101
|
Yu SS, Zhu X. Role of NADPH oxidase family members in promoting liver fibrosis. Shijie Huaren Xiaohua Zazhi 2014; 22:2710-2715. [DOI: 10.11569/wcjd.v22.i19.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is one of hepatic wound-repair responses to a variety of chronic liver injuries, which is characterized by excessive deposition of extracellular matrix. Increasing evidence indicates that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and oxidative stress caused by reactive oxygen species play a key role in liver fibrosis. NADPH oxidase is a multi-subunit complex. In the liver, both phagocytic and non-phagocytic NADPH oxidases are functionally expressed. They have a significant fibrogenic effect on the hepatic stellate cells, the main cell type causing liver fibrosis. In this paper, we review the recent advances in understanding the role of the NADPH oxidase family in the occurrence and development of liver fibrosis.
Collapse
|
102
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
103
|
Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal 2014; 20:2854-72. [PMID: 24040957 PMCID: PMC4026397 DOI: 10.1089/ars.2013.5619] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. RECENT ADVANCES In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. CRITICAL ISSUES Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. FUTURE DIRECTIONS A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antio
Collapse
Affiliation(s)
- Yong-Han Paik
- 1 Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
104
|
Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:605-20. [PMID: 24798211 PMCID: PMC4065336 DOI: 10.1007/s00210-014-0985-1] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
Abstract
In this review, we focus on the role of oxidative stress in the aetiology of inflammatory bowel diseases (IBD) and colitis-associated colorectal cancer and discuss free radicals and free radical-stimulated pathways as pharmacological targets for anti-IBD drugs. We also suggest novel anti-oxidative agents, which may become effective and less-toxic alternatives in IBD and colitis-associated colorectal cancer treatment. A Medline search was performed to identify relevant bibliography using search terms including: ‘free radicals,’ ‘antioxidants,’ ‘oxidative stress,’ ‘colon cancer,’ ‘ulcerative colitis,’ ‘Crohn’s disease,’ ‘inflammatory bowel disease.’ Several therapeutics commonly used in IBD treatment, among which are immunosuppressants, corticosteroids and anti-TNF-α antibodies, could also affect the IBD progression by interfering with cellular oxidative stress and cytokine production. Experimental data shows that these drugs may effectively scavenge free radicals, increase anti-oxidative capacity of cells, influence multiple signalling pathways, e.g. MAPK and NF-kB, and inhibit pro-oxidative enzyme and cytokine concentration. However, their anti-oxidative and anti-inflammatory effectiveness still needs further investigation. A highly specific antioxidative activity may be important for the clinical treatment and relapse of IBD. In the future, a combination of currently used pharmaceutics, together with natural and synthetic anti-oxidative compounds, like lipoic acid or curcumine, could be taken into account in the design of novel anti-IBD therapies.
Collapse
|
105
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
106
|
Matsumoto M, Katsuyama M, Iwata K, Ibi M, Zhang J, Zhu K, Nauseef WM, Yabe-Nishimura C. Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase. Free Radic Biol Med 2014; 68:196-204. [PMID: 24361341 DOI: 10.1016/j.freeradbiomed.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/27/2013] [Accepted: 12/12/2013] [Indexed: 01/12/2023]
Abstract
Extensive evidence demonstrates the pathophysiological importance of NOX1, the catalytic subunit of superoxide-generating enzyme NADPH oxidase, as a source of reactive oxygen species in nonphagocytic cells. However, the biochemical properties of NOX1 have not been extensively characterized due to a lack of specific immunological tools. We used a newly raised NOX1 polyclonal antibody to investigate posttranslational modifications of NOX1 overexpressed in cultured cells and in the colon, where endogenous NOX1 is highly expressed. Immunoblots of lysates from cells expressing NOX1 revealed a doublet of 56 and 60kDa accompanied by a broad band of 60-90kDa. Based on differential sensitivity to glycosidases, the doublet was identified as two high-mannose-type glycoforms of NOX1, whereas the broad band represented NOX1 with complex-type N-linked oligosaccharides. Deglycosylated NOX1 migrated at ~53kDa and N-glycosylation was demonstrated in NOX1 derived from both rat and human. Site-directed mutagenesis identified N-glycosylation sites at Asn(161) and Asn(241) on the extracellular loop of mouse NOX1. Elimination of N-glycosylation on NOX1 did not affect its electron transferase activity, protein stability, targeting to the cell surface, or localization in F-actin-positive membrane protrusions. Taken together, these data identify the two specific sites of N-linked glycosylation of murine NOX1 and demonstrate that they are not required for normal enzyme activity, protein stability, and membrane trafficking. As is true for NOX2, the contribution of glycosylation in NOX1 to its biologic function(s) merits further study.
Collapse
Affiliation(s)
- Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jia Zhang
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kai Zhu
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Coralville, IA 52241, USA; Veterans Administration Medical Center, Iowa City, IA 52240, USA
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
107
|
Sampson N, Berger P, Zenzmaier C. Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:131737. [PMID: 24701562 PMCID: PMC3950649 DOI: 10.1155/2014/131737] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Abstract
Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGF β-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.
