1401
|
Abstract
Colorectal cancer is the second-leading cause of cancer-related deaths in the United States and fourth-leading cause of cancer-related deaths worldwide. While cancer is largely considered to be a disease of genetic and environmental factors, increasing evidence has demonstrated a role for the microbiota (the microorganisms associated with the human body) in shaping inflammatory environments and promoting tumor growth and spread. Herein, we discuss both human data from meta'omics analyses and data from mechanistic studies in cell culture and animal models that support specific bacterial agents as potentiators of tumorigenesis-including Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli. Further, we consider how microbes can be used in diagnosing colorectal cancer and manipulating the tumor environment to encourage better patient outcomes in response to immunotherapy treatments.
Collapse
Affiliation(s)
- Caitlin A Brennan
- Departments of Immunology & Infectious Diseases and Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; ,
| | - Wendy S Garrett
- Departments of Immunology & Infectious Diseases and Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
1402
|
Gong H, Shi Y, Xiao X, Cao P, Wu C, Tao L, Hou D, Wang Y, Zhou L. Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma. Sci Rep 2017; 7:5507. [PMID: 28710395 PMCID: PMC5511217 DOI: 10.1038/s41598-017-05576-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
The microbial communities that inhabit the laryngeal mucosa build stable microenvironments and have the potential to influence the health of the human throat. However, the associations between the microbiota structure and laryngeal carcinoma remain uncertain. Here, we explored this question by comparing the laryngeal microbiota structure in laryngeal cancer patients with that in control subjects with vocal cord polyps through high-throughput pyrosequencing. Overall, the genera Streptococcus, Fusobacterium, and Prevotella were prevalent bacterial populations in the laryngeal niche. Tumor tissue samples and normal tissues adjacent to the tumor sites (NATs) were collected from 31 laryngeal cancer patients, and the bacterial communities in laryngeal cancer patients were compared with control samples from 32 subjects. A comparison of the laryngeal communities in the tumor tissues and the NATs showed higher α-diversity in cancer patients than in control subjects, and the relative abundances of seven bacterial genera differed among the three groups of samples. Furthermore, the relative abundances of ten bacterial genera in laryngeal cancer patients differed substantially from those in control subjects. These findings indicate that the laryngeal microbiota profiles are altered in laryngeal cancer patients, suggesting that a disturbance of the microbiota structure might be relevant to laryngeal cancer.
Collapse
Affiliation(s)
- Hongli Gong
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China.
| | - Xiyan Xiao
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Pengyu Cao
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Chunping Wu
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Lei Tao
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Dongsheng Hou
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Sequencing Centre, 250 Bibo Road, Shanghai, 201203, China
| | - Liang Zhou
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Department of Otorhinolaryngology, Eye, Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
1403
|
Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 2017; 13:e1006440. [PMID: 28704539 PMCID: PMC5509344 DOI: 10.1371/journal.ppat.1006440] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of β-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of β-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and β-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.
Collapse
|
1404
|
Abstract
Answer questions and earn CME/CNE The human body harbors enormous numbers of microbiota that influence cancer susceptibility, in part through their prodigious metabolic capacity and their profound influence on immune cell function. Microbial pathogens drive tumorigenesis in 15% to 20% of cancer cases. Even larger numbers of malignancies are associated with an altered composition of commensal microbiota (dysbiosis) based on microbiome studies using metagenomic sequencing. Although association studies cannot distinguish whether changes in microbiota are causes or effects of cancer, a causative role is supported by rigorously controlled preclinical studies using gnotobiotic mouse models colonized with one or more specific bacteria. These studies demonstrate that microbiota can alter cancer susceptibility and progression by diverse mechanisms, such as modulating inflammation, inducing DNA damage, and producing metabolites involved in oncogenesis or tumor suppression. Evidence is emerging that microbiota can be manipulated for improving cancer treatment. By incorporating probiotics as adjuvants for checkpoint immunotherapy or by designing small molecules that target microbial enzymes, microbiota can be harnessed to improve cancer care. CA Cancer J Clin 2017;67:326-344. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Aadra P. Bhatt
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biochemistry & Biophysics, Microbiology & Immunology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
1405
|
Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, Nowak JA, Kosumi K, Hamada T, Masugi Y, Bullman S, Drew DA, Kostic AD, Fung TT, Garrett WS, Huttenhower C, Wu K, Meyerhardt JA, Zhang X, Willett WC, Giovannucci EL, Fuchs CS, Chan AT, Ogino S. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol 2017; 3:921-927. [PMID: 28125762 PMCID: PMC5502000 DOI: 10.1001/jamaoncol.2016.6374] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Fusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of the hosts' immune response to tumor. Evidence also suggests that diet influences intestinal F nucleatum. However, the role of F nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown. OBJECTIVE To test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F nucleatum in tumor tissue. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study was conducted using data from the Nurses' Health Study (June 1, 1980, to June 1, 2012) and the Health Professionals Follow-up Study (June 1, 1986, to June 1, 2012) on a total of 121 700 US female nurses and 51 529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively (both predominantly white individuals), at enrollment. Data analysis was performed from March 15, 2015, to August 10, 2016. EXPOSURES Prudent and Western diets. MAIN OUTCOMES AND MEASURES Incidence of colorectal carcinoma subclassified by F nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction. RESULTS Of the 173 229 individuals considered for the study, 137 217 were included in the analysis, 47 449 were male (34.6%), and mean (SD) baseline age for men was 54.0 (9.8) years and for women, 46.3 (7.2) years. A total of 1019 incident colon and rectal cancer cases with available F nucleatum data were documented over 26 to 32 years of follow-up, encompassing 3 643 562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F nucleatum status (P = .01 for heterogeneity); prudent diet score was associated with a lower risk of F nucleatum-positive cancers (P = .003 for trend; multivariable hazard ratio of 0.43; 95% CI, 0.25-0.72, for the highest vs the lowest prudent score quartile) but not with F nucleatum-negative cancers (P = .47 for trend, the corresponding multivariable hazard ratio of 0.95; 95% CI, 0.77-1.17). There was no significant heterogeneity between the subgroups in relation to Western dietary pattern scores. CONCLUSIONS AND RELEVANCE Prudent diets rich in whole grains and dietary fiber are associated with a lower risk for F nucleatum-positive colorectal cancer but not F nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms.
Collapse
Affiliation(s)
- Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Reiko Nishihara
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts8Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aleksandar D Kostic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge
| | - Teresa T Fung
- Program in Dietetics, Simmons College, Boston, Massachusetts
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts11Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts13Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
1406
|
Abed J, Maalouf N, Parhi L, Chaushu S, Mandelboim O, Bachrach G. Tumor Targeting by Fusobacterium nucleatum: A Pilot Study and Future Perspectives. Front Cell Infect Microbiol 2017; 7:295. [PMID: 28713780 PMCID: PMC5492862 DOI: 10.3389/fcimb.2017.00295] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Colorectal adenocarcinoma (CRC) is a common tumor with high mortality rates. Interestingly, CRC was found to be colonized by the oral anaerobic bacteria Fusobacterium nucleatum, which accelerates tumor progression and enables immune evasion. The CRC-specific colonization by fusobacteria is mediated through the recognition of tumor displayed Gal-GalNAc moieties by the fusobacterial Fap2 Gal-GalNAc lectin. Here, we show high Gal-GalNAc levels in additional adenocarcinomas including those found in the stomach, prostate, ovary, colon, uterus, pancreas, breast, lung, and esophagus. This observation coincides with recent reports that found fusobacterial DNA in some of these tumors. Given the tumorigenic role of fusobacteria and its immune evasion properties, we suggest that fusobacterial elimination might improve treatment outcome of the above tumors. Furthermore, as fusobacteria appears to specifically home-in to Gal-GalNAc—displaying tumors, it might be engineered as a platform for treating CRC and the above common, lethal, adenocarcinomas.
