1251
|
Agas D, Sabbieti MG, Marchetti L, Xiao L, Hurley MM. FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts. J Cell Physiol 2013; 228:2149-58. [PMID: 23559326 DOI: 10.1002/jcp.24382] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/28/2013] [Indexed: 01/30/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is one of the most potent regulators of osteoblast differentiation and bone formation. R-Smads (Smads 1/5/8) are the major transducers for BMPs receptors and, once activated, they are translocated in the nucleus regulating transcription target genes by interacting with various transcription factors. Runx-2 proteins have been shown to interact through their C-terminal segment with Smads and this interaction is required for in vivo osteogenesis. In particular, recruitment of Smads to intranuclear sites is Runx-2 dependent, and Runx-2 factor may accommodate the dynamic targeting of signal transducer to active transcription sites. Previously, we have shown, by in vitro and in vivo experiments, that BMP-2 up-regulated FGF-2 which is important for the maximal responses of BMP-2 in bone. In this study, we found that endogenous FGF2 is necessary for BMP-2 induced nuclear accumulation and co-localization of Runx-2 and phospho-Smads1/5/8, while Runx/Smads nuclear accumulation and co-localization was reduced in Fgf2-/- osteoblasts. Based on these novel data, we conclude that the impaired nuclear accumulation of Runx-2 in Fgf2-/- osteoblasts reduces R-Smads sub-nuclear targeting with a consequent decreased expression of differentiating markers and impaired bone formation in Fgf2 null mice.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Camerino, Macerata, Italy
| | | | | | | | | |
Collapse
|
1252
|
Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 2013; 191:45-58. [PMID: 23770218 DOI: 10.1016/j.ygcen.2013.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.
Collapse
|
1253
|
Rimbault M, Beale HC, Schoenebeck JJ, Hoopes BC, Allen JJ, Kilroy-Glynn P, Wayne RK, Sutter NB, Ostrander EA. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res 2013; 23:1985-95. [PMID: 24026177 PMCID: PMC3847769 DOI: 10.1101/gr.157339.113] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.
Collapse
Affiliation(s)
- Maud Rimbault
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1254
|
Fransiska S, Ho MH, Li CH, Shih JL, Hsiao SW, Thien DVH. To enhance protein production from osteoblasts by using micro-patterned surfaces. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
1255
|
Shu L, Zhang H, Boyce B, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res 2013; 28:1925-35. [PMID: 23553732 PMCID: PMC3749248 DOI: 10.1002/jbmr.1938] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023]
Abstract
Ubiquitin E3 ligase-mediated protein degradation promotes proteasomal degradation of key positive regulators of osteoblast functions. For example, the E3 ligases--SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1), Itch, and WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1)--promote degradation of Runt-related transcription factor 2 (Runx2), transcription factor jun-B (JunB), and chemokine (C-X-C) receptor type 4 (CXCR-4) proteins to inhibit their functions. However, the role of E3 ligases in age-associated bone loss is unknown. We found that the expression level of Wwp1, but not Smurf1 or Itch, was significantly increased in CD45-negative (CD45(-)) bone marrow-derived mesenchymal stem cells from 6-month-old and 12-month-old wild-type (WT) mice. Wwp1 knockout (Wwp1(-/-)) mice developed increased bone mass as they aged, associated with increased bone formation rates and normal bone resorption parameters. Bone marrow stromal cells (BMSCs) from Wwp1(-/-) mice formed increased numbers and areas of alkaline phosphatase(+) and Alizarin red(+) nodules and had increased migration potential toward chemokine (C-X-C motif) ligand 12 (CXCL12) gradients. Runx2, JunB, and CXCR-4 protein levels were significantly increased in Wwp1(-/-) BMSCs. Wwp1(-/-) BMSCs had increased amount of ubiquitinated JunB protein, but Runx2 ubiquitination was no change. Knocking down JunB in Wwp1(-/-) BMSCs returned Runx2 protein levels to that in WT cells. Thus, Wwp1 negatively regulates osteoblast functions by affecting both their migration and differentiation. Mechanisms designed to decrease Wwp1 levels in BMSCs may represent a new approach to prevent the decrease in osteoblastic bone formation associated with aging.
Collapse
Affiliation(s)
| | | | | | - Lianping Xing
- Correspondence to: Lianping Xing, Department of Pathology and Laboratory Medicine, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone (585) 273-4090, Fax (585) 756-4468,
| |
Collapse
|
1256
|
Arboleya L, Castañeda S. Osteoimmunology: The Study of the Relationship Between the Immune System and Bone Tissue. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.reumae.2013.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1257
|
Combs MD, Knutsen RH, Broekelmann TJ, Toennies HM, Brett TJ, Miller CA, Kober DL, Craft CS, Atkinson JJ, Shipley JM, Trask BC, Mecham RP. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem 2013; 288:28869-80. [PMID: 23963447 DOI: 10.1074/jbc.m113.497727] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microfibril-associated glycoprotein (MAGP) 1 and 2 are evolutionarily related but structurally divergent proteins that are components of microfibrils of the extracellular matrix. Using mice with a targeted inactivation of Mfap5, the gene for MAGP2 protein, we demonstrate that MAGPs have shared as well as unique functions in vivo. Mfap5(-/-) mice appear grossly normal, are fertile, and have no reduction in life span. Cardiopulmonary development is typical. The animals are normotensive and have vascular compliance comparable with age-matched wild-type mice, which is indicative of normal, functional elastic fibers. Loss of MAGP2 alone does not significantly alter bone mass or architecture, and loss of MAGP2 in tandem with loss of MAGP1 does not exacerbate MAGP1-dependent osteopenia. MAGP2-deficient mice are neutropenic, which contrasts with monocytopenia described in MAGP1-deficient animals. This suggests that MAGP1 and MAGP2 have discrete functions in hematopoiesis. In the cardiovascular system, MAGP1;MAGP2 double knockout mice (Mfap2(-/-);Mfap5(-/-)) show age-dependent aortic dilation. These findings indicate that MAGPs have shared primary functions in maintaining large vessel integrity. In solid phase binding assays, MAGP2 binds active TGFβ1, TGFβ2, and BMP2. Together, these data demonstrate that loss of MAGP2 expression in vivo has pleiotropic effects potentially related to the ability of MAGP2 to regulate growth factors or participate in cell signaling.