Collapse
Affiliation(s)
- Natalie Sampson
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Peter Berger
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Department of Internal Medicine III, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
108
|
Hino K, Hara Y, Nishina S. Mitochondrial reactive oxygen species as a mystery voice in hepatitis C. Hepatol Res 2014; 44:123-32. [PMID: 24112394 DOI: 10.1111/hepr.12247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022]
Abstract
There are several lines of evidence suggesting that oxidative stress is present in hepatitis C to a greater degree than in other inflammatory liver diseases and is closely related to disease progression. The main production site of reactive oxygen species (ROS) is assumed to be mitochondria, which concept is supported by evidence that hepatitis C virus (HCV) core protein is directly associated with them. The detoxification of ROS also is an important function of the cellular redox homeostasis system. These results draw our attention to how HCV-induced mitochondrial ROS production is beyond redox regulation and affects the disease progression and development of hepatocellular carcinoma (HCC) in chronic hepatitis C. On the other hand, HCV-related chronic liver diseases are characterized by metabolic alterations such as insulin resistance, hepatic steatosis and/or iron accumulation in the liver. These metabolic disorders also are relevant to the development of HCC in HCV-related chronic liver diseases. Here, we review the mechanisms by which HCV increases mitochondrial ROS production and offer new insights as to how mitochondrial ROS are linked to metabolic disorders such as insulin resistance, hepatic steatosis and hepatic iron accumulation that are observed in HCV-related chronic liver diseases.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
109
|
Green Tea Polyphenols and Reduction of Oxidative Stress in Liver Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Inhibition of nuclear Nox4 activity by plumbagin: effect on proliferative capacity in human amniotic stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:680816. [PMID: 24489986 PMCID: PMC3893878 DOI: 10.1155/2013/680816] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
Human amniotic fluid stem cells (AFSC) with multilineage differentiation potential are novel source for cell therapy. However, in vitro expansion leads to senescence affecting differentiation and proliferative capacities. Reactive oxygen species (ROS) have been involved in the regulation of stem cell pluripotency, proliferation, and differentiation. Redox-regulated signal transduction is coordinated by spatially controlled production of ROS within subcellular compartments. NAD(P)H oxidase family, in particular Nox4, has been known to produce ROS in the nucleus; however, the mechanisms and the meaning of this function remain largely unknown. In the present study, we show that Nox4 nuclear expression (nNox4) increases during culture passages up to cell cycle arrest and the serum starvation causes the same effect. With the decrease of Nox4 activity, obtained with plumbagin, a decline of nuclear ROS production and of DNA damage occurs. Moreover, plumbagin exposure reduces the binding between nNox4 and nucleoskeleton components, as Matrin 3. The same effect was observed also for the binding with phospho-ERK, although nuclear ERK and P-ERK are unchanged. Taken together, we suggest that nNox4 regulation may have important pathophysiologic effects in stem cell proliferation through modulation of nuclear signaling and DNA damage.
Collapse
|
111
|
Intrahepatic microcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats. Int J Mol Med 2013; 33:254-62. [PMID: 24317376 PMCID: PMC3896462 DOI: 10.3892/ijmm.2013.1573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
Although the mechanisms responsible for acute liver failure (ALF) have not yet been fully elucidated, studies have indicated that intrahepatic macrophage activation plays an important role in the pathogenesis of ALF through intrahepatic microcirculatory disorder and consequent parenchymal cell death. Intrahepatic microcirculatory disorder has been demonstrated in animal models using intravital microscopy; however, the limitations of this method include simultaneously evaluating blood flow and the surrounding pathological changes. Therefore, in this study, we devised a novel method involving tetramethylrhodamine isothiocyanate (TRITC)-dextran administration for the pathological assessment of hepatic microcirculation. In addition, we aimed to elucidate the mechanisms through which intrahepatic microcirculatory disorder progresses with relation to activated macrophages. ALF was induced in Wistar rats by exposure to lipopolysaccharide and D-galactosamine. Intrahepatic microcirculation and microcirculatory disorder in zone 3 (pericentral zone) of the livers of rats with ALF was observed. Immunohistochemical examinations in conjunction with TRITC-dextran images revealed that the macrophages were mainly distributed in zone 2 (intermediate zone), while cleaved caspase-3-positive hepatocytes, pimonidazole and hypoxia-inducible factor 1-α were abundant in zone 3. We also found that 4-hydroxy-2-nonenal and nicotinamide adenine dinucleotide phosphate oxidase (NOX)4-positive cells were predominantly located in the zone 3 parenchyma. The majority of apoptotic hepatocytes in zone 3 were co-localized with NOX4. Our results revealed that the apoptotic cells in zone 3 were a result of hypoxic conditions induced by intrahepatic microcirculatory disorder, and were not induced by activated macrophages. The increased levels of oxidative stress in zone 3 may contribute to the progression of hepatocyte apoptosis.
Collapse
|
112
|
Arciello M, Gori M, Balsano C. Mitochondrial dysfunctions and altered metals homeostasis: new weapons to counteract HCV-related oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:971024. [PMID: 24371505 PMCID: PMC3859171 DOI: 10.1155/2013/971024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the "power plants" of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.
Collapse
Affiliation(s)
- Mario Arciello
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Via del Policlinico 155, 00161 Rome, Italy
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Manuele Gori
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Clara Balsano
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM); CNR, Piazzale Aldo Moro 7, 00185 Rome, Italy
| |
Collapse
|
113
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
114
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
115
|
Zakhari S. Bermuda Triangle for the liver: alcohol, obesity, and viral hepatitis. J Gastroenterol Hepatol 2013; 28 Suppl 1:18-25. [PMID: 23855291 DOI: 10.1111/jgh.12207] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
Despite major progress in understanding and managing liver disease in the past 30 years, it is now among the top 10 most common causes of death globally. Several risk factors, such as genetics, diabetes, obesity, excessive alcohol consumption, viral infection, gender, immune dysfunction, and medications, acting individually or in concert, are known to precipitate liver damage. Viral hepatitis, excessive alcohol consumption, and obesity are the major factors causing liver injury. Estimated numbers of hepatitis B virus (HBV) and hepatitis C virus (HCV)-infected subjects worldwide are staggering (370 and 175 million, respectively), and of the 40 million known human immunodeficiency virus positive subjects, 4 and 5 million are coinfected with HBV and HCV, respectively. Alcohol and HCV are the leading causes of end-stage liver disease worldwide and the most common indication for liver transplantation in the United States and Europe. In addition, the global obesity epidemic that affects up to 40 million Americans, and 396 million worldwide, is accompanied by an alarming incidence of end-stage liver disease, a condition exacerbated by alcohol. This article focuses on the interactions between alcohol, viral hepatitis, and obesity (euphemistically described here as the Bermuda Triangle of liver disease), and discusses common mechanisms and synergy.