Collapse
Affiliation(s)
- Jawad Abed
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel.,Department of Orthodontics, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel
| | - Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel
| | - Lishay Parhi
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC)Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental MedicineJerusalem, Israel
| |
Collapse
|
1407
|
Tahara T, Hirata I, Nakano N, Tahara S, Horiguchi N, Kawamura T, Okubo M, Ishizuka T, Yamada H, Yoshida D, Ohmori T, Maeda K, Komura N, Ikuno H, Jodai Y, Kamano T, Nagasaka M, Nakagawa Y, Tuskamoto T, Urano M, Shibata T, Kuroda M, Ohmiya N. Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget 2017; 8:61917-61926. [PMID: 28977914 PMCID: PMC5617474 DOI: 10.18632/oncotarget.18716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIM Fusobacterium enrichment has been associated with colorectal cancer development. Ulcerative colitis (UC) associated tumorigenesis is characterized as high degree of methylation accumulation through continuous colonic inflammation. The aim of this study was to investigate a potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in UC. METHODS In the candidate analysis, inflamed colonic mucosa from 86 UC patients were characterized the methylation status of colorectal a panel of cancer related 24 genes. In the genome-wide analysis, an Infinium HumanMethylation450 BeadChip array was utilized to characterize the methylation status of >450,000 CpG sites for fourteen UC patients. Results were correlated with Fusobacterium status. RESULTS UC with Fusobacterium enrichment (FB-high) was characterized as high degree of type C (for cancer-specific) methylation compared to other (FB-low/neg) samples (P<0.01). Genes hypermethylated in FB-high samples included well-known type C genes in colorectal cancer, such as MINT2 and 31, P16 and NEUROG1. Multivariate analysis demonstrated that the FB high status held an increased likelihood for methylation high as an independent factor (odds ratio: 16.18, 95% confidence interval: 1.94-135.2, P=0.01). Genome-wide methylation analysis demonstrated a unique methylome signature of FB-high cases irrespective of promoter, outside promoter, CpG and non-CpG sites. Group of promoter CpG sites that were exclusively hypermethylated in FB-high cases significantly codified the genes related to the catalytic activity (P=0.039). CONCLUSION Our findings suggest that Fusobacterium accelerates DNA methylation in specific groups of genes in the inflammatory colonic mucosa in UC.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ichiro Hirata
- Department of Gastroenterology, Kenporen Osaka Central Hospital Japan, Osaka, Japan
| | - Naoko Nakano
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sayumi Tahara
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomohiko Kawamura
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Okubo
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takamitsu Ishizuka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hyuga Yamada
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Dai Yoshida
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takafumi Ohmori
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Maeda
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naruomi Komura
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirokazu Ikuno
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasutaka Jodai
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Toshiaki Kamano
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Tuskamoto
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Kuroda
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
1408
|
Abstract
Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.
Collapse
Affiliation(s)
- Cécily Lucas
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| |
Collapse
|
1409
|
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain 12230: -6-α-d-Glc-4-β-d-GlcNHBu3NHBuA-3-β-d-QuiNAc4NABu- where ABu and HBu indicate (R)-3-aminobutanoyl and (R)-3-hydroxybutanoyl, respectively; all monosaccharides are in the pyranose form.
Collapse
|
1410
|
Jung YJ, Jun HK, Choi BK. Porphyromonas gingivalis suppresses invasion of Fusobacterium nucleatum into gingival epithelial cells. J Oral Microbiol 2017; 9:1320193. [PMID: 28748028 PMCID: PMC5508355 DOI: 10.1080/20002297.2017.1320193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Invasion of periodontal pathogens into periodontal tissues is an important step that can cause tissue destruction in periodontal diseases. Porphyromonas gingivalis is a keystone pathogen and its gingipains are key virulence factors. Fusobacterium nucleatum is a bridge organism that mediates coadhesion of disease-causing late colonizers such as P. gingivalis and early colonizers during the development of dental biofilms. The aim of this study was to investigate how P. gingivalis, in particular its gingipains, influences the invasion of coinfecting F. nucleatum into gingival epithelial cells. When invasion of F. nucleatum was analyzed after 4 h of infection, invasion of F. nucleatum was suppressed in the presence of P. gingivalis compared with during monoinfection. However, coinfection with a gingipain-null mutant of P. gingivalis did not affect invasion of F. nucleatum. Inhibition of PI3K reduced invasion of F. nucleatum. P. gingivalis inactivated the PI3K/AKT pathway, which was also dependent on gingipains. Survival of intracellular F. nucleatum was promoted by P. gingivalis with Arg gingipain mutation. The results suggest that P. gingivalis, in particular its gingipains, can affect the invasion of coinfecting F. nucleatum through modulating intracellular signaling of the host cells.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA.,Dental Research Institute;Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
1411
|
Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2073-2083. [PMID: 28600626 DOI: 10.1007/s10096-017-3026-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to explore the gut microbiota profiles of colorectal cancer (CRC) patients and to examine the relationship between gut microbiota and other key molecular factors involved in CRC tumorigenesis. In this study, a 16S rDNA sequencing platform was used to identify possible differences in the microbiota signature between CRC and adjacent normal mucosal tissue. Differences in the microbiota composition in different anatomical colorectal tumor sites and their potential association with KRAS mutation were also explored. In this study, the number of Firmicutes and Actinobacteria decreased, while the number of Fusobacteria increased in the gut of CRC patients. In addition, at the genus level, Fusobacterium was identified as the key contributor to CRC tumorigenesis. In addition, a different distribution of gut microbiota in ascending and descending colon cancer samples was observed. Lipopolysaccharide biosynthesis-associated microbial genes were enriched in tumor tissues. Our study suggests that specific mucosa-associated microbiota signature and function are significantly changed in the gut of CRC patients, which may provide insight into the progression of CRC. These findings could also be of value in the creation of new prevention and treatment strategies for this type of cancer.
Collapse
Affiliation(s)
- R Gao
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - C Kong
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - L Huang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - X Qu
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Z Liu
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - P Lan
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - J Wang
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - H Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China.
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
1412
|
Park HE, Kim JH, Cho NY, Lee HS, Kang GH. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch 2017; 471:329-336. [PMID: 28597080 DOI: 10.1007/s00428-017-2171-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/16/2022]
Abstract
Fusobacterium nucleatum (Fn), a specific species of gut microbiota, has been suggested to be enriched in the microsatellite instability-high (MSI-H) molecular subtype of colorectal carcinomas (CRCs). However, the clinicopathologic and molecular factors that interact with Fn in MSI-H CRCs are poorly understood. In this study, 16S ribosomal RNA gene DNA sequence of Fn was quantitatively measured by real-time polymerase chain reaction in tumor DNA samples from a total of 160 surgically resected MSI-H CRC tissues. Each case was classified into one of the three categories based on the Fn DNA amount: Fn-high, Fn-low, and Fn-negative. The clinicopathologic and molecular associations of Fn in MSI-H CRCs were statistically analyzed. Among the 160 MSI-H CRC samples, 15 (9%), 92 (58%), and 53 (33%) cases were Fn-high, Fn-low, and Fn-negative, respectively. Compared with Fn-low/negative tumors, Fn-high MSI-H CRCs were significantly associated with a high density of CD68+ tumor-infiltrating macrophages (P = 0.019) and promoter CpG island hypermethylation of the CDKN2A (p16) gene (P = 0.008). There were also tendencies toward associations of Fn-high with the BRAF V600E mutation (P = 0.047) and active Crohn-like lymphoid reactions (P = 0.052) in MSI-H CRCs. However, Fn-high was not significantly associated with CD3+ T cell density, CD163+ M2 macrophage density or PD-L1 expression status. In conclusion, high amounts of intratumoral Fn are correlated with increased macrophage infiltration and CDKN2A promoter methylation in MSI-H CRCs.
Collapse
Affiliation(s)
- Hye Eun Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
1413
|
Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0004-2016. [PMID: 28643625 PMCID: PMC11687491 DOI: 10.1128/microbiolspec.bad-0004-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Terence Van Raay
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
1414
|
Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, Hashimoto D, Baba Y, Yamashita YI, Yoshida N, Chikamoto A, Baba H. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett 2017; 402:9-15. [PMID: 28527946 DOI: 10.1016/j.canlet.2017.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
The human intestinal microbiome encompasses at least 100 trillion microorganisms that can influence host immunity and disease conditions, including cancer. Hepatobiliary and pancreatic cancers have been associated with poor prognosis owing to their high level of tumor invasiveness, distant metastasis, and resistance to conventional treatment options, such as chemotherapy. Accumulating evidence from animal models suggests that specific microbes and microbial dysbiosis can potentiate hepatobiliary-pancreatic tumor development by damaging DNA, activating oncogenic signaling pathways, and producing tumor-promoting metabolites. Emerging evidence suggests that the gut microbiota may influence not only the efficacy of cancer chemotherapies and novel targeted immunotherapies such as anti-CTLA4 and anti-CD274 therapies but also the occurrence of postoperative complications after hepatobiliary and pancreatic surgery, which have been associated with tumor recurrence and worse patient survival in hepatobiliary-pancreatic cancers. Hence, a better understanding of roles of the gut microbiota in the development and progression of hepatobiliary-pancreatic tumors may open opportunities to develop new prevention and treatment strategies for patients with hepatobiliary-pancreatic cancer through manipulating the gut microbiota by diet, lifestyle, antibiotics, and pro- and prebiotics.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
1415
|
Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 2017; 7:1834. [PMID: 28500338 PMCID: PMC5431832 DOI: 10.1038/s41598-017-02079-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Studies on the possible association between bacteria and oral squamous cell carcinoma (OSCC) remain inconclusive, largely due to methodological variations/limitations. The objective of this study was to characterize the species composition as well as functional potential of the bacteriome associated with OSCC. DNA obtained from 20 fresh OSCC biopsies (cases) and 20 deep-epithelium swabs (matched control subjects) was sequenced for the V1-V3 region using Illumina’s 2 × 300 bp chemistry. High quality, non-chimeric merged reads were classified to species level using a prioritized BLASTN-algorithm. Downstream analyses were performed using QIIME, PICRUSt, and LEfSe. Fusobacterium nucleatum subsp. polymorphum was the most significantly overrepresented species in the tumors followed by Pseudomonas aeruginosa and Campylobacter sp. Oral taxon 44, while Streptococcus mitis, Rothia mucilaginosa and Haemophilus parainfluenzae were the most significantly abundant in the controls. Functional prediction showed that genes involved in bacterial mobility, flagellar assembly, bacterial chemotaxis and LPS synthesis were enriched in the tumors while those responsible for DNA repair and combination, purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, ribosome biogenesis and glycolysis/gluconeogenesis were significantly associated with the controls. This is the first epidemiological evidence for association of F. nucleatum and P. aeruginosa with OSCC. Functionally, an “inflammatory bacteriome” is enriched in OSSC.
