1251
|
Martínez-Serrano A, Pereira MP, Avaliani N, Nelke A, Kokaia M, Ramos-Moreno T. Short-Term Grafting of Human Neural Stem Cells: Electrophysiological Properties and Motor Behavioral Amelioration in Experimental Parkinson's Disease. Cell Transplant 2016; 25:2083-2097. [DOI: 10.3727/096368916x692069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell replacement therapy in Parkinson's disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinson's disease.
Collapse
Affiliation(s)
- Alberto Martínez-Serrano
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Marta P. Pereira
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Natalia Avaliani
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| | - Anna Nelke
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Merab Kokaia
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| | - Tania Ramos-Moreno
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| |
Collapse
|
1252
|
Bohrer C, Schachtrup C. ID(ealizing) control of adult subventricular zone neural stem/precursor cell differentiation for CNS regeneration. NEUROGENESIS 2016; 3:e1223532. [PMID: 27882335 DOI: 10.1080/23262133.2016.1223532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 10/20/2022]
Abstract
The adult central nervous system (CNS) was considered a comparatively static tissue with little cell turnover. It is now well established that there is more plasticity than previously thought and that astrocytes act as neural stem/precursor cells (NSPCs) in the subventricular zone (SVZ). The discovery that these NSPCs can give rise to a limited number of new neurons, reactive astrocytes and oligodendrocytes contributing to brain repair in CNS disease, has raised hopes toward harnessing these cells for therapeutic interventions. Here, we will discuss the transcriptional control of adult NSPC differentiation into astrocytes in CNS disease focusing on the helix-loop-helix transcription factor protein family. In our recent study, we reported that elevated BMP-2 levels are translated into an increase in Id3 expression in adult NSPC subpopulations after cortical injury. Id3 then heterodimerizes with the basic helix-loop-helix transcription factor E47 and releases the E47-mediated repression of astrocyte-specific gene expression. Consequently, adult NSPCs preferentially differentiate into astrocytes. We believe that understanding the in vivo differentiation potential and the molecular underpinnings of NSPCs in the adult mammalian brain will help us to evaluate their contributions to brain repair and may lead to new concepts in treating human CNS diseases.
Collapse
Affiliation(s)
- Christian Bohrer
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg , Germany
| |
Collapse
|
1253
|
Li S, Gu X, Yi S. The Regulatory Effects of Transforming Growth Factor-β on Nerve Regeneration. Cell Transplant 2016; 26:381-394. [PMID: 27983926 DOI: 10.3727/096368916x693824] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGF-β) belongs to a group of pleiotropic cytokines that are involved in a variety of biological processes, such as inflammation and immune reactions, cellular phenotype transition, extracellular matrix (ECM) deposition, and epithelial-mesenchymal transition. TGF-β is widely distributed throughout the body, including the nervous system. Following injury to the nervous system, TGF-β regulates the behavior of neurons and glial cells and thus mediates the regenerative process. In the current article, we reviewed the production, activation, as well as the signaling pathway of TGF-β. We also described altered expression patterns of TGF-β in the nervous system after nerve injury and the regulatory effects of TGF-β on nerve repair and regeneration in many aspects, including inflammation and immune response, phenotypic modulation of neural cells, neurite outgrowth, scar formation, and modulation of neurotrophic factors. The diverse biological actions of TGF-β suggest that it may become a potential therapeutic target for the treatment of nerve injury and regeneration.
Collapse
|
1254
|
Hackett AR, Lee JK. Understanding the NG2 Glial Scar after Spinal Cord Injury. Front Neurol 2016; 7:199. [PMID: 27895617 PMCID: PMC5108923 DOI: 10.3389/fneur.2016.00199] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 01/05/2023] Open
Abstract
NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury (SCI), NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after SCI but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.