Collapse
Affiliation(s)
- Samir Zakhari
- Division of Metabolism and Health Effects, NIAAA, NIH, Bethesda, MD, USA.
| |
Collapse
|
116
|
Wang T, Weinman SA. Interactions Between Hepatitis C Virus and Mitochondria: Impact on Pathogenesis and Innate Immunity. CURRENT PATHOBIOLOGY REPORTS 2013; 1:179-187. [PMID: 23956955 DOI: 10.1007/s40139-013-0024-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) causes a persistent chronic infection of hepatocytes resulting in progressive fibrosis and carcinogenesis. Abnormalities in mitochondria are prominent features of clinical disease where ultrastructural changes, alterations in electron transport, and excess reactive oxygen species (ROS) production occur. These mitochondrial abnormalities correlate with disease severity and resolve with viral eradication. Multiple viral proteins, particularly core and NS3/4a bind to mitochondria. The core and NS5a proteins primarily cause ER stress, ER Ca2+ release and enhance direct transfer of Ca2+ from ER to mitochondria. This results in electron transport changes, increased ROS production and sensitivity to mitochondrial permeability transition and cell death. The viral protease, NS3/4a, binds to mitochondria as well where it cleaves an important signaling adapter, MAVS, thus preventing viral clearance by endogenous interferon production. This review discusses the mechanisms by which HCV causes mitochondrial changes and consequences of these for disease.
Collapse
Affiliation(s)
- Ting Wang
- Liver Center and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | | |
Collapse
|
117
|
Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol 2013; 33:3439-60. [PMID: 23816887 DOI: 10.1128/mcb.00217-13] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesangial matrix accumulation is an early feature of glomerular pathology in diabetes. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. Here, we demonstrate that, in glomerular mesangial cells (MCs), endothelial nitric oxide synthase (eNOS) is uncoupled upon exposure to high glucose (HG), with enhanced generation of reactive oxygen species (ROS) and decreased production of nitric oxide. Peroxynitrite mediates the effects of HG on eNOS dysfunction. HG upregulates Nox4 protein, and inhibition of Nox4 abrogates the increase in ROS and peroxynitrite generation, as well as the eNOS uncoupling triggered by HG, demonstrating that Nox4 functions upstream from eNOS. Importantly, this pathway contributes to HG-induced MC fibronectin accumulation. Nox4-mediated eNOS dysfunction was confirmed in glomeruli of a rat model of type 1 diabetes. Sestrin 2-dependent AMP-activated protein kinase (AMPK) activation attenuates HG-induced MC fibronectin synthesis through blockade of Nox4-dependent ROS and peroxynitrite generation, with subsequent eNOS uncoupling. We also find that HG negatively regulates sestrin 2 and AMPK, thereby promoting Nox4-mediated eNOS dysfunction and increased fibronectin. These data identify a protective function for sestrin 2/AMPK and potential targets for intervention to prevent fibrotic injury in diabetes.
Collapse
|
118
|
Tariq M, Manzoor S, Ahmed QL, Khalid M, Ashraf W. NOX4 induces oxidative stress and apoptosis through upregulation of caspases 3 and 9 and downregulation of TIGAR in HCV-infected Huh-7 cells. Future Virol 2013. [DOI: 10.2217/fvl.13.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aim: The present study was designed to determine the potential role of oxidative stress in the induction of apoptosis in a transient in vitro model of HCV-infected Huh-7 cells. Material & methods: A transient in vitro infectivity model of a Huh-7 cell line was established using serum from HCV genotype 3a patients. Quantitative expression of selected genes was measured using real-time PCR. Results: A test of the apoptotic responses of cells under stressful conditions showed a significant increase in selected oxidative stress and apoptotic markers, along with a significant decrease in expression of antioxidants following inoculation in a time-dependent manner. A significant decrease in TIGAR and a significant increase in p53 expression levels at day 6 suggested the possible role of p53 and TIGAR in the induction of apoptosis and oxidative stimuli in experimental Huh-7/HCV cell lines. Conclusion: Collectively, the findings of the current study suggest a role for p53 and TIGAR in HCV-induced apoptosis in the presence of oxidative stress in a Huh-7 cell line.
Collapse
Affiliation(s)
- Muqddas Tariq
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Qazi Laeeque Ahmed
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Madiha Khalid
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Waseem Ashraf
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
119
|
Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 2013; 5:954-80. [PMID: 23518579 PMCID: PMC3705306 DOI: 10.3390/v5030954] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that lead in the long term to hepatocellular carcinoma. Many lines of evidence suggest that mitochondrial dysfunctions, including modification of metabolic fluxes, generation and elimination of oxidative stress, Ca2+ signaling and apoptosis, play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory, probably due to the use of artificial expression and replication systems. In vivo studies are hampered by the fact that innate and adaptive immune responses will overlay mitochondrial dysfunctions induced directly in the hepatocyte by HCV. Thus, the molecular aspects underlying HCV-induced mitochondrial dysfunctions and their roles in viral replication and the associated pathology need yet to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems.
Collapse
|
120
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
121
|
Anilkumar N, San Jose G, Sawyer I, Santos CXC, Sand C, Brewer AC, Warren D, Shah AM. A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells. Arterioscler Thromb Vasc Biol 2013; 33:e104-12. [PMID: 23393389 DOI: 10.1161/atvbaha.112.300956] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase proteins (Noxs) are involved in cell differentiation, migration, and apoptosis. Nox4 is unique among Noxs in being constitutively active, and its subcellular localization may therefore be particularly important. In this study, we identified and characterized a novel nuclear-localized 28-kDa splice variant of Nox4 in vascular cells. APPROACH AND RESULTS Nox4 immunoreactivity was noted in the nucleus and nucleolus of vascular smooth muscle cells and multiple other cell types by confocal microscopy. Cell fractionation, sequence analyses, and siRNA studies indicated that the nuclear-localized Nox4 is a 28-kDa splice variant, Nox4D, which lacks putative transmembrane domains. Nox4D overexpression resulted in significant NADPH-dependent reactive oxygen species production as detected by several different methods and caused increased phosphorylation of extracellular-signal-regulated kinase1/2 and the nuclear transcription factor Elk-1. Overexpression of Nox4D could also induce DNA damage as assessed by γ-H2AX phosphorylation. These effects were inhibited by a single amino acid substitution in the Nox4D NADPH-binding region. CONCLUSIONS Nox4D is a nuclear-localized and functionally active splice variant of Nox4 that may have important pathophysiologic effects through modulation of nuclear signaling and DNA damage.