Collapse
|
1416
|
Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wong MC, Smith DP, Petrosino JF, Venable S, Qiao W, Baladandayuthapani V, Maru D, Ellis LM. Fusobacterium Nucleatum Subspecies Animalis Influences Proinflammatory Cytokine Expression and Monocyte Activation in Human Colorectal Tumors. Cancer Prev Res (Phila) 2017; 10:398-409. [PMID: 28483840 DOI: 10.1158/1940-6207.capr-16-0178] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/02/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection and associated inflammation have long been suspected to promote human carcinogenesis. Recently, certain gut bacteria, including some in the Fusobacterium genus, have been implicated in playing a role in human colorectal cancer development. However, the Fusobacterium species and subspecies involved and their oncogenic mechanisms remain to be determined. We sought to identify the specific Fusobacterium spp. and ssp. in clinical colorectal cancer specimens by targeted sequencing of Fusobacterium 16S ribosomal RNA gene. Five Fusobacterium spp. were identified in clinical colorectal cancer specimens. Additional analyses confirmed that Fusobacterium nucleatum ssp. animalis was the most prevalent F. nucleatum subspecies in human colorectal cancers. We also assessed inflammatory cytokines in colorectal cancer specimens using immunoassays and found that expression of the cytokines IL17A and TNFα was markedly increased but IL21 decreased in the colorectal tumors. Furthermore, the chemokine (C-C motif) ligand 20 was differentially expressed in colorectal tumors at all stages. In in vitro co-culture assays, F. nucleatum ssp. animalis induced CCL20 protein expression in colorectal cancer cells and monocytes. It also stimulated the monocyte/macrophage activation and migration. Our observations suggested that infection with F. nucleatum ssp. animalis in colorectal tissue could induce inflammatory response and promote colorectal cancer development. Further studies are warranted to determine if F. nucleatum ssp. animalis could be a novel target for colorectal cancer prevention and treatment. Cancer Prev Res; 10(7); 398-409. ©2017 AACR.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rui Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Delphine R Boulbes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling Xia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harish Adoni
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Susan Venable
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
1417
|
Kang M, Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Semin Immunol 2017; 32:3-13. [PMID: 28465070 DOI: 10.1016/j.smim.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Dysbiosis of gut microbiota occurs in many human chronic immune-mediated diseases, such as inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Reciprocally, uncontrolled immune responses, that may or may not be induced by dysbiosis, are central to the development of IBD and CAC. There has been a surge of interest in investigating the relationship between microbiota, inflammation and CAC. In this review, we discuss recent findings related to gut microbiota and chronic immune-mediated diseases, such as IBD and CAC. Moreover, the molecular mechanisms underlying the roles of chronic inflammation in CAC are examined. Finally, we discuss the development of novel microbiota-based therapeutics for IBD and colorectal cancer.
Collapse
Affiliation(s)
- Mingsong Kang
- University of Toronto, Department of Immunology, Toronto, Ontario, Canada
| | - Alberto Martin
- University of Toronto, Department of Immunology, Toronto, Ontario, Canada.
| |
Collapse
|
1418
|
Abstract
The microbiota is composed of commensal bacteria and other microorganisms that live on the epithelial barriers of the host. The commensal microbiota is important for the health and survival of the organism. Microbiota influences physiological functions from the maintenance of barrier homeostasis locally to the regulation of metabolism, haematopoiesis, inflammation, immunity and other functions systemically. The microbiota is also involved in the initiation, progression and dissemination of cancer both at epithelial barriers and in sterile tissues. Recently, it has become evident that microbiota, and particularly the gut microbiota, modulates the response to cancer therapy and susceptibility to toxic side effects. In this Review, we discuss the evidence for the ability of the microbiota to modulate chemotherapy, radiotherapy and immunotherapy with a focus on the microbial species involved, their mechanism of action and the possibility of targeting the microbiota to improve anticancer efficacy while preventing toxicity.
Collapse
Affiliation(s)
- Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
1419
|
Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC, Chan AWH, Chan FKL, Sung JJY, Yu J. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice. Gastroenterology 2017; 152:1419-1433.e5. [PMID: 28126350 DOI: 10.1053/j.gastro.2017.01.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/10/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Stool samples from patients with colorectal cancer (CRC) have a higher abundance of Peptostreptococcus anaerobius than stool from individuals without CRC, based on metagenome sequencing. We investigated whether P anaerobius contributes to colon tumor formation in mice and its possible mechanisms of carcinogenesis. METHODS We performed quantitative polymerase chain reaction analyses to measure P anaerobius in 112 stool samples and 255 colon biopsies from patients with CRC or advanced adenoma and from healthy individuals (controls) undergoing colonoscopy examination at hospitals in Hong Kong and Beijing. C57BL/6 mice were given broad-spectrum antibiotics, followed by a single dose of azoxymethane, to induce colon tumor formation. Three days later, mice were given P anaerobius or Esherichia coli MG1655 (control bacteria), via gavage, for 6 weeks. Some mice were also given the nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin. Intestine tissues were collected and analyzed histologically. The colon epithelial cell line NCM460 and colon cancer cell lines HT-29 and Caco-2 were exposed to P anaerobius or control bacteria; cells were analyzed by immunoblot, proliferation, and bacterial attachment analyses and compared in gene expression profiling studies. Gene expression was knocked down in these cell lines with small interfering RNAs. RESULTS P anaerobius was significantly enriched in stool samples from patients with CRC and in biopsies from patients with colorectal adenoma or CRC compared with controls. Mice depleted of bacteria and exposed to azoxymethane and P anaerobius had a higher incidence of intestinal dysplasia (63%) compared with mice not given the bacteria (8.3%; P < .01). P anaerobius mainly colonized the colon compared with the rest of the intestine. Colon cells exposed to P anaerobius had significantly higher levels of proliferation than control cells. We found genes that regulate cholesterol biosynthesis, Toll-like receptor (TLR) signaling, and AMP-activated protein kinase signaling to be significantly up-regulated in cells exposed to P anaerobius. Total cholesterol levels were significantly increased in colon cell lines exposed to P anaerobius via activation of sterol regulatory element-binding protein 2. P anaerobius interacted with TLR2 and TLR4 to increase intracellular levels of reactive oxidative species, which promoted cholesterol synthesis and cell proliferation. Depletion of reactive oxidative species by knockdown of TLR2 or TLR4, or incubation of cells with an antioxidant, prevented P anaerobius from inducing cholesterol biosynthesis and proliferation. CONCLUSIONS Levels of P anaerobius are increased in human colon tumor tissues and adenomas compared with non-tumor tissues; this bacteria increases colon dysplasia in a mouse model of CRC. P anaerobius interacts with TLR2 and TLR4 on colon cells to increase levels of reactive oxidative species, which promotes cholesterol synthesis and cell proliferation.
