1151
|
Liu D, Ge K, Sun J, Chen S, Jia G, Zhang J. Lanthanum breaks the balance between osteogenesis and adipogenesis of mesenchymal stem cells through phosphorylation of Smad1/5/8. RSC Adv 2015. [DOI: 10.1039/c5ra02311d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
La breaks the balance between osteogenesis and adipogenesis of MSCs through phosphorylating Smad1/5/8 to activate the BMP signaling pathway.
Collapse
Affiliation(s)
- Dandan Liu
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Kun Ge
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Jing Sun
- Affiliated Hospital of Hebei University
- Baoding 071000
- PR China
| | - Shizhu Chen
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Guang Jia
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Jinchao Zhang
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| |
Collapse
|
1152
|
Uryu T, Matsumoto N, Namaki S, Mashimo T, Tamagawa T, Yasumitsu T, Okudera M, Komiyama K, Chung UI, Honda K, Arai Y, Yonehara Y. Histochemical and Radiological Study of Bone Regeneration by the Combinatorial Use of Tetrapod-Shaped Artificial Bone and Collagen. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Takeshi Uryu
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Shunsuke Namaki
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Takayuki Mashimo
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Tomohiro Yasumitsu
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry
| | - Ung-il Chung
- Graduate School of Medicine, The University of Tokyo
- Graduate School of Engineering, The University of Tokyo
| | - Kazuya Honda
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | | | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| |
Collapse
|
1153
|
Masuda T, Otsu K, Kumakami-Sakano M, Fujiwara N, Ema M, Hitomi J, Sugiyama Y, Harada H. Combined Administration of BMP-2 and HGF Facilitate Bone Regeneration through Angiogenic Mechanisms. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tomoyuki Masuda
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Masatsugu Ema
- Research Center for Animal Life Science, Department of Stem Cells and Human Disease Models, Shiga University of Medical Science
| | - Jiro Hitomi
- Division of Human Embryology, Department of Anatomy, Iwate Medical University
| | - Yoshiki Sugiyama
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| |
Collapse
|
1154
|
Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015; 37:218-29. [DOI: 10.1016/j.biomaterials.2014.10.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022]
|
1155
|
Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 2015; 70:28-36. [PMID: 25138551 DOI: 10.1016/j.bone.2014.07.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
Abstract
Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Walid Zaher
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
1156
|
Lee JH, Baek HR, Lee KM, Zheng GB, Shin SJ, Jin YZ. The inhibitory effect of zoledronate on early-stage osteoinduction by recombinant human bone morphogenetic protein 2 in an osteoporosis model. Growth Factors 2015; 33:220-8. [PMID: 26099999 DOI: 10.3109/08977194.2015.1058259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study evaluated the effect of the combined treatment of intravenous zoledronic acid (ZA, 0.08 mg/kg) and rhBMP-2 (5 µg) on osteogenesis in a calvarial defect model of ovariectomized SD rats. New bone formation was evaluated 4 or 8 weeks after calvarial defect implantation using micro-CT and histology. Micro-CT results revealed that the rhBMP-2 group showed significantly higher calvarial defect coverage ratio compared with the ZA + rhBMP-2 group at 4 weeks. In addition, bone formation indices were significantly lower in ZA + rhBMP-2 group when compared with the rhBMP-2 group after 4 weeks, which indicates a negative effect of ZA on the initial bone formation and the bone quality. At 8 weeks, the negative effect induced by ZA treatment was alleviated as time passed. Histological examination showed similar results to the micro-CT measurements. In conclusion, although ZA treatment lowered the new bone formation induced by rhBMP-2 initially, as time passed, the negative effect was decreased.
Collapse
Affiliation(s)
- Jae Hyup Lee
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
- b Institute of Medical and Biological Engineering, Seoul National University Medical Research Center , Seoul , Republic of Korea
| | - Hae-Ri Baek
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
| | - Kyung Mee Lee
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
| | - Guang Bin Zheng
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
| | - Sung Joon Shin
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
| | - Yuan Zhe Jin
- a Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea and
| |
Collapse
|
1157
|
Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 2015; 70:19-27. [PMID: 25263520 DOI: 10.1016/j.bone.2014.09.017] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/14/2014] [Accepted: 09/18/2014] [Indexed: 12/26/2022]
Abstract
Bone has the unique capacity to heal without the formation of a fibrous scar, likely because several of the cellular and molecular processes governing bone healing recapitulate the events during skeletal development. A critical component in bone healing is the timely appearance of blood vessels in the fracture callus. Angiogenesis, the formation of new blood vessels from pre-existing ones, is stimulated after fracture by the local production of numerous angiogenic growth factors. The fracture vasculature not only supplies oxygen and nutrients, but also stem cells able to differentiate into osteoblasts and in a later phase also the ions necessary for mineralization. This review provides a concise report of the regulation of angiogenesis by bone cells, its importance during bone healing and its possible therapeutic applications in bone tissue engineering. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
1158
|
Ramasamy SK, Kusumbe AP, Adams RH. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol 2014; 25:148-57. [PMID: 25529933 DOI: 10.1016/j.tcb.2014.11.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) form an extensive network of blood vessels that has numerous essential functions in the vertebrate body. In addition to their well-established role as a versatile transport network, blood vessels can induce organ formation or direct growth and differentiation processes by providing signals in a paracrine (angiocrine) fashion. Tissue repair also requires the local restoration of vasculature. ECs are emerging as important signaling centers that coordinate regeneration and help to prevent deregulated, disease-promoting processes. Vascular cells are also part of stem cell niches and have key roles in hematopoiesis, bone formation, and neurogenesis. Here, we review these newly identified roles of ECs in the regulation of organ morphogenesis, maintenance, and regeneration.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Anjali P Kusumbe
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany.
| |
Collapse
|
1159
|
Rubio R, Abarrategi A, Garcia-Castro J, Martinez-Cruzado L, Suarez C, Tornin J, Santos L, Astudillo A, Colmenero I, Mulero F, Rosu-Myles M, Menendez P, Rodriguez R. Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells. Stem Cells 2014; 32:1136-48. [PMID: 24446210 DOI: 10.1002/stem.1647] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/21/2013] [Indexed: 12/27/2022]
Abstract
The cellular microenvironment plays a relevant role in cancer development. We have reported that mesenchymal stromal/stem cells (MSCs) deficient for p53 alone or together with RB (p53(-/-)RB(-/-)) originate leiomyosarcoma after subcutaneous (s.c.) inoculation. Here, we show that intrabone or periosteal inoculation of p53(-/-) or p53(-/-)RB(-/-) bone marrow- or adipose tissue-derived MSCs originated metastatic osteoblastic osteosarcoma (OS). To assess the contribution of bone environment factors to OS development, we analyzed the effect of the osteoinductive factor bone morphogenetic protein-2 (BMP-2) and calcified substrates on p53(-/-)RB(-/-) MSCs. We show that BMP-2 upregulates the expression of osteogenic markers in a WNT signaling-dependent manner. In addition, the s.c. coinfusion of p53(-/-)RB(-/-) MSCs together with BMP-2 resulted in appearance of tumoral osteoid areas. Likewise, when p53(-/-)RB(-/-) MSCs were inoculated embedded in a calcified ceramic scaffold composed of hydroxyapatite and tricalciumphosphate (HA/TCP), tumoral bone formation was observed in the surroundings of the HA/TCP scaffold. Moreover, the addition of BMP-2 to the ceramic/MSC implants further increased the tumoral osteoid matrix. Together, these data indicate that bone microenvironment signals are essential to drive OS development.