Collapse
Affiliation(s)
- Narayana Anilkumar
- King's College London British Heart Foundation Center of Excellence, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses 2013; 5:439-469. [PMID: 23358390 PMCID: PMC3640510 DOI: 10.3390/v5020439] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/26/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the etiological agent accounting for chronic liver disease in approximately 2-3% of the population worldwide. HCV infection often leads to liver fibrosis and cirrhosis, various metabolic alterations including steatosis, insulin and interferon resistance or iron overload, and development of hepatocellular carcinoma or non-Hodgkin lymphoma. Multiple molecular mechanisms that trigger the emergence and development of each of these pathogenic processes have been identified so far. One of these involves marked induction of a reactive oxygen species (ROS) in infected cells leading to oxidative stress. To date, markers of oxidative stress were observed both in chronic hepatitis C patients and in various in vitro systems, including replicons or stable cell lines expressing viral proteins. The search for ROS sources in HCV-infected cells revealed several mechanisms of ROS production and thus a number of cellular proteins have become targets for future studies. Furthermore, during last several years it has been shown that HCV modifies antioxidant defense mechanisms. The aim of this review is to summarize the present state of art in the field and to try to predict directions for future studies.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, Université de Lyon, 151, Cours A Thomas 69424 Lyon Cedex France; E-Mail:
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Maria G. Isaguliants
- Department of Molecular Biology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16 17177 Stockholm, Sweden; E-Mail:
- D.I. Ivanovsky Institute of Virology, Gamaleya Str. 16, 123098 Moscow, Russia; E-Mail:
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| |
Collapse
|
123
|
|
124
|
Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012; 14:434-56. [PMID: 23263672 PMCID: PMC3565273 DOI: 10.3390/ijms14010434] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/01/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
Collapse
Affiliation(s)
- Bidur Bhandary
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Anu Marahatta
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| |
Collapse
|
125
|
Abstract
Hepatitis C virus (HCV) easily establishes chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). During the progression of HCV infections, reactive oxygen species (ROS) are generated, and these ROS then induce significant DNA damage. The role of ROS in the pathogenesis of HCV infection is still not fully understood. Recently, we found that HCV induced the expression of 3β-hydroxysterol Δ24-reductase (DHCR24). We also found that a HCV responsive region is present in the 5′-flanking genomic promoter region of DHCR24 and the HCV responsive region was characterized as (−167/−140). Moreover, the transcription factor Sp1 was found to bind to this region in response to oxidative stress under the regulation of ataxia telangiectasia mutated (ATM) kinase. Overexpression of DHCR24 impaired p53 activity by suppression of acetylation and increased interaction with MDM2. This impairment of p53 suppressed the hydrogen peroxide-induced apoptotic response in hepatocytes. Thus, a target of oxidative stress in HCV infection is DHCR24 through Sp1, which suppresses apoptotic responses and increases tumorigenicity.
Collapse
|
126
|
Weyemi U, Dupuy C. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:77-81. [DOI: 10.1016/j.mrrev.2012.04.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 02/04/2023]
|
127
|
Williams V, Brichler S, Khan E, Chami M, Dény P, Kremsdorf D, Gordien E. Large hepatitis delta antigen activates STAT-3 and NF-κB via oxidative stress. J Viral Hepat 2012; 19:744-53. [PMID: 22967106 DOI: 10.1111/j.1365-2893.2012.01597.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis delta virus (HDV) coinfection or superinfection in hepatitis B virus (HBV)-infected patients results in a more aggressive liver disease, with more often fulminant forms and more rapid progression to cirrhosis and hepatocellular carcinoma. The mechanism(s) for this pejorative evolution remains unclear. To explore a specific HDV pathogenesis, we used a model of transient transfection of plasmids expressing the small (sHDAg or p24) or the large (LHDAg or p27) delta antigen in hepatocyte cell lines. We found that the production of reactive oxygen species was significantly higher in cells expressing p27. Consequently, p27 activated the signal transducer and activator of transcription-3 (STAT-3) and the nuclear factor kappa B (NF-κB) via the oxidative stress pathway. Moreover in the presence of antioxidants (PDTC, NAC) or calcium inhibitors (TMB-8, BAPTA-AM, Ruthenium Red), p27-induced activation of STAT-3 and NF-κB was dramatically reduced. Similarly, using a mutated form of p27, where the cysteine 211-isoprenylation residue was replaced by a serine, a significant reduction of STAT-3 and NF-κB activation was seen, suggesting the involvement of isoprenylation in this process. Additionally, we show that p27 is able to induce oxidative stress through activation of NADPH oxidase-4. These results provide insight into the mechanisms by which p27 can alter intracellular events relevant to HDV-related liver pathogenesis.
Collapse
Affiliation(s)
- V Williams
- Service de bactériologie, virologie - hygiène, hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, Laboratoire associé au Centre National de Référence des Hépatites B, C et Delta, Université Paris Nord, Paris
| | | | | | | | | | | | | |
Collapse
|
128
|
Sancho P, Mainez J, Crosas-Molist E, Roncero C, Fernández-Rodriguez CM, Pinedo F, Huber H, Eferl R, Mikulits W, Fabregat I. NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 2012; 7:e45285. [PMID: 23049784 PMCID: PMC3458844 DOI: 10.1371/journal.pone.0045285] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023] Open
Abstract
A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2(-/-)/p19(ARF-/-), Stat3(Δhc)/Mdr2(-/-)) and a model of experimental induced fibrosis (CCl(4)) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes.