Collapse
Affiliation(s)
- Ho Tsoi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Eagle S H Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jianqiu Sheng
- Department of Gastroenterology, Beijing Military General Hospital, Beijing, China
| | - Geicho Nakatsu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Siew C Ng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
1420
|
Bashiardes S, Tuganbaev T, Federici S, Elinav E. The microbiome in anti-cancer therapy. Semin Immunol 2017; 32:74-81. [PMID: 28431920 DOI: 10.1016/j.smim.2017.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
The commensal microbiome constitutes an important modulator of host physiology and risk of disease, including cancer development and progression. Lately, the microbiome has been suggested to modulate the efficacy of anti-cancer treatment. Examples include chemotherapy and total body irradiation-induced barrier function disruption, leading to microbial efflux that drives activation of anti-tumorigenic T cells; Microbiome-driven release of reactive oxygen species contributing to the efficacy of platinum salts; and microbiome-induced immune priming promoting the anti-tumor effects of alkylating chemotherapy and immune checkpoint inhibitors. Furthermore, selected commensals are able to colonize solid tumors. This 'tumor microbiome' may further impact local tumor responses to treatment and potentially be harnessed for tumor-specific targeting and therapeutic delivery. In this review, we present recent advances in understanding of the intricate role of microbiome in modulating efficacy of a number of anti-cancer treatments, and discuss how anti-cancer treatment approaches utilizing the tumor microbiome may enhance oncological treatment efficacy.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sara Federici
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
1421
|
Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, Mohamadzadeh M, Liu X, Martin P, Wang GP, Oswald E, Fodor AA, Jobin C. Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis. Cancer Res 2017; 77:2620-2632. [PMID: 28416491 DOI: 10.1158/0008-5472.can-16-3472] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
Inflammation and microbiota are critical components of intestinal tumorigenesis. To dissect how the microbiota contributes to tumor distribution, we generated germ-free (GF) ApcMin/+ and ApcMin/+ ;Il10-/- mice and exposed them to specific-pathogen-free (SPF) or colorectal cancer-associated bacteria. We found that colon tumorigenesis significantly correlated with inflammation in SPF-housed ApcMin/+ ;Il10-/- , but not in ApcMin/+ mice. In contrast, small intestinal neoplasia development significantly correlated with age in both ApcMin/+ ;Il10-/- and ApcMin/+ mice. GF ApcMin/+ ;Il10-/- mice conventionalized by an SPF microbiota had significantly more colon tumors compared with GF mice. Gnotobiotic studies revealed that while Fusobacterium nucleatum clinical isolates with FadA and Fap2 adhesins failed to induce inflammation and tumorigenesis, pks+Escherichia coli promoted tumorigenesis in the ApcMin/+ ;Il10-/- model in a colibactin-dependent manner, suggesting colibactin is a driver of carcinogenesis. Our results suggest a distinct etiology of cancers in different locations of the gut, where colon cancer is primarily driven by inflammation and the microbiome, while age is a driving force for small intestine cancer. Cancer Res; 77(10); 2620-32. ©2017 AACR.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Marcus Mühlbauer
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
| | - Xiuli Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Gary P Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida. .,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
| |
Collapse
|
1422
|
Rezasoltani S, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R, Zali MR. Gut microbiota, epigenetic modification and colorectal cancer. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:55-63. [PMID: 29213996 PMCID: PMC5715278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one's profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person's overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Ehsan Nazemalhosseini-Mojarad, PhD, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22432516
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
1423
|
Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: Models and mechanisms. Free Radic Biol Med 2017; 105:3-15. [PMID: 27810411 DOI: 10.1016/j.freeradbiomed.2016.10.504] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death and archetype for cancer as a genetic disease. However, the mechanisms for genetic change and their interactions with environmental risk factors have been difficult to unravel. New hypotheses, models, and methods are being used to investigate a complex web of risk factors that includes the intestinal microbiome. Recent research has clarified how the microbiome can generate genomic change in CRC. Several phenotypes among a small group of selected commensals have helped us better understand how mutations and chromosomal instability (CIN) are induced in CRC (e.g., toxin production, metabolite formation, radical generation, and immune modulation leading to a bystander effect). This review discusses recent hypotheses, models, and mechanisms by which the intestinal microbiome contributes to the initiation and progression of sporadic and colitis-associated forms of CRC. Overall, it appears the microbiome can initiate and/or promote CRC at all stages of tumorigenesis by acting as an inducer of DNA damage and CIN, regulating cell growth and death, generating epigenetic changes, and modulating host immune responses. Understanding how the microbiome interacts with other risk factors to define colorectal carcinogenesis will ultimately lead to more accurate risk prediction. A deeper understanding of CRC etiology will also help identify new targets for prevention and treatment and help accelerate the decline in mortality for this common cancer.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, USA; Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA
| | - Yonghong Yang
- Gansu Province Children's Hospital, Lanzhou, China; Key Laboratory of Gastrointestinal Cancer, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mark M Huycke
- Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA; Department of Internal Medicine, PO Box 26901, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126-0901, USA.
| |
Collapse
|
1424
|
Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:4108-4115. [DOI: 10.1021/acs.analchem.6b05051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yifan Tao
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yun Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Huang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei E Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junqi Ling
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
1425
|
Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother 2017; 89:918-925. [PMID: 28292019 DOI: 10.1016/j.biopha.2017.02.102] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Transformed cells of cancers may be related to stromal cells, immune cells, and some bacteria such as Fusobacterium nucleatum. This review aimed to evaluate carcinogenesis mechanisms of Fusobacterium spp. in the oral cavity, pancreatic and colorectal cancers. These cancers are the three of the ten most prevalence cancer in the worldwide. Recent findings demonstrated that F. nucleatum could be considered as the risk factor for these cancers. The most important carcinogenesis mechanisms of F. nucleatum are chronic infection, interaction of cell surface molecules of these bacteria with immune system and stromal cells, immune evasion and immune suppression. However, there are some uncertainty carcinogenesis mechanisms about these bacteria, but this review evaluates almost all the known mechanisms. Well-characterized virulence factors of F. nucleatum such as FadA, Fap2, LPS and cell wall extracts may act as effector molecules in the shift of normal epithelial cells to tumor cells. These molecules may provide new targets, drugs, and strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Eslami
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Infectious and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
1426
|
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y, Gao J, Cao X, Yan F, Wang B. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 2017; 140:2545-2556. [PMID: 28187526 DOI: 10.1002/ijc.30643] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/08/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an important role in maintaining intestinal homeostasis. Dysbiosis is associated with intestinal tumorigenesis. Deoxycholic acid (DCA), a secondary bile acid increased by a western diet, correlates with intestinal carcinogenesis. However, evidence relating bile acids, intestinal microbiota and tumorigenesis are limited. In our study, we investigated the effect of DCA on induction of intestinal dysbiosis and its roles in intestinal carcinogenesis. Alteration of the composition of the intestinal microbiota was induced in DCA-treated APCmin/+ mice, which was accompanied by impaired intestinal barrier, gut low grade inflammation and tumor progression. The transfer of fecal microbiota from DCA-treated mice to another group of Apcmin/+ mice increased tumor multiplicity, induced inflammation and recruited M2 phenotype tumor-associated macrophages. Importantly, the fecal microbiota transplantation activated the tumor-associated Wnt/β-catenin signaling pathway. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block DCA-induced intestinal carcinogenesis, further suggesting the role of dysbiosis in tumor development. Our study demonstrated that alteration of the microbial community induced by DCA promoted intestinal carcinogenesis.
Collapse
Affiliation(s)
- Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shenhui Luo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Weiqiang Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanrong Qi
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Jianxin Gao
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Fang Yan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
1427
|
Holt RA, Cochrane K. Tumor Potentiating Mechanisms of Fusobacterium nucleatum, A Multifaceted Microbe. Gastroenterology 2017; 152:694-696. [PMID: 28143770 DOI: 10.1053/j.gastro.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Robert A Holt
- British Columbia Cancer Agency Genome Sciences Centre, University of British Columbia Department of Medical Genetics, Simon Fraser University Department of Biochemistry & Molecular Biology
| | - Kyla Cochrane
- British Columbia Cancer Agency Genome Sciences Centre, University of British Columbia Department of Medical Genetics, Simon Fraser University Department of Biochemistry & Molecular Biology.