Collapse
Affiliation(s)
- Amber R. Hackett
- Miami Project to Cure Paralysis, The Neuroscience Graduate Program, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jae K. Lee
- Miami Project to Cure Paralysis, The Neuroscience Graduate Program, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
1255
|
Negri GE, Deming TJ. Triggered Copolypeptide Hydrogel Degradation Using Photolabile Lysine Protecting Groups. ACS Macro Lett 2016; 5:1253-1256. [PMID: 35614735 DOI: 10.1021/acsmacrolett.6b00715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared a new l-lysine-based N-carboxyanhydride monomer containing a photolabile o-nitrobenzyloxycarbonyl protecting group. This monomer was used to prepare poly(l-lysine)-block-poly(oNB-l-lysine) block copolypeptides that formed hydrogels with tunable physical properties and the capability to be degraded by UV irradiation. In these materials, the oNB-lysine residues were found to be excellent surrogates for the hydrophobic residues typically used to form block copolypeptide hydrogels, thus adding functionality without adversely altering self-assembly characteristics. Upon irradiation, full cleavage of the o-nitrobenzyloxycarbonyl groups was observed, resulting in dissolution of the product, poly(l-lysine), and complete hydrogel disruption. When dye molecules were entrapped in the hydrogels, photolysis resulted in release and mixing of these molecules with the surrounding media.
Collapse
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry and ‡Department of
Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry and ‡Department of
Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
1256
|
Affiliation(s)
- Philip R Williams
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
1257
|
Li X, Floriddia EM, Toskas K, Fernandes KJL, Guérout N, Barnabé-Heider F. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time. EBioMedicine 2016; 13:55-65. [PMID: 27818039 PMCID: PMC5264475 DOI: 10.1016/j.ebiom.2016.10.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elisa M Floriddia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Karl J L Fernandes
- Department of Neurosciences, Research Center of the University of Montreal Hospital (CRCHUM), QC H2X 0A9 Montreal, Canada
| | - Nicolas Guérout
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; Normandie Université, UNIROUEN, EA3830-GRHV, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France.
| | | |
Collapse
|
1258
|
Effects of Microtubule Stabilization by Epothilone B Depend on the Type and Age of Neurons. Neural Plast 2016; 2016:5056418. [PMID: 27872763 PMCID: PMC5107872 DOI: 10.1155/2016/5056418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated the therapeutic potential of applying microtubule- (MT-) stabilizing agents (MSAs) that cross the blood-brain barrier to promote axon regeneration and prevent axonal dystrophy in rodent models of spinal cord injury and neurodegenerative diseases. Paradoxically, administration of MSAs, which have been widely prescribed to treat malignancies, is well known to cause debilitating peripheral neuropathy and axon degeneration. Despite the growing interest of applying MSAs to treat the injured or degenerating central nervous system (CNS), consequences of MSA exposure to neurons in the central and peripheral nervous system (PNS) have not been thoroughly investigated. Here, we have examined and compared the effects of a brain-penetrant MSA, epothilone B, on cortical and sensory neurons in culture and show that epothilone B exhibits both beneficial and detrimental effects, depending on not only the concentration of drug but also the type and age of a neuron, as seen in clinical settings. Therefore, to exploit MSAs to their full benefit and minimize unwanted side effects, it is important to understand the properties of neuronal MTs and strategies should be devised to deliver minimal effective concentration directly to the site where needed.
