101
|
Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, Kita Y, Wang Y, Kim DW, Blackshaw S, Schultz SR, Brickley S, Shimogori T, Delogu A. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 2021; 10:e59272. [PMID: 33522480 PMCID: PMC7906600 DOI: 10.7554/elife.59272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Collapse
Affiliation(s)
- Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Gerald Moore
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | - Padraic Calpin
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Xhuljana Durmishi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | | | - Yan Wang
- RIKEN, Center for Brain Science (CBS)SaitamaJapan
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Simon R Schultz
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | | | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
102
|
Zhang Y, Cai Y, Wang Y, Deng X, Zhao Y, Zhang Y, Xie Y. Survival control of oligodendrocyte progenitor cells requires the transcription factor 4 during olfactory bulb development. Cell Death Dis 2021; 12:91. [PMID: 33462220 PMCID: PMC7813844 DOI: 10.1038/s41419-020-03371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
A proper number of oligodendrocytes in the nerve system is essential for neuronal functions. In the olfactory bulb (OB), enriched oligodendrocytes are crucial for olfactory information processing. However, how the precise number of oligodendrocytes in the OB is regulated remains elusive. Here we identified that the transcription factor 4 (Tcf4)-mediated cell death is essential for generating an appropriate number of oligodendrocyte progenitor cells (OPCs) and thereby oligodendrocytes in the OB. We showed that Nkx2.1-positive progenitors in the medial ganglionic eminence (MGE) and anterior entopeduncular area (AEP) provide the first source of OPCs in the OB. Conditional depletion of Tcf4 leads to an increase of OPCs in the OB, which is mediated by the suppression of programmed cell death. Furthermore, we showed that Tcf4 mediated OPC survival is cell-autonomous by transplantation assay. Mechanistically, we identified Bax/Bak as a potential key pathway to promote OPC elimination during OB development. Depletion of Bax/Bak in Nkx2.1 lineage results in an increase of OPCs in the OB. Mutations in TCF4 causes Pitt-Hopkins syndrome, a severe neurodevelopmental disorder. Thus, our findings reveal an important intrinsic mechanism underlying the survival control of OPCs in the OB and provide new insights into the pathogenesis of Pitt-Hopkins syndrome.
Collapse
Affiliation(s)
- Yilan Zhang
- grid.8547.e0000 0001 0125 2443Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yuqun Cai
- grid.8547.e0000 0001 0125 2443Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yafei Wang
- grid.8547.e0000 0001 0125 2443Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xin Deng
- grid.8547.e0000 0001 0125 2443Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yifan Zhao
- grid.8547.e0000 0001 0125 2443School of Public Health/MOE Key Laboratory for Public Health Safety, Fudan University, Shanghai, 200032 China
| | - Yubin Zhang
- grid.8547.e0000 0001 0125 2443School of Public Health/MOE Key Laboratory for Public Health Safety, Fudan University, Shanghai, 200032 China
| | - Yunli Xie
- grid.8547.e0000 0001 0125 2443Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
103
|
Huisman C, Kim YA, Jeon S, Shin B, Choi J, Lim SJ, Youn SM, Park Y, K C M, Kim S, Lee SK, Lee S, Lee JW. The histone H3-lysine 4-methyltransferase Mll4 regulates the development of growth hormone-releasing hormone-producing neurons in the mouse hypothalamus. Nat Commun 2021; 12:256. [PMID: 33431871 PMCID: PMC7801453 DOI: 10.1038/s41467-020-20511-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
In humans, inactivating mutations in MLL4, which encodes a histone H3-lysine 4-methyltransferase, lead to Kabuki syndrome (KS). While dwarfism is a cardinal feature of KS, the underlying etiology remains unclear. Here we report that Mll4 regulates the development of growth hormone-releasing hormone (GHRH)-producing neurons in the mouse hypothalamus. Our two Mll4 mutant mouse models exhibit dwarfism phenotype and impairment of the developmental programs for GHRH-neurons. Our ChIP-seq analysis reveals that, in the developing mouse hypothalamus, Mll4 interacts with the transcription factor Nrf1 to trigger the expression of GHRH-neuronal genes. Interestingly, the deficiency of Mll4 results in a marked reduction of histone marks of active transcription, while treatment with the histone deacetylase inhibitor AR-42 rescues the histone mark signature and restores GHRH-neuronal production in Mll4 mutant mice. Our results suggest that the developmental dysregulation of Mll4-directed epigenetic control of transcription plays a role in the development of GHRH-neurons and dwarfism phenotype in mice.
Collapse
Affiliation(s)
- Christian Huisman
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Young A Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Bongjin Shin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Jeonghoon Choi
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Su Jeong Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sung Min Youn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Younjung Park
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Medha K C
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA.
| |
Collapse
|
104
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
105
|
Allaway KC, Muñoz W, Tremblay R, Sherer M, Herron J, Rudy B, Machold R, Fishell G. Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. eLife 2020; 9:63249. [PMID: 33355093 PMCID: PMC7758062 DOI: 10.7554/elife.63249] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
The basal forebrain cholinergic system projects broadly throughout the cortex and constitutes a critical source of neuromodulation for arousal and attention. Traditionally, this system was thought to function diffusely. However, recent studies have revealed a high degree of spatiotemporal specificity in cholinergic signaling. How the organization of cholinergic afferents confers this level of precision remains unknown. Here, using intersectional genetic fate mapping, we demonstrate that cholinergic fibers within the mouse cortex exhibit remarkable laminar and regional specificity and that this is organized in accordance with cellular birthdate. Strikingly, birthdated cholinergic projections within the cortex follow an inside-out pattern of innervation. While early born cholinergic populations target deep layers, late born ones innervate superficial laminae. We also find that birthdate predicts cholinergic innervation patterns within the amygdala, hippocampus, and prefrontal cortex. Our work reveals previously unappreciated specificity within the cholinergic system and the developmental logic by which these circuits are assembled.
Collapse
Affiliation(s)
- Kathryn C Allaway
- Neuroscience Institute, New York University, New York, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| | - William Muñoz
- Neuroscience Institute, New York University, New York, United States.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Robin Tremblay
- Neuroscience Institute, New York University, New York, United States
| | - Mia Sherer
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Jacob Herron
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University, New York, United States
| | - Robert Machold
- Neuroscience Institute, New York University, New York, United States
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| |
Collapse
|
106
|
Murillo A, Navarro AI, Puelles E, Zhang Y, Petros TJ, Pérez-Otaño I. Temporal Dynamics and Neuronal Specificity of Grin3a Expression in the Mouse Forebrain. Cereb Cortex 2020; 31:1914-1926. [PMID: 33290502 PMCID: PMC7945027 DOI: 10.1093/cercor/bhaa330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
GluN3A subunits endow N-Methyl-D-Aspartate receptors (NMDARs) with unique biophysical, trafficking, and signaling properties. GluN3A-NMDARs are typically expressed during postnatal development, when they are thought to gate the refinement of neural circuits by inhibiting synapse maturation, and stabilization. Recent work suggests that GluN3A also operates in adult brains to control a variety of behaviors, yet a full spatiotemporal characterization of GluN3A expression is lacking. Here, we conducted a systematic analysis of Grin3a (gene encoding mouse GluN3A) mRNA expression in the mouse brain by combining high-sensitivity colorimetric and fluorescence in situ hybridization with labeling for neuronal subtypes. We find that, while Grin3a mRNA expression peaks postnatally, significant levels are retained into adulthood in specific brain regions such as the amygdala, medial habenula, association cortices, and high-order thalamic nuclei. The time-course of emergence and down-regulation of Grin3a expression varies across brain region, cortical layer of residence, and sensory modality, in a pattern that correlates with previously reported hierarchical gradients of brain maturation and functional specialization. Grin3a is expressed in both excitatory and inhibitory neurons, with strong mRNA levels being a distinguishing feature of somatostatin interneurons. Our study provides a comprehensive map of Grin3a distribution across the murine lifespan and paves the way for dissecting the diverse functions of GluN3A in health and disease.