| |
Collapse
|
1428
|
Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, Li H, Guo B, Zhu Q, Wei Q, Moyer MP, Wang P, Cai S, Goel A, Qin H, Ma Y. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017; 152:851-866.e24. [PMID: 27876571 PMCID: PMC5555435 DOI: 10.1053/j.gastro.2016.11.018] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Nearly 20% of the global cancer burden can be linked to infectious agents. Fusobacterium nucleatum promotes tumor formation by epithelial cells via unclear mechanisms. We aimed to identify microRNAs (miRNAs) induced by F nucleatum and evaluate their ability to promote colorectal carcinogenesis in mice. METHODS Colorectal cancer (CRC) cell lines were incubated with F nucleatum or control reagents and analyzed in proliferation and would healing assays. HCT116, HT29, LoVo, and SW480 CRC cell lines were incubated with F nucleatum or phosphate-buffered saline (PBS [control]) and analyzed for miRNA expression patterns and in chromatin immunoprecipitation assays. Cells were incubated with miRNAs mimics, control sequences, or small interfering RNAs; expression of reporter constructs was measured in luciferase assays. CRC cells were incubated with F nucleatum or PBS and injected into BALB/C nude mice; growth of xenograft tumors was measured. C57BL adenomatous polyposis colimin/+, C57BL miR21a-/-, and C57BL mice with full-length miR21a (controls) were given F nucleatum by gavage; some mice were given azoxymethane and dextran sodium sulfate to induce colitis and colon tumors. Intestinal tissues were collected and tumors were counted. Serum samples from mice were analyzed for cytokine levels by enzyme-linked immunosorbent assay. We performed in situ hybridization analyses to detect enrichment of F nucleatum in CRC cells. Fusobacterium nucleatum DNA in 90 tumor and matched nontumor tissues from patients in China were explored for the expression correlation analysis; levels in 125 tumor tissues from patients in Japan were compared with their survival times. RESULTS Fusobacterium nucleatum increased proliferation and invasive activities of CRC cell lines compared with control cells. CRC cell lines infected with F nucleatum formed larger tumors, more rapidly, in nude mice than uninfected cells. Adenomatous polyposis colimin/+ mice gavaged with F nucleatum developed significantly more colorectal tumors than mice given PBS and had shorter survival times. We found several inflammatory factors to be significantly increased in serum from mice given F nucleatum (interleukin 17F, interleukin 21, and interleukin 22, and MIP3A). We found 50 miRNAs to be significantly up-regulated and 52 miRNAs to be significantly down-regulated in CRCs incubated with F nucleatum vs PBS; levels of miR21 increased by the greatest amount (>4-fold). Inhibitors of miR21 prevented F nucleatum from inducing cell proliferation and invasion in culture. miR21a-/- mice had a later appearance of fecal blood and diarrhea after administration of azoxymethane and dextran sodium sulfate, and had longer survival times compared with control mice. The colorectum of miR21a-/- mice had fewer tumors, of smaller size, and the miR21a-/- mice survived longer than control mice. We found RASA1, which encodes an RAS GTPase, to be one of the target genes consistently down-regulated in cells that overexpressed miR21 and up-regulated in cells exposed to miR21 inhibitors. Infection of cells with F nucleatum increased expression of miR21 by activating Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB. Levels of F nucleatum DNA and miR21 were increased in tumor tissues (and even more so in advanced tumor tissues) compared with non-tumor colon tissues from patients. Patients whose tumors had high amounts of F nucleatum DNA and miR21 had shorter survival times than patients whose tumors had lower amounts. CONCLUSIONS We found infection of CRC cells with F nucleatum to increase their proliferation, invasive activity, and ability to form xenograft tumors in mice. Fusobacterium nucleatum activates Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB and increased expression of miR21; this miRNA reduces levels of the RAS GTPase RASA1. Patients with both high amount of tissue F nucleatum DNA and miR21 demonstrated a higher risk for poor outcomes.
Collapse
Affiliation(s)
- Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Wenhao Weng
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott &White Research Institute and Charles A. Sammons Cancer Center, Texas, USA,Department of Clinical Laboratory, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Leiming Hong
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Yang
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Renyuan Gao
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Minfeng Liu
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingming Yin
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Cheng Pan
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Hao Li
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Bomin Guo
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingchao Zhu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University
| | | | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
1429
|
Wang H, Funchain P, Bebek G, Altemus J, Zhang H, Niazi F, Peterson C, Lee WT, Burkey BB, Eng C. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med 2017; 9:14. [PMID: 28173873 PMCID: PMC5297129 DOI: 10.1186/s13073-017-0405-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While the role of the gut microbiome in inflammation and colorectal cancers has received much recent attention, there are few data to support an association between the oral microbiome and head and neck squamous cell carcinomas. Prior investigations have been limited to comparisons of microbiota obtained from surface swabs of the oral cavity. This study aims to identify microbiomic differences in paired tumor and non-tumor tissue samples in a large group of 121 patients with head and neck squamous cell carcinomas and correlate these differences with clinical-pathologic features. METHODS Total DNA was extracted from paired normal and tumor resection specimens from 169 patients; 242 samples from 121 patients were included in the final analysis. Microbiomic content of each sample was determined using 16S rDNA amplicon sequencing. Bioinformatic analysis was performed using QIIME algorithms. F-testing on cluster strength, Wilcoxon signed-rank testing on differential relative abundances of paired tumor-normal samples, and Wilcoxon rank-sum testing on the association of T-stage with relative abundances were conducted in R. RESULTS We observed no significant difference in measures of alpha diversity between tumor and normal tissue (Shannon index: p = 0.13, phylogenetic diversity: p = 0.42). Similarly, although we observed statistically significantly differences in both weighted (p = 0.01) and unweighted (p = 0.04) Unifrac distances between tissue types, the tumor/normal grouping explained only a small proportion of the overall variation in the samples (weighted R2 = 0.01, unweighted R2 < 0.01). Notably, however, when comparing the relative abundances of individual taxa between matched pairs of tumor and normal tissue, we observed that Actinomyces and its parent taxa up to the phylum level were significantly depleted in tumor relative to normal tissue (q < 0.01), while Parvimonas was increased in tumor relative to normal tissue (q = 0.01). These differences were more pronounced among patients with more extensive disease as measured by higher T-stage. CONCLUSIONS Matched pairs analysis of individual tumor-normal pairs revealed significant differences in relative abundance of specific taxa, namely in the genus Actinomyces. These differences were more pronounced among patients with higher T-stage. Our observations suggest further experiments to interrogate potential novel mechanisms relevant to carcinogenesis associated with alterations of the oral microbiome that may have consequences for the human host.
Collapse
Affiliation(s)
- Hannah Wang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Pauline Funchain
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
- Taussig Cancer Institute, Cleveland, OH 44195 USA
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Cleveland, OH 44106 USA
- Department of Electrical Engineering and Computer Science, Cleveland, OH 44106 USA
| | - Jessica Altemus
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
| | - Huan Zhang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Farshad Niazi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
| | - Charissa Peterson
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
| | - Walter T. Lee
- Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Brian B. Burkey
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
- Taussig Cancer Institute, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Cleveland, OH 44106 USA
- CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Cleveland Clinic Genomic Medicine Institute, 9500 Euclid Avenue NE50, Cleveland, OH 44195 USA
| |
Collapse
|
1430
|
Rogers MB, Aveson V, Firek B, Yeh A, Brooks B, Brower-Sinning R, Steve J, Banfield JF, Zureikat A, Hogg M, Boone BA, Zeh HJ, Morowitz MJ. Disturbances of the Perioperative Microbiome Across Multiple Body Sites in Patients Undergoing Pancreaticoduodenectomy. Pancreas 2017; 46:260-267. [PMID: 27846140 PMCID: PMC5235958 DOI: 10.1097/mpa.0000000000000726] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The goals of this study were to characterize bacterial communities within fecal samples, pancreatic fluid, bile, and jejunal contents from patients undergoing pancreaticoduodenectomy (PD) and to identify associations between microbiome profiles and clinical variables. METHODS Fluid was collected from the pancreas, common bile duct, and proximal jejunum from 50 PD patients. Postoperative fecal samples were also collected. The microbial burden within samples was quantified with droplet digital polymerase chain reaction. Bacterial 16S ribosomal RNA gene sequences were amplified, sequenced, and analyzed. Data from fecal samples were compared with publicly available data obtained from volunteers. RESULTS Droplet digital polymerase chain reaction confirmed the presence of bacteria in all sample types, including pancreatic fluid. Relative to samples from the American Gut Project, fecal samples from PD patients were enriched with Klebsiella and Bacteroides and were depleted of anaerobic taxa (eg, Roseburia and Faecalibacterium). Similar patterns were observed within PD pancreas, bile, and jejunal samples. Postoperative fecal samples from patients with a pancreatic fistula contained increased abundance of Klebsiella and decreased abundance of commensal anaerobes, for example, Ruminococcus. CONCLUSIONS This study confirms the presence of altered bacterial populations within samples from PD patients. Future research must validate these findings and may evaluate targeted microbiome modifications to improve outcomes in PD patients.