Collapse
|
1259
|
McClain JL, Gulbransen BD. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins. J Neurophysiol 2016; 117:365-375. [PMID: 27784805 DOI: 10.1152/jn.00507.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal was to assess specifically the impact of FA on essential glial cell functions that are involved with neurotransmission in the enteric nervous system. To this end, we generated a new optogenetic mouse model to study specifically the effects of FA on enteric glial Ca2+ signaling by crossing PC::G5-tdTomato mice with Sox10::creERT2 mice. FA did not change the peak glial Ca2+ response when averaged across all glia within a ganglion. However, FA decreased the percent of responding glia by 30% (P < 0.05) and increased the peak Ca2+ response of the glial cells that still exhibited a response by 26% (P < 0.01). Disruption of Ca2+ signaling with FA impaired the activity-dependent uptake of ethidium bromide through connexin-43 (Cx43) hemichannels (P < 0.05) but did not affect baseline Cx43-dependent dye uptake. FA did not cause overt glial or neurodegeneration, but glial cells significantly increased glial fibrillary acid protein by 56% (P < 0.05) following treatment with FA. Together, these data show that the acute impairment of glial metabolism with FA causes key changes in glial functions associated with their roles in neurotransmission and phenotypic changes indicative of reactive gliosis. NEW & NOTEWORTHY Our study shows that the acute impairment of enteric glial metabolism with fluoroacetate (FA) alters specific glial functions that are associated with the modification of neurotransmission in the gut. These include subtle changes to glial agonist-evoked calcium signaling, the subsequent disruption of connexin-43 hemichannels, and changes in protein expression that are consistent with a transition to reactive glia. These changes in glial function offer a mechanistic explanation for the effects of FA on peripheral neuronal networks.
Collapse
Affiliation(s)
- Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan; and .,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
1260
|
Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schäfer MKE. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 2016; 65:278-292. [DOI: 10.1002/glia.23091] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lutz Menzel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Lisa Kleber
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Carina Friedrich
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Regina Hummel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Larissa Dangel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| | - Katja Schmitz
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Irmgard Tegeder
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| |
Collapse
|
1261
|
Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW, Ke CC, Tan HM. Bone Marrow Stromal Cells Combined With Sodium Ferulate and n-Butylidenephthalide Promote the Effect of Therapeutic Angiogenesis via Advancing Astrocyte-Derived Trophic Factors After Ischemic Stroke. Cell Transplant 2016; 26:229-242. [PMID: 27772541 DOI: 10.3727/096368916x693536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Being a potential candidate for stroke treatment, bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) have been demonstrated to be able to enhance angiogenesis and proliferation of reactive astrocytes, which subsequently leads to the amelioration of neurological injury. Increasing evidence further indicates that combining BM-MSCs with certain agents, such as simvastatin, may improve therapeutic effects. Sodium ferulate (SF) and n-butylidenephthalide (BP), two main components of Radix Angelica Sinensis, are proven to be important regulators of stem cells in cell migration, differentiation, and pluripotency maintenance. This study aimed to investigate whether combining BM-MSCs with SF and BP had better therapeutic effect in the treatment of stroke, and the underlying molecular basis for the therapeutic effects was also investigated. The results showed that combination treatment notably reduced neurological injury after stroke and increased the expression of astrocyte-derived vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and von Willebrand factor-positive vascular density in the ischemic boundary zone as evaluated by immunofluorescence staining. After treatment with BM-MSCs plus SF and BP, astrocytes showed increased expression of VEGF and BDNF by upregulating protein kinase B/mammalian target of rapamycin (AKT/mTOR) expression in an oxygen- and glucose-deprived (OGD) environment. Human umbilical vein endothelial cells (HUVECs) incubated with the conditioned medium (CM) derived from OGD astrocytes treated with BM-MSCs plus SF and BP showed significantly increased migration and tube formation compared with those incubated with the CM derived from OGD astrocytes treated with BM-MSCs alone. These results demonstrate that combination treatment enhances the expression of astrocyte-derived VEGF and BDNF, which contribute to angiogenesis after cerebral ischemia, and the underlying mechanism is associated with activation of the astrocytic AKT/mTOR signaling pathway. Our study provides a potential therapeutic approach for ischemic stroke.
Collapse
|
1262
|
Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury. Neural Plast 2016; 2016:1279051. [PMID: 27818801 PMCID: PMC5081430 DOI: 10.1155/2016/1279051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/02/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord.