Collapse
Affiliation(s)
- Alvaro Murillo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,UK Dementia Research Institute at Cardiff University, CF24 4HQ Cardiff, UK
| | - Ana I Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Isabel Pérez-Otaño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
107
|
Turrero García M, Baizabal JM, Tran DN, Peixoto R, Wang W, Xie Y, Adam MA, English LA, Reid CM, Brito SI, Booker MA, Tolstorukov MY, Harwell CC. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production. Development 2020; 147:dev187526. [PMID: 33060132 PMCID: PMC7687860 DOI: 10.1242/dev.187526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Collapse
Affiliation(s)
| | | | - Diana N Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A English
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador I Brito
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
108
|
Landry-Truchon K, Houde N, Lhuillier M, Charron L, Hadchouel A, Delacourt C, Foulkes WD, Galmiche-Rolland L, Jeannotte L. Deletion of Yy1 in mouse lung epithelium unveils molecular mechanisms governing pleuropulmonary blastoma pathogenesis. Dis Model Mech 2020; 13:dmm045989. [PMID: 33158935 PMCID: PMC7790197 DOI: 10.1242/dmm.045989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pleuropulmonary blastoma (PPB) is a very rare pediatric lung disease. It can progress from abnormal epithelial cysts to an aggressive sarcoma with poor survival. PPB is difficult to diagnose as it can be confounded with other cystic lung disorders, such as congenital pulmonary airway malformation (CPAM). PPB is associated with mutations in DICER1 that perturb the microRNA (miRNA) profile in lung. How DICER1 and miRNAs act during PPB pathogenesis remains unsolved. Lung epithelial deletion of the Yin Yang1 (Yy1) gene in mice causes a phenotype mimicking the cystic form of PPB and affects the expression of key regulators of lung development. Similar changes in expression were observed in PPB but not in CPAM lung biopsies, revealing a distinctive PPB molecular signature. Deregulation of molecules promoting epithelial-mesenchymal transition (EMT) was detected in PPB specimens, suggesting that EMT might participate in tumor progression. Changes in miRNA expression also occurred in PPB lung biopsies. miR-125a-3p, a candidate to regulate YY1 expression and lung branching, was abnormally highly expressed in PPB samples. Together, these findings support the concept that reduced expression of YY1, due to the abnormal miRNA profile resulting from DICER1 mutations, contributes to PPB development via its impact on the expression of key lung developmental genes.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Mickaël Lhuillier
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Alice Hadchouel
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - Christophe Delacourt
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - William D Foulkes
- Department of Medical Genetics, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montréal, Canada H3T 1E2
| | | | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
109
|
McSweeney C, Dong F, Chen M, Vitale J, Xu L, Crowley N, Luscher B, Zou D, Mao Y. Full function of exon junction complex factor, Rbm8a, is critical for interneuron development. Transl Psychiatry 2020; 10:379. [PMID: 33154347 PMCID: PMC7644723 DOI: 10.1038/s41398-020-01065-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The formation of the nervous system requires a balance between proliferation, differentiation, and migration of neural progenitors (NPs). Mutations in genes regulating development impede neurogenesis and lead to neuropsychiatric diseases, including autism spectrum disorders (ASDs) and schizophrenia (SZ). Recently, mutations in nonsense-mediated mRNA decay genes have been associated with ASDs, intellectual disability (ID), and SZ. Here, we examine the function of a gene in the exon junction complex, Rbm8a, in the cortical development. When Rbm8a is selectively knocked out in neural stem cells, the resulting mice exhibit microcephaly, early postnatal lethality, and altered distribution of excitatory neurons in the neocortex. Moreover, Rbm8a haploinsufficiency in the central nervous system decreases cell proliferation in the ganglionic eminences. Parvalbumin+ and neuropeptide Y+ interneurons in the cortex are significantly reduced, and distribution of interneurons are altered. Consistently, neurons in the cortex of conditional knockout (cKO) mice show a significant decrease in GABA frequency. Transcriptomic analysis revealed differentially expressed genes enriched in telencephalon development and mitosis. To further investigate the role of Rbm8a in interneuron differentiation, conditional KO of Rbm8a in NKX2.1 interneuron progenitor cells reduces progenitor proliferation and alters interneuron distributions. Taken together, these data reveal a critical role of Rbm8a in interneuron development, and establish that perturbation of this gene leads to profound cortical deficits.
Collapse
Affiliation(s)
- Colleen McSweeney
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Fengping Dong
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Miranda Chen
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Jessica Vitale
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Li Xu
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA ,grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang China
| | - Nicole Crowley
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bernhard Luscher
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Donghua Zou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, China.
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
110
|
Murcia-Ramón R, Company V, Juárez-Leal I, Andreu-Cervera A, Almagro-García F, Martínez S, Echevarría D, Puelles E. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct Funct 2020; 225:2857-2869. [PMID: 33145610 PMCID: PMC7674375 DOI: 10.1007/s00429-020-02163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.
Collapse
Affiliation(s)
- Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Iris Juárez-Leal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
111
|
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. J Neurosci 2020; 40:8652-8668. [PMID: 33060174 DOI: 10.1523/jneurosci.1636-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
Collapse
|
112
|
Laukoter S, Pauler FM, Beattie R, Amberg N, Hansen AH, Streicher C, Penz T, Bock C, Hippenmeyer S. Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron 2020; 107:1160-1179.e9. [PMID: 32707083 PMCID: PMC7523403 DOI: 10.1016/j.neuron.2020.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.
Collapse
Affiliation(s)
- Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Beattie
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
113
|
Liu Z, Zhang Z, Lindtner S, Li Z, Xu Z, Wei S, Liang Q, Wen Y, Tao G, You Y, Chen B, Wang Y, Rubenstein JL, Yang Z. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Cereb Cortex 2020; 29:2653-2667. [PMID: 29878134 DOI: 10.1093/cercor/bhy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Indexed: 11/12/2022] Open
Abstract
Immature neurons generated by the subpallial MGE tangentially migrate to the cortex where they become parvalbumin-expressing (PV+) and somatostatin (SST+) interneurons. Here, we show that the Sp9 transcription factor controls the development of MGE-derived cortical interneurons. SP9 is expressed in the MGE subventricular zone and in MGE-derived migrating interneurons. Sp9 null and conditional mutant mice have approximately 50% reduction of MGE-derived cortical interneurons, an ectopic aggregation of MGE-derived neurons in the embryonic ventral telencephalon, and an increased ratio of SST+/PV+ cortical interneurons. RNA-Seq and SP9 ChIP-Seq reveal that SP9 regulates MGE-derived cortical interneuron development through controlling the expression of key transcription factors Arx, Lhx6, Lhx8, Nkx2-1, and Zeb2 involved in interneuron development, as well as genes implicated in regulating interneuron migration Ackr3, Epha3, and St18. Thus, Sp9 has a central transcriptional role in MGE-derived cortical interneuron development.