Collapse
|
1258
|
Roy B. Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J Diabetes 2013; 4:101-113. [PMID: 23961320 PMCID: PMC3746082 DOI: 10.4239/wjd.v4.i4.101] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis has become a serious health problem throughout the world which is associated with an increased risk of bone fractures and mortality among the people of middle to old ages. Diabetes is also a major health problem among the people of all age ranges and the sufferers due to this abnormality increasing day by day. The aim of this review is to summarize the possible mechanisms through which diabetes may induce osteoporosis. Diabetes mellitus generally exerts its effect on different parts of the body including bone cells specially the osteoblast and osteoclast, muscles, retina of the eyes, adipose tissue, endocrine system specially parathyroid hormone (PTH) and estrogen, cytokines, nervous system and digestive system. Diabetes negatively regulates osteoblast differentiation and function while positively regulates osteoclast differentiation and function through the regulation of different intermediate factors and thereby decreases bone formation while increases bone resorption. Some factors such as diabetic neuropathy, reactive oxygen species, Vitamin D, PTH have their effects on muscle cells. Diabetes decreases the muscle strength through regulating these factors in various ways and ultimately increases the risk of fall that may cause bone fractures.
Collapse
|
1259
|
Hu Y, Chen IP, de Almeida S, Tiziani V, Do Amaral CMR, Gowrishankar K, Passos-Bueno MR, Reichenberger EJ. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia. PLoS One 2013; 8:e73576. [PMID: 23951358 PMCID: PMC3741164 DOI: 10.1371/journal.pone.0073576] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated.
Collapse
Affiliation(s)
- Ying Hu
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Salome de Almeida
- Medical Genetics Service, Centro Hospitalar de Lisboa, Central, Portugal
| | | | | | - Kalpana Gowrishankar
- Department of Medical Genetics, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | | | - Ernst J. Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
1260
|
Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:28-39. [PMID: 23678952 DOI: 10.1089/ten.teb.2013.0100] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.
Collapse
|
1261
|
Nair AM, Tsai YT, Shah KM, Shen J, Weng H, Zhou J, Sun X, Saxena R, Borrelli J, Tang L. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials 2013; 34:7364-71. [PMID: 23831188 DOI: 10.1016/j.biomaterials.2013.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.
Collapse
Affiliation(s)
- Ashwin M Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1262
|
Knight MN, Hankenson KD. Mesenchymal Stem Cells in Bone Regeneration. Adv Wound Care (New Rochelle) 2013; 2:306-316. [PMID: 24527352 DOI: 10.1089/wound.2012.0420] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 01/14/2023] Open
Abstract
SIGNIFICANCE Mesenchymal stem cells (MSCs) play a key role in fracture repair by differentiating to become bone-forming osteoblasts and cartilage-forming chondrocytes. Cartilage then serves as a template for additional bone formation through the process of endochondral ossification. RECENT ADVANCES Endogenous MSCs that contribute to healing are primarily derived from the periosteum, endosteum, and marrow cavity, but also may be contributed from the overlying muscle or through systemic circulation, depending on the type of injury. A variety of growth factor signaling pathways, including BMP, Wnt, and Notch signaling, influence MSC proliferation and differentiation. These MSCs can be therapeutically manipulated to promote differentiation. Furthermore, MSCs can be harvested, cultivated, and delivered to promote bone healing. CRITICAL ISSUES Pharmacologically manipulating the number and differentiation capacity of endogenous MSCs is one potential therapeutic approach to improve healing; however, ideal agents to influence signaling pathways need to be developed and additional therapeutics that activate endogenous MSCs are needed. Whether isolated and purified, MSCs participate directly in the healing process or serve a bystander effect and indirectly influence healing is not well defined. FUTURE DIRECTIONS Studies must focus on better understanding the regulation of endogenous MSCs durings fracture healing. This will reveal novel molecules and pathways to therapeutically target. Similarly, while animal models have demonstrated efficacy in the delivery of MSCs to promote healing, more research is needed to understand ideal donor cells, cultivation methods, and delivery before stem cell therapy approaches can be utilized to repair bone.
Collapse
Affiliation(s)
- M. Noelle Knight
- Veterinary Medical Scientist Training Program, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kurt D. Hankenson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
1263
|
Zou S, Zhang S, Long Q, Cao Y, Zhang W. Marker gene screening for human mesenchymal stem cells in early osteogenic response to bone morphogenetic protein 6 with DNA microarray. Genet Test Mol Biomarkers 2013; 17:641-5. [PMID: 23799295 DOI: 10.1089/gtmb.2012.0449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Microarray data were analyzed using bioinformatic tools to screen marker genes of human mesenchymal stem cells (hMSC) in response to bone morphogenetic protein 6 (BMP6). RESULTS A total of 190 differentially expressed genes were identified. The interaction network was divided into three functional modules. These genes were connected with BMP signaling pathways and regulation of cell processes, while NOG and BMPR2 participated in the transforming growth factor-beta signal pathway. Besides, several related small molecules were acquired. CONCLUSION Marker genes in osteogenic responses to BMP6 treatment for hMSC were screened with microarray data along with elaborate function analysis by bioinformatics. NOG and BMPR2 showed potential to become indicators to monitor the directed differentiation of hMSC into osteoblasts, which can be used for bone disease treatment. Moreover, small molecules such as W-13 were retrieved and provided directions for future drug design.
Collapse
Affiliation(s)
- Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
1264
|
Gu W, Fukuda T, Isaji T, Hashimoto H, Wang Y, Gu J. α1,6-Fucosylation regulates neurite formation via the activin/phospho-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-β/activin-mediated signaling. FASEB J 2013; 27:3947-58. [PMID: 23796784 DOI: 10.1096/fj.12-225805] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that α1,6-fucosyltransferase (Fut8) and its products, α1,6-fucosylated N-glycans, are highly expressed in brain tissue. Recently, we reported that Fut8-knockout mice exhibited multiple behavioral abnormalities with a schizophrenia-like phenotype, suggesting that α1,6-fucosylation plays important roles in the brain and neuron system. In the present study, we screened several neural cell lines and found that PC12 cells express the highest levels of α1,6-fucosylation. The knockdown (KD) of Fut8 promoted a significant enhancement of neurite formation and induction of neurofilament expression. Surprisingly, the levels of phospho-Smad2 were greatly increased in the KD cells. Finally, we found that the activin-mediated signal pathway was essential for these changes in KD cells. Exogenous activin, not TGF-β1, induced neurite outgrowth and phospho-Smad2. In addition, the α1,6-fucosylation level on the activin receptors was greatly decreased in KD cells, while the total expression level was unchanged, suggesting that α1,6-fucosylation negatively regulated activin-mediated signaling. Furthermore, inhibition of activin receptor-mediated signaling or restoration of Fut8 expression rescued cell morphology and phospho-Smad2 levels, which were enhanced in KD cells. Considering the fact that α1,6-fucosylation is important for TGF-β-mediated signaling, the results of this study strongly suggest that Fut8 plays a dual role in TGF-β/activin-mediated signaling.