Collapse
Affiliation(s)
- Ruth Rubio
- GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Government, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1160
|
Vazquez M, Evans BAJ, Riccardi D, Evans SL, Ralphs JR, Dillingham CM, Mason DJ. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne) 2014; 5:208. [PMID: 25538684 PMCID: PMC4260042 DOI: 10.3389/fendo.2014.00208] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.
Collapse
Affiliation(s)
- Marisol Vazquez
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Biosciences, Cardiff University, Cardiff, UK
| | - Bronwen A. J. Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | - Sam L. Evans
- Institute of Mechanical and Manufacturing Engineering, School of Engineering, Cardiff University, Cardiff, UK
| | - Jim R. Ralphs
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Deborah J. Mason
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
1161
|
Sovershaev TA, Egorina EM, Unruh D, Bogdanov VY, Hansen JB, Sovershaev MA. BMP-7 induces TF expression in human monocytes by increasing F3 transcriptional activity. Thromb Res 2014; 135:398-403. [PMID: 25533127 DOI: 10.1016/j.thromres.2014.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/10/2014] [Accepted: 11/30/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Bone morphogenetic protein (BMP)-7, a major regulator of bone metabolism, inhibits ectopic calcification in atherosclerotic plaques. We have recently reported that BMP-7 is also a potent inducer of tissue factor (TF) in human mononuclear cells (MNCs). While nuclear factor kappa beta (NF-kB) and activation protein-1 (AP-1) are the transcription factors essential for inducible expression of human TF gene (F3), the mechanisms responsible for TF induction by BMP-7 are not known. OBJECTIVE To elucidate the molecular mechanisms governing BMP-7-triggered TF expression in human MNCs. METHODS Human blood monocytes were stimulated with BMP-7 and western blotting, qRT-PCR, and flow cytometry studies were carried out to assess F3 expression; promoter studies were also performed using a panel of reporter constructs. Procoagulant TF activity was measured using a validated FXa generation assay. The significance of NF-kB transcriptional activity was verified via pharmacological inhibition. RESULTS BMP-7 increased TF protein levels, procoagulant activity, surface presentation, and TF mRNA expression. This increase was accompanied by activation of NF-kB as evidenced by reduced IkB-α levels and elevated transcriptional activity of an NF-kB-sensitive reporter in transfected MNCs. Although treatment with BMP-7 also led to a strong phosphorylation of c-Jun, activation of AP-1 alone was not sufficient to induce TF expression: JSH-23, a potent and specific NF-kB inhibitor, completely blocked BMP-7-induced TF expression. CONCLUSIONS We report that BMP-7-dependent activation of TF in human MNCs is mediated via increased activity of NF-kB, leading to enhanced F3 transcription in human MNCs.
Collapse
Affiliation(s)
- T A Sovershaev
- K.G. Jebsen Thrombosis and Expertise Centre (TREC), Tromsø, Norway; Hematological Research Group, Department of Clinical Medicine, the Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway; Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - E M Egorina
- Section for Clinical Pharmacology, University Hospital of North Norway, N-9038, Tromsø, Norway
| | - D Unruh
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - V Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - J B Hansen
- K.G. Jebsen Thrombosis and Expertise Centre (TREC), Tromsø, Norway; Hematological Research Group, Department of Clinical Medicine, the Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, N-9038, Tromsø, Norway
| | - M A Sovershaev
- Hematological Research Group, Department of Clinical Medicine, the Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway; Section for Medical Biochemistry, Department of Laboratory Medicine, University Hospital of Northern Norway, N-9038, Tromsø, Norway
| |
Collapse
|
1162
|
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9:e113785. [PMID: 25470749 PMCID: PMC4254917 DOI: 10.1371/journal.pone.0113785] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Anna Li
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiyi Kua
- The Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138632, Singapore
| | - Huijuan Liu
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- * E-mail: (BL); (AH)
| | - Baojie Li
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- * E-mail: (BL); (AH)
| |
Collapse
|
1163
|
Suzuki E, Ochiai-Shino H, Aoki H, Onodera S, Saito A, Saito A, Azuma T. Akt activation is required for TGF-β1-induced osteoblast differentiation of MC3T3-E1 pre-osteoblasts. PLoS One 2014; 9:e112566. [PMID: 25470129 PMCID: PMC4254279 DOI: 10.1371/journal.pone.0112566] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022] Open
Abstract
Background We have previously reported that repeated treatment of human periodontal ligament cells and murine pre-osteoblast MC3T3-E1 cells with transforming growth factor-beta 1 (TGF-β1) inhibited their osteoblastic differentiation because of decreased insulin-like growth factor-1 (IGF-1) secretion. We also found that IGF-1/PI3K signaling plays an important role in osteoblast differentiation induced by TGF-β1 treatment; however, the downstream signaling controlling this remains unknown. The aim of this current study is to investigate whether Akt activation is required for osteoblast differentiation. Methodology/Principal Findings MC3T3-E1 cells were cultured in osteoblast differentiation medium (OBM) with or without 0.1 ng/mL TGF-β1. OBM containing TGF-β1 was changed every 12 h to provide repeated TGF-β1 administration. MC3T3-E1 cells were infected with retroviral vectors expressing constitutively active (CA) or dominant-negative (DN)-Akt. Alkaline phosphatase (ALP) activity and osteoblastic marker mRNA levels were substantially decreased by repeated TGF-β1 treatment compared with a single TGF-β1 treatment. However, expression of CA-Akt restored ALP activity following TGF-β1 treatment. Surprisingly, ALP activity increased following multiple TGF-β1 treatments as the number of administrations of TGF-β1 increased. Activation of Akt significantly enhanced expression of osteocalcin, but TGF-β1 treatment inhibited this. Mineralization of MC3T3-E1 cells was markedly enhanced by CA-Akt expression under all medium conditions. Exogenous IGF-1 restored the down-regulation of osteoblast-related gene expression by repeated TGF-β1 administration. However, in cells expressing DN-Akt, these levels remained inhibited regardless of IGF-1 treatment. These findings indicate that Akt activation is required for the early phase of osteoblast differentiation of MC3T3-E1 cells induced by TGF-β1. However, Akt activation is insufficient to reverse the inhibitory effects of TGF-β1 in the late stages of osteoblast differentiation. Conclusions TGF-β1 could be an inducer or an inhibitor of osteoblastic differentiation of MC3T3-E1 cells depending on the state of Akt phosphorylation. Our results indicate that Akt is the molecular switch for TGF-β1-induced osteoblastic differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Eiichi Suzuki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | | | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