Collapse
|
1263
|
Johnson CD, D’Amato AR, Gilbert RJ. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs 2016; 202:116-135. [PMID: 27701153 PMCID: PMC5067174 DOI: 10.1159/000446621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
There is currently no cure for individuals with spinal cord injury (SCI). While many promising approaches are being tested in clinical trials, the complexity of SCI limits several of these approaches from aiding complete functional recovery. Several different categories of biomaterials are investigated for their ability to guide axonal regeneration, to deliver proteins or small molecules locally, or to improve the viability of transplanted stem cells. The purpose of this study is to provide a brief overview of SCI, present the different categories of biomaterial scaffolds that direct and guide axonal regeneration, and then focus specifically on electrospun fiber guidance scaffolds. Much like other polymer guidance approaches, electrospun fibers can retain and deliver therapeutic drugs. The experimental section presents new data showing the incorporation of two therapeutic drugs into electrospun poly-L-lactic acid fibers. Two different concentrations of either riluzole or neurotrophin-3 were loaded into the electrospun fibers to examine the effect of drug concentration on the physical characteristics of the fibers (fiber alignment and fiber diameter). Overall, the drugs were successfully incorporated into the fibers and the release was related to the loading concentration. The fiber diameter decreased with the inclusion of the drug, and the decreased diameter was correlated with a decrease in fiber alignment. Subsequently, the study includes considerations for successful incorporation of a therapeutic drug without changing the physical properties of the fibers.
Collapse
Affiliation(s)
- Christopher D.L. Johnson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| |
Collapse
|
1264
|
Haggerty AE, Marlow MM, Oudega M. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci Lett 2016; 652:50-55. [PMID: 27702629 DOI: 10.1016/j.neulet.2016.09.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/09/2023]
Abstract
There is no treatment for people with spinal cord injury that leads to significant functional improvements. The extracellular matrix is an intricate, 3-dimensional, structural framework that defines the environment for cells in the central nervous system. The components of extracellular matrix have signaling and regulatory roles in the fate and function of neuronal and non-neuronal cells in the central nervous system. This review discusses the therapeutic potential of extracellular matrix components for spinal cord repair.
Collapse
Affiliation(s)
- Agnes E Haggerty
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Megan M Marlow
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martin Oudega
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
1265
|
Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics 2016; 13:685-701. [PMID: 27677607 PMCID: PMC5081110 DOI: 10.1007/s13311-016-0477-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astrocytes regulate neuroinflammatory responses after stroke and in other neurological diseases. Although not all astrocytic responses reduce inflammation, their predominant function is to protect the brain by driving the system back to homeostasis after injury. They receive multidimensional signals within the central nervous system and between the brain and the systemic circulation. Processing this information allows astrocytes to regulate synapse formation and maintenance, cerebral blood flow, and blood-brain barrier integrity. Similarly, in response to stroke and other central nervous system disorders, astrocytes detect and integrate signals of neuronal damage and inflammation to regulate the neuroinflammatory response. Two direct regulatory mechanisms in the astrocyte arsenal are the ability to form both physical and molecular barriers that seal the injury site and localize the neuroinflammatory response. Astrocytes also indirectly regulate the inflammatory response by affecting neuronal health during the acute injury and axonal regrowth. This ability to regulate the location and degree of neuroinflammation after injury, combined with the long time course of neuroinflammation, makes astrocytic signaling pathways promising targets for therapies.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford Medical School, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
1266
|
Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol 2016; 25:241-251. [PMID: 27790058 PMCID: PMC5081470 DOI: 10.5607/en.2016.25.5.241] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
1267
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
1268
|
Kleiderman S, Gutbier S, Ugur Tufekci K, Ortega F, Sá JV, Teixeira AP, Brito C, Glaab E, Berninger B, Alves PM, Leist M. Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-γ. Stem Cells 2016; 34:2861-2874. [PMID: 27603577 DOI: 10.1002/stem.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 01/05/2023]
Abstract
Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous "astrocytes generated from murine embryonic stem cells (ESC)." These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted GFAP-positive mAGES to nestin-positive NSC. ERK phosphorylation was necessary, but not sufficient, for cell cycle re-entry, as EGF triggered no de-differentiation. The NSC obtained by de-differentiation of mAGES were similar to those obtained directly by differentiation of ESC, as evidenced by standard phenotyping, and also by transcriptome mapping, metabolic profiling, and by differentiation to neurons or astrocytes. The de-differentiation was negatively affected by inflammatory mediators, and in particular, interferon-γ strongly impaired the formation of NSC from mAGES by a pathway involving phosphorylation of STAT1, but not the generation of nitric oxide. Thus, two antagonistic signaling pathways were identified here that affect fate conversion of astrocytes independent of genetic manipulation. The complex interplay of the respective signaling molecules that promote/inhibit astrocyte de-differentiation may explain why astrocytes do not readily form neural stem cells in most diseases. Increased knowledge of such factors may provide therapeutic opportunities to favor such conversions. Stem Cells 2016;34:2861-2874.
