101
|
Abstract
The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
102
|
The pre-B cell receptor checkpoint. FEBS Lett 2010; 584:2572-9. [DOI: 10.1016/j.febslet.2010.04.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
|
103
|
Wilson MK, McWhirter SM, Amin RH, Huang D, Schlissel MS. Abelson virus transformation prevents TRAIL expression by inhibiting FoxO3a and NF-kappaB. Mol Cells 2010; 29:333-41. [PMID: 20213318 PMCID: PMC2862835 DOI: 10.1007/s10059-010-0029-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/13/2022] Open
Abstract
The Abelson Murine Leukemia Virus (A-MuLV) encodes v-Abl, an oncogenic form of the ubiquitous cellular non-receptor tyrosine kinase, c-Abl. A-MuLV specifically transforms murine B cell precursors both in vivo and in vitro. Inhibition of v-Abl by addition of the small molecule inhibitor STI-571 causes these cells to arrest in the G1 phase of the cell cycle prior to undergoing apoptosis. We found that inhibition of v-Abl activity results in upregulation of transcription of the pro-apoptotic TNF-family ligand tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL). Similarly to BCR-Abl-transformed human cells, activation of the transcription factor Foxo3a led to increased TRAIL transcription and induction of a G1 arrest in the absence of v-Abl inhibition, and this effect could be inhibited by the expression of a constitutively active AKT mutant. Multiple pathways act to inhibit FoxO3a activity within Abelson cells. In addition to diminishing transcription factor activity via inhibitory phosphorylation by AKT family members, we found that inhibition of IKKbeta activity results in an increase in the total protein level of FoxO3a. Furthermore overexpression of the p65 subunit of NF-kappaB results in an increase in TRAIL transcription and in apoptosis and deletion of IKKalpha and beta diminishes TRAIL expression and induction. We conclude that in Abelson cells, the inhibition of both NF-kappaB and FoxO3a activity is required for suppression of TRAIL transcription and maintenance of the transformed state.
Collapse
Affiliation(s)
- Mary K Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
104
|
Chemin G, Tinguely A, Sirac C, Lechouane F, Duchez S, Cogné M, Delpy L. Multiple RNA Surveillance Mechanisms Cooperate to Reduce the Amount of Nonfunctional Igκ Transcripts. THE JOURNAL OF IMMUNOLOGY 2010; 184:5009-17. [DOI: 10.4049/jimmunol.0902949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
105
|
Couëdel C, Roman C, Jones A, Vezzoni P, Villa A, Cortes P. Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. J Clin Invest 2010; 120:1337-44. [PMID: 20234091 DOI: 10.1172/jci41305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/20/2010] [Indexed: 01/22/2023] Open
Abstract
Rag2 plays an essential role in the generation of antigen receptors. Mutations that impair Rag2 function can lead to severe combined immunodeficiency (SCID), a condition characterized by complete absence of T and B cells, or Omenn syndrome (OS), a form of SCID characterized by the virtual absence of B cells and the presence of oligoclonal autoreactive T cells. Here, we present a comparative study of a panel of mutations that were identified in the noncanonical plant homeodomain (PHD) of Rag2 in patients with SCID or OS. We show that PHD mutant mouse Rag2 proteins that correspond to those found in these patients greatly impaired endogenous recombination of Ig gene segments in a Rag2-deficient pro-B cell line and that this correlated with decreased protein stability, impaired nuclear localization, and/or loss of the interaction between Rag2 and core histones. Our results demonstrate that point mutations in the PHD of Rag2 compromise the functionality of the entire protein, thus explaining why the phenotype of cells expressing PHD point mutants differs from those expressing core Rag2 protein that lacks the entire C-terminal region and is therefore devoid of the regulation imposed by the PHD. Together, our findings reveal the various deleterious effects of PHD Rag2 mutations and demonstrate the crucial role of this domain in regulating antigen receptor gene assembly. We believe these results reveal new mechanisms of immunodeficiency in SCID and OS.
Collapse
Affiliation(s)
- Chrystelle Couëdel
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
106
|
Cruickshank MN, Ulgiati D. The role of notch signaling in the development of a normal B‐cell repertoire. Immunol Cell Biol 2009; 88:117-24. [DOI: 10.1038/icb.2009.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark N Cruickshank
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Daniela Ulgiati
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
107
|
Beck K, Peak MM, Ota T, Nemazee D, Murre C. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci. ACTA ACUST UNITED AC 2009; 206:2271-84. [PMID: 19752184 PMCID: PMC2757879 DOI: 10.1084/jem.20090756] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The E2A gene products, E12 and E47, are critical regulators of B cell development. However, it remains elusive whether E12 and E47 have overlapping and/or distinct functions during B lymphopoiesis. We have generated mice deficient for either E12 or E47 and examined their roles in B cell maturation. We show that E47 is essential for developmental progression at the prepro–B cell stage, whereas E12 is dispensable for early B cell development, commitment, and maintenance. In contrast, both E12 and E47 play critical roles in pre–B and immature B cells to promote immunoglobulin λ (Igλ) germline transcription as well as Igλ VJ gene rearrangement. Furthermore, we show that E12 as well as E47 is required to promote receptor editing upon exposure to self-antigen. We demonstrate that increasing levels of E12 and E47 act to induce Igλ germline transcription, promote trimethylated lysine 4 on histone 3 (H3) as well as H3 acetylation across the Jλ region, and activate Igλ VJ gene rearrangement. We propose that in the pre–B and immature B cell compartments, gradients of E12 and E47 activities are established to mechanistically regulate the sequential rearrangement of the Ig light chain genes.