Collapse
Affiliation(s)
- Zhidong Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifei Liang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL, USA
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
114
|
Fitzgerald M, Sotuyo N, Tischfield DJ, Anderson SA. Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells 2020; 38:1375-1386. [PMID: 32638460 DOI: 10.1002/stem.3252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
The cerebral cortex functions by the complex interactions of intrinsic and extrinsic neuronal activities, glial actions, and the effects of humoral factors. The intrinsic neuronal influences are mediated by two major subclasses: excitatory glutamatergic neurons that generally have axonal projections extending beyond the neuron's locality and inhibitory GABAergic neurons that generally project locally. These interneurons can be grouped based on morphological, neurochemical, electrophysiological, axonal targeting, and circuit influence characteristics. Cortical interneurons (CIns) can also be grouped based on their origins within the subcortical telencephalon. Interneuron subtypes, of which a dozen or more are thought to exist, are characterized by combinations of these subgrouping features. Due to their well-documented relevance to the causes of and treatments for neuropsychiatric disorders, and to their remarkable capacity to migrate extensively following transplantation, there has been tremendous interest in generating cortical GABAergic interneurons from human pluripotent stem cells. In this concise review, we discuss recent progress in understanding how interneuron subtypes are generated in vivo, and how that progress is being applied to the generation of rodent and human CIns in vitro. In addition, we will discuss approaches for the rigorous designation of interneuron subgroups or subtypes in transplantation studies, and challenges to this field, including the protracted maturation of human interneurons.
Collapse
Affiliation(s)
- Megan Fitzgerald
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathaniel Sotuyo
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Tischfield
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
115
|
Cell-Type-Specific Gene Inactivation and In Situ Restoration via Recombinase-Based Flipping of Targeted Genomic Region. J Neurosci 2020; 40:7169-7186. [PMID: 32801153 DOI: 10.1523/jneurosci.1044-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Conditional gene inactivation and restoration are powerful tools for studying gene functions in the nervous system and for modeling neuropsychiatric diseases. The combination of the two is necessary to interrogate specific cell types within defined developmental stages. However, very few methods and animal models have been developed for such purpose. Here we present a versatile method for conditional gene inactivation and in situ restoration through reversibly inverting a critical part of its endogenous genomic sequence by Cre- and Flp-mediated recombinations. Using this method, we generated a mouse model to manipulate Mecp2, an X-linked dosage-sensitive gene whose mutations cause Rett syndrome. Combined with multiple Cre- and Flp-expressing drivers and viral tools, we achieved efficient and reliable Mecp2 inactivation and restoration in the germline and several neuronal cell types, and demonstrated phenotypic reversal and prevention on cellular and behavioral levels in male mice. This study not only provides valuable tools and critical insights for Mecp2 and Rett syndrome, but also offers a generally applicable strategy to decipher other neurologic disorders.SIGNIFICANCE STATEMENT Studying neurodevelopment and modeling neurologic disorders rely on genetic tools, such as conditional gene regulation. We developed a new method to combine conditional gene inactivation and restoration on a single allele without disturbing endogenous expression pattern or dosage. We applied it to manipulate Mecp2, a gene residing on X chromosome whose malfunction leads to neurologic disease, including Rett syndrome. Our results demonstrated the efficiency, specificity, and versatility of this new method, provided valuable tools and critical insights for Mecp2 function and Rett syndrome research, and offered a generally applicable strategy to investigate other genes and genetic disorders.
Collapse
|
116
|
Gallo NB, Paul A, Van Aelst L. Shedding Light on Chandelier Cell Development, Connectivity, and Contribution to Neural Disorders. Trends Neurosci 2020; 43:565-580. [PMID: 32564887 PMCID: PMC7392791 DOI: 10.1016/j.tins.2020.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023]
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that selectively innervate the axon initial segment (AIS) of excitatory pyramidal neurons; the subcellular domain where action potentials are initiated. The proper genesis and maturation of ChCs is critical for regulating neural ensemble firing in the neocortex throughout development and adulthood. Recently, genetic and molecular studies have shed new light on the complex innerworkings of ChCs in health and disease. This review presents an overview of recent studies on the developmental origins, migratory properties, and morphology of ChCs. In addition, attention is given to newly identified molecules regulating ChC morphogenesis and connectivity as well as recent work linking ChC dysfunction to neural disorders, including schizophrenia, epilepsy, and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
| |
Collapse
|
117
|
Göngrich C, Krapacher FA, Munguba H, Fernández-Suárez D, Andersson A, Hjerling-Leffler J, Ibáñez CF. ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. J Cell Biol 2020; 219:jcb.201905002. [PMID: 31676717 PMCID: PMC7039195 DOI: 10.1083/jcb.201905002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Göngrich et al. show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. They find that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification. Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.
Collapse
Affiliation(s)
| | | | - Hermany Munguba
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
118
|
Kaur N, Han W, Li Z, Madrigal MP, Shim S, Pochareddy S, Gulden FO, Li M, Xu X, Xing X, Takeo Y, Li Z, Lu K, Imamura Kawasawa Y, Ballester-Lurbe B, Moreno-Bravo JA, Chédotal A, Terrado J, Pérez-Roger I, Koleske AJ, Sestan N. Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold. Neuron 2020; 107:1197-1211.e9. [PMID: 32707082 DOI: 10.1016/j.neuron.2020.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Graduate Program in Histology and Embryology, Zhengzhou University, 450001 Zhengzhou, China
| | - M Pilar Madrigal
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Sungbo Shim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Genome Editing Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yutaka Takeo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kangrong Lu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology and of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Terrado
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Anthony J Koleske
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
119
|
Fazzari P, Mortimer N, Yabut O, Vogt D, Pla R. Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development 2020; 147:dev.185033. [PMID: 32586977 DOI: 10.1242/dev.185033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Cortical interneurons (CINs) originate in the ganglionic eminences (GEs) and migrate tangentially to the cortex guided by different attractive and repulsive cues. Once inside the cortex, the cellular and molecular mechanisms determining the migration of CINs along the rostrocaudal axis are less well understood. Here, we investigated the cortical distribution of CINs originating in the medial and caudal GEs at different time points. Using molecular and genetic labeling, we showed that, in the mouse, early- and late-born CINs (E12 versus E15) are differentially distributed along the rostrocaudal axis. Specifically, late-born CINs are preferentially enriched in cortical areas closer to their respective sites of origin in the medial or caudal GE. Surprisingly, our in vitro experiments failed to show a preferential migration pattern along the rostrocaudal axis for medial- or caudal-born CINs. Moreover, in utero transplantation experiments suggested that the rostrocaudal dispersion of CINs depends on the developmental stage of the host brain and is limited by the migration time and the increasing size of the developing brain. These data suggest that the embryonic expansion of the cortex contributes to the rostrocaudal distribution of CINs.
Collapse
Affiliation(s)
- Pietro Fazzari
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Niall Mortimer
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97070 Würzburg, Germany.,Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Odessa Yabut
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ramon Pla
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA .,Instituto de investigación en discapacidades neurológicas (IDINE), University of Castile-la-Mancha, 02006 Albacete, Spain
| |
Collapse
|
120
|
Mancia Leon WR, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, Hasenstaub AR, Stryker MP, Alvarez-Buylla A. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. eLife 2020; 9:e55374. [PMID: 32633719 PMCID: PMC7373431 DOI: 10.7554/elife.55374] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Here, we show that loss of clustered gamma protocadherins (Pcdhg), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Surprisingly, electrophysiological and morphological properties of Pcdhg-deficient and wild-type cINs during the period of cIN cell death were indistinguishable. Co-transplantation of wild-type with Pcdhg-deficient interneuron precursors further reduced mutant cIN survival, but the proportion of mutant and wild-type cells undergoing cell death was not affected by their density. Transplantation also allowed us to test for the contribution of Pcdhg isoforms to the regulation of cIN cell death. We conclude that Pcdhg, specifically Pcdhgc3, Pcdhgc4, and Pcdhgc5, play a critical role in regulating cIN survival during the endogenous period of programmed cIN death.