- * E-mail:
| |
Collapse
|
1164
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
1165
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
1166
|
Güemes M, Garcia AJ, Rigueur D, Runke S, Wang W, Zhao G, Mayorga VH, Atti E, Tetradis S, Péault B, Lyons K, Miranda-Carboni GA, Krum SA. GATA4 is essential for bone mineralization via ERα and TGFβ/BMP pathways. J Bone Miner Res 2014; 29:2676-87. [PMID: 24932701 PMCID: PMC4501475 DOI: 10.1002/jbmr.2296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/29/2014] [Accepted: 06/12/2014] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a disease characterized by low bone mass, leading to an increased risk of fragility fractures. GATA4 is a zinc-finger transcription factor that is important in several tissues, such as the heart and intestines, and has recently been shown to be a pioneer factor for estrogen receptor alpha (ERα) in osteoblast-like cells. Herein, we demonstrate that GATA4 is necessary for estrogen-mediated transcription and estrogen-independent mineralization in vitro. In vivo deletion of GATA4, driven by Cre-recombinase in osteoblasts, results in perinatal lethality, decreased trabecular bone properties, and abnormal bone development. Microarray analysis revealed GATA4 suppression of TGFβ signaling, necessary for osteoblast progenitor maintenance, and concomitant activation of BMP signaling, necessary for mineralization. Indeed, pSMAD1/5/8 signaling, downstream of BMP signaling, is decreased in the trabecular region of conditional knockout femurs, and pSMAD2/3, downstream of TGFβ signaling, is increased in the same region. Together, these experiments demonstrate the necessity of GATA4 in osteoblasts. Understanding the role of GATA4 to regulate the tissue specificity of estrogen-mediated osteoblast gene regulation and estrogen-independent bone differentiation may help to develop therapies for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Miriam Güemes
- University of California, Los Angeles (UCLA)/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1167
|
Song R, Fullerton DA, Ao L, Zheng D, Zhao KS, Meng X. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells. J Mol Med (Berl) 2014; 93:403-12. [PMID: 25412776 DOI: 10.1007/s00109-014-1229-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Biglycan accumulates in aortic valves affected by calcific aortic valve disease (CAVD), and soluble biglycan upregulates BMP-2 expression in human aortic valve interstitial cells (AVICs) via Toll-like receptor (TLR) 2 and induces AVIC pro-osteogenic reprogramming, characterized by elevated pro-osteogenic activities. We sought to identify the factors responsible for biglycan-induced pro-osteogenic reprogramming in human AVICs. Treatment of AVICs with recombinant biglycan induced the secretion of BMP-2 and TGF-β1, but not BMP-4 or BMP-7. Biglycan upregulated TGF-β1 expression in a TLR4-dependent fashion. Neutralization of BMP-2 or TGF-β1 attenuated the expression of alkaline phosphatase (ALP), osteopontin, and runt-related transcription factor 2 (Runx2) in cells exposed to biglycan. However, neutralization of both BMP-2 and TGF-β1 abolished the expression of these osteogenic biomarkers and calcium deposition. Phosphorylated Smad1 and Smad3 were detected in cells exposed to biglycan, and knockdown of Smad1 or Smad3 attenuated the effect of biglycan on the expression of osteogenic biomarkers. While BMP-2 and TGF-β1 each upregulated the expression of osteogenic biomarkers, an exposure to BMP-2 plus TGF-β1 induced a greater upregulation and results in calcium deposition. We conclude that concurrent upregulation of BMP-2 and TGF-β1 is responsible for biglycan-induced pro-osteogenic reprogramming in human AVICs. The Smad 1/3 pathways are involved in the mechanism of AVIC pro-osteogenic reprogramming. KEY MESSAGE Biglycan upregulates BMP-2 and TGF-β1 in human aortic valve cells through TLRs. Both BMP-2 and TGF-β1 are required for aortic valve cell pro-osteogenic reprogramming. Smad signaling pathways are involved in mediating the pro-osteogenic effects of biglycan.
Collapse
Affiliation(s)
- Rui Song
- Department of Surgery, University of Colorado Denver, Box C-320, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | | | | | | | | | | |
Collapse
|
1168
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
1169
|
Platelet rich concentrate promotes early cellular proliferation and multiple lineage differentiation of human mesenchymal stromal cells in vitro. ScientificWorldJournal 2014; 2014:845293. [PMID: 25436230 PMCID: PMC4243129 DOI: 10.1155/2014/845293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 01/17/2023] Open
Abstract
Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
Collapse
|
1170
|
Robaszkiewicz A, Valkó Z, Kovács K, Hegedűs C, Bakondi E, Bai P, Virág L. The role of p38 signaling and poly(ADP-ribosyl)ation-induced metabolic collapse in the osteogenic differentiation-coupled cell death pathway. Free Radic Biol Med 2014; 76:69-79. [PMID: 25078118 DOI: 10.1016/j.freeradbiomed.2014.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a multistep process regulated by a diverse set of morphogenic and transcription factors. Previously we identified endogenous hydrogen peroxide-induced poly(ADP-ribose) polymerase-1 (PARP1) activation as a mediator of osteodifferentiation and associated cell death. Here we set out to investigate whether or not activation of PARP1 is dependent on DNA breaks and how PARP1 mediates cell death during osteodifferentiation of mesenchymal stem cells and SAOS-2 cells. Here we show that the MAP kinases p38, JNK, and ERK1/2 become activated during the differentiation process. However, only p38 activation depended both on hydrogen peroxide production and on PARP1 activation as the hydrogen peroxide decomposing enzyme catalase, the PARP inhibitor PJ34, and the silencing of PARP1 suppressed p38 activation. Inhibition of p38 suppressed cell death and inhibited osteogenic differentiation (calcium deposition, alkaline phosphatase activity, and marker gene expression) providing further support for the close coupling of osteodifferentiation and cell death. Metabolic collapse appears to be central in the hydrogen peroxide-PARP1-p38 pathway as silencing PARP1 or inhibition of p38 prevented differentiation-associated loss of cellular NAD, inhibition of mitochondrial respiration, and glycolytic activity. We also provide evidence that endogenous hydrogen peroxide produced by the differentiating cells is sufficient to cause detectable DNA breakage. Moreover, p38 translocates from the cytoplasm to the nucleus where it interacts and colocalizes with PARP1 as detected by immunoprecipitation and immunofluorescence, respectively. In summary, hydrogen peroxide-induced PARP1 activation leads to p38 activation and this pathway is required both for the successful completion of the differentiation process and for the associated cell death.