Collapse
Affiliation(s)
- Kristina Beck
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
108
|
Perlot T, Alt FW. Cis-regulatory elements and epigenetic changes control genomic rearrangements of the IgH locus. Adv Immunol 2009; 99:1-32. [PMID: 19117530 DOI: 10.1016/s0065-2776(08)00601-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunoglobulin variable region exons are assembled from discontinuous variable (V), diversity (D), and joining (J) segments by the process of V(D)J recombination. V(D)J rearrangements of the immunoglobulin heavy chain (IgH) locus are tightly controlled in a tissue-specific, ordered and allele-specific manner by regulating accessibility of V, D, and J segments to the recombination activating gene proteins which are the specific components of the V(D)J recombinase. In this review we discuss recent advances and established models brought forward to explain the mechanisms underlying accessibility control of V(D)J recombination, including research on germline transcripts, spatial organization, and chromatin modifications of the immunoglobulin heavy chain (IgH) locus. Furthermore, we review the functions of well-described and potential new cis-regulatory elements with regard to processes such as V(D)J recombination, allelic exclusion, and IgH class switch recombination.
Collapse
Affiliation(s)
- Thomas Perlot
- The Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
109
|
Yunk L, Meng W, Cohen PL, Eisenberg RA, Luning Prak ET. Antibodies in a heavy chain knock-in mouse exhibit characteristics of early heavy chain rearrangement. THE JOURNAL OF IMMUNOLOGY 2009; 183:452-61. [PMID: 19542457 DOI: 10.4049/jimmunol.0804060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies in autoantibody transgenic mice have demonstrated receptor editing rearrangements at Ab H and L chain loci. However, the physiologic role of H chain editing (V(H) replacement and rearrangement on the second allele) has been called into question. It is unclear if additional rounds of H chain rearrangement are driven by BCR specificity. In this study, we analyze the manner in which B cells undergo additional H chain rearrangements in an anti-DNA H chain knock-in mouse, B6.56R. We find that rearrangements in 56R(+) B cells tend to involve the D gene locus on both alleles and the most J(H)-proximal V(H) gene segments on the endogenous allele. As a result, some B cells exhibit V(D)J rearrangements on both H chain alleles, yet allelic exclusion is tightly maintained in mature 56R B cells. As B cells mature, a higher proportion expresses the nontransgenic H chain allele. Rearrangements on both H chain alleles exhibit junctional diversity consistent with TdT-mediated N-addition, and TdT RNA is expressed exclusively at the pro-B cell stage in B6.56R. Collectively, these findings favor a single, early window of H chain rearrangement in B6.56R that precedes the expression of a functional BCR. B cells that happen to successfully rearrange another H chain may be favored in the periphery.
Collapse
Affiliation(s)
- Lenka Yunk
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
110
|
Jhunjhunwala S, van Zelm MC, Peak MM, Murre C. Chromatin architecture and the generation of antigen receptor diversity. Cell 2009; 138:435-48. [PMID: 19665968 PMCID: PMC2726833 DOI: 10.1016/j.cell.2009.07.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The adaptive immune system generates a specific response to a vast spectrum of antigens. This remarkable property is achieved by lymphocytes that each express single and unique antigen receptors. During lymphocyte development, antigen receptor coding elements are assembled from widely dispersed gene segments. The assembly of antigen receptors is controlled at multiple levels, including epigenetic marking, nuclear location, and chromatin topology. Here, we review recently uncovered mechanisms that underpin long-range genomic interactions and the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Suchit Jhunjhunwala
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
111
|
Katz F, Ball S, Gibbons B. Acute Lymphoblastic Leukaemia in Infancy: Clinical and Biological Features. Leuk Lymphoma 2009; 2:259-69. [DOI: 10.3109/10428199009106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
112
|
Carpenter AC, Yang-Iott KS, Chao LH, Nuskey B, Whitlow S, Alt FW, Bassing CH. Assembled DJ beta complexes influence TCR beta chain selection and peripheral V beta repertoire. THE JOURNAL OF IMMUNOLOGY 2009; 182:5586-95. [PMID: 19380806 DOI: 10.4049/jimmunol.0803270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCRbeta chain repertoire of peripheral alphabeta T cells is generated through the stepwise assembly and subsequent selection of TCRbeta V region exons during thymocyte development. To evaluate the influence of a two-step recombination process on Vbeta rearrangement and selection, we generated mice with a preassembled Dbeta1Jbeta1.1 complex on the Jbeta1(omega) allele, an endogenous TCRbeta allele that lacks the Dbeta2-Jbeta2 cluster, creating the Jbeta1(DJbeta) allele. As compared with Jbeta1(omega/omega) mice, both Jbeta1(DJbeta/omega) and Jbeta1(DJbeta/DJbeta) mice exhibited grossly normal thymocyte development and TCRbeta allelic exclusion. In addition, Vbeta rearrangements on Jbeta1(DJbeta) and Jbeta1(omega) alleles were similarly regulated by TCRbeta-mediated feedback regulation. However, in-frame VbetaDJbeta rearrangements were present at a higher level on the Jbeta1(DJbeta) alleles of Jbeta1(DJbeta/omega) alphabeta T cell hybridomas, as compared with on the Jbeta1(omega) alleles. This bias was most likely due to both an increased frequency of Vbeta-to-DJbeta rearrangements on Jbeta1(DJbeta) alleles and a preferential selection of cells with in-frame VbetaDJbeta exons assembled on Jbeta1(DJbeta) alleles during the development of Jbeta1(DJbeta/omega) alphabeta T cells. Consistent with the differential selection of in-frame VbetaDJbeta rearrangements on Jbeta1(DJbeta) alleles, the Vbeta repertoire of alphabeta T cells was significantly altered during alphabeta TCR selection in Jbeta1(DJbeta/omega) and Jbeta1(DJbeta/DJbeta) mice, as compared with in Jbeta1(omega/omega) mice. Our data indicate that the diversity of DJbeta complexes assembled during thymocyte development influences TCRbeta chain selection and peripheral Vbeta repertoire.