Collapse
Affiliation(s)
- Walter R Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Julien Spatazza
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Benjamin Rakela
- Department of Physiology and Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Ankita Chatterjee
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Viraj Pande
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Andrea R Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael P Stryker
- Department of Physiology and Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
121
|
Mahadevan V, Peltekian A, McBain CJ. Translatome Analyses Using Conditional Ribosomal Tagging in GABAergic Interneurons and Other Sparse Cell Types. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 92:e93. [PMID: 32584517 PMCID: PMC7317066 DOI: 10.1002/cpns.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GABAergic interneurons comprise a small but diverse subset of neurons in the mammalian brain that tightly regulate neuronal circuit maturation and information flow and, ultimately, behavior. Because of their centrality in the etiology of numerous neurological disorders, examining the molecular architecture of these neurons under different physiological scenarios has piqued the interest of the broader neuroscience community. The last few years have seen an explosion in next-generation sequencing (NGS) approaches aimed at identifying genetic and state-dependent subtypes in neuronal diversity. Although several approaches are employed to address neuronal molecular diversity, ribosomal tagging has emerged at the forefront of identifying the translatomes of neuronal subtypes. This approach primarily relies on Cre recombinase-driven expression of hemagglutinin A (HA)-tagged RiboTag mice exclusively in the neuronal subtype of interest. This allows the immunoprecipitation of cell-type-specific, ribosome-engaged mRNA, expressed both in the soma and the neuronal processes, for targeted quantitative real-time PCR (qRT-PCR) or high-throughput RNA sequencing analyses. Here we detail the typical technical caveats associated with successful application of the RiboTag technique for analyzing GABAergic interneurons, and in theory other sparse cell types, in the central nervous system. Published 2020. U.S. Government. Basic Protocol 1: Breeding mice to obtain RiboTag homozygosity Support Protocol 1: Detection of ectopic Cre recombinase expression Basic Protocol 2: The RiboTag assay Support Protocol 2: Real-time quantitative PCR (qRT-PCR) assay of RiboTag-derived cell-type-specific RNA Support Protocol 3: Construction of cell-type-specific RNA-seq library Support Protocol 4: Secondary analyses of RiboTag-derived RNA-seq dataset.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892
| |
Collapse
|
122
|
Pai ELL, Chen J, Fazel Darbandi S, Cho FS, Chen J, Lindtner S, Chu JS, Paz JT, Vogt D, Paredes MF, Rubenstein JLR. Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. eLife 2020; 9:e54903. [PMID: 32452758 PMCID: PMC7282818 DOI: 10.7554/elife.54903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Jin Chen
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California San FranciscoSan FranciscoUnited States
| | - Siavash Fazel Darbandi
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Frances S Cho
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
| | - Jiapei Chen
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Susan Lindtner
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Julia S Chu
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State UniversityGrand RapidsUnited States
| | - Mercedes F Paredes
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - John LR Rubenstein
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
123
|
Saito M, Smiley JF, Hui M, Masiello K, Betz J, Ilina M, Saito M, Wilson DA. Neonatal Ethanol Disturbs the Normal Maturation of Parvalbumin Interneurons Surrounded by Subsets of Perineuronal Nets in the Cerebral Cortex: Partial Reversal by Lithium. Cereb Cortex 2020; 29:1383-1397. [PMID: 29462278 DOI: 10.1093/cercor/bhy034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Reduction in parvalbumin-positive (PV+) interneurons is observed in adult mice exposed to ethanol at postnatal day 7 (P7), a late gestation fetal alcohol spectrum disorder model. To evaluate whether PV+ cells are lost, or PV expression is reduced, we quantified PV+ and associated perineuronal net (PNN)+ cell densities in barrel cortex. While PNN+ cell density was not reduced by P7 ethanol, PV cell density decreased by 25% at P90 with no decrease at P14. PNN+ cells in controls were virtually all PV+, whereas more than 20% lacked PV in ethanol-treated adult animals. P7 ethanol caused immediate apoptosis in 10% of GFP+ cells in G42 mice, which express GFP in a subset of PV+ cells, and GFP+ cell density decreased by 60% at P90 without reduction at P14. The ethanol effect on PV+ cell density was attenuated by lithium treatment at P7 or at P14-28. Thus, reduced PV+ cell density may be caused by disrupted cell maturation, in addition to acute apoptosis. This effect may be regionally specific: in the dentate gyrus, P7 ethanol reduced PV+ cell density by 70% at P14 and both PV+ and PNN+ cell densities by 50% at P90, and delayed lithium did not alleviate ethanol's effect.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Maria Hui
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kurt Masiello
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Judith Betz
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria Ilina
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mitsuo Saito
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Donald A Wilson
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
124
|
Abstract
Tracing cell lineages is fundamental for understanding the rules governing development in multicellular organisms and delineating complex biological processes involving the differentiation of multiple cell types with distinct lineage hierarchies. In humans, experimental lineage tracing is unethical, and one has to rely on natural-mutation markers that are created within cells as they proliferate and age. Recent studies have demonstrated that it is now possible to trace lineages in normal, noncancerous cells with a variety of data types using natural variations in the nuclear and mitochondrial DNA as well as variations in DNA methylation status. It is also apparent that the scientific community is on the verge of being able to make a comprehensive and detailed cell lineage map of human embryonic and fetal development. In this review, we discuss the advantages and disadvantages of different approaches and markers for lineage tracing. We also describe the general conceptual design for how to derive a lineage map for humans.
Collapse
Affiliation(s)
- Alexej Abyzov
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA;
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut 06520, USA;
| |
Collapse
|
125
|
Delgado RN, Mansky B, Ahanger SH, Lu C, Andersen RE, Dou Y, Alvarez-Buylla A, Lim DA. Maintenance of neural stem cell positional identity by mixed-lineage leukemia 1. Science 2020; 368:48-53. [PMID: 32241942 DOI: 10.1126/science.aba5960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs) in the developing and postnatal brain have distinct positional identities that dictate the types of neurons they generate. Although morphogens initially establish NSC positional identity in the neural tube, it is unclear how such regional differences are maintained as the forebrain grows much larger and more anatomically complex. We found that the maintenance of NSC positional identity in the murine brain requires a mixed-lineage leukemia 1 (Mll1)-dependent epigenetic memory system. After establishment by sonic hedgehog, ventral NSC identity became independent of this morphogen. Even transient MLL1 inhibition caused a durable loss of ventral identity, resulting in the generation of neurons with the characteristics of dorsal NSCs in vivo. Thus, spatial information provided by morphogens can be transitioned to epigenetic mechanisms that maintain regionally distinct developmental programs in the forebrain.
Collapse
Affiliation(s)
- Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin Mansky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sajad Hamid Ahanger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Changqing Lu
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Rebecca E Andersen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
126
|
Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MA, Prado VF, Rothstein J, Rubenstein JL, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM. Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron 2020; 106:37-65.e5. [PMID: 32027825 PMCID: PMC7377387 DOI: 10.1016/j.neuron.2020.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.