Collapse
Affiliation(s)
- Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Zsuzsanna Valkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
1171
|
Abstract
Osteopenia and osteoporosis are common manifestations in inflammatory bowel diseases (IBD) but the pathogenetic mechanism of bone loss in IBD is only partially understood. There is evidence that fat mass is an important determinant of the bone mineral density and adipose-derived factors seem to play an important role for the association between fat mass and bone mass. The association between adiposity and low bone density is rather poorly studied in IBD, but emerging data on adipokines in IBD in relation to osteoporosis provide a novel pathophysiological concept that may shed light on the etiology of bone loss in IBD. It could be suggested that adipokines interfere in bone metabolism by altering the sensitive balance between osteoblasts and osteoclasts although further studies in this setting are needed.
Collapse
|
1172
|
Martelli A, Santos AR. Cellular and morphological aspects of fibrodysplasia ossificans progressiva. Lessons of formation, repair, and bone bioengineering. Organogenesis 2014; 10:303-11. [PMID: 25482313 DOI: 10.4161/org.29206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disease that causes bone formation within the muscles, tendons, ligaments and connective tissues. There is no cure for this disorder and only treatment of the symptoms is available. The purpose of this study was to review the literature and describe the clinical, cellular and molecular aspects of FOP. The material used for the study was obtained by reviewing scientific articles published in various literature-indexed databases. In view of its rarity and of the lack of insightful information and the unpredictability of its course, FOP is a challenging disorder for professionals who are confronted by it. However, this rare disease raises a great deal of interest because understanding the mechanism of mature bone formation can encourage research lines related to bone regeneration and the prevention of heterotopic ossification.
Collapse
Affiliation(s)
- Anderson Martelli
- a Faculdade Mogiana do Estado de São Paulo (FMG) ; Mogi Guaçu , Brazil
| | | |
Collapse
|
1173
|
Dai Z, Shu Y, Wan C, Wu C. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. J Biomater Appl 2014; 29:1272-83. [PMID: 25361919 DOI: 10.1177/0885328214557904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoblastic differentiation of mesenchymal stem cells from bone marrow is an essential step for bone formation. The osteogenesis is normally induced by chemical mediators. Recent laboratory studies have revealed that mechanical properties of an extracellular matrix, typically hydrogels with different modules, also affect the fate of stem cells. The question is how to adjust their mechanical properties inside the body in biomedical applications. In this study, we designed/used a novel extracellular matrix, namely, a hybrid gel made of billions of injectable small thermally and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) microgels whose swelling at the body pH and temperature physically jammed them and mesenchymal stem cells together, which enabled us to in situ apply an adjustable mechanical stress on those embedded stem cells. By treating the cell layer with the microgels, we found that an earlier incorporation of the microgels significantly increases the alkaline phosphatase activity, while a later addition of the microgels after the primary calcium deposition enhances the extracellular matrix mineralization in the mesenchymal stem cells cultures accompanied by up-regulation of osteogenic marker genes expression, presumably due to the calcium fixation by the carboxyl groups inside the microgels and the physical contact between the microgels and mesenchymal stem cells layers. These microgels provide an extracellular matrix microenvironment to affect the fate and biological behavior of mesenchymal stem cells, facilitating their potential applications in regenerative therapies.
Collapse
Affiliation(s)
- Zhuojun Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yinglan Shu
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chao Wan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
1174
|
Bagheri ZS, Giles E, El Sawi I, Amleh A, Schemitsch EH, Zdero R, Bougherara H. Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:435-42. [PMID: 25492008 DOI: 10.1016/j.msec.2014.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/11/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
This study is part of an ongoing program to develop a new CF/Flax/Epoxy bone fracture plate to be used in orthopedic trauma applications. The purpose was to determine this new plate's in-vitro effects on the level of bone formation genes, as well as cell viability in comparison with a medical grade metal (i.e. stainless steel) commonly employed for fabrication of bone plates (positive control). Cytotoxicity and osteogenesis induced by wear debris of the material were assessed using Methyl Tetrazolium (MTT) assay and reverse transcription polymerase chain reaction (RT-PCR) for 3 osteogenesis specific gene markers, including bone morphogenetic proteins (BMP2), runt-related transcription factor 2 (Runx2) and Osterix. Moreover, the Flax/Epoxy and CF/Epoxy composites were examined separately for their wettability properties by water absorption and contact angle (CA) tests using the sessile drop technique. The MTT results for indirect and direct assays indicated that the CF/Flax/Epoxy composite material showed comparable cell viability with no cytotoxicity at all incubation times to that of the metal group (p≥0.05). Osteogenesis test results showed that the expression level of Runx2 marker induced by CF/Flax/Epoxy were significantly higher than those induced by metal after 48 h (p=0.57). Also, the Flax/Epoxy composite revealed a hydrophilic character (CA=68.07°±2.05°) and absorbed more water up to 17.2% compared to CF/Epoxy, which reached 1.25% due to its hydrophobic character (CA=93.22°±1.95°) (p<0.001). Therefore, the new CF/Flax/Epoxy may be a potential candidate for medical applications as a bone fracture plate, as it showed similar cell viability with no negative effect on gene expression levels responsible for bone formation compared to medical grade stainless steel.
Collapse
Affiliation(s)
- Zahra S Bagheri
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada; Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Erica Giles
- Musculoskeletal Research Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Ihab El Sawi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada
| | - Asma Amleh
- Department of Biology, The American University in Cairo (AUC), New Cairo 11835, Egypt
| | - Emil H Schemitsch
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Musculoskeletal Research Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Dept. of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S-1A8, Canada
| | - Radovan Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada; Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada.
| |
Collapse
|
1175
|
RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A 2014; 111:16389-94. [PMID: 25313057 DOI: 10.1073/pnas.1407097111] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myofibroblasts are a key cell type in wound repair, cardiovascular disease, and fibrosis and in the tumor-promoting microenvironment. The high accumulation of myofibroblasts in reactive stroma is predictive of the rate of cancer progression in many different tumors, yet the cell types of origin and the mechanisms that regulate proliferation and differentiation are unknown. We report here, for the first time to our knowledge, the characterization of normal human prostate-derived mesenchymal stem cells (MSCs) and the TGF-β1-regulated pathways that modulate MSC proliferation and myofibroblast differentiation. Human prostate MSCs combined with prostate cancer cells expressing TGF-β1 resulted in commitment to myofibroblasts. TGF-β1-regulated runt-related transcription factor 1 (RUNX1) was required for cell cycle progression and proliferation of progenitors. RUNX1 also inhibited, yet did not block, differentiation. Knockdown of RUNX1 in prostate or bone marrow-derived MSCs resulted in cell cycle arrest, attenuated proliferation, and constitutive differentiation to myofibroblasts. These data show that RUNX1 is a key transcription factor for MSC proliferation and cell fate commitment in myofibroblast differentiation. This work also shows that the normal human prostate gland contains tissue-derived MSCs that exhibit multilineage differentiation similar to bone marrow-derived MSCs. Targeting RUNX1 pathways may represent a therapeutic approach to affect myofibroblast proliferation and biology in multiple disease states.