Collapse
Affiliation(s)
- Andrea C Carpenter
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Eberle AB, Herrmann K, Jäck HM, Mühlemann O. Equal transcription rates of productively and nonproductively rearranged immunoglobulin mu heavy chain alleles in a pro-B cell line. RNA (NEW YORK, N.Y.) 2009; 15:1021-1028. [PMID: 19363217 PMCID: PMC2685528 DOI: 10.1261/rna.1516409] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/24/2009] [Indexed: 05/27/2023]
Abstract
During B cell maturation, immunoglobulin (Ig) genes frequently acquire premature translation-termination codons (PTCs) as a result of the somatic rearrangement of V, D, and J gene segments. However, it is essential for a B lymphocyte to produce only one kind of antibody and therefore to ensure that the heavy and light chain polypeptides are expressed exclusively from the corresponding functional alleles, whereas no protein is made from the nonproductively rearranged alleles. At the post-transcriptional level, a well-studied mRNA quality control mechanism, termed nonsense-mediated mRNA decay (NMD), recognizes and degrades PTC-containing mRNAs in a translation-dependent manner. In addition, transcriptional silencing of PTC-containing Ig-mu and Ig-gamma heavy chain reporter genes was observed in HeLa cells. To investigate the silencing of nonproductively rearranged Ig genes in a more physiological context, we analyzed a monoclonal line of immortalized murine pro-B cells harboring one productively (PTC-) and one nonproductively (PTC+) rearranged Ig-mu heavy chain allele. We show that the steady-state abundance of PTC+ mRNA was approximately 40-fold lower when compared to that of the PTC- mRNA. However, both the PTC+ and PTC- allele seemed to be equally well transcribed since the abundances of PTC+ and PTC- pre-mRNA were very similar and chromatin immunoprecipitations revealed comparable occupancy of RNA polymerase II and acetylated histone H3 on both alleles. Altogether, we found no evidence for transcriptional silencing of the PTC+ allele in this pro-B cell line; hence, the efficient down-regulation of the PTC+ Ig-mu mRNA results entirely from NMD.
Collapse
Affiliation(s)
- Andrea B Eberle
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
114
|
Hewitt SL, Yin B, Ji Y, Chaumeil J, Marszalek K, Tenthorey J, Salvagiotto G, Steinel N, Ramsey LB, Ghysdael J, Farrar MA, Sleckman BP, Schatz DG, Busslinger M, Bassing CH, Skok JA. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nat Immunol 2009; 10:655-64. [PMID: 19448632 PMCID: PMC2693356 DOI: 10.1038/ni.1735] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/10/2009] [Indexed: 01/06/2023]
Abstract
Coordinated recombination of homologous antigen receptor loci is thought to be important for allelic exclusion. Here, we show that homologous Ig alleles pair in a stage-specific manner that mirrors the recombination patterns of these loci. The frequency of homologous Ig pairing was substantially reduced in the absence of the RAG1-RAG2 recombinase and was rescued in Rag1-/- developing B cells with a transgene expressing a RAG1 active site mutant that supports DNA binding but not cleavage. The introduction of DNA breaks on one Ig allele induced ATM-dependent repositioning of the other allele to pericentromeric heterochromatin. ATM activated by the cleaved allele acts in trans on the uncleaved allele to prevent bi-allelic recombination and chromosome breaks or translocations.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Cain D, Kondo M, Chen H, Kelsoe G. Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 2009; 129:266-277. [PMID: 19148216 PMCID: PMC2778726 DOI: 10.1038/jid.2008.286] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our understanding of hematopoiesis and the development of the immune system has fundamentally changed, leading to significant discoveries with important clinical relevance. Hematopoiesis, once described in terms of irreversible and discrete developmental branch points, is now understood to exist as a collection of alternative developmental pathways capable of generating functionally identical progeny. Developmental commitment to a particular blood-cell lineage is gradually acquired and reflects both cell intrinsic and extrinsic signals. Chief among the extrinsic factors are the environmental cues of hematopoietic microenvironments that comprise specific "developmental niches" that support hematopoietic stem and progenitor cells. Most of this new understanding comes from the study of normal, steady-state hematopoiesis, but there is ample reason to expect that special developmental and/or differentiative mechanisms operate in response to inflammation. For example, both stem and progenitor cells are now known to express Toll-like receptors that can influence hematopoietic cell fates in response to microbial products. Likewise, proinflammatory cytokines mobilize hematopoietic stem cells to peripheral tissues. In this Perspective, we review inflammation's effects on central and extramedullary B lymphopoiesis and discuss the potential consequences of peripheral B-cell development in the context of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Derek Cain
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
116
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
117
|
Li F, Eckhardt LA. A role for the IgH intronic enhancer E mu in enforcing allelic exclusion. ACTA ACUST UNITED AC 2008; 206:153-67. [PMID: 19114667 PMCID: PMC2626684 DOI: 10.1084/jem.20081202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intronic enhancer (Eμ) of the immunoglobulin heavy chain (IgH) locus is critical for V region gene assembly. To determine Eμ's subsequent functions, we created an Igh allele with assembled VH gene but with Eμ removed. In mice homozygous for this Eμ-deficient allele, B cell development was normal and indistinguishable from that of mice with the same VH knockin and Eμ intact. In mice heterozygous for the Eμ-deficient allele, however, allelic exclusion was severely compromised. Surprisingly, this was not a result of reduced suppression of V-DJ assembly on the second allele. Rather, the striking breakdown in allelic exclusion took place at the pre-B to immature B cell transition. These findings reveal both an important role for Eμ in influencing the fate of newly arising B cells and a second checkpoint for allelic exclusion.