Collapse
Affiliation(s)
- Lin Luo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Emilie Dumontier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | - Naosuke Hoshina
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Hsiang Huang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Mary Anne Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Itoh-Maruoka
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Pereira
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Philips
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer L. Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jeff A. Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02139, USA
| | | | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joke Wortel
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wenjia You
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA,Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Constance L. Cepko
- Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cagla Eroglu
- Department of Cell Biology, Department of Neurobiology, and Duke Institute for Brain Sciences, Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy N. Kay
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marco A.M. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vania F. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jeffrey Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
127
|
Nesan D, Thornton HF, Sewell LC, Kurrasch DM. An Efficient Method for Generating Murine Hypothalamic Neurospheres for the Study of Regional Neural Progenitor Biology. Endocrinology 2020; 161:5802442. [PMID: 32154873 PMCID: PMC7105385 DOI: 10.1210/endocr/bqaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hayley F Thornton
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Deborah M Kurrasch, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HSC 2215, Calgary, AB T2N 4N1. E-mail:
| |
Collapse
|
128
|
Angara K, Pai ELL, Bilinovich SM, Stafford AM, Nguyen JT, Li KX, Paul A, Rubenstein JL, Vogt D. Nf1 deletion results in depletion of the Lhx6 transcription factor and a specific loss of parvalbumin + cortical interneurons. Proc Natl Acad Sci U S A 2020; 117:6189-6195. [PMID: 32123116 PMCID: PMC7084085 DOI: 10.1073/pnas.1915458117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is caused by mutations in the NF1 gene, which encodes the protein, neurofibromin, an inhibitor of Ras activity. Cortical GABAergic interneurons (CINs) are implicated in NF1 pathology, but the cellular and molecular changes to CINs are unknown. We deleted mouse Nf1 from the medial ganglionic eminence, which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin. Nf1 loss led to a persistence of immature oligodendrocytes that prevented later-generated oligodendrocytes from occupying the cortex. Moreover, molecular and cellular properties of parvalbumin (PV)-positive CINs were altered by the loss of Nf1, without changes in somatostatin (SST)-positive CINs. We discovered that loss of Nf1 results in a dose-dependent decrease in Lhx6 expression, the transcription factor necessary to establish SST+ and PV+ CINs, which was rescued by the MEK inhibitor SL327, revealing a mechanism whereby a neurofibromin/Ras/MEK pathway regulates a critical CIN developmental milestone.
Collapse
Affiliation(s)
- Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503
| | - Emily Ling-Lin Pai
- Department of Psychiatry, University of California, San Francisco, CA 94158
- Neuroscience Program, University of California, San Francisco, CA 94158
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158
| | - Stephanie M Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503
| | - April M Stafford
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503
| | - Julie T Nguyen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503
| | - Katie X Li
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, PennState University, Hershey, PA 17033
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, CA 94158
- Neuroscience Program, University of California, San Francisco, CA 94158
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503;
- Neuroscience Program, Michigan State University, Grand Rapids, MI 49503
| |
Collapse
|
129
|
Pai ELL, Vogt D, Clemente-Perez A, McKinsey GL, Cho FS, Hu JS, Wimer M, Paul A, Fazel Darbandi S, Pla R, Nowakowski TJ, Goodrich LV, Paz JT, Rubenstein JLR. Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell Rep 2020; 26:1157-1173.e5. [PMID: 30699346 PMCID: PMC6602795 DOI: 10.1016/j.celrep.2019.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/17/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022] Open
Abstract
Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Alexandra Clemente-Perez
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frances S Cho
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jia Sheng Hu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Wimer
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ramon Pla
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
130
|
Southwell DG, Seifikar H, Malik R, Lavi K, Vogt D, Rubenstein JL, Sohal VS. Interneuron Transplantation Rescues Social Behavior Deficits without Restoring Wild-Type Physiology in a Mouse Model of Autism with Excessive Synaptic Inhibition. J Neurosci 2020; 40:2215-2227. [PMID: 31988060 PMCID: PMC7083289 DOI: 10.1523/jneurosci.1063-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022] Open
Abstract
Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurological Surgery,
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
| | - Helia Seifikar
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
- Sloan Swartz Center for Theoretical Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Ruchi Malik
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
- Sloan Swartz Center for Theoretical Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Karen Lavi
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
- Sloan Swartz Center for Theoretical Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Daniel Vogt
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - John L Rubenstein
- Weill Institute for Neurosciences
- Kavli Institute for Fundamental Neuroscience
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| | - Vikaas S Sohal
- Weill Institute for Neurosciences,
- Kavli Institute for Fundamental Neuroscience
- Sloan Swartz Center for Theoretical Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
131
|
Pua HH, Happ HC, Gray CJ, Mar DJ, Chiou NT, Hesse LE, Ansel KM. Increased Hematopoietic Extracellular RNAs and Vesicles in the Lung during Allergic Airway Responses. Cell Rep 2020; 26:933-944.e4. [PMID: 30673615 PMCID: PMC6365014 DOI: 10.1016/j.celrep.2019.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/28/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular RNAs (exRNAs) can be released by numerous cell types in vitro, are often protected within vesicles, and can modify recipient cell function. To determine how the composition and cellular sources of exRNAs and the extracellular vesicles (EVs) that carry them change in vivo during tissue inflammation, we analyzed bronchoalveolar lavage fluid (BALF) from mice before and after lung allergen challenge. In the lung, extracellular microRNAs (ex-miRNAs) had a composition that was highly correlated with airway-lining epithelium. Using cell type-specific membrane tagging and single vesicle flow, we also found that 80% of detected vesicles were of epithelial origin. After the induction of allergic airway inflammation, miRNAs selectively expressed by immune cells, including miR-223 and miR-142a, increased and hematopoietic-cell-derived EVs also increased >2-fold. These data demonstrate that infiltrating immune cells release ex-miRNAs and EVs in inflamed tissues to alter the local extracellular environment.
Collapse
Affiliation(s)
- Heather H Pua
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Hannah C Happ
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carleigh J Gray
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Darryl J Mar
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ni-Ting Chiou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura E Hesse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
132
|
Ikonomou L, Herriges MJ, Lewandowski SL, Marsland R, Villacorta-Martin C, Caballero IS, Frank DB, Sanghrajka RM, Dame K, Kańduła MM, Hicks-Berthet J, Lawton ML, Christodoulou C, Fabian AJ, Kolaczyk E, Varelas X, Morrisey EE, Shannon JM, Mehta P, Kotton DN. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun 2020; 11:635. [PMID: 32005814 PMCID: PMC6994558 DOI: 10.1038/s41467-020-14348-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sara L Lewandowski
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert Marsland
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Ignacio S Caballero
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reeti M Sanghrajka
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Keri Dame
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maciej M Kańduła
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
- Chair of Bioinformatics Research Group, Boku University, 1190, Vienna, Austria
| | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Matthew L Lawton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Constantina Christodoulou
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Eric Kolaczyk
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
133
|
Abecassis ZA, Berceau BL, Win PH, García D, Xenias HS, Cui Q, Pamukcu A, Cherian S, Hernández VM, Chon U, Lim BK, Kim Y, Justice NJ, Awatramani R, Hooks BM, Gerfen CR, Boca SM, Chan CS. Npas1 +-Nkx2.1 + Neurons Are an Integral Part of the Cortico-pallido-cortical Loop. J Neurosci 2020; 40:743-768. [PMID: 31811030 PMCID: PMC6975296 DOI: 10.1523/jneurosci.1199-19.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.