Collapse
Affiliation(s)
- Wei Gu
- 1Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi, 981-8558, Japan.
| | | | | | | | | | | |
Collapse
|
1265
|
Arboleya L, Castañeda S. Osteoimmunology: the study of the relationship between the immune system and bone tissue. ACTA ACUST UNITED AC 2013; 9:303-15. [PMID: 23727459 DOI: 10.1016/j.reuma.2013.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 12/22/2022]
Abstract
Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology.
Collapse
Affiliation(s)
- Luis Arboleya
- Sección de Reumatología, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | |
Collapse
|
1266
|
The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta Mol Basis Dis 2013; 1832:1492-510. [PMID: 23707512 DOI: 10.1016/j.bbadis.2013.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Activin receptor-like kinase-1 or ALK-1 is a type I cell surface receptor for the transforming growth factor-β (TGF-β) family of proteins. The role of ALK-1 in endothelial cells biology and in angiogenesis has been thoroughly studied by many authors. However, it has been recently suggested a possible role of ALK-1 in cardiovascular homeostasis. ALK-1 is not only expressed in endothelial cells but also in smooth muscle cells, myofibroblast, hepatic stellate cells, chondrocytes, monocytes, myoblasts, macrophages or fibroblasts, but its role in these cells have not been deeply analyzed. Due to the function of ALK-1 in these cells, this receptor plays a role in several cardiovascular diseases. Animals with ALK-1 haploinsufficiency and patients with mutations in Acvrl1 (the gene that codifies for ALK-1) develop type-2 Hereditary Hemorrhagic Telangiectasia. Moreover, ALK-1 heterozygous mice develop pulmonary hypertension. Higher levels of ALK-1 have been observed in atherosclerotic plaques, suggesting a possible protector role of this receptor. ALK-1 deficiency is also related to the development of arteriovenous malformations (AVMs). Besides, due to the ability of ALK-1 to regulate cell proliferation and migration, and to modulate extracellular matrix (ECM) protein expression in several cell types, ALK-1 has been now demonstrated to play an important role in cardiovascular remodeling. In this review, we would like to offer a complete vision of the role of ALK-1 in many process related to cardiovascular homeostasis, and the involvement of this protein in the development of cardiovascular diseases, suggesting the possibility of using the ALK-1/smad-1 pathway as a powerful therapeutic target.
Collapse
|
1267
|
Siegert P, Schmidt G, Papatheodorou P, Wieland T, Aktories K, Orth JHC. Pasteurella multocida toxin prevents osteoblast differentiation by transactivation of the MAP-kinase cascade via the Gα(q/11)--p63RhoGEF--RhoA axis. PLoS Pathog 2013; 9:e1003385. [PMID: 23696743 PMCID: PMC3656108 DOI: 10.1371/journal.ppat.1003385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the Gq/11-, G12/13- and Gi-family by deamidating an essential glutamine residue. To study the PMT effect on bone cells, we used primary osteoblasts derived from rat calvariae and stromal ST-2 cells as differentiation model. As marker of functional osteoblasts the expression and activity of alkaline phosphatase, formation of mineralization nodules or expression of specific transcription factors as osterix was determined. Here, we show that the toxin inhibits differentiation and/or function of osteoblasts by activation of Gαq/11. Subsequently, Gαq/11 activates RhoA via p63RhoGEF, which specifically interacts with Gαq/11 but not with other G proteins like Gα12/13 and Gαi. Activated RhoA transactivates the mitogen-activated protein (MAP) kinase cascade via Rho kinase, involving Ras, MEK and ERK, resulting in inhibition of osteoblast differentiation. PMT-induced inhibition of differentiation was selective for the osteoblast lineage as adipocyte-like differentiation of ST-2 cells was not hampered. The present work provides novel insights, how the bacterial toxin PMT can control osteoblastic development by activating heterotrimeric G proteins of the Gαq/11-family and is a molecular pathogenetic basis for understanding the role of the toxin in bone loss during progressive atrophic rhinitis induced by Pasteurella multocida. Pasteurella multocida causes as a facultative pathogen various diseases in men and animals. One induced syndrome is atrophic rhinitis, which is a form of osteopenia, mainly characterized by facial distortion due to degradation of nasal turbinate bones. Strains, which especially affect bone tissue, produce the protein toxin P. multocida toxin (PMT). Importantly, PMT alone is capable to induce all symptoms of atrophic rhinitis. To cause osteopenia PMT influences the development and/or activity of specialized bone cells like osteoblasts and osteoclasts. Recently, we could identify the molecular mechanism of PMT. The toxin constitutively activates certain heterotrimeric G proteins by deamidation. Here, we studied the effect of PMT on the differentiation of osteoblasts. We demonstrate the direct action of PMT on osteoblasts and osteoblast-like cells and as a consequence inhibition of osteoblastic differentiation. Moreover, we revealed the underlying signal transduction pathway to impair proper osteoblast development. We show that PMT activates small GTPases in a Gαq/11 dependent manner via a non-ubiquitously expressed RhoGEF. In turn the mitogen-activated protein kinase pathway is transactivated leading to inhibition of osteoblastogenesis. Our findings present a mechanism how PMT hijacks host cell signaling pathways to hinder osteoblast development, which contributes to the syndrome of atrophic rhinitis.
Collapse
Affiliation(s)
- Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Hermann–Staudinger–Graduiertenschule Universität Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| |
Collapse
|
1268
|
Shivakumar HR, Batra J, Upasi AP, Rai KK. Evaluation of Elongated Styloid Process in Patients with Oral Submucous Fibrosis Using Panoramic Radiographs. J Maxillofac Oral Surg 2013. [PMID: 26225028 DOI: 10.1007/s12663-013-0529-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Oral submucous fibrosis (OSF) is an insidious disease affecting the oral cavity, pharynx, and upper digestive tract. It is characterized by a juxtaepithelial inflammatory reaction followed by fibroelastic change in the lamina propria and associated epithelial atrophy. Higher levels of TGF-β present in patients with OSF could be responsible for impetus to remnants of Reichert's cartilage present in styloid complex leading to partial or complete ossification of associated ligaments. So, a study was conducted to evaluate the elongation of the styloid process in patients with OSF by using panoramic radiographs. MATERIALS AND METHODS Panoramic radiographs of patients with OSF were studied from 2007-2011. The apparent lengths of styloid process were measured with the help of divider and steel metric ruler. The length of the styloid process and/or ossification of stylomandibular ligaments which were longer than 30 mm were considered. RESULTS Out of 47 patients, 35 patients (34 males & 1 female) met the inclusion criteria. Eleven patients (31.4%) were found to have elongated styloid processes which included 10 male patients and 1 female patient. CONCLUSION It had been estimated that between 2 % and 4% of the general population presents radiographic evidence of an ossified portion of the styloid complex. The high incidence of elongation of styloid process (31.4 %) in patients with oral submucous fibrosis highlights that progressive OSF might have some influence on elongation of styloid process.