Collapse
|
1176
|
He S, Choi YH, Choi JK, Yeo CY, Chun C, Lee KY. Protein kinase A regulates the osteogenic activity of Osterix. J Cell Biochem 2014; 115:1808-15. [PMID: 24905700 DOI: 10.1002/jcb.24851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/12/2014] [Indexed: 11/09/2022]
Abstract
Osterix belongs to the SP gene family and is a core transcription factor responsible for osteoblast differentiation and bone formation. Activation of protein kinase A (PKA), a serine/threonine kinase, is essential for controlling bone formation and BMP-induced osteoblast differentiation. However, the relationship between Osterix and PKA is still unclear. In this report, we investigated the precise role of the PKA pathway in regulating Osterix during osteoblast differentiation. We found that PKA increased the protein level of Osterix; PKA phosphorylated Osterix, increased protein stability, and enhanced the transcriptional activity of Osterix. These results suggest that Osterix is a novel target of PKA, and PKA modulates osteoblast differentiation partially through the regulation of Osterix.
Collapse
Affiliation(s)
- Siyuan He
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
1177
|
Ha CM, Park S, Choi YK, Jeong JY, Oh CJ, Bae KH, Lee SJ, Kim JH, Park KG, Jun DY, Lee IK. Activation of Nrf2 by dimethyl fumarate improves vascular calcification. Vascul Pharmacol 2014; 63:29-36. [DOI: 10.1016/j.vph.2014.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 11/15/2022]
|
1178
|
Bashur LA, Chen D, Chen Z, Liang B, Pardi R, Murakami S, Zhou G. Loss of jab1 in osteochondral progenitor cells severely impairs embryonic limb development in mice. J Cell Physiol 2014; 229:1607-17. [PMID: 24604556 DOI: 10.1002/jcp.24602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
The transcriptional cofactor Jab1 controls cell proliferation, apoptosis, and differentiation in diverse developmental processes by regulating the activity of various transcription factors. To determine the role of Jab1 during early limb development, we developed a novel Jab1(flox/flox) ; Prx1-Cre conditional Knockout (cKO) mutant mouse model in which Jab1 was deleted in the osteochondral progenitor cells of the limb buds. Jab1 cKO mutant mice displayed drastically shortened limbs at birth. The short-limb defect became apparent in Jab1 cKO mutants at E15.5 and increasingly worsened thereafter. By E18.5, Jab1 cKO mutant mice exhibited significantly shorter limbs with: very few hypertrophic chondrocytes, disorganized chondrocyte columns, much smaller primary ossification centers, and significantly increased apoptosis. Real-time RT-PCR analysis showed decreased expression of Sox9, Col2a1, Ihh, and Col10a1 in Jab1 cKO mutant long bones, indicating impaired chondrogenesis. Furthermore, in a micromass culture model of early limb mesenchyme cells, alcian blue staining showed a significant decrease in chondrogenesis in Jab1 cKO limb bud cells. The expression of Sox9 and its downstream targets Col2a1 and Aggrecan, as well as BMP signaling downstream targets, Noggin, Id1, and Ihh, were significantly decreased in Jab1 cKO micromass cultures. Moreover, over-expression of SOX9 in Jab1 cKO micromass cultures partially restored Col2a1and Aggrecan expression. Jab1-deficient micromass cultures also exhibited decreased BMP signaling response and reduced BMP-specific reporter activity ex vivo. In summary, our study demonstrates that Jab1 is an essential regulator of early embryonic limb development in vivo, likely in part by co-activating Sox9 and BMP signaling.
Collapse
Affiliation(s)
- Lindsay A Bashur
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
1179
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
1180
|
Roberto VP, Tiago DM, Silva IAL, Cancela ML. MiR-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys 2014; 564:173-83. [PMID: 25241053 DOI: 10.1016/j.abb.2014.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) provide a mechanism for fine-tuning of intricate cellular processes through post-transcriptional regulation. Emerging evidences indicate that miRNAs play key roles in regulation of osteogenesis. The miR-29 family was previously implicated in mammalian osteoblast differentiation by targeting extracellular matrix molecules and modulating Wnt signaling. Nevertheless, the function of miR-29 in bone formation and homeostasis is not completely understood. Here, we provide novel insights into the biological effect of miR-29a overexpression in a mineralogenic cell system (ABSa15). MiR-29a gain-of-function resulted in significant increase of extracellular matrix mineralization, probably due to accelerated differentiation. We also demonstrated for the first time that miR-29a induced β-catenin protein levels, implying a stimulation of canonical Wnt signaling. Our data also suggests that SPARC is a conserved target of miR-29a, and may contribute to the phenotype observed in ABSa15 cells. Finally, we provide evidences for miR-29a conservation throughout evolution based on sequence homology, synteny analysis and expression patterns. Concluding, miR-29a is a key player in osteogenic differentiation, leading to increased mineralization in vitro, and this function seems to be conserved throughout vertebrate evolution by interaction with canonical Wnt signaling and conservation of targets.
Collapse
Affiliation(s)
- V P Roberto
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, DCBM, University of Algarve, Portugal.
| | - D M Tiago
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| | - I A L Silva
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, DCBM, University of Algarve, Portugal.
| | - M L Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.