Collapse
Affiliation(s)
- Zachary A Abecassis
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Phyo H Win
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniela García
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Suraj Cherian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Uree Chon
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Byung Kook Lim
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Nicholas J Justice
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston, Texas
- Department of Integrative Pharmacology, University of Texas, Houston, Texas
| | - Raj Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland, and
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
| |
Collapse
|
134
|
Sheehan CJ, McMahon JJ, Serdar LD, Silver DL. Dosage-dependent requirements of Magoh for cortical interneuron generation and survival. Development 2020; 147:dev.182295. [PMID: 31857347 DOI: 10.1242/dev.182295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Embryonic interneuron development underlies cortical function and its disruption contributes to neurological disease. Yet the mechanisms by which viable interneurons are produced from progenitors remain poorly understood. Here, we demonstrate dosage-dependent requirements of the exon junction complex component Magoh for interneuron genesis in mouse. Conditional Magoh ablation from interneuron progenitors, but not post-mitotic neurons, depletes cortical interneuron number through adulthood, with increased severity in homozygotes. Using live imaging, we discover that Magoh deficiency delays progenitor mitotic progression in a dosage-sensitive fashion, with 40% of homozygous progenitors failing to divide. This shows that Magoh is required in progenitors for both generation and survival of newborn progeny. Transcriptome analysis implicates p53 signaling; moreover, p53 ablation in Magoh haploinsufficient progenitors rescues apoptosis, completely recovering interneuron number. In striking contrast, in Magoh homozygotes, p53 loss fails to rescue interneuron number and mitotic delay, further implicating mitotic defects in interneuron loss. Our results demonstrate that interneuron development is intimately dependent upon progenitor mitosis duration and uncover a crucial post-transcriptional regulator of interneuron fate relevant for neurodevelopmental pathologies.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Charles J Sheehan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lucas D Serdar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA .,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
135
|
Guo T, Liu G, Du H, Wen Y, Wei S, Li Z, Tao G, Shang Z, Song X, Zhang Z, Xu Z, You Y, Chen B, Rubenstein JL, Yang Z. Dlx1/2 are Central and Essential Components in the Transcriptional Code for Generating Olfactory Bulb Interneurons. Cereb Cortex 2019; 29:4831-4849. [PMID: 30796806 PMCID: PMC6917526 DOI: 10.1093/cercor/bhz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022] Open
Abstract
Generation of olfactory bulb (OB) interneurons requires neural stem/progenitor cell specification, proliferation, differentiation, and young interneuron migration and maturation. Here, we show that the homeobox transcription factors Dlx1/2 are central and essential components in the transcriptional code for generating OB interneurons. In Dlx1/2 constitutive null mutants, the differentiation of GSX2+ and ASCL1+ neural stem/progenitor cells in the dorsal lateral ganglionic eminence is blocked, resulting in a failure of OB interneuron generation. In Dlx1/2 conditional mutants (hGFAP-Cre; Dlx1/2F/- mice), GSX2+ and ASCL1+ neural stem/progenitor cells in the postnatal subventricular zone also fail to differentiate into OB interneurons. In contrast, overexpression of Dlx1&2 in embryonic mouse cortex led to ectopic production of OB-like interneurons that expressed Gad1, Sp8, Sp9, Arx, Pbx3, Etv1, Tshz1, and Prokr2. Pax6 mutants generate cortical ectopia with OB-like interneurons, but do not do so in compound Pax6; Dlx1/2 mutants. We propose that DLX1/2 promote OB interneuron development mainly through activating the expression of Sp8/9, which further promote Tshz1 and Prokr2 expression. Based on this study, in combination with earlier ones, we propose a transcriptional network for the process of OB interneuron development.
Collapse
Affiliation(s)
- Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
136
|
Sagai T, Amano T, Maeno A, Ajima R, Shiroishi T. SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc Natl Acad Sci U S A 2019; 116:23636-23642. [PMID: 31685615 PMCID: PMC6876251 DOI: 10.1073/pnas.1901732116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sonic hedgehog (SHH) signaling plays a pivotal role in 2 different phases during brain development. Early SHH signaling derived from the prechordal plate (PrCP) triggers secondary Shh induction in the forebrain, which overlies the PrCP, and the induced SHH signaling, in turn, directs late neuronal differentiation of the forebrain. Consequently, Shh regulation in the PrCP is crucial for initiation of forebrain development. However, no enhancer that regulates prechordal Shh expression has yet been found. Here, we identified a prechordal enhancer, named SBE7, in the vicinity of a cluster of known forebrain enhancers for Shh This enhancer also directs Shh expression in the ventral midline of the forebrain, which receives the prechordal SHH signal. Thus, the identified enhancer acts not only for the initiation of Shh regulation in the PrCP but also for subsequent Shh induction in the forebrain. Indeed, removal of the enhancer from the mouse genome markedly down-regulated the expression of Shh in the rostral domains of the axial mesoderm and in the ventral midline of the forebrain and hypothalamus in the mouse embryo, and caused a craniofacial abnormality similar to human holoprosencephaly (HPE). These findings demonstrate that SHH signaling mediated by the newly identified enhancer is essential for development and growth of the ventral midline of the forebrain and hypothalamus. Understanding of the Shh regulation governed by this prechordal and brain enhancer provides an insight into the mechanism underlying craniofacial morphogenesis and the etiology of HPE.
Collapse
Affiliation(s)
- Tomoko Sagai
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Information Resource Research Center, Association for Propagation of the Knowledge of Genetics, Mishima 411-8540, Japan
| | - Takanori Amano
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Rieko Ajima
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
- RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| |
Collapse
|
137
|
Malik R, Pai ELL, Rubin AN, Stafford AM, Angara K, Minasi P, Rubenstein JL, Sohal VS, Vogt D. Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons. Nat Commun 2019; 10:4994. [PMID: 31676823 PMCID: PMC6825152 DOI: 10.1038/s41467-019-12962-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived somatostatin (SST)+ and parvalbumin (PV)+ cortical interneurons (CINs), have characteristic molecular, anatomical and physiological properties. However, mechanisms regulating their diversity remain poorly understood. Here, we show that conditional loss of the Tuberous Sclerosis Complex (TSC) gene, Tsc1, which inhibits the mammalian target of rapamycin (MTOR), causes a subset of SST+ CINs, to express PV and adopt fast-spiking (FS) properties, characteristic of PV+ CINs. Milder intermediate phenotypes also occur when only one allele of Tsc1 is deleted. Notably, treatment of adult mice with rapamycin, which inhibits MTOR, reverses the phenotypes. These data reveal novel functions of MTOR signaling in regulating PV expression and FS properties, which may contribute to TSC neuropsychiatric symptoms. Moreover, they suggest that CINs can exhibit properties intermediate between those classically associated with PV+ or SST+ CINs, which may be dynamically regulated by the MTOR signaling.
Collapse
Affiliation(s)
- Ruchi Malik
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
- Sloan-Swartz Center for Theoretical Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
| | - Emily Ling-Lin Pai
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Neuroscience Program, UCSF, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
- Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
| | - Anna N Rubin
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
| | - April M Stafford
- Department of Pediatrics and Human Development, 400 Monroe Ave. NW, Grand Rapids, MI, 49503, USA
| | - Kartik Angara
- Department of Pediatrics and Human Development, 400 Monroe Ave. NW, Grand Rapids, MI, 49503, USA
| | - Petros Minasi
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
| | - John L Rubenstein
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Neuroscience Program, UCSF, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
- Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA
| | - Vikaas S Sohal
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA.
- Center for Integrative Neuroscience, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA.
- Sloan-Swartz Center for Theoretical Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA, 94158, USA.
| | - Daniel Vogt
- Department of Pediatrics and Human Development, 400 Monroe Ave. NW, Grand Rapids, MI, 49503, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
138
|
Asgarian Z, Magno L, Ktena N, Harris KD, Kessaris N. Hippocampal CA1 Somatostatin Interneurons Originate in the Embryonic MGE/POA. Stem Cell Reports 2019; 13:793-802. [PMID: 31631021 PMCID: PMC6895756 DOI: 10.1016/j.stemcr.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023] Open
Abstract
Oriens lacunosum-moleculare (O-LM) interneurons constitute 40% of hippocampal interneurons expressing Somatostatin (SST). Recent evidence has indicated a dual origin for these cells in the medial and caudal ganglionic eminences (MGE and CGE), with expression of Htr3a as a distinguishing factor. This is strikingly different from cortical SST interneurons that have a single origin within the MGE/preoptic area (POA). We reassessed the origin of hippocampal SST interneurons using a range of genetic lineage-tracing mice combined with single-cell transcriptomic analysis. We find a common origin for all hippocampal SST interneurons in NKX2-1-expressing progenitors of the telencephalic neuroepithelium and an MGE/POA-like transcriptomic signature for all SST clusters. This suggests that functional heterogeneity within the SST CA1 population cannot be attributed to a differential MGE/CGE genetic origin.