Collapse
Affiliation(s)
- H R Shivakumar
- Department of Oral and Maxillofacial Surgery, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Jitender Batra
- Department of Oral and Maxillofacial Surgery, Post Graduate Institute of Dental Sciences, Rohtak, Haryana 124001 India
| | - Amarnath P Upasi
- Department of Oral and Maxillofacial Surgery, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Kirthi Kumar Rai
- Department of Oral and Maxillofacial Surgery, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| |
Collapse
|
1269
|
Oliveira NCM, Moura CCG, Zanetta-Barbosa D, Mendonça DBS, Cooper L, Mendonça G, Dechichi P. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1958-62. [PMID: 23498218 PMCID: PMC4504235 DOI: 10.1016/j.msec.2013.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/06/2013] [Indexed: 01/26/2023]
Abstract
In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors' secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p<0.05), but with greater fold induction for Porous and Vulcano. The secretion of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) was not significantly affected by surface treatment in any experimental time (p>0.05). Although no significant correlation was found for growth factors' secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response.
Collapse
|
1270
|
Arancibia R, Oyarzún A, Silva D, Tobar N, Martínez J, Smith PC. Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β–Stimulated Myofibroblastic Differentiation and Extracellular Matrix Production in Human Gingival Fibroblasts. J Periodontol 2013; 84:683-93. [DOI: 10.1902/jop.2012.120225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1271
|
Delgado-Calle J, Arozamena J, Pérez-López J, Bolado-Carrancio A, Sañudo C, Agudo G, de la Vega R, Alonso MA, Rodríguez-Rey JC, Riancho JA. Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol 2013; 369:27-34. [PMID: 23415712 DOI: 10.1016/j.mce.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/16/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Sclerostin, encoded by the SOST gene, is specifically expressed by osteocytes. However osteoblasts bear a heavily methylated SOST promoter and therefore do not express SOST. Thus, studying the regulation of human SOST is challenged by the absence of human osteocytic cell lines. Herein, we explore the feasibility of using the induction of SOST expression in osteoblasts by a demethylating agent to study the mechanisms underlying SOST transcription, and specifically, the influence of bone morphogenetic proteins (BMPs). Microarray analysis and quantitative PCR showed that AzadC up-regulated the expression of several BMPs, including BMP-2, BMP-4 and BMP-6, as well as several BMP downstream targets. Recombinant BMP-2 increased the transcriptional activity of the SOST promoter cloned into a reporter vector. Likewise, exposing cells transfected with the vector to AzadC also resulted in increased transcription. On the other hand, inhibition of the canonical BMP signaling blunted the effect of AzadC on SOST. These results show that the AzadC-induced demethylation of the SOST promoter in human osteoblastic cells may be a valuable tool to study the regulation of SOST expression. As a proof of concept, it allowed us to demonstrate that BMPs stimulate SOST expression by a mechanism involving BMPR1A receptors and downstream Smad-dependent pathways.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital UM Valdecilla, IFIMAV, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1272
|
D'Alimonte I, Nargi E, Lannutti A, Marchisio M, Pierdomenico L, Costanzo G, Di Iorio P, Ballerini P, Giuliani P, Caciagli F, Ciccarelli R. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res 2013; 11:611-24. [PMID: 23651584 DOI: 10.1016/j.scr.2013.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 03/12/2013] [Accepted: 04/03/2013] [Indexed: 12/29/2022] Open
Abstract
In this study, mesenchymal stem cells deriving from dental pulp (DPSCs) of normal human impacted third molars, previously characterized for their ability to differentiate into osteoblasts, were used. We observed that: i) DPSCs, undifferentiated or submitted to osteogenic differentiation, express all four subtypes of adenosine receptors (AR) and CD73, corresponding to 5'-ecto-nucleotidase; and ii) AR stimulation with selective agonists elicited a greater osteogenic cell differentiation consequent to A1 receptor (A1R) activation. Therefore, we focused on the activity of this AR. The addition of 15-60nM 2-chloro-N(6)-cyclopentyl-adenosine (CCPA), A1R agonist, to DPSCs at each change of the culture medium significantly increased the proliferation of cells grown in osteogenic medium after 8days in vitro (DIV) without modifying that of undifferentiated DPSCs. Better characterizing the effect of A1R stimulation on the osteogenic differentiation capability of these cells, we found that CCPA increased the: i) expression of two well known and early osteogenic markers, RUNX-2 and alkaline phosphatase (ALP), after 3 and 7DIV; ii) ALP enzyme activity at 7DIV and iii) mineralization of extracellular matrix after 21DIV. These effects, abolished by cell pre-treatment with the A1R antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX), involved the activation of the canonical Wnt signaling as, in differentiating DPSCs, CCPA significantly increased dishevelled protein and inhibited glycogen synthase kinase-3β, both molecules being downstream of Wnt receptor signal pathway. Either siRNA of dishevelled or cell pre-treatment with Dickkopf-1, known inhibitor of Wnt signaling substantially reduced either DPSC osteogenic differentiation or its enhancement promoted by CCPA. Summarizing, our findings indicate that the stimulation of A1R may stimulate DPSC duplication enhancing their osteogenic differentiation efficiency. These effects may have clinical implications possibly facilitating bone tissue repair and remodeling.