Collapse
Affiliation(s)
- Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Jèssica Mainez
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Eva Crosas-Molist
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - César Roncero
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Conrado M. Fernández-Rodriguez
- Service of Gastroenterology, Hospital Universitario Fundación Alcorcón and Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Fernando Pinedo
- Unit of Pathology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Heidemarie Huber
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Robert Eferl
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Isabel Fabregat
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
- Department of Physiological Sciences II, University of Barcelona, Barcelona, Spain
| |
Collapse
|
129
|
Jiang JX, Chen X, Serizawa N, Szyndralewiez C, Page P, Schröder K, Brandes RP, Devaraj S, Török NJ. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 2012; 53:289-96. [PMID: 22618020 PMCID: PMC3392471 DOI: 10.1016/j.freeradbiomed.2012.05.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play a key role in chronic liver injury and fibrosis. Homologs of NADPH oxidases (NOXs) are major sources of ROS, but the exact role of the individual homologs in liver disease is unknown. Our goal was to determine the role of NOX4 in liver fibrosis induced by bile duct ligation (BDL) with the aid of the pharmacological inhibitor GKT137831, and genetic deletion of NOX4 in mice. GKT137831 was either applied for the full term of BDL (preventive arm) or started at 10 day postoperatively (therapeutic arm). Primary hepatic stellate cells (HSC) from control mice with and without BDL were analyzed and the effect of NOX4 inhibition on HSC activation was also studied. FasL or TNFα/actinomycin D-induced apoptosis was studied in wild-type and NOX4(-/-) hepatocytes. NOX4 was upregulated by a TGF-β/Smad3-dependent mechanism in HSC. Downregulation of NOX4 decreased ROS production and the activation of NOX4(-/-) HSC was attenuated. NOX4(-/-) hepatocytes were more resistant to FasL or TNFα/actinomycin D-induced apoptosis. Similarly, after pharmacological NOX4 inhibition, ROS production, the expression of fibrogenic markers, and hepatocyte apoptosis were reduced. NOX4 was expressed in human livers with stage 2-3 autoimmune hepatitis. Fibrosis was attenuated by the genetic deletion of NOX4. BDL mice gavaged with GKT137831 in the preventive or the therapeutic arm displayed less ROS production, significantly attenuated fibrosis, and decreased hepatocyte apoptosis. In conclusion, NOX4 plays a key role in liver fibrosis. GKT137831 is a potent inhibitor of fibrosis and hepatocyte apoptosis; therefore, it is a promising therapeutic agent for future translational studies.
Collapse
Affiliation(s)
- Joy X Jiang
- Department of Internal Medicine, UC Davis, Sacramento, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Altenhöfer S, Kleikers PWM, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HHHW. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 2012; 69:2327-43. [PMID: 22648375 PMCID: PMC3383958 DOI: 10.1007/s00018-012-1010-9] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Pamela W. M. Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Kim A. Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | | | - J. J. Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Paul Schiffers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Heidi Ho
- National Stroke Research Institute, Melbourne, VIC Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Harald H. H. W. Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
131
|
Nkontchou G, Aout M, Mahmoudi A, Roulot D, Bourcier V, Grando-Lemaire V, Ganne-Carrie N, Trinchet JC, Vicaut E, Beaugrand M. Effect of long-term propranolol treatment on hepatocellular carcinoma incidence in patients with HCV-associated cirrhosis. Cancer Prev Res (Phila) 2012; 5:1007-14. [PMID: 22525582 DOI: 10.1158/1940-6207.capr-11-0450] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Propranolol bears antioxidant, anti-inflammatory, and antiangiogenic properties and antitumoral effects and therefore is potentially active in the prevention of hepatocellular carcinoma (HCC). We retrospectively assessed the impact of propranolol treatment on HCC occurrence in a cohort of 291 patients with compensated viral C (HCV) cirrhosis, prospectively followed and screened for HCC detection. Of the 291 patients included in the cohort, 93 patients [50 males: mean age, 59.5 ± 12 years; body mass index (BMI), 25.7 ± 4.4 kg/m(2); and platelet count, 111 ± 53 Giga/L] developed esophageal varices (OV) or had OV at inclusion and 198 patients (111 males: mean age, 55.8 ± 13 years; BMI, 25.7 ± 5 kg/m(2); platelet count, 137 ± 59 Giga/L) did not. Among patients with OV, 50 received treatment by propranolol. During a median follow-up of 54 months interquartile range (32-82), 61 patients developed an HCC. The 3- and 5-year HCC incidence was 4% and 4%, and 10% and 20% for patients treated and not treated by propranolol, respectively (Gray test, P = 0.03). In multivariate analysis, propranolol treatment was associated with a decrease risk of HCC occurrence [HR, 0.25; 95% confidence interval (CI), 0.09-0.65; P = 0.004], and was the only independent predictive factor of HCC occurrence in patients with OV (HR, 0.16; CI, 0.06-0.45; P = 0.0005). The benefit of propranolol was further supported by propensity scores analyses. CONCLUSION This retrospective long-term observational study suggests that propranolol treatment may decrease HCC occurrence in patients with HCV cirrhosis. These findings need to be verified by prospective clinical trial.
Collapse
Affiliation(s)
- Gisèle Nkontchou
- Service d'Hépatogastroenterologie, Hôpital Jean Verdier, avenue du 14 juillet, Bondy 93143 cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sieprath T, Darwiche R, De Vos WH. Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 2012; 421:635-9. [PMID: 22538370 DOI: 10.1016/j.bbrc.2012.04.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 01/29/2023]
Abstract
The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.
Collapse
Affiliation(s)
- Tom Sieprath
- Cell Systems and Cellular Imaging Group, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
133
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
134
|
Nahon P, Sutton A, Rufat P, Charnaux N, Mansouri A, Moreau R, Ganne-Carrié N, Grando-Lemaire V, N'Kontchou G, Trinchet JC, Pessayre D, Beaugrand M. A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. J Hepatol 2012; 56:426-32. [PMID: 21907168 DOI: 10.1016/j.jhep.2011.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Genetic dimorphisms modulate the activities of several pro- or antioxidant enzymes, including myeloperoxidase (MPO), catalase (CAT), manganese superoxide dismutase (SOD2), and glutathione peroxidase 1 (GPx1). We assessed the role of the G(-463)A-MPO, T(-262)C-CAT, Ala16Val-SOD2, and Pro198Leu-GPx1 variants in modulating HCC development in patients with HCV-induced cirrhosis. METHODS Two hundred and five patients with HCV-induced, biopsy-proven cirrhosis but without detectable HCC at inclusion were prospectively followed-up for HCC development. The influence of various genotypes on HCC occurrence was assessed with the Kaplan-Meier method. RESULTS During follow-up (103.2±3.4 months), 84 patients (41%) developed HCC, and 66 died. Whereas the Ala16Val-SOD2 or Pro198Leu-GPx1 dimorphisms did not modulate the risk, HCC occurrence was increased in patients with either the homozygous GG-MPO genotype (HR=2.8 [1.7-4.4]; first quartile time to HCC occurrence: 45 vs. 96 months; LogRank <0.0001) or the homozygous CC-CAT genotype (HR=1.74 [1.06-2.82]; first quartile time to HCC occurrence: 55 vs. 96 months; LogRank=0.02). Compared to patients with neither of these two at risk factors, patients with only the CC-CAT genotype had a HR of 2.05 [0.9-4.6] (p=0.08) and patients with only the GG-MPO genotype had a HR of 3.8 [1.5-9.1] (p=0.002), while patients with both risk factors had an HR of 4.8 [2.2-10.4] (p<0.0001). However, only the GG-MPO genotype was independently associated with the HCC risk in multivariate Cox analysis. CONCLUSIONS The high activity-associated GG-MPO genotype increases the rate of HCC occurrence in patients with HCV-induced cirrhosis.
