101
|
Yuan Z, Ye L, Feng X, Zhou T, Zhou Y, Zhu S, Jia C, Li H, Qiu D, Li K, Liu W, Li Y, Tang H, Wang G, Zhang Q, Yang Y, Chen G, Li H. YAP-Dependent Induction of CD47-Enriched Extracellular Vesicles Inhibits Dendritic Cell Activation and Ameliorates Hepatic Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617345. [PMID: 34239692 PMCID: PMC8241504 DOI: 10.1155/2021/6617345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is the most common cause of liver damage leading to surgical failures in hepatectomy and liver transplantation. Extensive inflammatory reactions and oxidative responses are reported to be the major processes exacerbating IRI. The involvement of Yes-associated protein (YAP) in either process has been suggested, but the role and mechanism of YAP in IRI remain unclear. In this study, we constructed hepatocyte-specific YAP knockout (YAP-HKO) mice and induced a hepatic IRI model. Surprisingly, the amount of serum EVs decreased in YAP-HKO compared to WT mice during hepatic IRI. Then, we found that the activation of YAP increased EV secretion through F-actin by increasing membrane formation, while inhibiting the fusion of multivesicular body (MVB) and lysosomes in hepatocytes. Further, to explore the essential elements of YAP-induced EVs, we applied mass spectrometry and noticed CD47 was among the top targets highly expressed on hepatocyte-derived EVs. Thus, we enriched CD47+ EVs by microbeads and applied the isolated CD47+ EVs on IRI mice. We found ameliorated IRI symptoms after CD47+ EV treatment in these mice, and CD47+ EVs bound to CD172α on the surface of dendritic cells (DCs), which inhibited DC activation and the cascade of inflammatory responses. Our data showed that CD47-enriched EVs were released in a YAP-dependent manner by hepatocytes, which could inhibit DC activation and contribute to the amelioration of hepatic IRI. CD47+ EVs could be a potential strategy for treating hepatic IRI.
Collapse
Affiliation(s)
- Zenan Yuan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of General Surgery, Guangdong No.2 Provincial People's Hospital, Guangdong Province, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Dongbo Qiu
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Hui Tang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guoying Wang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
102
|
Salloum S, Jeyarajan AJ, Kruger AJ, Holmes JA, Shao T, Sojoodi M, Kim MH, Zhuo Z, Shroff SG, Kassa A, Corey KE, Khan SK, Lin W, Alatrakchi N, Schaefer EAK, Chung RT. Fatty Acids Activate the Transcriptional Coactivator YAP1 to Promote Liver Fibrosis via p38 Mitogen-Activated Protein Kinase. Cell Mol Gastroenterol Hepatol 2021; 12:1297-1310. [PMID: 34118488 PMCID: PMC8463869 DOI: 10.1016/j.jcmgh.2021.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Patients with simple steatosis (SS) and nonalcoholic steatohepatitis can develop progressive liver fibrosis, which is associated with liver-related mortality. The mechanisms contributing to liver fibrosis development in SS, however, are poorly understood. SS is characterized by hepatocellular free fatty acid (FFA) accumulation without lobular inflammation seen in nonalcoholic steatohepatitis. Because the Hippo signaling transcriptional coactivator YAP1 (YAP) has previously been linked with nonalcoholic fatty liver disease (NAFLD)-related fibrosis, we sought to explore how hepatocyte FFAs activate a YAP-mediated profibrogenic program. METHODS We analyzed RNA sequencing data from a GEO DataSet (accession: GSE162694) consisting of 143 patients with NAFLD. We also performed immunohistochemical, immunofluorescence, immunoblot, and quantitative reverse-transcription polymerase chain reaction analyses (qRT-PCR) in liver specimens from NAFLD subjects, from a murine dietary NAFLD model, and in FFA-treated hepatic spheroids and hepatocytes. RESULTS YAP-target gene expression correlated with increasing fibrosis stage in NAFLD patients and was associated with fibrosis in mice fed a NAFLD-inducing diet. Hepatocyte-specific YAP deletion in the murine NAFLD model attenuated diet-induced fibrosis, suggesting a causative role of YAP in NAFLD-related fibrosis. Likewise, in hepatic spheroids composed of Huh7 hepatoma cells and primary human hepatic stellate cells, Huh7 YAP silencing reduced FFA-induced fibrogenic gene expression. Notably, inhibition of p38 mitogen-activated protein kinase could block YAP activation in FFA-treated Huh7 cells. CONCLUSIONS These studies provide further evidence for the pathological role of YAP in NAFLD-associated fibrosis and that YAP activation in NAFLD may be driven by FFA-induced p38 MAPK activation.