Collapse
Affiliation(s)
- Iolanda D'Alimonte
- Department of Experimental and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy; Stem Tech Group, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1273
|
Tural S, Alayli G, Kara N, Tander B, Bilgici A, Kuru O. Association between osteoporosis and polymorphisms of the IL-10 and TGF-beta genes in Turkish postmenopausal women. Hum Immunol 2013; 74:1179-83. [PMID: 23583365 DOI: 10.1016/j.humimm.2013.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/29/2013] [Accepted: 03/19/2013] [Indexed: 02/01/2023]
Abstract
Osteoporosis is a multifactorial disease in which genetic determinants are modulated by hormonal, environmental and nutritional factors. The balance between bone resorption and bone formation seems to be regulated by a variety of growth factors and cytokines. An important clinical risk factor in the pathogenesis of osteoporosis is the presence of genetic polymorphisms in susceptibility genes. In this study, we investigated the association between osteoporosis and interleukin 10 (IL-10) -597 C > A and transforming growth factor β1 (TGF-β1) T869C (also named Leu10 > Pro) polymorphisms in Turkish postmenopausal women. Genomic DNA obtained from 255 individuals (152 osteoporotic and 103 healthy controls). The DNA sample was isolated from peripheral bloods by salting-out method and analyzed by the techniques of PCR-RFLP. Genotype and allele frequencies were calculated and data were analyzed using the χ(2) test. We found a statistically significant difference between the groups with respect to IL-10 genotype distribution (p = 0.001) and allele frequencies (p < 0.0002). However, we did not found any difference between the groups with regarding TGF-β1 genotype distribution and allele frequencies (p > 0.05). In the combined genotype analysis, IL-10/TGF-β1 CCCC combine genotype was also estimated risk factor for osteoporosis in Turkish postmenopausal women (p = 0.026). To our knowledge, this is the first report to examine IL-10 gene -597 C > A polymorphism and osteoporosis in Turkish population.
Collapse
Affiliation(s)
- Sengul Tural
- Ondokuz Mayis Univesity, Faculty of Medicine, Dept. of Medical Biology and Genetics, Turkey.
| | | | | | | | | | | |
Collapse
|
1274
|
MATTAR TIAGO, FRIEDRICH PATRICIAF, BISHOP ALLENT. Effect of rhBMP-2 and VEGF in a vascularized bone allotransplant experimental model based on surgical neoangiogenesis. J Orthop Res 2013. [PMID: 23192572 PMCID: PMC3972920 DOI: 10.1002/jor.22277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have demonstrated survival of living allogeneic bone without long-term immunosuppression using short-term immunosuppression and simultaneous creation of an autogenous neoagiogenic circulation. In this study, bone morphogenic protein-2 (rhBMP-2), and/or vascular endothelial growth factor (VEGF), were used to augment this process. Femoral diaphyseal bone was transplanted heterotopically from 46 Dark Agouti to 46 Lewis rats. Microvascular repair of the allotransplant nutrient pedicle was combined with intra-medullary implantation of an autogenous saphenous arteriovenous (AV) bundle and biodegradable microspheres containing buffer (control), rhBMP-2 or rhBMP-2 + VEGF. FK-506 given daily for 14 days maintained nutrient pedicle flow during angiogenesis. After an 18 weeks survival period, we measured angiogenesis (capillary density) from the AV bundle and cortical bone blood flow. Both measures were greater in the combined (rhBMP-2 + VEGF) group than rhBMP-2 and control groups (p < 0.05). Osteoblast counts were also higher in the rhBMP-2 + VEGF group (p < 0.05). A trend towards greater bone formation was seen in both rhBMP2 + VGF and rhBMP2 groups as compared to controls (p = 0.059). Local administration of VEGF and rhBMP-2 augments angiogenesis, osteoblastic activity and bone blood flow from implanted blood vessels of donor origin in vascularized bone allografts.
Collapse
Affiliation(s)
- TIAGO MATTAR
- Department of Orthopedics, University of São Paulo, Rua Dr Ovídio Pires de Campos, 333, Cerqueira Cesar, São Paulo, SP, 05403-010, Brazil
| | - PATRICIA F. FRIEDRICH
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - ALLEN T. BISHOP
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, Corresponding author: Allen T. Bishop Telephone: 507-284-4149 Fax: 507-284- 5539
| |
Collapse
|
1275
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1276
|
Savoie A, Gouin F, Maugars Y, Isidor B, Larrose C, Berthelot JM. Treatment responses in five patients with Ribbing disease including two with 466C>T missense mutations in TGFβ1. Joint Bone Spine 2013; 80:638-44. [PMID: 23453470 DOI: 10.1016/j.jbspin.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess 5-year treatment responses and TGFB1 gene abnormalities in five patients with ribbing disease. METHODS PCR analysis and bidirectional sequencing of TGFβ1 exons 1 through 7 were performed in all five patients. RESULTS The five patients, four women and one man with a mean age of 34 years at symptom onset, shared the following features: severe diaphyseal pain predominating in the lower limbs with diaphyseal hyperostosis; increased radionuclide uptake at sites of pain and, in some cases at other cortical sites; asymmetric or asynchronous lesions; long symptom duration (5-18 years) despite a variety of treatments; and a delay of several years (2-15) between symptom onset and the diagnosis. Of our five patients, two had a heterozygous missense mutation in exon 2 of TGFβ1 (c.466C>T, p.Arg156Cys, previously described in Camurati-Engelmann syndrome) and three had commonly found TGFβ1 polymorphisms. Intravenous bisphosphonate therapy was used in all five patients but induced substantial improvements in a single patient. Of the three patients given bolus methylprednisolone therapy, two experienced a lasting response; the exception was one of the two women with a TGFβ1 mutation. CONCLUSION Considerable heterogeneity in the clinical presentations, genetic abnormalities, and treatment responses contribute to the diagnostic challenges raised by ribbing disease. Detailed genetic studies are needed.
Collapse
Affiliation(s)
- Anne Savoie
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France
| | | | | | | | | | | |
Collapse
|
1277
|
Genome-wide association study in Han Chinese identifies three novel loci for human height. Hum Genet 2013; 132:681-9. [PMID: 23456168 DOI: 10.1007/s00439-013-1280-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Human height is a complex genetic trait with high heritability but discovery efforts in Asian populations are limited. We carried out a meta-analysis of genome-wide association studies (GWAS) for height in 6,534 subjects with in silico replication of 1,881 subjects in Han Chinese. We identified three novel loci reaching the genome-wide significance threshold (P < 5 × 10(-8)), which mapped in or near ZNF638 (rs12612930, P = 2.02 × 10(-10)), MAML2 (rs11021504, P = 7.81 × 10(-9)), and C18orf12 (rs11082671, P = 1.87 × 10(-8)). We also confirmed two loci previously reported in European populations including CS (rs3816804, P = 2.63 × 10(-9)) and CYP19A1 (rs3751599, P = 4.80 × 10(-10)). In addition, we provided evidence supporting 35 SNPs identified by previous GWAS (P < 0.05). Our study provides new insights into the genetic determination of biological regulation of human height.