Collapse
Affiliation(s)
- Susanne Kleiderman
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Simon Gutbier
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Kemal Ugur Tufekci
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | - Felipe Ortega
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Biochemistry and Molecular Biology, Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University, Avenue Puerta de Hierro, Institute of Neurochemistry (IUIN), Spain and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - João V Sá
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Benedikt Berninger
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Marcel Leist
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| |
Collapse
|
1269
|
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Medical Drive, Singapore, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore, Singapore
| |
Collapse
|
1270
|
Ohtake Y, Smith GM, Li S. Reactive astrocyte scar and axon regeneration: suppressor or facilitator? Neural Regen Res 2016; 11:1050-1. [PMID: 27630674 PMCID: PMC4994433 DOI: 10.4103/1673-5374.187022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
1271
|
Abstract
Transplantation of somatic cells, including bone marrow stromal cells (BMSCs), bone marrow mononuclear cells (BMNCs), and choroid plexus epithelial cells (CPECs), enhances the outgrowth of regenerating axons and promotes locomotor improvements. They are not integrated into the host spinal cord, but disappear within 2-3 weeks after transplantation. Regenerating axons extend at the spinal cord lesion through the astrocyte-devoid area that is filled with connective tissue matrices. Regenerating axons have characteristics of peripheral nerves: they are associated with Schwann cells, and embedded in connective tissue matrices. It has been suggested that neurotrophic factors secreted from BMSCs and CPECs promote "intrinsic" ability of the spinal cord to regenerate. Transplanted Schwann cells survive long-term, and are integrated into the host spinal cord, serving as an effective scaffold for the outgrowth of regenerating axons in the spinal cord. The disadvantage that axons are blocked to extend through the glial scar at the border of the lesion is overcome. Schwann cells have been approved for clinical applications. Neural stem/progenitor cells (NSPCs) survive long-term, proliferate, and differentiate into glial cells and/or neurons after transplantation. No method is available at present to manipulate and control the behaviors of NPSCs to allow them to appropriately integrate into the host spinal cord. NPSP transplantation is not necessarily effective for locomotor improvement.
Collapse
Affiliation(s)
- Chizuka Ide
- Institute of Regeneration and Rehabilitation, Aino University School of Health Science, Ibaraki, Osaka, Japan
| | - Kenji Kanekiyo
- Institute of Regeneration and Rehabilitation, Aino University School of Health Science, Ibaraki, Osaka, Japan
| |
Collapse
|
1272
|
Affiliation(s)
- Melinda Fitzgerald
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
1273
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
1274
|
Baez E, Echeverria V, Cabezas R, Ávila-Rodriguez M, Garcia-Segura LM, Barreto GE. Protection by Neuroglobin Expression in Brain Pathologies. Front Neurol 2016; 7:146. [PMID: 27672379 PMCID: PMC5018480 DOI: 10.3389/fneur.2016.00146] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022] Open
Abstract
Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.