Collapse
Affiliation(s)
- Shadi Salloum
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Annie J Kruger
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Jacinta A Holmes
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Tuo Shao
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts; Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Myung-Ho Kim
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Zhu Zhuo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stuti G Shroff
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Kassa
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen E Corey
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Sanjoy K Khan
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Wenyu Lin
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Nadia Alatrakchi
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Raymond T Chung
- Liver Center, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
103
|
Verboven E, Moya IM, Sansores-Garcia L, Xie J, Hillen H, Kowalczyk W, Vella G, Verhulst S, Castaldo SA, Algueró-Nadal A, Romanelli L, Mercader-Celma C, Souza NA, Soheily S, Van Huffel L, Van Brussel T, Lambrechts D, Roskams T, Lemaigre FP, Bergers G, van Grunsven LA, Halder G. Regeneration Defects in Yap and Taz Mutant Mouse Livers Are Caused by Bile Duct Disruption and Cholestasis. Gastroenterology 2021; 160:847-862. [PMID: 33127392 DOI: 10.1053/j.gastro.2020.10.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The Hippo pathway and its downstream effectors YAP and TAZ (YAP/TAZ) are heralded as important regulators of organ growth and regeneration. However, different studies provided contradictory conclusions about their role during regeneration of different organs, ranging from promoting proliferation to inhibiting it. Here we resolve the function of YAP/TAZ during regeneration of the liver, where Hippo's role in growth control has been studied most intensely. METHODS We evaluated liver regeneration after carbon tetrachloride toxic liver injury in mice with conditional deletion of Yap/Taz in hepatocytes and/or biliary epithelial cells, and measured the behavior of different cell types during regeneration by histology, RNA sequencing, and flow cytometry. RESULTS We found that YAP/TAZ were activated in hepatocytes in response to carbon tetrachloride toxic injury. However, their targeted deletion in adult hepatocytes did not noticeably impair liver regeneration. In contrast, Yap/Taz deletion in adult bile ducts caused severe defects and delay in liver regeneration. Mechanistically, we showed that Yap/Taz mutant bile ducts degenerated, causing cholestasis, which stalled the recruitment of phagocytic macrophages and the removal of cellular corpses from injury sites. Elevated bile acids activated pregnane X receptor, which was sufficient to recapitulate the phenotype observed in mutant mice. CONCLUSIONS Our data show that YAP/TAZ are practically dispensable in hepatocytes for liver development and regeneration. Rather, YAP/TAZ play an indirect role in liver regeneration by preserving bile duct integrity and securing immune cell recruitment and function.