| |
Collapse
|
1181
|
You L, Gu W, Chen L, Pan L, Chen J, Peng Y. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7249-7261. [PMID: 25400823 PMCID: PMC4230144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Hyperglycemia is one of the possible causes for osteoporosis and bone fracture in diabetes mellitus. Here we modeled diabetes-induced osteoporosis in vitro using preosteoblastic cell line MC3T3-E1 and a diabetic mice model for in vivo studies. We found that in addition to reducing osteoblast viability and differentiation (mineralization), culture in elevated glucose down regulated microRNA-378 (miR-378) expression but ectopic miR-378 expression reversed the effects of high glucose. We identified caspase-3 (CASP3) as a target of miR-378 and showed that miR-378 repressed CASP3 mRNA and protein expression under high glucose condition. We further showed that both miR-378 expression and CASP3 silencing independently restored alkaline phosphatase (ALP) activity and the expression of osteoblastic differentiation markers Runt-related transcription factor 2 (Runx2), osteorix (Osx), collagen I (Col I), osteocalcin (OCN), and osteonectin (ON). We also found that under high glucose conditions miR-378 activated the PI3K/Akt signaling pathway and down regulated pro-apoptotic CytC, Apaf-1 and Bax proteins via the PI3K/Akt pathway. Collectively, these results suggest that miR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li You
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| | - Wensha Gu
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| | - Lin Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| | - Ling Pan
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| | - Jinyu Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine 100 Haining Road, Shanghai 200080, China
| |
Collapse
|
1182
|
Yoon BH, Esquivies L, Ahn C, Gray PC, Ye SK, Kwiatkowski W, Choe S. An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2. J Bone Miner Res 2014; 29:1950-9. [PMID: 24692083 PMCID: PMC4276739 DOI: 10.1002/jbmr.2238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/02/2014] [Accepted: 03/13/2014] [Indexed: 12/27/2022]
Abstract
Recombinant bone morphogenetic protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue, which, when mutated to the corresponding BMP2 residue, resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures.
Collapse
Affiliation(s)
- Byung-Hak Yoon
- Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Global University Campus, Incheon, Republic of Korea; Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
1183
|
Simmons JK, Dirksen WP, Hildreth BE, Dorr C, Williams C, Thomas R, Breen M, Toribio RE, Rosol TJ. Canine prostate cancer cell line (Probasco) produces osteoblastic metastases in vivo. Prostate 2014; 74:1251-65. [PMID: 25043424 PMCID: PMC4216720 DOI: 10.1002/pros.22838] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND In 2012, over 240,000 men were diagnosed with prostate cancer and over 28,000 died from the disease. Animal models of prostate cancer are vital to understanding its pathogenesis and developing therapeutics. Canine models in particular are useful due to their similarities to late-stage, castration-resistant human disease with osteoblastic bone metastases. This study established and characterized a novel canine prostate cancer cell line that will contribute to the understanding of prostate cancer pathogenesis. METHODS A novel cell line (Probasco) was derived from a mixed breed dog that had spontaneous prostate cancer. Cell proliferation and motility were analyzed in vitro. Tumor growth in vivo was studied by subcutaneous, intratibial, and intracardiac injection of Probasco cells into nude mice. Tumors were evaluated by bioluminescent imaging, Faxitron radiography, µCT, and histology. RT-PCR and genome-wide DNA copy number profiling were used to characterize the cell line. RESULTS The Probasco cells grew in vitro (over 75 passages) and were tumorigenic in nude mice. Probasco cells expressed high levels of BMP2, CDH1, MYOF, FOLH1, RUNX2, and SMAD5 modest CXCL12, SLUG, and BMP, and no PTHrP mRNA. Following intracardiac injection, Probasco cells metastasized primarily to the appendicular skeleton, and both intratibial and intracardiac injections produced osteoblastic tumors in bone. Comparative genomic hybridization demonstrated numerous DNA copy number aberrations throughout the genome, including large losses and gains in multiple chromosomes. CONCLUSIONS The Probasco prostate cancer cell line will be a valuable model to investigate the mechanisms of prostate cancer pathogenesis and osteoblastic bone metastases.
Collapse
Affiliation(s)
- Jessica K. Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Wessel P. Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Blake E. Hildreth
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Carlee Dorr
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Correspondence to: Dr. Thomas J. Rosol, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
1184
|
Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 2014; 40:459-81. [PMID: 25283434 DOI: 10.1002/biof.1177] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
1185
|
Sefat F, Denyer MC, Youseffi M. Effects of different transforming growth factor beta (TGF-β) isomers on wound closure of bone cell monolayers. Cytokine 2014; 69:75-86. [DOI: 10.1016/j.cyto.2014.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/24/2014] [Accepted: 05/12/2014] [Indexed: 12/14/2022]
|
1186
|
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:75-87. [PMID: 25015093 DOI: 10.1089/ten.teb.2014.0119] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these processes is regulated by specific signaling molecules (growth factors/cytokines and hormones) and their activated intracellular networks. Especially the utilization of the molecular machinery seems crucial to consider prior to developing bone implants, bone-substitute materials, and cell-based constructs for bone regeneration. The aim of this review is to provide an overview of the signaling mechanisms involved in bone regeneration and remodeling and the osteogenic potential of MSCs to become a key cellular resource for such regeneration and remodeling processes. Additionally, an overview of possibilities to beneficially exploit cell signaling processes to optimize bone regeneration is provided.
Collapse
|
1187
|
Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis 2014; 5:e1366. [PMID: 25118926 PMCID: PMC4454305 DOI: 10.1038/cddis.2014.330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/09/2022]
Abstract
Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7 was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation. These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in endochondral versus intramembranous ossification.