Collapse
Affiliation(s)
- Fubin Li
- Hunter College and Graduate Center of the City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
118
|
Khor B, Mahowald GK, Khor K, Sleckman BP. Functional overlap in the cis-acting regulation of the V(D)J recombination at the TCRbeta locus. Mol Immunol 2008; 46:321-6. [PMID: 19070901 DOI: 10.1016/j.molimm.2008.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 01/25/2023]
Abstract
The second exon of lymphocyte antigen receptor genes is assembled in developing lymphocytes from component V, J and, in some cases, D gene segments through the process of V(D)J recombination. This process is initiated by an endonuclease comprised of the Rag-1 and Rag-2 proteins, collectively referred to as Rag. Rag binds to recombination signals (RSs) and catalyzes the pair-wise introduction of DNA double strand breaks (DSBs) at recombining gene segments. DNA cleavage by Rag is restricted both by intrinsic features of RSs, as well as the activity of other cis-acting elements, such as promoters and enhancers that regulate the accessibility of gene segments to Rag. In the TCRbeta locus, accessibility of the Dbeta1-Jbeta1 gene segment cluster relies on the function of an enhancer, Ebeta, and a promoter, PDbeta1. Here we demonstrate that deletion of a small genomic region containing five of the six Jbeta1 gene segments, but no known transcriptional regulatory elements, leads to a marked decrease in transcription and rearrangements involving the Dbeta1 and Jbeta1.1 gene segments. Surprisingly, point mutations in the RS of the Jbeta1.1 gene segment not only impact Rag cleavage, but also lead to diminished transcription through the Dbeta1-Jbeta1 gene segment cluster. Our findings demonstrate that cis-acting elements that regulate transcription and accessibility of the TCRbeta locus may functionally overlap with RS sequences, which are known primarily to direct Rag-mediated cleavage.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
119
|
Tan BT, Seo K, Warnke RA, Arber DA. The frequency of immunoglobulin heavy chain gene and T-cell receptor gamma-chain gene rearrangements and Epstein-Barr virus in ALK+ and ALK- anaplastic large cell lymphoma and other peripheral T-cell lymphomas. J Mol Diagn 2008; 10:502-12. [PMID: 18832464 DOI: 10.2353/jmoldx.2008.080054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously identified a relatively high frequency of B-cell proliferations along with simultaneous T-cell receptor gamma-chain gene (TRG) and immunoglobulin heavy chain gene (IGH) rearrangements in a series of angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified. Here, we report on a series of 74 peripheral T-cell lymphoma (PTCL) cases composed entirely of specific PTCL subtypes, including 28 cases of ALK+ anaplastic large-cell lymphoma (ALCL), 35 cases of ALK- ALCL, and 11 cases that represent other specific PTCL subtypes. We performed IGH and TRG gene rearrangement studies and in situ hybridization for Epstein-Barr virus (EBV) to determine the frequency of IGH clonality and to investigate the relationship between EBV, clonality, and associated B-cell proliferations. Using BIOMED-2 PCR assays, we detected TRG clones in 64 of 74 (86%) cases and IGH clones in 6 of 74 (8%) cases, with all IGH-positive cases exhibiting a concurrent TRG clone. Despite the detection of occasional IGH clones, there was no correlation between IGH clonality and EBV, and B-cell proliferations were not identified in any of the cases. These findings suggest that other factors contribute to IGH clonality and demonstrate that, in the absence of an associated B-cell proliferation, IGH clonality occurs infrequently (8%) in specific PTCL subtypes.
Collapse
Affiliation(s)
- Brent T Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | |
Collapse
|
120
|
Curry JD, Schlissel MS. RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination. Nucleic Acids Res 2008; 36:5750-62. [PMID: 18776220 PMCID: PMC2566892 DOI: 10.1093/nar/gkn553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variable (diversity) joining [V(D)J] recombination of immune gene loci proceeds in an ordered manner with D to J portions recombining first and then an upstream V joins that recombinant. We present evidence that the non-core domain of recombination activating gene (RAG) protein 2 is involved in the regulation of recombinatorial order. In mice lacking the non-core domain of RAG2 the ordered rearrangement is disturbed and direct V to D rearrangements are 10- to 1000-times increased in tri-partite immune gene loci. Some forms of inter-chromosomal translocations between TCRβ and TCRδ D gene segments are also increased in the core RAG2 animals as compared with their wild-type (WT) counterparts. In addition, the concise use of proper recombination signal sequences (RSSs) appears to be disturbed in the core RAG2 mice as compared with WT RAG2 animals.
Collapse
Affiliation(s)
- John D Curry
- Division of Immunology, Department of Molecular and Cell Biology, University of California at Berkeley, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
121
|
Martínez-Sánchez P, Montejano L, Sarasquete ME, García-Sanz R, Fernández-Redondo E, Ayala R, Montalbán MA, Martínez R, García Laraña J, Alegre A, Hernández B, Lahuerta JJ, Martínez-López J. Evaluation of minimal residual disease in multiple myeloma patients by fluorescent-polymerase chain reaction: the prognostic impact of achieving molecular response. Br J Haematol 2008; 142:766-74. [DOI: 10.1111/j.1365-2141.2008.07263.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
122
|
Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, Grosveld FG, Knoch TA, Murre C. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008; 133:265-79. [PMID: 18423198 PMCID: PMC2771211 DOI: 10.1016/j.cell.2008.03.024] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 01/04/2008] [Accepted: 03/16/2008] [Indexed: 12/23/2022]
Abstract
The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (V(H)), diversity (D(H)), joining (J(H)) and constant (C(H)) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers that span the entire Igh locus. Comparison of the distance distributions to computer simulations of alternative chromatin arrangements predicted that the Igh locus is organized into compartments containing clusters of loops separated by linkers. Trilateration and triple-point angle measurements indicated the mean relative 3D positions of the V(H), D(H), J(H), and C(H) elements, showed compartmentalization and striking conformational changes involving V(H) and D(H)-J(H) elements during early B cell development. In pro-B cells, the entire repertoire of V(H) regions (2 Mbp) appeared to have merged and juxtaposed to the D(H) elements, mechanistically permitting long-range genomic interactions to occur with relatively high frequency.