Collapse
Affiliation(s)
- Elisabeth Verboven
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Iván M Moya
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium; Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito, Ecuador
| | - Leticia Sansores-Garcia
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jun Xie
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hanne Hillen
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Weronika Kowalczyk
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gerlanda Vella
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Stéphanie A Castaldo
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ana Algueró-Nadal
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucia Romanelli
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Cristina Mercader-Celma
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Natália A Souza
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Soheil Soheily
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Leen Van Huffel
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas Van Brussel
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Frédéric P Lemaigre
- Liver and Pancreas Development Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gabrielle Bergers
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Georg Halder
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
104
|
Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021; 18:131-142. [PMID: 33051603 PMCID: PMC7854502 DOI: 10.1038/s41575-020-00365-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
With the rapid expansion of the obesity epidemic, nonalcoholic fatty liver disease is now the most common chronic liver disease, with almost 25% global prevalence. Nonalcoholic fatty liver disease ranges in severity from simple steatosis, a benign 'pre-disease' state, to the liver injury and inflammation that characterize nonalcoholic steatohepatitis (NASH), which in turn predisposes individuals to liver fibrosis. Fibrosis is the major determinant of clinical outcomes in patients with NASH and is associated with increased risks of cirrhosis and hepatocellular carcinoma. NASH has no approved therapies, and liver fibrosis shows poor response to existing pharmacotherapy, in part due to an incomplete understanding of the underlying pathophysiology. Patient and mouse data have shown that NASH is associated with the activation of developmental pathways: Notch, Hedgehog and Hippo-YAP-TAZ. Although these evolutionarily conserved fundamental signals are known to determine liver morphogenesis during development, new data have shown a coordinated and causal role for these pathways in the liver injury response, which becomes maladaptive during obesity-associated chronic liver disease. In this Review, we discuss the aetiology of this reactivation of developmental pathways and review the cell-autonomous and cell-non-autonomous mechanisms by which developmental pathways influence disease progression. Finally, we discuss the potential prognostic and therapeutic implications of these data for NASH and liver fibrosis.
Collapse
|
105
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
106
|
Li Y, Yan J, Wang M, Lv J, Yan F, Chen J. Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation by regulation of β-catenin and YAP pathways. J Mol Histol 2021; 52:197-205. [PMID: 33387144 PMCID: PMC8012310 DOI: 10.1007/s10735-020-09936-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Evidence has been shown that indoxyl sulfate (IS) could impair kidney and cardiac functions. Moreover, macrophage polarization played important roles in chronic kidney disease and cardiovascular disease. IS acts as a nephron-vascular toxin, whereas its effect on macrophage polarization during inflammation is still not fully elucidated. In this study, we aimed to investigate the effect of IS on macrophage polarization during lipopolysaccharide (LPS) challenge. THP-1 monocytes were incubated with phorbol 12-myristate-13-acetate (PMA) to differentiate into macrophages, and then incubated with LPS and IS for 24 h. ELISA was used to detect the levels of TNFα, IL-6, IL-1β in THP-1-derived macrophages. Western blot assay was used to detect the levels of arginase1 and iNOS in THP-1-derived macrophages. Percentages of HLA-DR-positive cells (M1 macrophages) and CD206-positive cells (M2 macrophages) were detected by flow cytometry. IS markedly increased the production of the pro-inflammatory factors TNFα, IL-6, IL-1β in LPS-stimulated THP-1-derived macrophages. In addition, IS induced M1 macrophage polarization in response to LPS, as evidenced by the increased expression of iNOS and the increased proportion of HLA-DR+ macrophages. Moreover, IS downregulated the level of β-catenin, and upregulated the level of YAP in LPS-stimulated macrophages. Activating β-catenin signaling or inhibiting YAP signaling suppressed the IS-induced inflammatory response in LPS-stimulated macrophages by inhibiting M1 polarization. IS induced M1 macrophage polarization in LPS-stimulated macrophages via inhibiting β-catenin and activating YAP signaling. In addition, this study provided evidences that activation of β-catenin or inhibition of YAP could alleviate IS-induced inflammatory response in LPS-stimulated macrophages. This finding may contribute to the understanding of immune dysfunction observed in chronic kidney disease and cardiovascular disease.