Collapse
Affiliation(s)
- Eliana Baez
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Ricardo Cabezas
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Marco Ávila-Rodriguez
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - George E. Barreto
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
1275
|
Härtig W, Appel S, Suttkus A, Grosche J, Michalski D. Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke. Neuroscience 2016; 337:66-87. [PMID: 27634771 DOI: 10.1016/j.neuroscience.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/18/2016] [Accepted: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Treatment strategies for ischemic stroke are still limited, since numerous attempts were successful only in preclinical research but failed under clinical condition. To overcome this translational roadblock, clinical relevant stroke models should consider co-morbidities, age-related effects and the complex neurovascular unit (NVU) concept. The NVU includes neurons, vessels and glial cells with astrocytic endfeet in close relation to the extracellular matrix (ECM). However, the role of the ECM after stroke-related tissue damage is poorly understood and mostly neglected for treatment strategies. This study is focused on alterations of perineuronal nets (PNs) as ECM constituents and parvalbumin-containing GABAergic neurons in mice with emphasis on the nucleus reticularis thalami (NRT) in close proximity to the ischemic lesion as induced by a filament-based stroke model. One day after ischemia onset, immunofluorescence-based quantitative analyses revealed drastically declined PNs in the ischemia-affected NRT from 3- and 12-month-old wildtype and co-morbid triple-transgenic (3xTg) mice with Alzheimer-like alterations. Parvalbumin-positive cells decreased numerically in the ischemia-affected NRT, while staining intensity did not differ between the affected and non-affected hemisphere. Additional qualitative analyses demonstrated ischemia-induced loss of PNs and allocated neuropil ECM immunoreactive for aggrecan and neurocan, and impaired immunoreactivity for calbindin, the potassium channel subunit Kv3.1b and the glutamate decarboxylase isoforms GAD65 and GAD67 in the NRT. In conclusion, these data confirm PNs as highly sensitive constituents of the ECM along with impaired neuronal integrity of GABAergic neurons. Therefore, specific targeting of ECM components might appear as a promising strategy for future treatment strategies in stroke.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany.
| | - Simon Appel
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Anne Suttkus
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; Department of Pediatric Surgery, University Hospital Leipzig, Liebigstr. 20 A, 04103 Leipzig, Germany
| | - Jens Grosche
- Effigos GmbH, Am Deutschen Platz 4, 04103 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
1276
|
Roberts-Galbraith RH, Brubacher JL, Newmark PA. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 2016; 5. [PMID: 27612384 PMCID: PMC5055394 DOI: 10.7554/elife.17002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI:http://dx.doi.org/10.7554/eLife.17002.001 Animals differ in the extent to which they can regenerate missing body parts after injury. Humans regenerate poorly after many injuries, especially when the brain becomes damaged after stroke, disease or trauma. On the other hand, planarians – small worms that live in fresh water – regenerate exceptionally well. A whole planarian can regenerate from small pieces of tissue. The ability of planarians to regenerate their nervous system relies on stem cells called neoblasts, which can migrate through the body and divide to replace lost cells. However, the specific mechanisms responsible for regenerating nervous tissue are largely unknown. Roberts-Galbraith et al. carried out a screen to identify genes that tell planarians whether to regenerate a new brain, what cells to make and how to arrange them. The study revealed over thirty genes that allow planarians to regenerate their brains after their heads have been amputated. These genes play several different roles in the animal. Some of the genes help neoblasts to make decisions about what kinds of cells they should become. One gene is needed to make an important connection in the planarian brain after injury. Another helps to restore the ability of the planarian to sense its food. The experiments also show that some key genes are switched on in a new cell type that might produce signals to support regeneration. Lastly, Roberts-Galbraith et al. found that the planarian nervous system contains cells called glia. Previous studies have shown that many of the cells in the human brain are glia and that these cells help nerve cells to survive and work properly. The discovery of glia in planarians means that it will be possible to use these worms to study how glia support brain regeneration and how glia themselves are replaced after injury. In the long term, this work might lead to discoveries that shed light on how tissue regeneration could be improved in humans. DOI:http://dx.doi.org/10.7554/eLife.17002.002
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John L Brubacher