Collapse
Affiliation(s)
- Suchit Jhunjhunwala
- Division of Biological Sciences, 0377, University of California, San Diego, La Jolla, CA 92093, USA
| | - Menno C. van Zelm
- Division of Biological Sciences, 0377, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mandy M. Peak
- Division of Biological Sciences, 0377, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steve Cutchin
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Roy Riblet
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Jacques J.M. van Dongen
- Department of Immunology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Departments of Biophysical Genomics, Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Tobias A. Knoch
- Departments of Biophysical Genomics, Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
- Ruperto-Carola University Heidelberg, Kirchhoff Institute for Physics, Department of Biophysical Genomics, Im Neuenheimfer Feld 280, 69120 Heidelberg, Germany
| | - Cornelis Murre
- Division of Biological Sciences, 0377, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
123
|
Hewitt SL, Farmer D, Marszalek K, Cadera E, Liang HE, Xu Y, Schlissel MS, Skok JA. Association between the Igk and Igh immunoglobulin loci mediated by the 3' Igk enhancer induces 'decontraction' of the Igh locus in pre-B cells. Nat Immunol 2008; 9:396-404. [PMID: 18297074 DOI: 10.1038/ni1567] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 01/17/2008] [Indexed: 12/11/2022]
Abstract
Variable-(diversity)-joining (V(D)J) recombination at loci encoding the immunoglobulin heavy chain (Igh) and immunoglobulin light chain (Igk) takes place sequentially during successive stages in B cell development. Using three-dimensional DNA fluorescence in situ hybridization, here we identify a lineage-specific and stage-specific interchromosomal association between these two loci that marks the transition between Igh and Igk recombination. Colocalization occurred between pericentromerically located alleles in pre-B cells and was mediated by the 3' Igk enhancer. Deletion of this regulatory element prevented association of the Igh and Igk loci, inhibited pericentromeric recruitment and locus 'decontraction' of an Igh allele, and resulted in greater distal rearrangement of the gene encoding the variable heavy-chain region. Our data indicate involvement of the Igk locus and its 3' enhancer in directing the Igh locus to a repressive nuclear subcompartment and inducing the Igh locus to decontract.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Butler T, Gribben JG. Biologic prognostic markers and their application in clinical trials and management of chronic lymphocytic leukaemia patients. ACTA ACUST UNITED AC 2008; 2:101-12. [DOI: 10.1517/17530059.2.1.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
125
|
Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, Shi Y. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2008; 21:1179-89. [PMID: 17504937 PMCID: PMC1865490 DOI: 10.1101/gad.1529307] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of the transcription factor Yin Yang 1 (YY1) in development is largely unknown. Here we show that specific ablation of YY1 in mouse B cells caused a defect in somatic rearrangement in the immunoglobulin heavy-chain (IgH) locus and a block in the progenitor-B-to-precursor-B-cell transition, which was partially rescued by a prerearranged IgH transgene. Three-dimensional DNA fluorescence in situ hybridization analysis revealed an important function for YY1 in IgH locus contraction, a process indispensable for distal V(H) to D(H)J(H) recombination. We provide evidence that YY1 binds the intronic Ei mu enhancer within the IgH locus, consistent with a direct role for YY1 in V(H)D(H)J(H) recombination. These findings identified YY1 as a critical regulator of early B-cell development.
Collapse
Affiliation(s)
- Huifei Liu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Schmidt-Supprian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yujiang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elias Hobeika
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Natasha Barteneva
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Flow cytometry core facility, CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Hassan Jumaa
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Roberta Pelanda
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Michael Reth
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Jane Skok
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Klaus Rajewsky
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Corresponding author.E-MAIL ; FAX (617) 432-6687
| |
Collapse
|
126
|
Bates JG, Cado D, Nolla H, Schlissel MS. Chromosomal position of a VH gene segment determines its activation and inactivation as a substrate for V(D)J recombination. ACTA ACUST UNITED AC 2007; 204:3247-56. [PMID: 18056289 PMCID: PMC2150984 DOI: 10.1084/jem.20071787] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Complete IgHC gene rearrangement occurs only in B cells in a stage-specific and ordered manner. We used gene targeting to reposition a distal V(H) gene segment to a region just 5' of the D(H) gene cluster and found its activation to be highly dependent on the chromosomal domain within which it resides. The targeted V(H) gene segment rearranged at a higher frequency than its endogenous counterpart, its rearrangement was no longer ordered, and its ability to be silenced by allelic exclusion was lost. Additionally, the targeted V(H) gene segment lost lineage specificity, as VDJ(H) rearrangement was observed in thymocytes. These data suggest that locus contraction, mimicked by proximal targeting, can override any regulation imposed by DNA sequences immediately surrounding V(H) gene segments.