Collapse
Affiliation(s)
- Ying Li
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Minjia Wang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jing Lv
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Fei Yan
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jin Chen
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China.
| |
Collapse
|
107
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
108
|
Liu J, Xu L, Zhan X. LncRNA MALAT1 regulates diabetic cardiac fibroblasts through the Hippo-YAP signaling pathway. Biochem Cell Biol 2020; 98:537-547. [PMID: 32069074 DOI: 10.1139/bcb-2019-0434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major diabetes-related microvascular disease. LncRNA MALAT1 is widely expressed in cardiomyocytes responding to hypoxia and high levels of glucose (high glucose). In this study, cardiac fibroblasts (CFs) were transfected with si-MALAT1 and exposed to high glucose. CFs in the high glucose groups were treated with 30 mmol/L glucose, and the control CFs were treated with 5.5 mmol/L glucose. The expression of MALAT1 in the nucleus and cytoplasm of CFs was detected. The biological behavior of CFs, as well as collagen production, activity of the Hippo-YAP pathway, and nuclear localization of YAP were measured. Mouse models of DCM were established to observe the pathological changes to myocardium and determine the levels of collagen I, Bax, and Bcl-2. The interaction between MALAT1 and YAP was analyzed, and CREB expression in the high-glucose treated CFs was detected. MALAT1 was upregulated in high-glucose CFs and located in the nucleus. High-glucose increased collagen production, inflammation, cell proliferation, cell invasiveness, and phosphorylation of MST1 and LATS1, and also promoted nuclear translocation of YAP. These trends in high-glucose treated CFs and the DCM mice were reversed by transfection with si-MALAT1. MALAT1 positively regulated the nuclear translocation of YAP by binding to CREB. CREB levels were increased in the high-glucose CFs, but decreased after silencing MALAT1. These results indicate that si-MALAT1 reduces inflammation and collagen accumulation in high-glucose CFs and DCM mice via the Hippo-YAP pathway and CREB.
Collapse
Affiliation(s)
- Jiangwen Liu
- Endocrine and Metabolic Diseases, Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| | - Liang Xu
- Department of Cardiology, The First Hospital of Harbin, Harbin 150001, Heilongjiang, P.R. China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
109
|
YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathog 2020; 16:e1008766. [PMID: 32857822 PMCID: PMC7454999 DOI: 10.1371/journal.ppat.1008766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogens commonly disrupt the intestinal epithelial barrier; however, how the epithelial immune system senses the loss of intestinal barrier as a danger signal to activate self-defense is unclear. Through an unbiased approach in the model nematode Caenorhabditis elegans, we found that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) were activated when the intestinal barrier was disrupted by infections with the pathogenic bacterium Pseudomonas aeruginosa PA14. Gene Ontology enrichment analysis of the genes containing the TEAD-binding sites revealed that “innate immune response” and “defense response to Gram-negative bacterium” were two top significantly overrepresented terms. Genetic inactivation of yap-1 and egl-44 significantly reduced the survival rate and promoted bacterial accumulation in worms after bacterial infections. Furthermore, we found that disturbance of the E-cadherin-based adherens junction triggered the nuclear translocation and activation of YAP-1/YAP in the gut of worms. Although YAP is a major downstream effector of the Hippo signaling, our study revealed that the activation of YAP-1/YAP was independent of the Hippo pathway during disruption of intestinal barrier. After screening 10 serine/threonine phosphatases, we identified that PP2A phosphatase was involved in the activation of YAP-1/YAP after intestinal barrier loss induced by bacterial infections. Additionally, our study demonstrated that the function of YAP was evolutionarily conserved in mice. Our study highlights how the intestinal epithelium recognizes the loss of the epithelial barrier as a danger signal to deploy defenses against pathogens, uncovering an immune surveillance program in the intestinal epithelium. The intestinal epithelial barrier is an important line of defense against pathogenic bacteria infecting the intestine. Persistent bacterial infections can cause disruption of the intestinal barrier; however, how the epithelia immune system recognizes the loss of intestinal barrier as a danger signal to activate self-defense against pathogens is unclear. Using the nematode Caenorhabditis elegans as a model animal, we show that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) are activated when the intestinal barrier is disrupted by bacterial infections. Gene Ontology enrichment reveals that EGL-44/TEAD orchestrates a complex host response composed of innate immune response and defense response to Gram-negative bacteria. Furthermore, our data demonstrate that YAP-1/YAP and EGL-44/TEAD are required for resistance to infections with pathogenic bacteria when the intestinal barrier is disrupted in worms and mice. Our study reveals a novel strategy for the intestinal epithelium to sense danger through its internal architecture and initiate innate immunity.