- Department of Biology, Canadian Mennonite University, Winnipeg, Canada
| | - Phillip A Newmark
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
1277
|
Faiz M, Nagy A, Morshead CM. Response to: Where do you come from and what are you going to become, reactive astrocyte? Stem Cell Investig 2016; 3:32. [PMID: 27582184 DOI: 10.21037/sci.2016.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Maryam Faiz
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada;; Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada;; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Cindi M Morshead
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada;; Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| |
Collapse
|
1278
|
Pu H, Jiang X, Hu X, Xia J, Hong D, Zhang W, Gao Y, Chen J, Shi Y. Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Transl Stroke Res 2016; 7:521-534. [PMID: 27566736 DOI: 10.1007/s12975-016-0498-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Abstract
Prophylactic dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been shown to remarkably ameliorate ischemic brain injury. However, the therapeutic efficacy of n-3 PUFA administration post-stroke, especially its impact on neurovascular remodeling and long-term neurological recovery, has not been fully characterized thus far. In this study, we investigated the effect of n-3 PUFA supplementation, as well as in combination with docosahexaenoic acid (DHA) injections, on long-term stroke outcomes. Mice were subjected to transient middle cerebral artery occlusion (MCAO) before randomly assigned to four groups to receive the following: (1) low dose of n-3 PUFAs as the vehicle control, (2) intraperitoneal DHA injections, (3) n-3 PUFA dietary supplement, or (4) combined treatment of (2) and (3). Neurological deficits and brain atrophy, neurogenesis, angiogenesis, and glial scar formation were assessed up to 28 days after MCAO. Results revealed that groups 2 and 3 showed only marginal reduction in post-stroke tissue loss and attenuation of cognitive deficits. Interestingly, group 4 exhibited significantly reduced tissue atrophy and improved cognitive functions compared to groups 2 and 3 with just a single treatment. Mechanistically, the combined treatment promoted post-stroke neurogenesis and angiogenesis, as well as reduced glial scar formation, all of which significantly correlated with the improved spatial memory in the Morris water maze. These results demonstrate an effective therapeutic regimen to enhance neurovascular restoration and long-term cognitive recovery in the mouse model of MCAO. Combined post-stroke DHA treatment and n-3 PUFA dietary supplementation thus may be a potential clinically translatable therapy for stroke or related brain disorders.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.,State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jinchao Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Hong
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wenting Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA. .,State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Yejie Shi
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
1279
|
Palejwala AH, Fridley JS, Mata JA, Samuel ELG, Luerssen TG, Perlaky L, Kent TA, Tour JM, Jea A. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. Surg Neurol Int 2016; 7:75. [PMID: 27625885 PMCID: PMC5009578 DOI: 10.4103/2152-7806.188905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.
Collapse
Affiliation(s)
- Ali H Palejwala
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Jared S Fridley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Javier A Mata
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | | | - Thomas G Luerssen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Laszlo Perlaky
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Research and Tissue Support Services Core Laboratory, Texas Children's Cancer and Hematology Services, Houston, Texas, USA
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas, USA; Department of Chemistry and Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Andrew Jea
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
1280
|
Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain. Brain Sci 2016; 6:brainsci6030031. [PMID: 27537918 PMCID: PMC5039460 DOI: 10.3390/brainsci6030031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Maria Hui
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Kurt Masiello
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
1281
|
Danzi MC, Lemmon VP. Messages from forgotten friends: classic cell adhesion molecules inhibit regeneration too. EMBO J 2016; 35:1721-3. [PMID: 27406713 DOI: 10.15252/embj.201694938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Matt C Danzi
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA Center for Computational Science, University of Miami, Miami, FL, USA Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA Center for Computational Science, University of Miami, Miami, FL, USA Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
1282
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
1283
|
Affiliation(s)
- Evan G Cameron
- Department of Ophthalmology, Stanford University, Stanford, CA 94303, USA.