Collapse
|
1278
|
Abstract
During the last decades, obesity research has focused on food intake regulation, whereas energy expenditure has been mainly measured based on whole-body oxygen consumption. With the renaissance of brown adipose tissue (BAT) thermogenesis as a potential drug target in humans, more thought is put into alternative heat-producing mechanisms. Also, the interaction of peripheral and central components to regulate thermogenesis requires further studies. Certainly, several of the novel molecular genetic tools available now, compared with 40 years ago, will be helpful to gain new insights in BAT-controlled energy homeostasis and promises new approaches to pharmacologically control body weight.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | | |
Collapse
|
1279
|
Lowery JW, LaVigne AW, Kokabu S, Rosen V. Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR) in mammals. PLoS One 2013; 8:e57840. [PMID: 23451274 PMCID: PMC3579780 DOI: 10.1371/journal.pone.0057840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is a multi-member signaling cascade whose basic components are found in all animals. One member, BMP3, which arose more recently in evolution and is found only in deuterostomes, serves a unique role as an antagonist to both the canonical BMP and Activin pathways. However, the mechanisms that control BMP3 expression, and the cis-regulatory regions mediating this regulation, remain poorly defined. With this in mind, we sought to identify the Bmp3 promoter in mouse (M. musculus) through functional and comparative genomic analyses. We found that the minimal promoter required for expression in resides within 0.8 kb upstream of Bmp3 in a region that is highly conserved with rat (R. norvegicus). We also found that an upstream region abutting the minimal promoter acts as a repressor of the minimal promoter in HEK293T cells and osteoblasts. Strikingly, a portion of this region is conserved among all available eutherian mammal genomes (47/47), but not in any non-eutherian animal (0/136). We also identified multiple conserved transcription factor binding sites in the Bmp3 upstream ECR, suggesting that this region may preserve common cis-regulatory elements that govern Bmp3 expression across eutherian mammals. Since dysregulation of BMP signaling appears to play a role in human health and disease, our findings may have application in the development of novel therapeutics aimed at modulating BMP signaling in humans.
Collapse
Affiliation(s)
- Jonathan W. Lowery
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Anna W. LaVigne
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Shoichiro Kokabu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
1280
|
Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Mishina Y, Yamada M, Konno T, Takato T, Kawaguchi H, Kambara H, Chung UI. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 2013; 288:9924-9932. [PMID: 23423383 DOI: 10.1074/jbc.m112.409342] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1(-/-) fetuses, and the phenotype was more severe in Gli1(-/-);Gli2(-/-) newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | - Fumiko Yano
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Ikeda
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Nakajima
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuske Komiyama
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Masahisa Yamada
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Common Resources Group, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Tomohiro Konno
- Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kawaguchi
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Kambara
- Hitachi Central Research Laboratory, Tokyo 185-8601, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
1281
|
Gdalevitch M, Kasaai B, Alam N, Dohin B, Lauzier D, Hamdy RC. The effect of heparan sulfate application on bone formation during distraction osteogenesis. PLoS One 2013; 8:e56790. [PMID: 23457615 PMCID: PMC3574072 DOI: 10.1371/journal.pone.0056790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are recognized for their ability to induce bone formation in vivo and in vitro. Their osteogenic and osteoinductive properties are tightly regulated by the secretion of specific BMP antagonists, which have been shown to physically bind and sometimes be blocked by the extracellular proteoglycan heparan sulphate side chains (from hereon referred to as HS). The purpose of this study was to investigate if local application of 5 µg of HS proteoglycan to a bone regenerate site in a mouse model of distraction osteogenesis (DO) can accelerate bone healing and affect the expression of key members of the BMP signaling pathway. DO was performed on the right tibia of 115 adult male wild-type mice. At mid-distraction (day 11), half the group was injected locally with 5 µg of HS, while the other half was injected with saline. The mice were sacrificed at 2 time-points: mid-consolidation (34 days) and full consolidation (51 days). The distracted tibial zone was then collected for analysis by μCT, radiology, biomechanical testing, immunohistochemistry, and histology. While μCT data showed no statistically significant difference in bone formation, the results of biomechanical testing in stiffness and ultimate force were significantly lower in the HS-injected bones at 51 days, compared to controls. Immunohistochemistry results also suggested a decrease in expression of several key members of the BMP signaling pathway at 34 days. Furthermore, wound dehiscence and infection rates were significantly elevated in the HS group compared to the controls, which resulted in a higher rate of euthanasia in the treatment group. Our findings demonstrate that exogenous application of 5 µg of HS in the distracted gap of a murine model had a negative impact on bone and wound healing.
Collapse
Affiliation(s)
- Marie Gdalevitch
- Division of Orthopedics, Shriners Hospital for Children, Montréal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
1282
|
Büttner M, Möller S, Keller M, Huster D, Schiller J, Schnabelrauch M, Dieter P, Hempel U. Over-sulfated chondroitin sulfate derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling. J Cell Physiol 2013; 228:330-40. [PMID: 22718137 DOI: 10.1002/jcp.24135] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural glycosaminoglycans (GAGs) and chemically modified GAG derivatives are known to support osteogenic differentiation of mesenchymal stromal cells (MSC). This effect has mainly been described to be mediated by increasing the effectiveness of bone anabolic growth factors such as bone morphogenetic proteins (BMPs) due to the binding and presentation of the growth factor or by modulating its signal transduction pathway. In the present study, the influence of chondroitin sulfate (CS) and two chemically over-sulfated CS derivatives on osteogenic differentiation of human mesenchymal stromal cells (hMSC) and on BMP-2 and transforming growth factor β1 (TGF-β1) signalling was investigated. Over-sulfated CS derivatives induced an increase of tissue non-specific alkaline phosphatase (TNAP) activity and calcium deposition, whereas collagen synthesis was slightly decreased. The BMP-2-induced Smad1/5 activation was inhibited in the presence of over-sulfated CS derivatives leading to a loss of BMP-2-induced TNAP activity and calcium deposition. In contrast, the TGF-β1-induced activation of Smad2/3 and collagen synthesis were not affected by the over-sulfated CS derivatives. BMP-2 and TGF-β1 did not activate the extracellular signal-regulated kinase 1/2 or mitogen-activated protein kinase p38 in hMSC. These data suggest that over-sulfated CS derivatives themselves are able to induce osteogenic differentiation, probably independent of BMP-2 and TGF-β1 signalling, and offer therefore an interesting approach for the improvement of bone healing.