Collapse
Affiliation(s)
- Pierre Nahon
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Plasmodium yoelii macrophage migration inhibitory factor is necessary for efficient liver-stage development. Infect Immun 2012; 80:1399-407. [PMID: 22252874 DOI: 10.1128/iai.05861-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue of Plasmodium yoelii throughout the life cycle, with emphasis on preerythrocytic stages. P. yoelii MIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mif knockout parasite (P. yoelii Δmif). P. yoelii Δmif parasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, the P. yoelii Δmif strain was attenuated during the liver stage. Mice infected with P. yoelii Δmif sporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore, P. yoelii Δmif parasites exhibited growth retardation in vivo. Combined, the data indicate that Plasmodium MIF is important for liver-stage development of P. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.
Collapse
|
136
|
Seronello S, Montanez J, Presleigh K, Barlow M, Park SB, Choi J. Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals. PLoS One 2011; 6:e27436. [PMID: 22087316 PMCID: PMC3210796 DOI: 10.1371/journal.pone.0027436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/17/2011] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) exhibits a high level of genetic variability, and variants with reduced susceptibility to antivirals can occur even before treatment begins. In addition, alcohol decreases efficacy of antiviral therapy and increases sequence heterogeneity of HCV RNA but how ethanol affects HCV sequence is unknown. Ethanol metabolism and HCV infection increase the level of reactive species that can alter cell metabolism, modify signaling, and potentially act as mutagen to the viral RNA. Therefore, we investigated whether ethanol and reactive species affected the basal sequence variability of HCV RNA in hepatocytes. Human hepatoma cells supporting a continuous replication of genotype 1b HCV RNA (Con1, AJ242652) were exposed to ethanol, acetaldehyde, hydrogen peroxide, or L-buthionine-S,R-sulfoximine (BSO) that decreases intracellular glutathione as seen in patients. Then, NS5A region was sequenced and compared with genotype 1b HCV sequences in the database. Ethanol and BSO elevated nucleotide and amino acid substitution rates of HCV RNA by 4-18 folds within 48 hrs which were accompanied by oxidative RNA damage. Iron chelator and glutathione ester decreased both RNA damage and mutation rates. Furthermore, infectious HCV and HCV core gene were sufficient to induce oxidative RNA damage even in the absence of ethanol or BSO. Interestingly, the dn/ds ratio and percentage of sites undergoing positive selection increased with ethanol and BSO, resulting in an increased detection of NS5A variants with reduced susceptibility to interferon alpha, cyclosporine, and ribavirin and others implicated in immune tolerance and modulation of viral replication. Therefore, alcohol is likely to synergize with virus-induced oxidative/nitrosative stress to modulate the basal mutation rate of HCV. Positive selection induced by alcohol and reactive species may contribute to antiviral resistance.
Collapse
Affiliation(s)
- Scott Seronello
- School of Natural Sciences, University of California Merced, Merced, California, United States
| | - Jessica Montanez
- School of Natural Sciences, University of California Merced, Merced, California, United States
| | - Kristen Presleigh
- School of Natural Sciences, University of California Merced, Merced, California, United States
| | - Miriam Barlow
- School of Natural Sciences, University of California Merced, Merced, California, United States
| | - Seung Bum Park
- School of Natural Sciences, University of California Merced, Merced, California, United States
| | - Jinah Choi
- School of Natural Sciences, University of California Merced, Merced, California, United States
| |
Collapse
|
137
|
Singal AK, Jampana SC, Weinman SA. Antioxidants as therapeutic agents for liver disease. Liver Int 2011; 31:1432-48. [PMID: 22093324 PMCID: PMC3228367 DOI: 10.1111/j.1478-3231.2011.02604.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 06/15/2011] [Indexed: 12/12/2022]
Abstract
Oxidative stress is commonly associated with a number of liver diseases and is thought to play a role in the pathogenesis of chronic hepatitis C, alcoholic liver disease, non-alcoholic steatohepatitis (NASH), haemochromatosis and Wilson's disease. Antioxidant therapy has thus been considered to have the possibility of beneficial effects in the management of these liver diseases. Despite this promise, antioxidants have produced mixed results in a number of clinical trials of efficacy. This review summarizes the results of clinical trials of antioxidants as sole or adjuvant therapy of chronic hepatitis C, alcoholic liver disease and non-alcoholic steatohepatitis (NASH). Overall, the most promising results to date are for vitamin E therapy of NASH but some encouraging results have been obtained with antioxidant therapy of acute alcoholic hepatitis as well. Despite evidence for small reductions of serum alanine aminotransferase, there is as yet no convincing evidence that antioxidant therapy itself is beneficial to patients with chronic hepatitis C. Problems such as small sample size, short follow up duration, inadequate endpoints, failure to demonstrate tissue delivery and antioxidant efficacy, and heterogeneous nature of the 'antioxidant' compounds used have complicated interpretation of results of the clinical studies. These limitations and their implications for future trial design are discussed.