Collapse
Affiliation(s)
| | - Victoria Aveson
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Brian Firek
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Andrew Yeh
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Brandon Brooks
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA
| | | | - Jennifer Steve
- Division of GI Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jillian F. Banfield
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA
| | - Amer Zureikat
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Division of GI Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Melissa Hogg
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Division of GI Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Brian A. Boone
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Division of GI Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Herbert J. Zeh
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Division of GI Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA,Address Correspondence to: Michael J. Morowitz, MD, Division of Pediatric Surgery, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, 7th Floor Faculty Pavilion, Pittsburgh, PA 15244, , phone 412-692-7282, fax 412-692-8299
| |
Collapse
|
1431
|
Zechner EL. Inflammatory disease caused by intestinal pathobionts. Curr Opin Microbiol 2017; 35:64-69. [DOI: 10.1016/j.mib.2017.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
|
1432
|
Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. ENGINEERING 2017; 3:71-82. [DOI: 10.1016/j.eng.2017.01.008] [Citation(s) in RCA: 481] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
1433
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
1434
|
Vinogradov E, St Michael F, Homma K, Sharma A, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid. Carbohydr Res 2017; 440-441:38-42. [PMID: 28199859 DOI: 10.1016/j.carres.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/09/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2 → 4)-β-d-Galp-(1 → 3)-α-d-FucpNAc4NAc-(1-]- where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Kiyonobu Homma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
1435
|
Robinson KM, Crabtree J, Mattick JSA, Anderson KE, Dunning Hotopp JC. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. MICROBIOME 2017; 5:9. [PMID: 28118849 PMCID: PMC5264480 DOI: 10.1186/s40168-016-0224-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND A variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome. RESULTS Through careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples. CONCLUSIONS This approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.
Collapse
MESH Headings
- Acinetobacter/genetics
- Bacteria/genetics
- Bacteria/isolation & purification
- Base Sequence
- Carcinoma/classification
- Carcinoma/genetics
- Carcinoma/microbiology
- Carcinoma, Ovarian Epithelial
- Chromosome Mapping
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/microbiology
- Databases, Genetic
- Genome, Bacterial
- Genome, Human
- Glioblastoma/genetics
- Glioblastoma/microbiology
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/microbiology
- Microbiota
- Mycobacterium tuberculosis/genetics
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/microbiology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/microbiology
- Pseudomonas/genetics
Collapse
Affiliation(s)
- Kelly M. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kathleen E. Anderson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
1436
|
Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A, Nelson KE. The Human Microbiome and Cancer. Cancer Prev Res (Phila) 2017; 10:226-234. [PMID: 28096237 DOI: 10.1158/1940-6207.capr-16-0249] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
Abstract
Recent scientific advances have significantly contributed to our understanding of the complex connection between the microbiome and cancer. Our bodies are continuously exposed to microbial cells, both resident and transient, as well as their byproducts, including toxic metabolites. Circulation of toxic metabolites may contribute to cancer onset or progression at locations distant from where a particular microbe resides. Moreover, microbes may migrate to other locations in the human body and become associated with tumor development. Several case-control metagenomics studies suggest that dysbiosis in the commensal microbiota is also associated with inflammatory disorders and various cancer types throughout the body. Although the microbiome influences carcinogenesis through mechanisms independent of inflammation and immune system, the most recognizable link is between the microbiome and cancer via the immune system, as the resident microbiota plays an essential role in activating, training, and modulating the host immune response. Immunologic dysregulation is likely to provide mechanistic explanations as to how our microbiome influences cancer development and cancer therapies. In this review, we discuss recent developments in understanding the human gut microbiome's relationship with cancer and the feasibility of developing novel cancer diagnostics based on microbiome profiles. Cancer Prev Res; 10(4); 226-34. ©2017 AACR.
Collapse
Affiliation(s)
| | - Sanjay Vashee
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | | | - Yo Suzuki
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | - J Craig Venter
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Amalio Telenti
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Karen E Nelson
- J. Craig Venter Institute (JCVI), Rockville, Maryland. .,Human Longevity, Inc., San Diego, California
| |
Collapse
|
1437
|
Vinogradov E, St Michael F, Cox AD. The structure of the LPS O-chain of Fusobacterium nucleatum strain 25586 containing two novel monosaccharides, 2-acetamido-2,6-dideoxy-l-altrose and a 5-acetimidoylamino-3,5,9-trideoxy-gluco-non-2-ulosonic acid. Carbohydr Res 2017; 440-441:10-15. [PMID: 28135570 DOI: 10.1016/j.carres.2017.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about the virulence factors of this organism, and thus we have initiated studies to examine the bacterium's surface glycochemistry. We isolated lipopolysaccharide (LPS) from F. nucleatum strain 25586 and purified and performed structural analysis on the O-antigen polysaccharide. The polysaccharide contained two novel sugars, 2-acetamido-2,6-dideoxy-l-altrose (l-6dAltNAc) and a 5-acetimidoylamino-3,5,9-trideoxy-gluco-non-2-ulosonic acid (Non5Am), which was tentatively assigned the l-glycero-l-gluco configuration. The polysaccharide was found to have a trisaccharide repeating unit, which is phosphorylated with phosphocholine (PCho), and the following structure was established: -[-4-β-Nonp5Am-4-α-l-6dAltpNAc3PCho-3-β-d-QuipNAc-]- We propose the trivial name 'fusaminic acid' for the novel nonulosonic acid. It is the first occurrence of a 9-deoxynonulosonic acid with a hydroxyl group at C-7, which is occupied by an amino group in all monosaccharides of this class described so far.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
1438
|
Gao R, Gao Z, Huang L, Qin H. Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:757-769. [PMID: 28063002 PMCID: PMC5395603 DOI: 10.1007/s10096-016-2881-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
The gut microbiota is considered as a forgotten organ in human health and disease. It maintains gut homeostasis by various complex mechanisms. However, disruption of the gut microbiota has been confirmed to be related to gastrointestinal diseases such as colorectal cancer, as well as remote organs in many studies. Colorectal cancer is a multi-factorial and multi-stage involved disorder. The role for microorganisms that initiate and facilitate the process of colorectal cancer has become clear. The candidate pathogens have been identified by culture and next sequencing technology. Persuasive models have also been proposed to illustrate the complicated and dynamic time and spatial change in the carcinogenesis. Related key molecules have also been investigated to demonstrate the pathways crucial for the development of colorectal cancer. In addition, risk factors that contribute to the tumorigenesis can also be modulated to decrease the susceptibility for certain population. In addition, the results of basic studies have also translated to clinical application, which displayed a critical value for the diagnosis and therapy of colorectal cancer. In this review, we not only emphasize the exploration of the mechanisms, but also potential clinical practice implication in this microbiota era.
Collapse
Affiliation(s)
- R Gao
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - Z Gao
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - L Huang
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - H Qin
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
1439
|
Sun T, Liu S, Zhou Y, Yao Z, Zhang D, Cao S, Wei Z, Tan B, Li Y, Lian Z, Wang S. Evolutionary biologic changes of gut microbiota in an 'adenoma-carcinoma sequence' mouse colorectal cancer model induced by 1, 2-Dimethylhydrazine. Oncotarget 2017; 8:444-457. [PMID: 27880935 PMCID: PMC5352133 DOI: 10.18632/oncotarget.13443] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022] Open
Abstract
The molecular biological mechanisms underlying the evolutionary biologic changes leading to carcinogenesis remain unclear. The main objective of our study was to explore the evolution of the microbiota community and molecules related with CRC in the dynamic transition from normal colon epithelium to premalignant adenoma with the aid of an 'adenoma-carcinoma sequence' mouse CRC model induced by DMH. We generated a modified mouse CRC model induced by DMH for DNA sequences, and characterized the molecular networks. Data from 454 pyrosequencing of the V3- V5 region of the 16S rDNA gene and immunohistochemical detection of APC, P53, K-RAS and BRAF genes were assessed with Principal coordinates, UniFrac, and Kruskal-Wallis rank sum test. The inflammatory group showed enrichment of Bacteroidetes and Porphyromonadaceae (P < 0.01). OTUs affiliated with Firmicutes were enriched in the hyperproliferative group (P < 0.01). Rikenellaceae and Ruminococcaceae showed an increasing trend during the CRC process while the opposite pattern was observed for Prevotellaceaeand Enterobacteriaceae. OTUs related to Alistipes finegoldii were significantly increased during CRC development, P53, K-RAS and BRAF, were gradually increased (P < 0.05). Conversely, expression of APC was decreased during the course of development of CRC. Our results demonstrate that the biological evolutionary shift of gut microbiota, characterized by a gradual decrease in 'driver' bacteria and an increase in DNA damage-causing bacteria, is accompanied by tumor development in the CRC model. The synergistic actions of microbiota dysbiosis and effects of bacterial metabolites on related molecular events are proposed to contribute to the progression of CRC tumorigenesis.