Collapse
Affiliation(s)
- Marianne Büttner
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1283
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
1284
|
Seke Etet PF, Vecchio L, Bogne Kamga P, Nchiwan Nukenine E, Krampera M, Nwabo Kamdje AH. Normal hematopoiesis and hematologic malignancies: role of canonical Wnt signaling pathway and stromal microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1835:1-10. [PMID: 22982245 DOI: 10.1016/j.bbcan.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Wnts are a family of evolutionary-conserved secreted signaling molecules critically involved in a variety of developmental processes and in cell fate determination. A growing body of evidence suggests that Wnt signaling plays a crucial role in the influence of bone marrow stromal microenvironment on the balance between hematopoietic stem cell self-renewal and differentiation. Emerging clinical and experimental evidence also indicates Wnt signaling involvement in the disruption of the latter balance in hematologic malignancies, where the stromal microenvironment favors the homing of cancer cells to the bone marrow, as well as leukemia stem cell development and chemoresistance. In the present review, we summarize and discuss the role of the canonical Wnt signaling pathway in normal hematopoiesis and hematologic malignancies, with regard to recent findings on the stromal microenvironment involvement in these process and diseases.
Collapse
Affiliation(s)
- Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 Al-Qaseem, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
1285
|
YAMADA S, YOSHIZAWA Y, KAWAKUBO A, IKEDA T, YANAGIGUCHI K, HAYASHI Y. Early gene and protein expression associated with osteoblast differentiation in response to fish collagen peptides powder. Dent Mater J 2013; 32:233-40. [DOI: 10.4012/dmj.2012-188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1286
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
1287
|
Pretheeban T, Lemos DR, Paylor B, Zhang RH, Rossi FM. Role of stem/progenitor cells in reparative disorders. FIBROGENESIS & TISSUE REPAIR 2012; 5:20. [PMID: 23270300 PMCID: PMC3541267 DOI: 10.1186/1755-1536-5-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/29/2012] [Indexed: 01/11/2023]
Abstract
Adult stem cells are activated to proliferate and differentiate during normal tissue homeostasis as well as in disease states and injury. This activation is a vital component in the restoration of function to damaged tissue via either complete or partial regeneration. When regeneration does not fully occur, reparative processes involving an overproduction of stromal components ensure the continuity of tissue at the expense of its normal structure and function, resulting in a “reparative disorder”. Adult stem cells from multiple organs have been identified as being involved in this process and their role in tissue repair is being investigated. Evidence for the participation of mesenchymal stromal cells (MSCs) in the tissue repair process across multiple tissues is overwhelming and their role in reparative disorders is clearly demonstrated, as is the involvement of a number of specific signaling pathways. Transforming growth factor beta, bone morphogenic protein and Wnt pathways interact to form a complex signaling network that is critical in regulating the fate choices of both stromal and tissue-specific resident stem cells (TSCs), determining whether functional regeneration or the formation of scar tissue follows an injury. A growing understanding of both TSCs, MSCs and the complex cascade of signals regulating both cell populations have, therefore, emerged as potential therapeutic targets to treat reparative disorders. This review focuses on recent advances on the role of these cells in skeletal muscle, heart and lung tissues.
Collapse
|
1288
|
Kang KS, Hong JM, Seol YJ, Rhie JW, Jeong YH, Cho DW. Short-term evaluation of electromagnetic field pretreatment of adipose-derived stem cells to improve bone healing. J Tissue Eng Regen Med 2012; 9:1161-71. [PMID: 23281198 DOI: 10.1002/term.1664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/11/2012] [Accepted: 11/05/2012] [Indexed: 01/23/2023]
Abstract
An electromagnetic field is an effective stimulation tool because it promotes bone defect healing, albeit in an unknown way. Although electromagnetic fields are used for treatment after surgery, many patients prefer cell-based tissue regeneration procedures that do not require daily treatments. This study addressed the effects of an electromagnetic field on adipose-derived stem cells (ASCs) to investigate the feasibility of pretreatment to accelerate bone regeneration. After identifying a uniform electromagnetic field inside a solenoid coil, we observed that a 45 Hz electromagnetic field induced osteogenic marker expression via bone morphogenetic protein, transforming growth factor β, and Wnt signalling pathways based on microarray analyses. This electromagnetic field increased osteogenic gene expression, alkaline phosphate activity and nodule formation in vitro within 2 weeks, indicating that this pretreatment may provide osteogenic potential to ASCs on three-dimensional (3D) ceramic scaffolds. This pretreatment effect of an electromagnetic field resulted in significantly better bone regeneration in a mouse calvarial defect model over 4 weeks compared to that in the untreated group. This short-term evaluation showed that the electromagnetic field pretreatment may be a future therapeutic option for bone defect treatment.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Mechanical Engineering, POSTECH, Pohang, Korea
| | - Jung Min Hong
- Department of Mechanical Engineering, POSTECH, Pohang, Korea
| | - Young-Joon Seol
- Department of Mechanical Engineering, POSTECH, Pohang, Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Hun Jeong
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, Korea. .,Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Korea.
| |
Collapse
|
1289
|
Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol 2012; 2012:601549. [PMID: 23226941 PMCID: PMC3511855 DOI: 10.1155/2012/601549] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/16/2012] [Indexed: 12/29/2022] Open
Abstract
Critical-size osseous defects cannot heal without surgical intervention and can pose a significant challenge to craniofacial reconstruction. Autologous bone grafting is the gold standard for repair but is limited by a donor site morbidity and a potentially inadequate supply of autologous bone. Alternatives to autologous bone grafting include the use of alloplastic and allogenic materials, mesenchymal stem cells, and bone morphogenetic proteins. Bone morphogenetic proteins (BMPs) are essential mediators of bone formation involved in the regulation of differentiation of osteoprogenitor cells into osteoblasts. Here we focus on the use of BMPs in experimental models of craniofacial surgery and clinical applications of BMPs in the reconstruction of the cranial vault, palate, and mandible and suggest a model for the use of BMPs in personalized stem cell therapies.