Collapse
Affiliation(s)
- Ashwani K. Singal
- Department of Internal Medicine, University of Texas Medical Branch; Galveston, TX
| | - Sarat C. Jampana
- Department of Internal Medicine, University of Texas Medical Branch; Galveston, TX
| | - Steven A. Weinman
- Department of Internal Medicine; University of Kansas Medical Center; Kansas City, KS
| |
Collapse
|
138
|
Sancho P, Martín-Sanz P, Fabregat I. Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. Free Radic Biol Med 2011; 51:1789-98. [PMID: 21907277 DOI: 10.1016/j.freeradbiomed.2011.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 01/05/2023]
Abstract
The objective of this work was to analyze the possible association between cyclooxygenase-2 (COX-2) and NADPH oxidases (NOX) in liver cells, in response to various proinflammatory and toxic insults. First, we observed that treatment of Chang liver (CHL) cells with various COX-2 inducers increased reactive oxygen species (ROS) production concomitant with GSH depletion, phorbol 12-myristate 13-acetate (PMA) being the most effective treatment. Moreover, early changes in the oxidative status induced by PMA were inhibited by glutathione ethyl ester, which also impeded COX-2 induction. In fact, CHL cells expressed NOX1 and NOX4, although only NOX4 expression was up-regulated in the presence of PMA. Knock-down experiments suggested that PMA initiated a pathway in which NOX1 activation controlled COX-2 expression and activity, which, in turn, induced NOX4 expression by activation of the prostaglandin receptor EP4. In addition, CHL cells overexpressing COX-2 showed higher NOX4 expression and ROS content, which were decreased in the presence of the COX-2 inhibitor DFU. Interestingly, we found that addition of prostaglandin E(2) (PGE(2)) also induced NOX4 expression and ROS production, which might promote cell adhesion. Finally, we determined that NOX4 induction by PGE(2) was dependent on ERK1/2 signaling. Taken together, these results indicate that NOX proteins and COX-2 are reciprocally regulated in liver cells.
Collapse
Affiliation(s)
- Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | |
Collapse
|
139
|
Chang CW, Su YC, Her GM, Ken CF, Hong JR. Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells. PLoS One 2011; 6:e25853. [PMID: 21991373 PMCID: PMC3185053 DOI: 10.1371/journal.pone.0025853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022] Open
Abstract
The role of oxidative stress in the pathogenesis of RNA nervous necrosis virus infection is still unknown. Red-spotted grouper nervous necrosis virus (RGNNV) induced free radical species (ROS) production at 12-24 h post-infection (pi; early replication stage) in fish GF-1 cells, and then at middle replication stage (24-48 h pi), this ROS signal may upregulate some expressions of the anti-oxidant enzymes Cu/Zn SOD and catalase, and eventually expression of the transcription factor Nrf2. Furthermore, both antioxidants diphenyliodonium and N-acetylcysteine or overexpression of zebrafish catalase in GF-1 cells also reduced ROS production and protected cells for enhancing host survival rate due to RGNNV infection. Furthermore, localization of ROS production using esterase activity and Mitotracker staining assays found that the ROS generated can affect mitochondrial morphology changes and causes ΔΨ loss, both of which can be reversed by antioxidant treatment. Taken together, our data suggest that RGNNV induced oxidative stress response for playing dual role that can initiate the host oxidative stress defense system to upregulate expression of antioxidant enzymes and induces cell death via disrupting the mitochondrial morphology and inducing ΔΨ loss, which can be reversed by anti-oxidants and zfcatalase, which provide new insight into betanodavirus-induced ROS-mediated pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Guor-Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Chuian-Fu Ken
- The Department of Biotechnology, National Changhua University of Education, Changhua, Taiwan, Republic of China
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
140
|
Ivanov AV, Smirnova OA, Ivanova ON, Masalova OV, Kochetkov SN, Isaguliants MG. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS One 2011; 6:e24957. [PMID: 21931870 PMCID: PMC3172309 DOI: 10.1371/journal.pone.0024957] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.
Collapse
Affiliation(s)
- Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
141
|
Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. Proteomics Clin Appl 2011; 4:782-93. [PMID: 21137022 DOI: 10.1002/prca.201000049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural history of chronic hepatitis C virus (HCV) infection presents two major aspects. On one side, the illness is by itself benign, whereas, on the other side, epidemiological evidence clearly identifies chronic HCV infection as the principal cause of cirrhosis, hepatocellular carcinoma, and extrahepatic diseases, such as autoimmune type II mixed cryoglobulinemia and some B cell non-Hodgkin's lymphomas. The mechanisms responsible for the progression of liver disease to severe liver injury are still poorly understood. Nonetheless, considerable biological data and studies from animal models suggest that oxidative stress contributes to steatohepatitis and that the increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development of hepatic and extrahepatic complications of HCV infection. The principal mechanisms causing oxidative stress in HCV-positive subjects have only been partially elucidated and have identified chronic inflammation, iron overload, ER stress, and a direct activity of HCV proteins in increasing mitochondrial ROS production, as key events. This review summarizes current knowledge regarding mechanisms of HCV-induced oxidative stress with its long-term effects in the context of HCV-related diseases, and includes a discussion of recent contributions from proteomics studies.
Collapse
Affiliation(s)
- Maria Paola Simula
- Experimental and Clinical Pharmacology Unit, CRO Centro di Riferimento Oncologico, IRCCS National Cancer Institute, AVIANO (PN), Italy
| | | |
Collapse
|
142
|
Dal Ponte C, Alchera E, Follenzi A, Imarisio C, Prat M, Albano E, Carini R. Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury. Liver Transpl 2011; 17:474-82. [PMID: 21445931 DOI: 10.1002/lt.22256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Postconditioning is a procedure based on the induction of intracellular protective reactions immediately after the onset of reperfusion. Because of the growing need to prevent ischemia/reperfusion (I/R) injury during liver surgery and transplantation, we investigated the possibility of pharmacologically inducing hepatic postconditioning. The effects of the adenosine A2A receptor agonist 2p-(2-carboxyethyl)-phenyl-amino-5'-N-ethylcarboxyamido-adenosine (CGS21680; 5 μmol/L) and the phosphatase and tensin homologue deleted from chromosome 10 (PTEN) inhibitor dipotassium bisperoxo-(5-hydroxypyridine-2-carboxyl)-oxovanadate [bpV(HOpic); 250 nmol/L] were investigated in primary rat hepatocytes during reoxygenation after 24 hours of cold storage and in an in vivo model of rat liver warm I/R. The addition of CGS21680 at reoxygenation significantly reduced hepatocyte death through the activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/Akt signal pathway and through the reduction of the intracellular level of PTEN. PTEN lowering was associated with the increased generation of reactive oxygen species after A2A receptor-mediated stimulation of β-nicotinamide adenine dinucleotide phosphate oxidase (NOX). The inhibition of PI3K or NOX with wortmannin or diphenyleneiodonium chloride, respectively, and the addition of the antioxidant N,N'-diphenyl-p-phenylenediamine reversed the effects of CGS21680. The PTEN inhibitor bpV(HOpic) mimicked the protection provided by CGS21680 against reoxygenation damage. An in vivo rat treatment with CGS21680 or bpV(HOpic) during reperfusion after 1 hour of partial hepatic ischemia also promoted PKB/Akt activation and ameliorated alanine aminotransferase release and histological lesions induced by 2 hours of reperfusion. We conclude that adenosine A2A receptor agonists and PTEN inhibitors are possibly useful agents for the pharmacological induction of postconditioning in the liver.