Collapse
Affiliation(s)
- Zeinab Asgarian
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Niki Ktena
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Kenneth D Harris
- UCL Institute of Neurology at the Cruciform Building and Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
139
|
Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 2019; 18:e13014. [PMID: 31373126 PMCID: PMC6718533 DOI: 10.1111/acel.13014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jacqueline A. Brinkman
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Mark Morrison
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Mohammed I. Alotaibi
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kathryn A. Carbajal
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Amber L. Alhadeff
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rebecca Yao
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Cole S. Purdy
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Denise M. DeFelice
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew H. Wakai
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Jay Tomasiewicz
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy Lin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emma Meyer
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - J. Nicholas Betley
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Georgios K. Paschos
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- The Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
140
|
Skorput AG, Lee SM, Yeh PW, Yeh HH. The NKCC1 antagonist bumetanide mitigates interneuronopathy associated with ethanol exposure in utero. eLife 2019; 8:48648. [PMID: 31545168 PMCID: PMC6768659 DOI: 10.7554/elife.48648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/22/2019] [Indexed: 11/15/2022] Open
Abstract
Prenatal exposure to ethanol induces aberrant tangential migration of corticopetal GABAergic interneurons, and long-term alterations in the form and function of the prefrontal cortex. We have hypothesized that interneuronopathy contributes significantly to the pathoetiology of fetal alcohol spectrum disorders (FASD). Activity-dependent tangential migration of GABAergic cortical neurons is driven by depolarizing responses to ambient GABA present in the cortical enclave. We found that ethanol exposure potentiates the depolarizing action of GABA in GABAergic cortical interneurons of the embryonic mouse brain. Pharmacological antagonism of the cotransporter NKCC1 mitigated ethanol-induced potentiation of GABA depolarization and prevented aberrant patterns of tangential migration induced by ethanol in vitro. In a model of FASD, maternal bumetanide treatment prevented interneuronopathy in the prefrontal cortex of ethanol exposed offspring, including deficits in behavioral flexibility. These findings position interneuronopathy as a mechanism of FASD symptomatology, and posit NKCC1 as a pharmacological target for the management of FASD.
Collapse
Affiliation(s)
- Alexander Gj Skorput
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Department of Neuroscience, School of Medicine, University of Minnesota Twin Cities, Minneapolis, United States
| | - Stephanie M Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Pamela Wl Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
141
|
Jiang X, Lupien-Meilleur A, Tazerart S, Lachance M, Samarova E, Araya R, Lacaille JC, Rossignol E. Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Ann Neurol 2019; 84:436-451. [PMID: 30048010 DOI: 10.1002/ana.25301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deletions of CACNA1A, encoding the α1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans. Whereas the deletion of Cacna1a in γ-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre ;Cacna1ac/c mice, the targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here we identify the cellular and network consequences of Cacna1a deletion specifically in PV-INs. METHODS We generated PVCre ;Cacna1ac/c mutant mice carrying a conditional Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic recordings. RESULTS PVCre ;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences but only rare motor seizures. Compared to Nkx2.1Cre ;Cacna1ac/c mice, PVCre ;Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. INTERPRETATION Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can be detrimental in epilepsies not primarily due to mTOR hyperactivation. Ann Neurol 2018;84:436-451.
Collapse
Affiliation(s)
- Xiao Jiang
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Sabrina Tazerart
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Elena Samarova
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Araya
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Elsa Rossignol
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
142
|
Huisman C, Cho H, Brock O, Lim SJ, Youn SM, Park Y, Kim S, Lee SK, Delogu A, Lee JW. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat Commun 2019; 10:3696. [PMID: 31420539 PMCID: PMC6697706 DOI: 10.1038/s41467-019-11667-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the crucial physiological processes governed by neurons in the hypothalamic arcuate nucleus (ARC), such as growth, reproduction and energy homeostasis, the developmental pathways and regulators for ARC neurons remain understudied. Our single cell RNA-seq analyses of mouse embryonic ARC revealed many cell type-specific markers for developing ARC neurons. These markers include transcription factors whose expression is enriched in specific neuronal types and often depleted in other closely-related neuronal types, raising the possibility that these transcription factors play important roles in the fate commitment or differentiation of specific ARC neuronal types. We validated this idea with the two transcription factors, Foxp2 enriched for Ghrh-neurons and Sox14 enriched for Kisspeptin-neurons, using Foxp2- and Sox14-deficient mouse models. Taken together, our single cell transcriptome analyses for the developing ARC uncovered a panel of transcription factors that are likely to form a gene regulatory network to orchestrate fate specification and differentiation of ARC neurons.
Collapse
Affiliation(s)
- Christian Huisman
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hyeyoung Cho
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RS, UK
| | - Su Jeong Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sung Min Youn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Younjung Park
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Pediatrics, Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RS, UK.
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
143
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
144
|
McKenzie MG, Cobbs LV, Dummer PD, Petros TJ, Halford MM, Stacker SA, Zou Y, Fishell GJ, Au E. Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. Neuron 2019; 103:853-864.e4. [PMID: 31257105 DOI: 10.1016/j.neuron.2019.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023]
Abstract
GABAergic interneurons have many important functions in cortical circuitry, a reflection of their cell diversity. The developmental origins of this diversity are poorly understood. Here, we identify rostral-caudal regionality in Wnt exposure within the interneuron progenitor zone delineating the specification of the two main interneuron subclasses. Caudally situated medial ganglionic eminence (MGE) progenitors receive high levels of Wnt signaling and give rise to somatostatin (SST)-expressing cortical interneurons. By contrast, parvalbumin (PV)-expressing basket cells originate mostly from the rostral MGE, where Wnt signaling is attenuated. Interestingly, rather than canonical signaling through β-catenin, signaling via the non-canonical Wnt receptor Ryk regulates interneuron cell-fate specification in vivo and in vitro. Indeed, gain of function of Ryk intracellular domain signaling regulates SST and PV fate in a dose-dependent manner, suggesting that Ryk signaling acts in a graded fashion. These data reveal an important role for non-canonical Wnt-Ryk signaling in establishing the correct ratios of cortical interneuron subtypes.
Collapse
Affiliation(s)
- Melissa G McKenzie
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lucy V Cobbs
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Patrick D Dummer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Timothy J Petros
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Michael M Halford
- Tumour Angiogenesis and Microenvironment Program, Department of Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Department of Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA 92093, USA
| | - Gord J Fishell
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 04115, USA; The Stanley Center at the Broad, Cambridge, MA 02142, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative Scholar, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
145
|
Baho E, Chattopadhyaya B, Lavertu-Jolin M, Mazziotti R, Awad PN, Chehrazi P, Groleau M, Jahannault-Talignani C, Vaucher E, Ango F, Pizzorusso T, Baroncelli L, Di Cristo G. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J Neurosci 2019; 39:4489-4510. [PMID: 30936240 PMCID: PMC6554620 DOI: 10.1523/jneurosci.2881-18.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
By virtue of their extensive axonal arborization and perisomatic synaptic targeting, cortical inhibitory parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions; however, its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging. By using RNAscope and a modified version of the proximity ligation assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex. Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo Together, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represent a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENT In the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence; however, the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell-autonomous fashion, both in vitro and in vivo, and that p75NTR activation in adult PV cells promotes their remodeling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.