Collapse
|
1290
|
Guo L, Luo T, Fang Y, Yang L, Wang L, Liu J, Shi B. Effects of erythropoietin on osteoblast proliferation and function. Clin Exp Med 2012; 14:69-76. [DOI: 10.1007/s10238-012-0220-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
1291
|
Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, Wang SS, Yang S. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci 2012; 8:1310-22. [PMID: 23139630 PMCID: PMC3492790 DOI: 10.7150/ijbs.5136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
1292
|
Robaszkiewicz A, Erdélyi K, Kovács K, Kovács I, Bai P, Rajnavölgyi E, Virág L. Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. Free Radic Biol Med 2012; 53:1552-64. [PMID: 22940495 DOI: 10.1016/j.freeradbiomed.2012.08.567] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/24/2012] [Accepted: 08/11/2012] [Indexed: 01/06/2023]
Abstract
We set out to investigate the role of poly(ADP-ribosylation), the attachment of NAD(+)-derived (ADP-ribose)(n) polymers to proteins, in the regulation of osteogenic differentiation of SAOS-2 cells and mesenchymal stem cells. In osteogenic differentiation medium, SAOS-2 cells showed mineralization and expressed alkaline phosphatase and osteoblastic marker genes such as Runx2, osterix, BMP2, and osteopontin. The cells also released hydrogen peroxide, displayed poly(ADP-ribose) polymerase (PARP) activation, and showed commitment to cell death (apoptosis and necrosis). Scavenging reactive oxygen species by glutathione or decomposing hydrogen peroxide by the addition of catalase reduced differentiation, PARP activation, and cell death. We silenced the expression of the main PAR-synthesizing enzyme PARP-1 and the PAR-degrading enzyme poly(ADP-ribose) glycohydrolase (PARG) in SAOS-2 osteosarcoma cells (shPARP-1 and shPARG, respectively). Both shPARP-1- and shPARG-silenced cells exhibited altered differentiation, with the most notable change being increased osteopontin expression but decreased alkaline phosphatase activity. PARP-1 silencing suppressed both apoptotic and necrotic cell death, but the PARP inhibitor PJ34 sensitized cells to cell death, indicating that the effects of PARP-1 silencing are not related to the activity of the enzyme. PARG silencing resulted in more apoptosis and, in the last days of differentiation, a shift from apoptosis toward necrosis. In conclusion our data prove that hydrogen peroxide-induced poly(ADP-ribose) signaling regulates cell death and osteodifferentiation.
Collapse
Affiliation(s)
- Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
1293
|
Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 2012; 287:42084-92. [PMID: 23060446 DOI: 10.1074/jbc.m112.377515] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1294
|
Cheng S, Lu SC, Zhang B, Xue Z, Wang HW. Rare massive osteolipoma in the upper part of the knee in a young adult. Orthopedics 2012; 35:e1434-7. [PMID: 22955415 DOI: 10.3928/01477447-20120822-35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipoma is a common benign soft tissue tumor. This article describes a massive osteolipoma, an unusual lipoma that is fixed to the femoral periosteum. A 21-year-old man presented with a subcutaneous mass at the knee region, which had been present for more than 36 months, and a slight limitation of joint flexibility. On physical examination, a mass approximately 12×6×2 cm(3) in dimension was palpable beneath the skin at the knee proximal medial area when the knee was in flexion. The mass was ovoid, hard, nontender, well demarcated, large, subcutaneous, and relatively fixed to the femur. Medical imaging examination showed that the femur had a well-demarcated mass with a basement. No prominent body weight loss was noted. The excisional mass of 16×12×10 cm(3) was not well encapsulated by a thin, fibrous membrane and had an apparently osseous basal portion. Intraoperative rapid frozen section revealed that the tumor was derived from the adipose cells. The postoperative course was uneventful. The definitive pathologic diagnosis was intermuscular osteolipoma without evidence of malignancy. No recurrence was observed at 6-month follow-up. Osteolipoma with independent bone and an osseous basal portion is rare, especially in young adults. Osteolipoma has the same prognosis as simple lipoma, and surgical excision is the recommended treatment. To the authors' knowledge, such a massive osteolipoma has not been reported.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
1295
|
Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol 2012; 3:303. [PMID: 22934054 PMCID: PMC3429074 DOI: 10.3389/fphys.2012.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022] Open
Abstract
Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than "compartmental," problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the "norm" and "pathology," which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its "neighboring" tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the "musculoskeleton." Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a "holistic" genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health.
Collapse
Affiliation(s)
- David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University Safed, Israel
| | | |
Collapse
|
1296
|
Tsukasaki M, Yamada A, Yoshimura K, Miyazono A, Yamamoto M, Takami M, Miyamoto Y, Morimura N, Kamijo R. Nephronectin expression is regulated by SMAD signaling in osteoblast-like MC3T3-E1 cells. Biochem Biophys Res Commun 2012; 425:390-2. [DOI: 10.1016/j.bbrc.2012.07.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022]
|
1297
|
Abstract
Psoriatic arthritis (PsA) is characterized by focal bone erosions mediated by osteoclasts at the bone-pannus junction. The bulk of research over the past decade has centered on mechanisms that underlie osteoclastogenesis along with new insights into osteoimmunology; however, recent advances that focus on steps that lead to new bone formation are beginning to emerge. New revelations about bone formation may have direct relevance to PsA given the presence of enthesophytes, syndesmophytes, and bony ankylosis frequently observed in patients with this disorder. In this review, we discuss current developments in the pathogenesis of new bone formation, novel imaging approaches to study bone remodeling and highlight innovative approaches to study the effect of inflammation on bone. Lastly, we discuss promising therapies that target joint inflammation and osteitis with the potential to mediate pathologic bone formation.
Collapse
Affiliation(s)
- Homaira Rahimi
- Department of Pediatrics, Division of Rheumatology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Christopher T. Ritchlin
- Allergy, Immunology, and Rheumatology Unit, University of Rochester Medical Center, 601 Elmwood Avenue, Box 695, Rochester, NY 14642 USA
| |
Collapse
|
1298
|
Hurchla MA, Garcia-Gomez A, Hornick MC, Ocio EM, Li A, Blanco JF, Collins L, Kirk CJ, Piwnica-Worms D, Vij R, Tomasson MH, Pandiella A, San Miguel JF, Garayoa M, Weilbaecher KN. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 2012; 27:430-40. [PMID: 22763387 DOI: 10.1038/leu.2012.183] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.
Collapse
Affiliation(s)
- M A Hurchla
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1299
|
Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci 2012; 70:407-23. [PMID: 22752156 PMCID: PMC3541930 DOI: 10.1007/s00018-012-1054-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.
Collapse
|
1300
|
Ohba S, Hojo H, Chung UI. Bioactive factors for tissue regeneration: state of the art. Muscles Ligaments Tendons J 2012; 2:193-203. [PMID: 23738297 PMCID: PMC3666524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Japan
| | - Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Japan
| | - Ung-il Chung
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Japan
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering,Tokyo, Japan
| |
Collapse
|