Collapse
|
110
|
Alsamman S, Christenson SA, Yu A, Ayad NME, Mooring MS, Segal JM, Hu JKH, Schaub JR, Ho SS, Rao V, Marlow MM, Turner SM, Sedki M, Pantano L, Ghoshal S, Ferreira DDS, Ma HY, Duwaerts CC, Espanol-Suner R, Wei L, Newcomb B, Mileva I, Canals D, Hannun YA, Chung RT, Mattis AN, Fuchs BC, Tager AM, Yimlamai D, Weaver VM, Mullen AC, Sheppard D, Chen JY. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci Transl Med 2020; 12:eaay8798. [PMID: 32817366 PMCID: PMC7976849 DOI: 10.1126/scitranslmed.aay8798] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein β-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Sarah Alsamman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Meghan S Mooring
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joe M Segal
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Jimmy Kuang-Hsien Hu
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Mai Sedki
- Internal Medicine, Kaiser Permanente, San Francisco, CA 94115, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Diego Dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hsiao-Yen Ma
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Regina Espanol-Suner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Newcomb
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Izolda Mileva
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Canals
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aras N Mattis
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan C Mullen
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA.
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
111
|
Zhang Q, Zhou R, Xu P. The Hippo Pathway in Innate Anti-microbial Immunity and Anti-tumor Immunity. Front Immunol 2020; 11:1473. [PMID: 32849504 PMCID: PMC7417304 DOI: 10.3389/fimmu.2020.01473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway responds to diverse environmental cues and plays key roles in cell fate determination, tissue homeostasis, and organ regeneration. Aberrant Hippo signaling, on the other hand, has frequently been implicated in diversified pathologies such as cancer and immune dysfunction. Here, we summarize the recent but rapid progress in understanding the involvement of the Hippo pathway in innate immunity, with a special focus on the intrinsic mechanisms and mutual interactions between Hippo-YAP signaling and the innate immune response and its physiological impacts on anti-microbial immunity and anti-tumor immunity. Moving forward, we believe that systematic investigations under the physiological setting are needed to draw a clearer picture of the actions of Hippo in innate immunity.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
112
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
113
|
Wang X, Cai B, Yang X, Sonubi OO, Zheng Z, Ramakrishnan R, Shi H, Valenti L, Pajvani UB, Sandhu J, Infante RE, Radhakrishnan A, Covey DF, Guan KL, Buck J, Levin LR, Tontonoz P, Schwabe RF, Tabas I. Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metab 2020; 31:969-986.e7. [PMID: 32259482 PMCID: PMC7313619 DOI: 10.1016/j.cmet.2020.03.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-RhoA-mediated pathway that suppresses β-TrCP/proteasome-mediated TAZ degradation. In mice fed with a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic NASH by increasing TAZ, suggesting new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoming Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, PRC
| | - Oluwatoni O Sonubi
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Transfusion Medicine and Hematology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Rodney E Infante
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Douglas F Covey
- Department of Developmental Biology and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
114
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
115
|