Collapse
|
1188
|
Uskoković V, Desai TA. Does translational symmetry matter on the micro scale? Fibroblastic and osteoblastic interactions with the topographically distinct poly(ε-caprolactone)/hydroxyapatite thin films. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13209-20. [PMID: 25014232 PMCID: PMC4134142 DOI: 10.1021/am503043t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/11/2014] [Indexed: 05/23/2023]
Abstract
Material composition and topography of the cell-contacting material interface are important considerations in the design of biomaterials at the nano and micro scales. This study is one of the first to have assessed the osteoblastic response to micropatterned polymer-ceramic composite surfaces. In particular, the effect of topographic variations of composite poly(ε-caprolactone)/hydroxyapatite (PCL/HAp) films on viability, proliferation, migration and osteogenesis of fibroblastic and osteoblastic MC3T3-E1 cells was evaluated. To that end, three different micropatterned PCL/HAp films were compared: flat and textured, the latter of which included films comprising periodically arranged and randomly distributed oval topographic features 10 μm in diameter, 20 μm in separation and 10 μm in height, comparable to the dimensions of MC3T3-E1 cells. PCL/HAp films were fabricated by the combination of a bottom-up, soft chemical synthesis of the ceramic, nanoparticulate phase and a top-down, photolithographic technique for imprinting fine, microscale features on them. X-ray diffraction analysis indicated an isotropic orientation of both the polymeric chains and HAp crystallites in the composite samples. Biocompatibility tests indicated no significant decrease in their viability when grown on PCL/HAp films. Fibroblast proliferation and migration onto PCL/HAp films proceeded slower than on the control borosilicate glass, with the flat composite film fostering more cell migration activity than the films containing topographic features. The gene expression of seven analyzed osteogenic markers, including procollagen type I, osteocalcin, osteopontin, alkaline phosphatase, and the transcription factors Runx2 and TGFβ-1, was, however, consistently upregulated in cells grown on PCL/HAp films comprising periodically ordered topographic features, suggesting that the higher levels of symmetry of the topographic ordering impose a moderate mechanochemical stress on the adherent cells and thus promote a more favorable osteogenic response. The obtained results suggest that topography can be a more important determinant of the cell/surface interaction than the surface chemistry and/or stiffness as well as that the regularity of the distribution of topographic features can be a more important variable than the topographic features per se.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and
Nanotechnology Laboratory, Department of Bioengineering
and Therapeutic Sciences, University of
California, San Francisco, San
Francisco, California 94158-2330, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University
of Illinois, Chicago, Illinois 60607-7052, United States
| | - Tejal A. Desai
- Therapeutic Micro and
Nanotechnology Laboratory, Department of Bioengineering
and Therapeutic Sciences, University of
California, San Francisco, San
Francisco, California 94158-2330, United States
| |
Collapse
|
1189
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-106 Cell Line. J Mol Neurosci 2014; 54:555-73. [DOI: 10.1007/s12031-014-0389-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023]
|
1190
|
Baker BA, Pine PS, Chatterjee K, Kumar G, Lin NJ, McDaniel JH, Salit ML, Simon CG. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Biomaterials 2014; 35:6716-26. [DOI: 10.1016/j.biomaterials.2014.04.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
|
1191
|
Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells 2014; 6:266-277. [PMID: 25126377 PMCID: PMC4131269 DOI: 10.4252/wjsc.v6.i3.266] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Periosteum is a thin fibrous layer that covers most bones. It resides in a dynamic mechanically loaded environment and provides a niche for pluripotent cells and a source for molecular factors that modulate cell behaviour. Elucidating periosteum regenerative potential has become a hot topic in orthopaedics. This review discusses the state of the art of osteochondral tissue engineering rested on periosteum derived progenitor cells (PDPCs) and suggests upcoming research directions. Periosteal cells isolation, characterization and migration in the site of injury, as well as their differentiation, are analysed. Moreover, the role of cell mechanosensing and its contribution to matrix organization, bone microarchitecture and bone stenght is examined. In this regard the role of periostin and its upregulation under mechanical stress in order to preserve PDPC survival and bone tissue integrity is contemplated. The review also summarized the role of the periosteum in the field of dentistry and maxillofacial reconstruction. The involvement of microRNAs in osteoblast differentiation and in endogenous tissue repair is explored as well. Finally the novel concept of a guided bone regeneration based on the use of periosteum itself as a smart material and the realization of constructs able to mimic the extracellular matrix features is talked out. Additionally, since periosteum can differentiate into insulin producing cells it could be a suitable source in allogenic transplantations. That innovative applications would take advantage from investigations aimed to assess PDPC immune privilege.
Collapse
|
1192
|
Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 2014; 229:1236-44. [PMID: 24435757 DOI: 10.1002/jcp.24557] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/10/2014] [Indexed: 12/17/2022]
Abstract
Osteoblast differentiation is tightly regulated by several factors including microRNAs (miRNAs). In this paper, we report that pre-mir-15b is highly expressed in differentiated osteoblasts. The functional role of miR-15b in osteoblast differentiation was determined using miR-15b mimic/inhibitor and the expression of osteoblast differentiation marker genes such as alkaline phosphatase (ALP), type I collagen genes was decreased by miR-15b inhibitor. Runx2, a bone specific transcription factor is generally required for expression of osteoblast differentiation marker genes and in response to miR-15b inhibitor treatment, Runx2 mRNA expression was not changed; whereas its protein expression was decreased. Even though Smurf1 (SMAD specific E3 ubiquitin protein ligase 1), HDAC4 (histone deacetylase 4), Smad7, and Crim1 were found to be few of miR-15b's putative target genes, there was increased expression of only Smurf1 gene at mRNA and protein levels by miR-15b inhibitor. miR-15b mimic treatment significantly increased and decreased expressions of Runx2 and Smurf1 proteins, respectively. We further identified that the Smurf1 3'UTR is directly targeted by miR-15b using the luciferase reporter gene system. This is well documented that Smurf1 interacts with Runx2 and degrades it by proteasomal pathway. Hence, based on our results we suggest that miR-15b promotes osteoblast differentiation by indirectly protecting Runx2 protein from Smurf1 mediated degradation. Thus, this study identified that miR-15b can act as a positive regulator for osteoblast differentiation.
Collapse
Affiliation(s)
- S Vimalraj
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | | |
Collapse
|
1193
|
Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 2014; 561:64-73. [PMID: 25043976 DOI: 10.1016/j.abb.2014.07.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are multifunctional secreted cytokines, which belong to the TGF-β superfamily. These glycoproteins act as a disulfide-linked homo- or heterodimers, being potent regulators of bone and cartilage formation and repair, cell proliferation during embryonic development and bone homeostasis in the adult. BMPs are promising molecules for tissue engineering and bone therapy. The present review discusses this family of proteins, their structure and biological function, their therapeutic applications and drawbacks, their effects on mesenchymal stem cells differentiation, and the cell signaling pathways involved in this process.
Collapse
Affiliation(s)
- Ana Claudia Carreira
- Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo 05508-000, Brazil; NUCEL-NETCEM Cell and Molecular Therapy Center, Medical Clinics Department, School of Medicine, University of São Paulo, São Paulo, 05508-000 SP, Brazil.
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
| | - William Fernando Zambuzzi
- Department of Chemistry and Biochemistry, Biosciences Institute, UNESP: Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Mari Cleide Sogayar
- Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo 05508-000, Brazil; NUCEL-NETCEM Cell and Molecular Therapy Center, Medical Clinics Department, School of Medicine, University of São Paulo, São Paulo, 05508-000 SP, Brazil.