Collapse
Affiliation(s)
- Jamie Geier Bates
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
127
|
Davila M, Liu F, Cowell LG, Lieberman AE, Heikamp E, Patel A, Kelsoe G. Multiple, conserved cryptic recombination signals in VH gene segments: detection of cleavage products only in pro B cells. ACTA ACUST UNITED AC 2007; 204:3195-208. [PMID: 18056287 PMCID: PMC2150985 DOI: 10.1084/jem.20071224] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Receptor editing is believed to play the major role in purging newly formed B cell compartments of autoreactivity by the induction of secondary V(D)J rearrangements. In the process of immunoglobulin heavy (H) chain editing, these secondary rearrangements are mediated by direct VH-to-JH joining or cryptic recombination signals (cRSs) within VH gene segments. Using a statistical model of RS, we have identified potential cRSs within VH gene segments at conserved sites flanking complementarity-determining regions 1 and 2. These cRSs are active in extrachromosomal recombination assays and cleaved during normal B cell development. Cleavage of multiple VH cRSs was observed in the bone marrow of C57BL/6 and RAG2:GFP and μMT congenic animals, and we determined that cRS cleavage efficiencies are 30–50-fold lower than a physiological RS. cRS signal ends are abundant in pro–B cells, including those recovered from μMT mice, but undetectable in pre– or immature B cells. Thus, VH cRS cleavage regularly occurs before the generation of functional preBCR and BCR. Conservation of cRSs distal from the 3′ end of VH gene segments suggests a function for these cryptic signals other than VH gene replacement.
Collapse
Affiliation(s)
- Marco Davila
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Alt FW. From gene amplification to V(D)J recombination and back: a personal account of my early years in B cell biology. Eur J Immunol 2007; 37 Suppl 1:S138-47. [PMID: 17972338 PMCID: PMC2572819 DOI: 10.1002/eji.200737848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
I have been invited to write a short historical feature in the context of being a co-recipient with Klaus Rajewsky and Fritz Melchers of the 2007 Novartis Prize in Basic Immunology that was given in the general area of the molecular biology of B cells. In this feature, I cover the main points of the short talk that I presented at the Award Ceremony at the International Immunology Congress in Rio de Janeiro, Brazil. This talk focused primarily on the work and people involved early on in generating the models and ideas that have formed the basis for my ongoing efforts in the areas of V(D)J recombination and B cell development.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, The Children's Hospital, The Immune Disease Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
129
|
González D, van der Burg M, García-Sanz R, Fenton JA, Langerak AW, González M, van Dongen JJM, San Miguel JF, Morgan GJ. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 2007; 110:3112-21. [PMID: 17634408 DOI: 10.1182/blood-2007-02-069625] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractThe ability to rearrange the germ-line DNA to generate antibody diversity is an essential prerequisite for the production of a functional repertoire. While this is essential to prevent infections, it also represents the “Achilles heal” of the B-cell lineage, occasionally leading to malignant transformation of these cells by translocation of protooncogenes into the immunoglobulin (Ig) loci. However, in evolutionary terms this is a small price to pay for a functional immune system. The study of the configuration and rearrangements of the Ig gene loci has contributed extensively to our understanding of the natural history of development of myeloma. In addition to this, the analysis of Ig gene rearrangements in B-cell neoplasms provides information about the clonal origin of the disease, prognosis, as well as providing a clinical useful tool for clonality detection and minimal residual disease monitoring. Herein, we review the data currently available on both Ig gene rearrangements and protein patterns seen in myeloma with the aim of illustrating how this knowledge has contributed to our understanding of the pathobiology of myeloma.
Collapse
Affiliation(s)
- David González
- Section of Haemato-Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 2007; 27:561-71. [PMID: 17936034 DOI: 10.1016/j.immuni.2007.09.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 12/24/2022]
Abstract
V(D)J recombination is initiated by the recombination activating gene (RAG) proteins RAG-1 and RAG-2. The ability of antigen-receptor-gene segments to undergo V(D)J recombination is correlated with spatially- and temporally-restricted chromatin modifications. We have found that RAG-2 bound specifically to histone H3 and that this binding was absolutely dependent on dimethylation or trimethylation at lysine 4 (H3K4me2 or H3K4me3). The interaction required a noncanonical plant homeodomain (PHD) that had previously been described within the noncore region of RAG-2. Binding of the RAG-2 PHD finger to chromatin across the IgH D-J(H)-C locus showed a strong correlation with the distribution of trimethylated histone H3 K4. Mutation of a conserved tryptophan residue in the RAG-2 PHD finger abolished binding to H3K4me3 and greatly impaired recombination of extrachromosomal and endogenous immunoglobulin gene segments. Together, these findings are consistent with the interpretation that recognition of hypermethylated histone H3 K4 promotes efficient V(D)J recombination in vivo.
Collapse
Affiliation(s)
- Yun Liu
- Department of Molecular Biology and Genetics, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
131
|
Murre C. Epigenetics of antigen-receptor gene assembly. Curr Opin Genet Dev 2007; 17:415-21. [PMID: 17920858 PMCID: PMC2151926 DOI: 10.1016/j.gde.2007.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/17/2007] [Accepted: 08/17/2007] [Indexed: 02/05/2023]
Abstract
The antigen receptor genes are organized into distinct DNA elements that encode the variable (V), diversity (D) and joining (J) regions. It is now well established that the rearrangement of antigen receptor genes is regulated by developmental-specific modulation of chromatin structure. Further studies involving statistical mechanics should provide physical insight into the physical mechanisms that underlie the association of antigen receptor gene segments.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, 03777, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
132
|
Daly J, Licence S, Nanou A, Morgan G, Mårtensson IL. Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO J 2007; 26:4273-82. [PMID: 17805345 PMCID: PMC2230841 DOI: 10.1038/sj.emboj.7601846] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/08/2007] [Indexed: 01/18/2023] Open
Abstract
The process of allelic exclusion ensures that each B cell expresses a B-cell receptor encoded by only one of its Ig heavy (IgH) and light (IgL) chain alleles. Although its precise mechanism is unknown, recruitment of the nonfunctional IgH allele to centromeric heterochromatin correlates with the establishment of allelic exclusion. Similarly, recruitment in activated splenic B cells correlates with cell division. In the latter, the recruited IgH allele was reported to be transcriptionally silent. However, it is not known whether monoallelic recruitment during establishment of allelic exclusion correlates with transcriptional silencing. To investigate this, we assessed the transcriptional status of both IgH alleles in single primary cells over the course of B-cell development, using RNA fluorescence in situ hybridization. Before allelic exclusion both alleles are transcribed. Thereafter, in pre-BII and subsequent developmental stages both functional and nonfunctional VDJ- and DJ-transcription is observed. Thus, after the establishment of IgH allelic exclusion, monoallelic recruitment to heterochromatin does not silence VDJ- or DJ-transcription, but serves another purpose.