Qing J, Liu X, Wu Q, Zhou M, Zhang Y, Mazhar M, Huang X, Wang L, He F. Hippo/YAP Pathway Plays a Critical Role in Effect of GDNF Against Aβ-Induced Inflammation in Microglial Cells. DNA Cell Biol 2020; 39:1064-1071. [PMID: 32255663 DOI: 10.1089/dna.2019.5308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a critical mechanism responsible for the progression of Alzheimer's disease (AD). Recent studies reveal that Hippo/Yes-associated protein (YAP) signaling pathway is highly associated with a series of inflammation-related disorders. Glial cell line-derived neurotrophic factor (GDNF), with its neurotrophic and anti-apoptotic functions for nervous system, has been demonstrated to decrease the expression of proinflammatory mediators. Here we investigated whether Hippo/YAP signaling may affect amyloid-β (Aβ)-induced proinflammatory cytokine production in microglial cells and explored its relationship with the anti-inflammation function of GDNF. The results showed that Aβ induced a decrease in the expression of YAP in microglia cells. YAP agonist XMU-MP-1 or its overexpression in microglial cells caused decreased expression of proinflammatory cytokines, whereas YAP antagonist Verteporfin or knockdown of YAP had the opposite effect. Treatment with GDNF resulted in upregulation of YAP expression and reduced the production of proinflammatory cytokines. Meanwhile YAP knockdown weakened the function of GDNF in microglial cells. In conclusion, Hippo/YAP pathway plays a critical role in effect of GDNF against Aβ-induced inflammatory response in microglia. Targeting GDNF or Hippo/YAP signaling may be promising therapeutic approach for the treatment of AD.
Collapse
Affiliation(s)
- Jie Qing
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoheng Liu
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Quan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengjie Zhou
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoli Huang
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fuqian He
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
116
|
Wang S, Zhou L, Ling L, Meng X, Chu F, Zhang S, Zhou F. The Crosstalk Between Hippo-YAP Pathway and Innate Immunity. Front Immunol 2020; 11:323. [PMID: 32174922 PMCID: PMC7056731 DOI: 10.3389/fimmu.2020.00323] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) triggers expression of antiviral interferons and proinflammatory cytokines, which functions as the frontier of host defense against microbial pathogen invasion. Hippo-YAP pathway regulates cell proliferation, survival, differentiation and is involved in diverse life processes, including tissue homeostasis and tumor suppression. Emerging discoveries elucidated that the components of Hippo-YAP pathway, such as MST1/2, NDR1/2, and YAP/TAZ played crucial regulatory roles in innate immunity. Meanwhile the innate immune signaling also exhibited regulatory effect on Hippo-YAP pathway. As for the importance of these two pathways, it would be interesting to figure out the deeper biological implications of their interplays. This review focuses on the regulation between Hippo-YAP pathway and innate immune signaling. We also propose the possible contribution of these interplays to tumor development.
Collapse
Affiliation(s)
- Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lili Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Ling
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feng Chu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
117
|
Mugahid D, Kalocsay M, Liu X, Gruver JS, Peshkin L, Kirschner MW. YAP regulates cell size and growth dynamics via non-cell autonomous mediators. eLife 2020; 9:53404. [PMID: 31913124 PMCID: PMC6989120 DOI: 10.7554/elife.53404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
The Hippo pathway regulates organ size, regeneration, and cell growth by controlling the stability of the transcription factor, YAP (Yorkie in Drosophila). When there is tissue damage, YAP is activated allowing the restoration of homeostatic tissue size. The exact signals by which YAP is activated are still not fully understood, but its activation is known to affect both cell size and cell number. Here we used cultured cells to examine the coordinated regulation of cell size and number under the control of YAP. Our experiments in isogenic HEK293 cells reveal that YAP can affect cell size and number by independent circuits. Some of these effects are cell autonomous, such as proliferation, while others are mediated by secreted signals. In particular CYR61, a known secreted YAP target, is a non-cell autonomous mediator of cell survival, while another unidentified secreted factor controls cell size.
Collapse
Affiliation(s)
- Douaa Mugahid
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Marian Kalocsay
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | | | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
118
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|