| | - José Mauro Granjeiro
- Bioengineering Division, National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, Brazil; Department of Dental Materials, Dental School, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
1194
|
Curcumin analogue UBS109 prevents bone loss in breast cancer bone metastasis mouse model: involvement in osteoblastogenesis and osteoclastogenesis. Cell Tissue Res 2014; 357:245-52. [PMID: 24723227 DOI: 10.1007/s00441-014-1846-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/10/2014] [Indexed: 12/25/2022]
Abstract
Bone metastasis of breast cancer typically leads to osteolysis, which causes severe pathological bone fractures and hypercalcemia. Bone homeostasis is skillfully regulated through osteoblasts and osteoclasts. Bone loss with bone metastasis of breast cancer may be due to both activation of osteoclastic bone resorption and suppression of osteoblastic bone formation. This study was undertaken to determine whether the novel curcumin analogue UBS109 has preventive effects on bone loss induced by breast cancer cell bone metastasis. Nude mice were inoculated with breast cancer MDA-MB-231 bone metastatic cells (10(6) cells/mouse) into the head of the right and left tibia. One week after inoculation, the mice were treated with control (vehicle), oral administration (p.o.) of UBS109 (50 or 150 mg/kg body weight), or intraperitoneal administration (i.p.) of UBS109 (10 or 20 mg/kg body weight) once daily for 5 days per week for 7 weeks. After UBS109 administration for 7 weeks, hind limbs were assessed using an X-ray diagnosis system and hematoxylin and eosion staining to determine osteolytic destruction. Bone marrow cells obtained from the femurs and tibias were cultured to estimate osteoblastic mineralization and osteoclastogenesis ex vivo and in vitro. Remarkable bone loss was demonstrated in the tibias of mice inoculated with breast cancer MDA-MB-231 bone metastatic cells. This bone loss was prevented by p.o. administration of UBS109 (50 and 150 mg/kg body weight) and i.p. treatment of UBS109 (10 and 20 mg/kg) in vivo. Culture of bone marrow cells obtained from the bone tissues of mice with breast cancer cell bone metastasis showed suppressed osteoblastic mineralization and stimulated osteoclastogenesis ex vivo. These changes were not seen after culture of the bone marrow cells obtained from mice treated with UBS109. Moreover, UBS109 was found to stimulate osteoblastic mineralization and suppress lipopolysaccharide (LPS)-induced osteoclastogenesis in bone marrow cells obtained from normal nude mice in vitro. These findings suggest that the novel curcumin analogue UBS109 prevents breast cancer cell bone metastasis-induced bone loss by stimulating osteoblastic mineralization and suppressing osteoclastogenesis.
Collapse
|
1195
|
Moon JS, Kim SH, Oh SH, Jeong YW, Kang JH, Park JC, Son HJ, Bae S, Park BI, Kim MS, Koh JT, Ko HM. Relaxin augments BMP-2-induced osteoblast differentiation and bone formation. J Bone Miner Res 2014; 29:1586-96. [PMID: 24643989 DOI: 10.1002/jbmr.2197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 01/26/2014] [Accepted: 02/06/2014] [Indexed: 12/19/2022]
Abstract
Relaxin (Rln), a polypeptide hormone of the insulin superfamily, is an ovarian peptide hormone that is involved in a diverse range of physiological and pathological reactions. In this study, we investigated the effect of Rln on bone morphogenetic protein 2 (BMP-2)-induced osteoblast differentiation and bone formation. Expression of Rln receptors was examined in the primary mouse bone marrow stem cells (BMSCs) and mouse embryonic fibroblast cell line C3H/10T1/2 cells by RT-PCR and Western blot during BMP-2-induced osteoblast differentiation. The effect of Rln on osteoblast differentiation and mineralization was evaluated by measuring the alkaline phosphatase activity, osteocalcin production, and Alizarin red S staining. For the in vivo evaluation, BMP-2 and/or Rln were administered with type I collagen into the back of mice, and after 3 weeks, bone formation was analyzed by micro-computed tomography (µCT). Western blot was performed to determine the effect of Rln on osteoblast differentiation-related signaling pathway. Expression of Rxfp 1 in BMSCs and C3H/10T1/2 cells was significantly increased by BMP-2. In vitro, Rln augmented BMP-2-induced alkaline phosphatase expression, osteocalcin production, and matrix mineralization in BMSCs and C3H/10T1/2 cells. In addition, in vivo administration of Rln enhanced BMP-2-induced bone formation in a dose-dependent manner. Interestingly, Rln synergistically increased and sustained BMP-2-induced Smad, p38, and transforming growth factor-β activated kinase (TAK) 1 phosphorylation. BMP-2-induced Runx 2 expression and activity were also significantly augmented by Rln. These results show that Rln enhanced synergistically BMP-2-induced osteoblast differentiation and bone formation through its receptor, Rxfp 1, by augmenting and sustaining BMP-2-induced Smad and p38 phosphorylation, which upregulate Runx 2 expression and activity. These results suggest that Rln might be useful for therapeutic application in destructive bone diseases.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1196
|
Claros S, Rico-Llanos GA, Becerra J, Andrades JA. A novel human TGF-β1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells. Int J Mol Sci 2014; 15:11255-74. [PMID: 24968268 PMCID: PMC4139781 DOI: 10.3390/ijms150711255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.
Collapse
Affiliation(s)
- Silvia Claros
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Gustavo A Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
1197
|
Isaac J, Erthal J, Gordon J, Duverger O, Sun HW, Lichtler AC, Stein GS, Lian JB, Morasso MI. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo. Cell Death Differ 2014; 21:1365-76. [PMID: 24948010 DOI: 10.1038/cdd.2014.82] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 01/23/2023] Open
Abstract
Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation.
Collapse
Affiliation(s)
- J Isaac
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - J Erthal
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - J Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - O Duverger
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - H-W Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - G S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - J B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - M I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| |
Collapse
|
1198
|
Mao YW, Lin RD, Hung HC, Lee MH. Stimulation of osteogenic activity in human osteoblast cells by edible Uraria crinita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5581-5588. [PMID: 24785825 DOI: 10.1021/jf5012177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Uraria crinita is an edible herb used as a natural food for childhood skeletal dysplasia. Ethyl acetate, n-butanol, and aqueous fractions of a 95% ethanol crude extract of U. crinita were obtained and the active ingredients isolated and purified using a bioguided method. In this manner, we isolated and identified a new active flavone glycoside, apigenin 6-C-β-d-apiofuranosyl(1→2)-α-d-xylopyranoside (3) and 10 known components with stimulatory activity on human osteoblast cells. The new compound 3 at 100 μM significantly increased alkaline phosphatase activity (114.10 ± 4.41%), mineralization (150.10 ± 0.80%), as well as osteopontin (1.39 ± 0.01-fold), bone morphogenetic protein-2 (BMP-2, 1.30 ± 0.04-fold), and runt-related transcription factor 2 (Runx2, 1.43 ± 0.10-fold) mRNA expression through the activation of the BMP-2/Runx2 pathway. Two other components, dalbergioidin (1) and byzantionoside B (9), displayed similar effects. These results show that U. crinita and its active compounds may have the potential to stimulate bone formation and regeneration.
Collapse
Affiliation(s)
- Yi-Wen Mao
- School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | |
Collapse
|
1199
|
miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 2014; 588:2957-63. [DOI: 10.1016/j.febslet.2014.05.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022]
|
1200
|
Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, Almeida EAC. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res 2014; 13:181-201. [PMID: 25011075 DOI: 10.1016/j.scr.2014.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022] Open
Abstract
Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(-6.72), CSF2(-3.30), CD90(-3.33), PTPRC(-2.79), and GDF15(-2.45), but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow-blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.
Collapse
Affiliation(s)
- E A Blaber
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, Sydney, Australia; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - N Dvorochkin
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - M L Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - R Yousuf
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - B P Burns
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, Sydney, Australia
| | - R K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - E A C Almeida
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|