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University, Stanford, CA 94303, USA
| |
Collapse
|
1284
|
Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway? Neuroscience 2016; 330:205-18. [DOI: 10.1016/j.neuroscience.2016.05.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
|
1285
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a “
treatment window” through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
1286
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
1287
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/10/2023] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a " treatment window" through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
1288
|
Coulson-Thomas VJ, Lauer ME, Soleman S, Zhao C, Hascall VC, Day AJ, Fawcett JW. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury. J Biol Chem 2016; 291:19939-52. [PMID: 27435674 PMCID: PMC5025681 DOI: 10.1074/jbc.m115.710673] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP(+) and CD44(+) astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6(-/-) mice present a reduced number of GFAP(+) astrocytes when compared with the littermate TSG-6(+/-) mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Sara Soleman
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, United Kingdom, and
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - James W Fawcett
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
1289
|
Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 2016; 37:608-620. [PMID: 27443914 DOI: 10.1016/j.it.2016.06.006] [Citation(s) in RCA: 656] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
1290
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
1291
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
1292
|
Tosolini AP, Morris R. Viral-mediated gene therapy for spinal cord injury (SCI) from a translational neuroanatomical perspective. Neural Regen Res 2016; 11:743-4. [PMID: 27335556 PMCID: PMC4904463 DOI: 10.4103/1673-5374.182698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew P Tosolini
- Translational Neuroscience Facility, School of Medical Sciences, the University of New South Wales (UNSW Australia), Sydney, Australia; Current address for Tosolini AP: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Renée Morris
- Translational Neuroscience Facility, School of Medical Sciences, the University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
1293
|
Silver J. The glial scar is more than just astrocytes. Exp Neurol 2016; 286:147-149. [PMID: 27328838 DOI: 10.1016/j.expneurol.2016.06.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH 44106, USA.
| |
Collapse
|
1294
|
Wood H. The astrocytic scar facilitates axon regeneration in the CNS, contrary to accepted wisdom. Nat Rev Neurol 2016; 12:313. [DOI: 10.1038/nrneurol.2016.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1295
|
López-Dolado E, González-Mayorga A, Gutiérrez MC, Serrano MC. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats. Biomaterials 2016; 99:72-81. [PMID: 27214651 DOI: 10.1016/j.biomaterials.2016.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
Attractive physic-chemical features of graphene oxide (GO) and promising results in vitro with neural cells encourage its exploration for biomedical applications including neural regeneration. Fueled by previous findings at the subacute state, we herein investigate for the first time chronic tissue responses (at 30 days) to 3D scaffolds composed of partially reduced GO (rGO) when implanted in the injured rat spinal cord. These studies aim to define fibrotic, inflammatory and angiogenic changes at the lesion site induced by the chronic implantation of these porous structures. Injured animals receiving no scaffolds show badly structured lesion zones and more cavities than those carrying rGO materials, thus pointing out a significant role of the scaffolds in injury stabilization and sealing. Notably, GFAP(+) cells and pro-regenerative macrophages are evident at their interface. Moreover, rGO scaffolds support angiogenesis around and, more importantly, inside their structure, with abundant and functional new blood vessels in whose proximities inside the scaffolds some regenerated neuronal axons are found. On the contrary, lesion areas without rGO scaffolds show a diminished quantity of blood vessels and no axons at all. These findings provide a foundation for the usefulness of graphene-based materials in the design of novel biomaterials for spinal cord repair and encourage further investigation for the understanding of neural tissue responses to this kind of materials in vivo.
Collapse
Affiliation(s)
- Elisa López-Dolado
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - Ankor González-Mayorga
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - María Concepción Gutiérrez
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - María Concepción Serrano
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
1296
|
Neural repair: Not such a scar on regrowth. Nat Rev Neurosci 2016; 17:333. [PMID: 27098770 DOI: 10.1038/nrn.2016.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1297
|
Affiliation(s)
- Shane A Liddelow
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| |
Collapse
|
1298
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
1299
|
Gesteira TF, Coulson-Thomas YM, Coulson-Thomas VJ. Anti-inflammatory properties of the glial scar. Neural Regen Res 2016; 11:1742-1743. [PMID: 28123405 PMCID: PMC5204217 DOI: 10.4103/1673-5374.194710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tarsis F Gesteira
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | | | | |
Collapse
|