 10/04/2012] [Indexed: 02/07/2023]
Abstract
Pluripotent stem cells (PSCs) express a distinctive set of microRNAs (miRNAs). Many of these miRNAs have similar targeting sequences and are predicted to regulate downstream targets cooperatively. These enriched miRNAs are involved in the regulation of the unique PSC cell cycle, and there is increasing evidence that they also influence other important characteristics of PSCs, including their morphology, epigenetic profile and resistance to apoptosis. Detailed studies of miRNAs and their targets in PSCs should help to parse the regulatory networks that underlie developmental processes and cellular reprogramming.
Collapse
|
1131
|
Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochem Biophys Res Commun 2013; 431:512-8. [PMID: 23321309 DOI: 10.1016/j.bbrc.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/06/2013] [Indexed: 11/25/2022]
Abstract
Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2-5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2-5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2-5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2-5 transcript. We experimentally verified the cleavage of PtrHAP2-5 at the predicted miR169a site at the time when PtrHAP2-5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.
Collapse
Affiliation(s)
- Rewati Potkar
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | |
Collapse
|
1132
|
Jada B, Soitamo AJ, Lehto K. Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC PLANT BIOLOGY 2013; 13:8. [PMID: 23297695 PMCID: PMC3562197 DOI: 10.1186/1471-2229-13-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA silencing affects a broad range of regulatory processes in all eukaryotes ranging from chromatin structure maintenance to transcriptional and translational regulation and longevity of the mRNAs. Particularly in plants, it functions as the major defense mechanism against viruses. To counter-act this defense, plant viruses produce suppressors of RNA silencing (Viral suppressors of RNA silencing, VSRSs), which are essential for viruses to invade their specific host plants. Interactions of these VSRSs with the hosts' silencing pathways, and their direct and indirect interference with different cellular regulatory networks constitute one of the main lines of the molecular virus-host interactions. Here we have used a microarray approach to study the effects of the Potato virus X Potexvirus (PVX)-specific P25 VSRS protein on the transcript profile of tobacco plants, when expressed as a transgene in these plants. RESULTS The expression of the PVX-specific P25 silencing suppressor in transgenic tobacco plants caused significant up-regulation of 1350 transcripts, but down-regulation of only five transcripts in the leaves, and up- and down-regulation of 51 and 13 transcripts, respectively, in the flowers of these plants, as compared to the wild type control plants. Most of the changes occurred in the transcripts related to biotic and abiotic stresses, transcription regulation, signaling, metabolic pathways and cell wall modifications, and many of them appeared to be induced through up-regulation of the signaling pathways regulated by ethylene, jasmonic acid and salicylic acid. Correlations of these alterations with the protein profile and related biological functions were analyzed. Surprisingly, they did not cause significant alterations in the protein profile, and caused only very mild alteration in the phenotype of the P25-expressing transgenic plants. CONCLUSION Expression of the PVX-specific P25 VSRS protein causes major alterations in the transcriptome of the leaves of transgenic tobacco plants, but very little of any effects in the young flowers of the same plants. The fairly stable protein profile in the leaves and lack of any major changes in the plant phenotype indicate that the complicated interplay and interactions between different regulatory levels are able to maintain homeostasis in the plants.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| |
Collapse
|
1133
|
Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:362-73. [PMID: 23154535 PMCID: PMC3532267 DOI: 10.1104/pp.112.205922] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/12/2012] [Indexed: 05/18/2023]
Abstract
Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.
Collapse
Affiliation(s)
| | | | | | - Songhwa Kang
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hyeong Cheol Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Gilok Shin
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Jiyoung Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Mingzhe Shen
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Doh Hoon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Ray A. Bressan
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hans J. Bohnert
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | | |
Collapse
|
1134
|
Feng J, Lin R, Chen J. Alteration of tomato microRNAs expression during fruit development upon Cucumber mosaic virus and Tomato aspermy virus infection. Mol Biol Rep 2013; 40:3713-22. [DOI: 10.1007/s11033-012-2447-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/18/2012] [Indexed: 01/25/2023]
|
1135
|
Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E. miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:197. [PMID: 23802004 PMCID: PMC3687772 DOI: 10.3389/fpls.2013.00197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/27/2013] [Indexed: 05/17/2023]
Abstract
The SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20-24 nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to their role in plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1. By comparing the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis, we identified 831 starvation genes misregulated in the dcl1-9 mutant, out of which 155 are validated or predicted miRNA targets. Functional clustering analysis revealed that the main cellular processes potentially co-regulated by SnRK1 and miRNAs are translation and organelle function and uncover TCP transcription factors as one of the most highly enriched functional clusters. TCP repression during energy deprivation was impaired in miR319 knockdown (MIM319) plants, demonstrating the involvement of miR319 in the stress-dependent regulation of TCPs. Altogether, our data indicates that miRNAs are components of the SnRK1 signaling cascade contributing to the regulation of specific mRNA targets and possibly tuning down particular cellular processes during the stress response.