Collapse
Affiliation(s)
- Janssen Daly
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Steve Licence
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Aikaterini Nanou
- Chromatin and Gene expression, The Babraham Institute, Cambridge, UK
| | - Geoff Morgan
- Flow Cytometry Facility, The Babraham Institute, Cambridge, UK
| | - Inga-Lill Mårtensson
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, The Babraham Research Campus, Cambridge CB2 4AT, UK. Tel.: +44 1223 496469; Fax: +44 1223 496023; E-mail:
| |
Collapse
|
133
|
Schuh W, Meister S, Herrmann K, Bradl H, Jäck HM. Transcriptome analysis in primary B lymphoid precursors following induction of the pre-B cell receptor. Mol Immunol 2007; 45:362-75. [PMID: 17681603 DOI: 10.1016/j.molimm.2007.06.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/08/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
Pre-BCR signals are part of a checkpoint where early precursor (pre-) B cells with a pairing Ig muH chain (muHC) are clonally expanded before they differentiate into IgL-rearranging, resting pre-B cells. A pre-BCR consists of two muHCs, two surrogate L chains and the signal transducer Igalpha/Igbeta. The molecular circuits by which the pre-BCR controls proliferation and differentiation of pre-B cells are poorly characterized. Therefore, we identified the differential transcriptome by genome-wide expression profiling in progenitor (pro-) B cells from a Rag2-deficient mouse, in which the expression of a transgenic muHC and thus a pre-BCR as well as pre-BCR-mediated clonal expansion can be controlled by tetracycline (muHC-inducible mouse). This analysis revealed that pre-BCR signals upregulate components of the BCR signalosome, open the IgL chain (LC) locus and induce the krüppel-like transcription factor KLF2, a key regulator of quiescence and lymphocyte migration. Hence, pre-BCR signals establish the molecular network for BCR signaling even before the production of an IgLC and induce the expression of KLF2, a candidate for controlling clonal expansion and migration of functional pre-B cells.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
134
|
Bradl H, Vettermann C, Schuh W, Meister S, Jäck HM. The pre-B cell receptor and its ligands – it takes two to tango. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200500055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
135
|
Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007; 8:801-8. [PMID: 17641661 DOI: 10.1038/ni1498] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double-stranded DNA breaks (DSBs) can result in chromosomal abnormalities, including deletions, translocations and aneuploidy, which can promote neoplastic transformation. DSBs arise accidentally during DNA replication and can be induced by environmental factors such as ultraviolet light or ionizing radiation, and they are generated during antigen receptor-diversification reactions in lymphocytes. Cellular pathways that maintain genomic integrity use sophisticated mechanisms that recognize and repair all DSBs regardless of their origin. Such pathways, along with DNA-damage checkpoints, ensure that either the damage is properly repaired or cells with damaged DNA are eliminated. Here we review how impaired DNA-repair or DNA-damage checkpoints can lead to genetic instability and predispose lymphocytes undergoing diversification of antigen receptor genes to malignant transformation.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
136
|
Affiliation(s)
- Kathryn Calame
- Department of Microbiology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
137
|
Arons E, Suntum T, Sunshine J, Stetler-Stevenson M, Kreitman RJ. Immunoglobulin light chain repertoire in hairy cell leukemia. Leuk Res 2007; 31:1231-6. [PMID: 17462732 DOI: 10.1016/j.leukres.2006.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/26/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Of 166 hairy cell leukemia (HCL) patients, 81 had kappa and 80 had lambda expression. IGKV-J and IGLV-J rearrangement structure was analyzed in 21 HCL patients (11 kappa, 10 lambda). For kappa, IGKV1-5 was most frequent, and the KJ2 gene was over-utilized. For lambda HCL, LJ3 was over-utilized compared to normal. This study significantly adds to previous studies of light chain usage in HCL and is the first to report light chain gene usage. In HCL, we confirm the lack of kappa predominance observed in normal lymphocytes and in chronic lymphocytic leukemia, and note over-representation of several light chain genes.
Collapse
Affiliation(s)
- Evgeny Arons
- Laboratories of Molecular Biology and Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
138
|
Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y. A dual antagonist for chemokine CCR3 receptor and histamine H1 receptor. Eur J Pharmacol 2007; 563:224-32. [PMID: 17336292 DOI: 10.1016/j.ejphar.2007.01.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/17/2022]
Abstract
Eosinophilic chemokines and histamine play distinct but important roles in allergic diseases. Inhibition of both eosinophilic chemokines and histamine, therefore, is an ideal strategy for the treatment of allergic inflammation, such as asthma, allergic rhinitis, and atopic dermatitis. YM-344484 was found to potently inhibit both the CCL11-induced Ca2+ influx in human CCR3-expressing cells (Kb=1.8 nM) and histamine-induced Ca2+ influx in histamine H1 receptor-expressing PC3 cells (Kb=47 nM). YM-344484 also inhibited the CCL11-induced chemotaxis of human CCR3-expressing cells (IC50=6.2 nM) and CCL11-induced eosinophil-derived neurotoxin release from human eosinophils (IC50=19 nM). Orally administered YM-344484 inhibited the increase in histamine-induced vascular permeability in mice (82% inhibition at a dose of 10 mg/kg) and the accumulation of eosinophils in a mouse asthma model (74% at a dose of 300 mg/kg). These results indicate that YM-344484, a novel and functional dual antagonist for chemokine CCR3 receptor and histamine H1 receptor, is an attractive candidate for development as a novel anti-allergic inflammation drug.