Collapse
Affiliation(s)
- Teng Sun
- Department of General Surgery, Qingdao municipal hospital, Qingdao, China
| | - Shanglong Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zengwu Yao
- Department of General Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Shougen Cao
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiliang Wei
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Tan
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Lian
- Department of General Surgery, Zhucheng People's Hospital, Weifang, China
| | - Song Wang
- Department of General Surgery, Linzi District People's Hospital, Zibo, China
| |
Collapse
|
1440
|
Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017; 15:109-128. [DOI: 10.1038/nrmicro.2016.171] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
1441
|
Elliott DRF, Walker AW, O'Donovan M, Parkhill J, Fitzgerald RC. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol Hepatol 2017; 2:32-42. [PMID: 28404012 PMCID: PMC5656094 DOI: 10.1016/s2468-1253(16)30086-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The strongest risk factor for oesophageal adenocarcinoma is reflux disease, and the rising incidence of this coincides with the eradication of Helicobacter pylori, both of which might alter the oesophageal microbiota. We aimed to profile the microbiota at different stages of Barrett's carcinogenesis and investigate the Cytosponge as a minimally invasive tool for sampling the oesophageal microbiota. METHODS In this case-control study, 16S rRNA gene amplicon sequencing was done on 210 oesophageal samples from 86 patients representing the Barrett's oesophagus progression sequence (normal squamous controls [n=20], non-dysplastic [n=24] and dysplastic Barrett's oesophagus [n=23], and oesophageal adenocarcinoma [n=19]), relevant negative controls, and replicates on the Illumina MiSeq platform. Samples were taken from patients enrolled in the BEST2 study at five UK hospitals and the OCCAMS study at six UK hospitals. We compared fresh frozen tissue, fresh frozen endoscopic brushings, and the Cytosponge device for microbial DNA yield (qPCR), diversity, and community composition. FINDINGS There was decreased microbial diversity in oesophageal adenocarcinoma tissue compared with tissue from healthy control patients as measured by the observed operational taxonomic unit (OTU) richness (p=0·0012), Chao estimated total richness (p=0·0004), and Shannon diversity index (p=0·0075). Lactobacillus fermentum was enriched in oesophageal adenocarcinoma (p=0·028), and lactic acid bacteria dominated the microenvironment in seven (47%) of 15 cases of oesophageal adenocarcinoma. Comparison of oesophageal sampling methods showed that the Cytosponge yielded more than ten-times higher quantities of microbial DNA than did endoscopic brushes or biopsies using quantitative PCR (p<0·0001). The Cytosponge samples contained the majority of taxa detected in biopsy and brush samples, but were enriched for genera from the oral cavity and stomach, including Fusobacterium, Megasphaera, Campylobacter, Capnocytophaga, and Dialister. The Cytosponge detected decreased microbial diversity in patients with high-grade dysplasia in comparison to control patients, as measured by the observed OTU richness (p=0·0147), Chao estimated total richness (p=0·023), and Shannon diversity index (p=0·0085). INTERPRETATION Alterations in microbial communities occur in the lower oesophagus in Barrett's carcinogenesis, which can be detected at the pre-invasive stage of high-grade dysplasia with the novel Cytosponge device. Our findings are potentially applicable to early disease detection, and future test development should focus on longitudinal sampling of the microbiota to monitor for changes in microbial diversity in a larger cohort of patients. FUNDING Cancer Research UK, National Institute for Health Research, Medical Research Council, Wellcome Trust, The Scottish Government (RESAS).
Collapse
Affiliation(s)
- Daffolyn R Fels Elliott
- Medical Research Centre Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, UK; Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Julian Parkhill
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Rebecca C Fitzgerald
- Medical Research Centre Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
1442
|
Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res 2017; 179:168-182. [PMID: 27477083 PMCID: PMC5164950 DOI: 10.1016/j.trsl.2016.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/19/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) is necessary but not sufficient for the development of cervical cancer. The factors promoting persistence as well those triggering carcinogenetic pathways are incompletely understood. Rapidly evolving evidence indicates that the vaginal microbiome (VM) may play a functional role (both protective and harmful) in the acquisition and persistence of HPV, and subsequent development of cervical cancer. The first studies examining the VM and the presence of an HPV infection using next-generation sequencing techniques identified higher microbial diversity in HPV-positive as opposed to HPV-negative women. Furthermore, there appears to be a temporal relationship between the VM and HPV infection in that specific community state types may be correlated with a higher chance of progression or regression of the infection. Studies describing the VM in women with preinvasive disease (squamous intraepithelial neoplasia [SIL]) consistently demonstrate a dysbiosis in women with the more severe disease. Although it is plausible that the composition of the VM may influence the host's innate immune response, susceptibility to infection, and the development of cervical disease, the studies to date do not prove causality. Future studies should explore the causal link between the VM and the clinical outcome in longitudinal samples from existing biobanks.
Collapse
|
1443
|
Mitra D, Basu A, Das B, Jena AK, De A, Das M, Bhattacharya S, Samanta A. Gum odina: an emerging gut modulating approach in colorectal cancer prevention. RSC Adv 2017. [DOI: 10.1039/c7ra04077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study is focused on Gum Odina (GO), a reported prebiotic in our earlier work, and its impact on colorectal cancer (CRC).
Collapse
Affiliation(s)
- Debmalya Mitra
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Abhishek Basu
- Department of Cancer Chemoprevention
- Chittaranjan National Cancer Institute
- Kolkata
- India
| | - Bhaskar Das
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Aditya Kr. Jena
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Arnab De
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Mousumi Das
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Sudin Bhattacharya
- Department of Cancer Chemoprevention
- Chittaranjan National Cancer Institute
- Kolkata
- India
| | - Amalesh Samanta
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
1444
|
Kumar A, Saranathan R, Prashanth K, Tiwary BK, Krishna R. Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. MOLECULAR BIOSYSTEMS 2017; 13:939-954. [DOI: 10.1039/c7mb00074j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhibition of MurA in open conformation by orientin and in closed conformation by quercetin-3-O-d-glucuronide with efficient inhibitory constant values.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Bioinformatics
- Pondicherry University
- Puducherry-605014
- India
| | | | - K. Prashanth
- Department of Biotechnology
- Pondicherry University
- Puducherry-605014
- India
| | - Basant K. Tiwary
- Centre for Bioinformatics
- Pondicherry University
- Puducherry-605014
- India
| | - Ramadas Krishna
- Centre for Bioinformatics
- Pondicherry University
- Puducherry-605014
- India
| |
Collapse
|
1445
|
Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, Wang X, Xu X, Chen N, Wu WKK, Al-Aama J, Nielsen HJ, Kiilerich P, Jensen BAH, Yau TO, Lan Z, Jia H, Li J, Xiao L, Lam TYT, Ng SC, Cheng ASL, Wong VWS, Chan FKL, Xu X, Yang H, Madsen L, Datz C, Tilg H, Wang J, Brünner N, Kristiansen K, Arumugam M, Sung JJY, Wang J. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66:70-78. [PMID: 26408641 DOI: 10.1136/gutjnl-2015-309800] [Citation(s) in RCA: 756] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. DESIGN We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. RESULTS Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. CONCLUSIONS We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
Collapse
Affiliation(s)
- Jun Yu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sunny Hei Wong
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | - Qiao Yi Liang
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | - Jan Stenvang
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - William Ka Kei Wu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jumana Al-Aama
- BGI-Shenzhen, Shenzhen, China
- Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Pia Kiilerich
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Tung On Yau
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | - Thomas Yuen Tung Lam
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Siew Chien Ng
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Alfred Sze-Lok Cheng
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Francis Ka Leung Chan
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | | | - Lise Madsen
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Q3 Teaching Hospital of the Paracelsus Private University of Salzburg, Oberndorf, Austria
| | - Herbert Tilg
- First Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Nils Brünner
- BGI-Shenzhen, Shenzhen, China
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- BGI-Shenzhen, Shenzhen, China
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Jao-Yiu Sung
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Macau University of Science and Technology, Macau, China
| |
Collapse
|
1446
|
Nagaoka K, Yanagihara K, Morinaga Y, Kohno S. Detection of Fusobacterium nucleatum in two cases of empyema and lung abscess using paromomycin-vancomycin supplemented Brucella HK agar. Anaerobe 2016; 43:99-101. [PMID: 28034636 DOI: 10.1016/j.anaerobe.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023]
Abstract
Fusobacterium nucleatum was found in patients with empyema or pulmonary abscess, using paromomycin-vancomycin Brucella HK agar. In vitro examination revealed that growth of the strains differed significantly in different media. Clinicians should be aware that suboptimal F. nucleatum cultivation methods may result in an underestimation of its frequency.
Collapse
Affiliation(s)
- Kentaro Nagaoka
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; First Department of Internal Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Global COE Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
1447
|
Bacterial Biofilms in Colorectal Cancer Initiation and Progression. Trends Mol Med 2016; 23:18-30. [PMID: 27986421 DOI: 10.1016/j.molmed.2016.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Intestinal microbiota have emerged as an important factor in colorectal cancer (CRC) initiation and progression. The currently prominent view on bacterial tumorigenesis is that CRC initiation is triggered by local mucosal colonization with specific pathogens (drivers), and that subsequent changes in the peritumoral environment allow colonization by opportunistic (passenger) microbes, further facilitating disease progression. Screening for CRC 'driver-passenger' microorganisms might thus allow early CRC diagnosis or preventive intervention. Such efforts are now being revolutionized by the notion that CRC initiation and progression require organization of bacterial communities into higher-order structures termed biofilms. We explore here the concept that a polymicrobial biofilm promotes pro-carcinogenic activities that may partially underlie progression along the adenoma-CRC axis.