Collapse
Affiliation(s)
- Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Cláudia Martinho
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Alexandre Elias
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
1136
|
Global identification of small RNA targets in plants by sequencing sliced ends of messenger RNAs. Methods Mol Biol 2013; 956:119-29. [PMID: 23135849 DOI: 10.1007/978-1-62703-194-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Small RNAs (microRNAs and other classes of endogenous small interfering RNAs) play important roles in a wide variety of biological processes. However, integration of small RNAs in diverse biological networks relies on the confirmation of their RNA targets. In plants, miRNAs negatively regulate mRNA targets by guiding a cleavage in the complementary site that leaves a 3' polyadenylated RNA possessing monophosphate at its 5' end. This chapter describes a detailed step-by-step protocol for cloning such sliced 3' products in order to identify small RNA targets. Using this protocol, we have identified more than 150 small RNA targets in rice; some are conserved and others are non-conserved targets for rice small RNAs.
Collapse
|
1137
|
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. THE NEW PHYTOLOGIST 2013; 197:394-404. [PMID: 23163405 DOI: 10.1111/nph.12022] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/02/2012] [Indexed: 05/20/2023]
Abstract
Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Martina Lummer
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Lionel Navarro
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), 46 Rue d'Ulm, 75230, Paris Cedex 05, France
| |
Collapse
|
1138
|
Zhang B, Wang M, Zhang X, Li C, Wang Q. Overexpression of miR 156 in cotton via Agrobacterium-mediated transformation. Methods Mol Biol 2013; 958:189-197. [PMID: 23143494 DOI: 10.1007/978-1-62703-212-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
microRNAs (miRNAs) are an extensive class of newly identified endogenous small regulatory molecules. Many studies show that miRNAs play a critical role in almost all biological and metabolic progresses through targeting protein-coding genes for mRNA cleavage or translation inhibition. Many miRNAs are also identified from cotton using computational and/or experimental approaches, including the next generation deep sequencing technology. However, the function of the majority of miRNAs are unclear. In this chapter, we describe a detailed method for overexpressing miR 156 in cotton using Agrobacterium-mediated genetic transformation. This provides an approach to investigate the function and regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| | | | | | | | | |
Collapse
|
1139
|
Jagadeeswaran G, Sunkar R. Cloning of small RNAs for the discovery of novel microRNAs in plants. Methods Mol Biol 2013; 956:109-118. [PMID: 23135848 DOI: 10.1007/978-1-62703-194-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Endogenous small RNAs can be grouped into several distinct classes of 21-nt-long microRNAs (miRNAs), short interfering RNAs (siRNAs), trans-acting siRNAs (tasiRNAs), and 24-nt long heterochromatic siRNAs. miRNAs are increasingly being recognized as significant effectors of gene regulation in a wide range of organisms. These molecules are typically ∼21-nt long and are amenable for cloning by streamlined protocols. Here we detail the methodology for cloning small RNAs in rice to identify novel miRNAs and other important small RNAs. Briefly, small RNA molecules are size fractionated, attached to adaptors, and subsequently converted into cDNA and PCR amplified. Current high-throughput sequencing technologies allow sequencing of the PCR products directly.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
1140
|
Zhang Y, Bai Y, Han J, Chen M, Kayesh E, Jiang W, Fang J. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:80-92. [PMID: 23107282 DOI: 10.1016/j.jplph.2012.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