Collapse
Affiliation(s)
- Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Raffaele Mazziotti
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Patricia N Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Pegah Chehrazi
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Marianne Groleau
- École d'Optométrie, Université de Montréal, Montréal, Québec H3T 1P1, Canada
| | - Celine Jahannault-Talignani
- Institut de Génomique Fonctionnelle, université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, 34090 Montpellier, France, and
| | - Elvire Vaucher
- École d'Optométrie, Université de Montréal, Montréal, Québec H3T 1P1, Canada
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle, université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, 34090 Montpellier, France, and
| | - Tommaso Pizzorusso
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health Neurofarba, University of Florence, 50139 Firenze, Italy
| | - Laura Baroncelli
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada,
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| |
Collapse
|
146
|
Minocha S, Herr W. Cortical and Commissural Defects Upon HCF-1 Loss in Nkx2.1-Derived Embryonic Neurons and Glia. Dev Neurobiol 2019; 79:578-595. [PMID: 31207118 PMCID: PMC6771735 DOI: 10.1002/dneu.22704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Formation of the cerebral cortex and commissures involves a complex developmental process defined by multiple molecular mechanisms governing proliferation of neuronal and glial precursors, neuronal and glial migration, and patterning events. Failure in any of these processes can lead to malformations. Here, we study the role of HCF-1 in these processes. HCF-1 is a conserved metazoan transcriptional co-regulator long implicated in cell proliferation and more recently in human metabolic disorders and mental retardation. Loss of HCF-1 in a subset of ventral telencephalic Nkx2.1-positive progenitors leads to reduced numbers of GABAergic interneurons and glia, owing not to decreased proliferation but rather to increased apoptosis before cell migration. The loss of these cells leads to development of severe commissural and cortical defects in early postnatal mouse brains. These defects include mild and severe structural defects of the corpus callosum and anterior commissure, respectively, and increased folding of the cortex resembling polymicrogyria. Hence, in addition to its well-established role in cell proliferation, HCF-1 is important for organ development, here the brain.
Collapse
Affiliation(s)
- Shilpi Minocha
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| | - Winship Herr
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
147
|
Parallel Emergence of a Compartmentalized Striatum with the Phylogenetic Development of the Cerebral Cortex. Brain Sci 2019; 9:brainsci9040090. [PMID: 31010240 PMCID: PMC6523536 DOI: 10.3390/brainsci9040090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
The intricate neuronal architecture of the striatum plays a pivotal role in the functioning of the basal ganglia circuits involved in the control of various aspects of motor, cognitive, and emotional functions. Unlike the cerebral cortex, which has a laminar structure, the striatum is primarily composed of two functional subdivisions (i.e., the striosome and matrix compartments) arranged in a mosaic fashion. This review addresses whether striatal compartmentalization is present in non-mammalian vertebrates, in which simple cognitive and behavioral functions are executed by primitive sensori-motor systems. Studies show that neuronal subpopulations that share neurochemical and connective properties with striosomal and matrix neurons are present in the striata of not only anamniotes (fishes and amphibians), but also amniotes (reptiles and birds). However, these neurons do not form clearly segregated compartments in these vertebrates, suggesting that such compartmentalization is unique to mammals. In the ontogeny of the mammalian forebrain, the later-born matrix neurons disperse the early-born striosome neurons into clusters to form the compartments in tandem with the development of striatal afferents from the cortex. We propose that striatal compartmentalization in mammals emerged in parallel with the evolution of the cortex and possibly enhanced complex processing of sensory information and behavioral flexibility phylogenetically.
Collapse
|
148
|
Tao G, Li Z, Wen Y, Song X, Wei S, Du H, Yang Z, Xu Z, You Y. Transcription Factors Sp8 and Sp9 Regulate Medial Ganglionic Eminence-Derived Cortical Interneuron Migration. Front Mol Neurosci 2019; 12:75. [PMID: 31001083 PMCID: PMC6454190 DOI: 10.3389/fnmol.2019.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cortical interneurons are derived from the subpallium and reach the developing cortex through long tangential migration. Mature cortical interneurons are characterized by remarkable morphological, molecular, and functional diversity. The calcium-binding protein parvalbumin (PV) and neuropeptide somatostatin (SST) identify most medial ganglionic eminence (MGE)-derived cortical interneurons. Previously, we demonstrated that Sp9 plays a curial transcriptional role in regulating MGE-derived cortical interneuron development. Here, we show that SP8 protein is weekly expressed in the MGE mantle zone of wild type mice but upregulated in Sp9 null mutants. PV+ cortical interneurons were severely lost in Sp8/Sp9 double conditional knockouts due to defects in tangential migration compared with Sp9 single mutants, suggesting that Sp8/9 coordinately regulate PV+ cortical interneuron development. We provide evidence that Sp8/Sp9 activity is required for normal MGE-derived cortical interneuron migration, at least in part, through regulating the expression of EphA3, Ppp2r2c, and Rasgef1b.
Collapse
Affiliation(s)
- Guangxu Tao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, MOE Frontier Research Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
149
|
Rushing GV, Brockman AA, Bollig MK, Leelatian N, Mobley BC, Irish JM, Ess KC, Fu C, Ihrie RA. Location-dependent maintenance of intrinsic susceptibility to mTORC1-driven tumorigenesis. Life Sci Alliance 2019; 2:2/2/e201800218. [PMID: 30910807 PMCID: PMC6435042 DOI: 10.26508/lsa.201800218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
Per-cell quantification of mTORC1 signaling activity in neural stem/progenitor cells reveals differential signaling, proliferative, and tumor-forming capability between dorsal and ventral cells within a single niche. Neural stem/progenitor cells (NSPCs) of the ventricular–subventricular zone (V-SVZ) are candidate cells of origin for many brain tumors. However, whether NSPCs in different locations within the V-SVZ differ in susceptibility to tumorigenic mutations is unknown. Here, single-cell measurements of signal transduction intermediates in the mechanistic target of rapamycin complex 1 (mTORC1) pathway reveal that ventral NSPCs have higher levels of signaling than dorsal NSPCs. These features are linked with differences in mTORC1-driven disease severity: introduction of a pathognomonic Tsc2 mutation only results in formation of tumor-like masses from the ventral V-SVZ. We propose a direct link between location-dependent intrinsic growth properties imbued by mTORC1 and predisposition to tumor development.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Asa A Brockman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nalin Leelatian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Immunology, and Microbiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin C Ess
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA .,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
150
|
Tai Y, Gallo NB, Wang M, Yu JR, Van Aelst L. Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron 2019; 102:358-372.e9. [PMID: 30846310 DOI: 10.1016/j.neuron.2019.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
Among the diverse interneuron subtypes in the neocortex, chandelier cells (ChCs) are the only population that selectively innervate pyramidal neurons (PyNs) at their axon initial segment (AIS), the site of action potential initiation, allowing them to exert powerful control over PyN output. Yet, mechanisms underlying their subcellular innervation of PyN AISs are unknown. To identify molecular determinants of ChC/PyN AIS innervation, we performed an in vivo RNAi screen of PyN-expressed axonal cell adhesion molecules (CAMs) and select Ephs/ephrins. Strikingly, we found the L1 family member L1CAM to be the only molecule required for ChC/PyN AIS innervation. Further, we show that L1CAM is required during both the establishment and maintenance of innervation, and that selective innervation of PyN AISs by ChCs requires AIS anchoring of L1CAM by the cytoskeletal ankyrin-G/βIV-spectrin complex. Thus, our findings identify PyN-expressed L1CAM as a critical CAM required for innervation of neocortical PyN AISs by ChCs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yilin Tai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Minghui Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jia-Ray Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|