Collapse
Affiliation(s)
- Caterina Dal Ponte
- Department of Medical Sciences, Amedeo Avogadro University of East Piedmont, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
143
|
Reactive oxygen species and NADPH oxidase 4 induced by transforming growth factor β1 are the therapeutic targets of polyenylphosphatidylcholine in the suppression of human hepatic stellate cell activation. Inflamm Res 2011; 60:597-604. [PMID: 21318733 DOI: 10.1007/s00011-011-0309-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/06/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE AND DESIGN To clarify the molecular mechanism of polyenylphosphatidylcholine (PPC), we examined the involvement of reactive oxygen species (ROS) and NADPH oxidase 4 (Nox4) in human hepatic stellate cells (HSCs). MATERIAL Using human LX-2 HSC cells, we examined the effects of PPC on expression of α-smooth muscle actin (α-SMA) and collagen 1, generation of ROS, Nox4 expression, p38 activation and cell proliferation, induced by transforming growth factor β1 (TGFβ1). RESULTS PPC suppressed ROS which are induced by TGFβ1, phosphorylation of p38MAPK, and expression levels of α-SMA and collagen 1 in a dose-dependent manner. Higher concentrations of PPC also suppressed Nox4 levels. CONCLUSION These results suggest that ROS and Nox4 induced by TGFβ1 are the therapeutic targets of PPC in the suppression of human hepatic stellate cell activation.
Collapse
|
144
|
Smirnova OA, Ivanov AV, Ivanova ON, Valuev-Elliston VT, Kochetkov SN. Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus. Mol Biol 2011; 45:110-122. [DOI: 10.1134/s0026893311010122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
145
|
The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells. Biochem Pharmacol 2011; 81:917-24. [PMID: 21276422 DOI: 10.1016/j.bcp.2011.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 12/21/2022]
Abstract
Liver tumor cells show several molecular alterations which favor pro-survival signaling. Among those, we have proposed the NADPH oxidase NOX1 as a prosurvival signal for liver tumor cells. On the one side, we have described that FaO rat hepatoma cells show NOX1-dependent partial resistance to apoptosis induced by Transforming Growth Factor beta (TGF-β). On the other side, we have shown that FaO cells, as well as different human hepatocellular carcinoma (HCC) cell lines, are able to proliferate in the absence of serum through the activation of a NOX1-dependent signaling pathway. The aim of this work was to analyze the effects of NADPH oxidase pharmacological inhibition in liver tumor cells using the inhibitor VAS2870. This compound inhibits dose-dependently autocrine increase of cell number in FaO rat hepatoma cells, and almost completely blocked ROS production and thymidine incorporation when used at 25μM. Such inhibitory effect on autocrine growth is coincident with lower mRNA levels of EGFR (Epidermal Growth Factor Receptor) and its ligand TGF-α (Transforming Growth Factor-alpha), and decreased phosphorylation of the EGFR itself and other downstream targets, such as SRC or AKT. Moreover, NADPH oxidase pharmacological inhibition also effectively attenuates serum-dependent growth and phosphorylation of AKT and ERK. Importantly, these inhibitory effects on either autocrine or serum-dependent cell growth are observed in several human HCC cell lines. Finally, we have observed that VAS2870 is also effective in enhancing apoptosis induced by a physiological stimulus, such as TGF-β. In summary, NADPH oxidase pharmacological inhibition could be considered a promising tool in the treatment of liver cancer.
Collapse
|
146
|
Spencer NY, Yan Z, Boudreau RL, Zhang Y, Luo M, Li Q, Tian X, Shah AM, Davisson RL, Davidson B, Banfi B, Engelhardt JF. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 2011; 286:8977-87. [PMID: 21212270 DOI: 10.1074/jbc.m110.193821] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Redox-regulated signal transduction is coordinated by spatially controlled production of reactive oxygen species within subcellular compartments. The nucleus has long been known to produce superoxide (O(2)(·-)); however, the mechanisms that control this function remain largely unknown. We have characterized molecular features of a nuclear superoxide-producing system in the mouse liver. Using electron paramagnetic resonance, we investigated whether several NADPH oxidases (NOX1, 2, and 4) and known activators of NOX (Rac1, Rac2, p22(phox), and p47(phox)) contribute to nuclear O(2)(·-) production in isolated hepatic nuclei. Our findings demonstrate that NOX4 most significantly contributes to hepatic nuclear O(2)(·-) production that utilizes NADPH as an electron donor. Although NOX4 protein immunolocalized to both nuclear membranes and intranuclear inclusions, fluorescent detection of NADPH-dependent nuclear O(2)(·-) predominantly localized to the perinuclear space. Interestingly, NADP(+) and G6P also induced nuclear O(2)(·-) production, suggesting that intranuclear glucose-6-phosphate dehydrogenase (G6PD) can control NOX4 activity through nuclear NADPH production. Using G6PD mutant mice and G6PD shRNA, we confirmed that reductions in nuclear G6PD enzyme decrease the ability of hepatic nuclei to generate O(2)(·-) in response to NADP(+) and G6P. NOX4 and G6PD protein were also observed in overlapping microdomains within the nucleus. These findings provide new insights on the metabolic pathways for substrate regulation of nuclear O(2)(·-) production by NOX4.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Yang HC, Cheng ML, Ho HY, Chiu DTY. The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 2010; 13:109-20. [PMID: 20971207 DOI: 10.1016/j.micinf.2010.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
Despite their prominent microbicidal roles, NADPH oxidases (NOXs) have been recently found to regulate a wide variety of physiological activities. Through generation of reactive oxygen species (ROS), NOXs actively participate in cellular activities, including NET formation, inflammasome activation and wound sensing. The microbicidal and cytoregulatory roles of NOXs are contrasted in this review.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Kwei-san, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|