We predicted 262 potential MicroRNAs (miRNAs) belonging to 70 miRNA families from the peach (Prunus persica) genome and two specific 5' and 3' miRNA rapid amplification of cDNA ends (miR-RACE) PCR reactions and sequence-directed cloning were employed to accurately validate 61 unique P. persica miRNAs (Ppe-miRNAs) sequences belonging to 61 families comprising 97 Ppe-miRNAs. Validation of the termini nucleotides in particular can define the real sequences of the Ppe-miRNAs on peach genome. Comparison between predicted and validated Ppe-miRNAs through alignment revealed that 43 unique orthologous sequences were identical, while the remaining 18 exhibited some divergences at their termini nucleotides. Quantitative real-time polymerase chain reaction (qRT-PCR) was further employed to analyze the expression of all the 61 miRNAs and 10 putative targets of 8 randomly selected Ppe-miRNAs in peach leaves, flowers and fruits at different stages of development, where both the miRNAs and the putative target genes showed tissue-specific expression.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
1141
|
Meng Y, Shao C, Wang H, Ma X, Chen M. Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa). THE NEW PHYTOLOGIST 2013; 197:441-453. [PMID: 23121287 DOI: 10.1111/nph.12018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/24/2012] [Indexed: 05/16/2023]
Abstract
Although huge amounts of high-throughput sequencing (HTS) data are available, limited systematic analyses have been performed by integrating these valuable resources. Based on small RNA (sRNA), RNA and degradome HTS data, the sRNAs specifically expressed at vegetative and reproductive stages were identified separately in rice. Two distinct groups of sRNA HTS data, which were prepared during the vegetative and the reproductive stages, were utilized to extract stage-specific sRNAs. Degradome sequencing data were employed for sRNA target validation. RNA sequencing data were used to construct expression-based, sRNA-mediated networks. As a result, 26 microRNAs and 413 sRNAs were specifically expressed at the vegetative stage, and 79 microRNAs and 539 sRNAs were specifically expressed at the reproductive stage. In addition to the microRNAs, numerous stage-specific sRNAs enriched in ARGONAUTE1 showed great potential to perform cleavage-based repression on the targets. Several stage-specific sRNAs were indicated to result from the wobble effect of Dicer-like 1-mediated processing of microRNA precursors. The expression patterns of the sRNA targets, and the stage-specific cleavage signals strongly indicated the reliability of the constructed networks. A set of rice stage-specific sRNAs along with the regulatory cascades, which have great potential in regulating specific developmental stages, were provided for further investigation.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chaogang Shao
- College of Life Sciences, Huzhou Teachers College, Huzhou, 313000, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
1142
|
Zhang J, Wu T, Li L, Han S, Li X, Zhang S, Qi L. Dynamic expression of small RNA populations in larch (Larix leptolepis). PLANTA 2013; 237:89-101. [PMID: 22983700 DOI: 10.1007/s00425-012-1753-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/26/2012] [Indexed: 06/01/2023]
Abstract
Small RNAs (sRNAs) are emerging as essential regulators of biological processes. However, several studies have reported that gymnosperms do not express appreciable amounts of 24-nt sRNAs, and conifers in particular may have a unique sRNA-silencing signature. Here, we compared the sRNA transcriptomes of Japanese larch somatic embryos (SE) and seedlings. SE sRNAs exhibited a length bias toward 24 nt, while seedlings showed a bias toward a 21-nt length. We also confirmed that larch is capable of producing 24-nt sRNAs based on a polyacrylamide gel analysis. The sRNA expression patterns varied according to developmental stage, which might be associated with Dicer-like 3 and RNA-dependent RNA polymerase2 (RDR2) levels. Our data suggest that many MIR loci that produce canonical microRNAs (miRNAs, 20-22 nt) and long sRNAs (23-26 nt) have dual functions; the latter were preferentially produced in SE compared to seedlings. However, the ratio of miRNAs to total sRNAs in seedlings was higher than in SE, and most miRNAs were upregulated in seedlings. Trans-acting small interfering RNAs (ta-siRNAs) generated from TAS3 triggered by miR390 were identified, and levels of the three detected ta-siRNAs peaked in mature embryos, which was not consistent with the lowest RDR6 level. These findings indicate that larch, and possibly other gymnosperms, shares a common sRNA pathway with other land plants, and that the sRNA distribution pattern varies according to developmental stage, which may be attributable to the expression of sRNA pathway genes.