Collapse
|
1448
|
Contreras AV, Cocom-Chan B, Hernandez-Montes G, Portillo-Bobadilla T, Resendis-Antonio O. Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Front Physiol 2016; 7:606. [PMID: 28018236 PMCID: PMC5145879 DOI: 10.3389/fphys.2016.00606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
It has been experimentally shown that host-microbial interaction plays a major role in shaping the wellness or disease of the human body. Microorganisms coexisting in human tissues provide a variety of benefits that contribute to proper functional activity in the host through the modulation of fundamental processes such as signal transduction, immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been correlated with the genesis and evolution of complex diseases such as cancer. Although this latter disease has been thoroughly studied using different high-throughput (HT) technologies, its heterogeneous nature makes its understanding and proper treatment in patients a remaining challenge in clinical settings. Notably, given the outstanding role of host-microbiome interactions, the ecological interactions with microorganisms have become a new significant aspect in the systems that can contribute to the diagnosis and potential treatment of solid cancers. As a part of expanding precision medicine in the area of cancer research, efforts aimed at effective treatments for various kinds of cancer based on the knowledge of genetics, biology of the disease and host-microbiome interactions might improve the prediction of disease risk and implement potential microbiota-directed therapeutics. In this review, we present the state of the art of sequencing and metabolome technologies, computational methods and schemes in systems biology that have addressed recent breakthroughs of uncovering relationships or associations between microorganisms and cancer. Together, microbiome studies extend the horizon of new personalized treatments against cancer from the perspective of precision medicine through a synergistic strategy integrating clinical knowledge, HT data, bioinformatics, and systems biology.
Collapse
Affiliation(s)
| | - Benjamin Cocom-Chan
- Instituto Nacional de Medicina GenómicaMexico City, Mexico; Human Systems Biology Laboratory, Instituto Nacional de Medicina GenómicaMexico City, Mexico
| | - Georgina Hernandez-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación-National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Tobias Portillo-Bobadilla
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación-National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Instituto Nacional de Medicina GenómicaMexico City, Mexico; Human Systems Biology Laboratory, Instituto Nacional de Medicina GenómicaMexico City, Mexico; Coordinación de la Investigación Científica, Red de Apoyo a la Investigación-National Autonomous University of Mexico (UNAM)Mexico City, Mexico
| |
Collapse
|
1449
|
Thomas AM, Jesus EC, Lopes A, Aguiar S, Begnami MD, Rocha RM, Carpinetti PA, Camargo AA, Hoffmann C, Freitas HC, Silva IT, Nunes DN, Setubal JC, Dias-Neto E. Tissue-Associated Bacterial Alterations in Rectal Carcinoma Patients Revealed by 16S rRNA Community Profiling. Front Cell Infect Microbiol 2016; 6:179. [PMID: 28018861 PMCID: PMC5145865 DOI: 10.3389/fcimb.2016.00179] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Sporadic and inflammatory forms of colorectal cancer (CRC) account for more than 80% of cases. Recent publications have shown mechanistic evidence for the involvement of gut bacteria in the development of both CRC-forms. Whereas, colon and rectal cancer have been routinely studied together as CRC, increasing evidence show these to be distinct diseases. Also, the common use of fecal samples to study microbial communities may reflect disease state but possibly not the tumor microenvironment. We performed this study to evaluate differences in bacterial communities found in tissue samples of 18 rectal-cancer subjects when compared to 18 non-cancer controls. Samples were collected during exploratory colonoscopy (non-cancer group) or during surgery for tumor excision (rectal-cancer group). High throughput 16S rRNA amplicon sequencing of the V4-V5 region was conducted on the Ion PGM platform, reads were filtered using Qiime and clustered using UPARSE. We observed significant increases in species richness and diversity in rectal cancer samples, evidenced by the total number of OTUs and the Shannon and Simpson indexes. Enterotyping analysis divided our cohort into two groups, with the majority of rectal cancer samples clustering into one enterotype, characterized by a greater abundance of Bacteroides and Dorea. At the phylum level, rectal-cancer samples had increased abundance of candidate phylum OD1 (also known as Parcubacteria) whilst non-cancer samples had increased abundance of Planctomycetes. At the genera level, rectal-cancer samples had higher abundances of Bacteroides, Phascolarctobacterium, Parabacteroides, Desulfovibrio, and Odoribacter whereas non-cancer samples had higher abundances of Pseudomonas, Escherichia, Acinetobacter, Lactobacillus, and Bacillus. Two Bacteroides fragilis OTUs were more abundant among rectal-cancer patients seen through 16S rRNA amplicon sequencing, whose presence was confirmed by immunohistochemistry and enrichment verified by digital droplet PCR. Our findings point to increased bacterial richness and diversity in rectal cancer, along with several differences in microbial community composition. Our work is the first to present evidence for a possible role of bacteria such as B. fragilis and the phylum Parcubacteria in rectal cancer, emphasizing the need to study tissue-associated bacteria and specific regions of the gastrointestinal tract in order to better understand the possible links between the microbiota and rectal cancer.
Collapse
Affiliation(s)
- Andrew M Thomas
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer CenterSão Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil; Curso de Pós-Graduação em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Eliane C Jesus
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer CenterSão Paulo, Brazil; Department of Pelvic Surgery, A.C. Camargo Cancer CenterSão Paulo, Brazil
| | - Ademar Lopes
- Department of Pelvic Surgery, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Samuel Aguiar
- Department of Pelvic Surgery, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Maria D Begnami
- Department of Pathology, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Rafael M Rocha
- Laboratory of Molecular Gynecology, Department of Gynecology, Medicine College, Federal University of São Paulo São Paulo, Brazil
| | | | | | - Christian Hoffmann
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo São Paulo, Brazil
| | - Helano C Freitas
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer CenterSão Paulo, Brazil; Department of Clinical Oncology, A.C. Camargo Cancer CenterSão Paulo, Brazil
| | - Israel T Silva
- Laboratory of Computational Biology and Bioinformatics, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Diana N Nunes
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center São Paulo, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil; Biocomplexity Institute, Virginia TechBlacksburg, VA, USA
| | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer CenterSão Paulo, Brazil; Laboratory of Neurosciences (LIM-27) Alzira Denise Hertzog Silva, Institute of Psychiatry, Faculdade de Medicina, Universidade de São PauloSão Paulo, Brazil
| |
Collapse
|
1450
|
Zhou Y, He H, Xu H, Li Y, Li Z, Du Y, He J, Zhou Y, Wang H, Nie Y. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget 2016; 7:80794-80802. [PMID: 27821805 PMCID: PMC5348355 DOI: 10.18632/oncotarget.13094] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
To quantify Fusobacterium spp., Enterococcus faecalis (E.faecalis), Enterotoxigenic Bacteroides fragilis (ETBF), and Enteropathogenic Escherichia coli in colorectal cancer (CRC) patients and their possible association with CRC clinicopathogical features, we collected the resected tumors and adjacent normal tissues (N) from 97 CRC patients. 48 age- and sex-matched healthy controls (HC) were also recruited. Real-time PCR was used for bacterial quantification. The median abundance ofFusobacterium spp.(p < 0.001, vs. N; p < 0.01,vs. HC), E.faecalis (p < 0.05, vs. N; p < 0.01, vs. HC) and ETBF (p < 0.001, vs. N; p < 0.05,vs. HC) in tumor tissues was significantly higher than that detected in normal tissue and HC. E.faecalis was detected in 95.88% of tumors and 93.81% of adjacent tissues. Fusobacterium spp. was detected in 72.16% of tumors and 67.01% of adjacent tissues. The combined E.faecalis and Fusobacterium spp. were detected in 70.10% of tumors and 36.08% of adjacent normal tissues. All four bacteria were detected in 33.72% and 22.09% of paired tumor and adjacent normal tissues, respectively. E.faecalis and Fusobacterium spp. are enriched in both tumor and adjacent tissue of CRC patients when compared to HC, suggesting that it is possible to be previously undetected changes in the pathohistologically normal colon tissue in the proximity of the tumor.
Collapse
Affiliation(s)
- Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Hanchang He
- The First People's Foshan Hospital, Chancheng District, Foshan, 528000, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yingfei Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhiming Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanlei Du
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jie He
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Hong Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|