Collapse
Affiliation(s)
- Junhong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
1143
|
Jiang N, Yang Y, Janbon G, Pan J, Zhu X. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 2012; 7:e52734. [PMID: 23300755 PMCID: PMC3530498 DOI: 10.1371/journal.pone.0052734] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/21/2012] [Indexed: 11/30/2022] Open
Abstract
microRNAs (miRNAs), endogenous posttranscriptional repressors by base-pairing of their cognate mRNAs in plants and animals, have mostly been thought lost in the kingdom of fungi. Here, we report the identification of miRNAs from the fungus Cryptococcus neoformans. With bioinformatics and Northern blotting approaches, we found that these miRNAs and their hairpin precursors were present in this fungus. The size of miR1 and miR2 is 22 nt and 18 nt, respectively. The precursors are about ∼70 nt in length that is close to mammalian pre-miRNAs. Characteristic features of miRNAs are also found in miR1/2. We demonstrated that the identified miRNAs, miR1 and miR2, caused transgene silencing via the canonical RNAi pathway. Bioinformantics analysis helps to reveal a number of identical sequences of the miR1/2 in transposable elements (TEs) and pseudogenes, prompting us to think that fungal miRNAs might be involved in the regulation of the activity of transposons and the expression of pseudogenes. This study identified functional miRNAs in C. neoformans, and sheds light on the diversity and evolutionary origin of eukaryotic miRNAs.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yaping Yang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guilhem Janbon
- Department of Molecular Mycology, Institute Pasteur, Paris, France
| | - Jiao Pan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xudong Zhu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
1144
|
Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 2012; 41:1984-97. [PMID: 23268445 PMCID: PMC3561960 DOI: 10.1093/nar/gks1309] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that have important regulatory roles in numerous developmental and metabolic processes in most eukaryotes. In Arabidopsis, DICER-LIKE1 (DCL1), HYPONASTIC LEAVES 1, SERRATE, HUA ENHANCER1 and HASTY are involved in processing of primary miRNAs (pri-miRNAs) to yield precursor miRNAs (pre-miRNAs) and eventually miRNAs. In addition to these components, mRNA cap-binding proteins, CBP80/ABA HYPERSENSITIVE1 and CBP20, also participate in miRNA biogenesis. Here, we show that STABILIZED1 (STA1), an Arabidopsis pre-mRNA processing factor 6 homolog, is also involved in the biogenesis of miRNAs. Similar to other miRNA biogenesis-defective mutants, sta1-1 accumulated significantly lower levels of mature miRNAs and concurrently higher levels of pri-miRNAs than wild type. The dramatic reductions of mature miRNAs were associated with the accumulation of their target gene transcripts and developmental defects. Furthermore, sta1-1 impaired splicing of intron containing pri-miRNAs and decreased transcript levels of DCL1. These results suggest that STA1 is involved in miRNA biogenesis directly by functioning in pri-miRNA splicing and indirectly by modulating the DCL1 transcript level.
Collapse
Affiliation(s)
- Samir Ben Chaabane
- Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Copenhagen, Thovanlsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
1145
|
Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P. A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 2012; 20:109-25. [PMID: 23266877 PMCID: PMC3628442 DOI: 10.1093/dnares/dss037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorus (P) is essential for plant growth. MicroRNAs (miRNAs) play a key role in phosphate homeostasis. However, little is known about P effect on miRNA expression in barley (Hordeum vulgare L.). In this study, we used Illumina's next-generation sequencing technology to sequence small RNAs (sRNAs) in barley grown under P-deficient and P-sufficient conditions. We identified 221 conserved miRNAs and 12 novel miRNAs, of which 55 were only present in P-deficient treatment while 32 only existed in P-sufficient treatment. Total 47 miRNAs were significantly differentially expressed between the two P treatments (|log2| > 1). We also identified many other classes of sRNAs, including sense and antisense sRNAs, repeat-associated sRNAs, transfer RNA (tRNA)-derived sRNAs and chloroplast-derived sRNAs, and some of which were also significantly differentially expressed between the two P treatments. Of all the sRNAs identified, antisense sRNAs were the most abundant sRNA class in both P treatments. Surprisingly, about one-fourth of sRNAs were derived from the chloroplast genome, and a chloroplast-encoded tRNA-derived sRNA was the most abundant sRNA of all the sRNAs sequenced. Our data provide valuable clues for understanding the properties of sRNAs and new insights into the potential roles of miRNAs and other classes of sRNAs in the control of phosphate homeostasis.
Collapse
Affiliation(s)
- Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, Granada 18071, Spain
| | | | | | | | | | | |
Collapse
|
1146
|
Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD. MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 2012; 13:714. [PMID: 23256903 PMCID: PMC3563456 DOI: 10.1186/1471-2164-13-714] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/30/2012] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs play a vital role in the regulation of gene expression and have been identified in every animal with a sequenced genome examined thus far, except for the placozoan Trichoplax. The genomic repertoires of metazoan microRNAs have become increasingly endorsed as phylogenetic characters and drivers of biological complexity. Results In this study, we report the first investigation of microRNAs in a species from the phylum Ctenophora. We use short RNA sequencing and the assembled genome of the lobate ctenophore Mnemiopsis leidyi to show that this species appears to lack any recognizable microRNAs, as well as the nuclear proteins Drosha and Pasha, which are critical to canonical microRNA biogenesis. This finding represents the first reported case of a metazoan lacking a Drosha protein. Conclusions Recent phylogenomic analyses suggest that Mnemiopsis may be the earliest branching metazoan lineage. If this is true, then the origins of canonical microRNA biogenesis and microRNA-mediated gene regulation may postdate the last common metazoan ancestor. Alternatively, canonical microRNA functionality may have been lost independently in the lineages leading to both Mnemiopsis and the placozoan Trichoplax, suggesting that microRNA functionality was not critical until much later in metazoan evolution.
Collapse
Affiliation(s)
- Evan K Maxwell
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
1147
|
Vetukuri RR, Åsman AKM, Tellgren-Roth C, Jahan SN, Reimegård J, Fogelqvist J, Savenkov E, Söderbom F, Avrova AO, Whisson SC, Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One 2012; 7:e51399. [PMID: 23272103 PMCID: PMC3522703 DOI: 10.1371/journal.pone.0051399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022] Open
Abstract
Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1148
|
Mirouze M. The Small RNA-Based Odyssey of Epigenetic Information in Plants: From Cells to Species. DNA Cell Biol 2012; 31:1650-6. [DOI: 10.1089/dna.2012.1681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie Mirouze
- Institut de Recherche pour le Développement, UMR232, ERL5300 IRD UM2 CNRS, Montpellier, France
| |
Collapse
|
1149
|
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. THE PLANT CELL 2012; 24:4777-92. [PMID: 23275578 PMCID: PMC3556957 DOI: 10.1105/tpc.112.105734] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/23/2012] [Accepted: 12/10/2012] [Indexed: 05/18/2023]
Abstract
The CCAAT box is one of the most common cis-elements present in eukaryotic promoters and is bound by the transcription factor NUCLEAR FACTOR Y (NF-Y). NF-Y is composed of three subunits, NF-YA, NF-YB, and NF-YC. Unlike animals and fungi, plants have significantly expanded the number of genes encoding NF-Y subunits. We provide a comprehensive classification of NF-Y genes, with a separation of closely related, but distinct, histone fold domain proteins. We additionally review recent experiments that have placed NF-Y at the center of many developmental stress-responsive processes in the plant lineage.
Collapse
Affiliation(s)
- Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Roderick W. Kumimoto
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Valentina Calvenzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Monica Fornari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Ben F. Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
- Address correspondence to
| |
Collapse
|
1150
|
Körbes AP, Machado RD, Guzman F, Almerão MP, de Oliveira LFV, Loss-Morais G, Turchetto-Zolet AC, Cagliari A, dos Santos Maraschin F, Margis-Pinheiro M, Margis R. Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One 2012; 7:e50663. [PMID: 23226347 PMCID: PMC3511302 DOI: 10.1371/journal.pone.0050663] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. Members of 59 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally 29 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. Assembled mRNA-seq contigs allowed for a search of putative new precursors and led to the identification of 13 novel miRNA families. Analysis of miRNA population between libraries reveals that several miRNAs and isomiRNAs have different abundance in developing stages compared to mature seeds. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comparative study of the miRNA transcriptome of mature and developing B. napus seeds and provides a basis for future research on individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus.
Collapse
Affiliation(s)
- Ana Paula Körbes
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronei Dorneles Machado
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauricio Pereira Almerão
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Felipe Valter de Oliveira
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss-Morais
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreia Carina Turchetto-Zolet
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandro Cagliari
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe dos Santos Maraschin
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Margis-Pinheiro
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|