Collapse
MESH Headings
- Animals
- Anti-Allergic Agents/pharmacology
- Anti-Allergic Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Asthma/chemically induced
- Asthma/complications
- Calcium Signaling/drug effects
- Capillary Permeability/drug effects
- Cell Line, Tumor
- Chemotaxis/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Eosinophil-Derived Neurotoxin/metabolism
- Eosinophils/drug effects
- Eosinophils/metabolism
- Female
- Histamine/pharmacology
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Humans
- Mice
- Mice, Inbred BALB C
- Ovalbumin
- Piperidines/pharmacology
- Pneumonia/etiology
- Pneumonia/prevention & control
- Pulmonary Eosinophilia/etiology
- Pulmonary Eosinophilia/prevention & control
- Pyridazines/pharmacology
- Rats
- Receptors, CCR3
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/metabolism
- Skin/blood supply
- Transfection
Collapse
Affiliation(s)
- Keiko Suzuki
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Lutz J, Müller W, Jäck HM. VH replacement rescues progenitor B cells with two nonproductive VDJ alleles. THE JOURNAL OF IMMUNOLOGY 2007; 177:7007-14. [PMID: 17082616 DOI: 10.4049/jimmunol.177.10.7007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inaccurate VDJ rearrangements generate a large number of progenitor (pro)-B cells with two nonproductive IgH alleles. Such cells lack essential survival signals mediated by surface IgM heavy chain (muH chain) expression and are normally eliminated. However, secondary rearrangements of upstream VH gene segments into assembled VDJ exons have been described in mice transgenic for productive muH chains, a process known as VH replacement. If VH replacement was independent of muH chain signals, it could also modify nonproductive VDJ exons and thus rescue pro-B cells with unsuccessful rearrangements on both alleles. To test this hypothesis, we homologously replaced the JH cluster of a mouse with a nonproductive VDJ exon. Surprisingly, B cell development in IgHVDJ-/VDJ- mice was only slightly impaired and significant numbers of IgM-positive B cells were produced. DNA sequencing confirmed that all VDJ sequences from muH chain-positive B lymphoid cells were generated by VH replacement in a RAG-dependent manner. Another unique feature of our transgenic mice was the presence of IgH chains with unusually long CDR3-H regions. Such IgH chains were functional and only modestly counter-selected, arguing against a strict length constraint for CDR3-H regions. In conclusion, VH replacement can occur in the absence of a muH chain signal and provides a potential rescue mechanism for pro-B cells with two nonproductive IgH alleles.
Collapse
Affiliation(s)
- Johannes Lutz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
140
|
Abstract
The specificities of lymphocytes for antigen are generated by a quasi-random process of gene rearrangement that often results in non-functional or autoreactive antigen receptors. Regulation of lymphocyte specificities involves not only the elimination of cells that display 'unsuitable' receptors for antigen but also the active genetic correction of these receptors by secondary recombination of the DNA. As I discuss here, an important mechanism for the genetic correction of antigen receptors is ongoing recombination, which leads to receptor editing. Receptor editing is probably an adaptation that is necessitated by the high probability of receptor autoreactivity. In both B cells and T cells, the genes that encode the two chains of the antigen receptor seem to be specialized to promote, on the one hand, the generation of diverse specificities and, on the other hand, the regulation of these specificities through efficient editing.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, Mail Drop IMM-29, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
141
|
Kawano Y, Yoshikawa S, Minegishi Y, Karasuyama H. Pre-B cell receptor assesses the quality of IgH chains and tunes the pre-B cell repertoire by delivering differential signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:2242-9. [PMID: 16887984 DOI: 10.4049/jimmunol.177.4.2242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
142
|
Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006; 24:541-70. [PMID: 16551259 DOI: 10.1146/annurev.immunol.23.021704.115830] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
V(D)J recombination assembles antigen receptor variable region genes from component germline variable (V), diversity (D), and joining (J) gene segments. For B cells, such rearrangements lead to the production of immunoglobulin (Ig) proteins composed of heavy and light chains. V(D)J is tightly controlled at the Ig heavy chain locus (IgH) at several different levels, including cell-type specificity, intra- and interlocus ordering, and allelic exclusion. Such controls are mediated at the level of gene segment accessibility to V(D)J recombinase activity. Although much has been learned, many long-standing questions regarding the regulation of IgH locus rearrangements remain to be elucidated. In this review, we summarize advances that have been made in understanding how V(D)J recombination at the IgH locus is controlled and discuss important areas for future investigation.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
143
|
Gladden AB, Woolery R, Wasik MA, Diehl JA. Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene 2006; 25:998-1007. [PMID: 16247460 PMCID: PMC2832762 DOI: 10.1038/sj.onc.1209147] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a B-cell lymphoma characterized by overexpression of cyclin D1 due to the t(11;14) chromosomal translocation. While expression of cyclin D1 correlates with MCL development, expression of wild-type (WT) cyclin D1 transgene in murine lymphocytes is unable to drive B-cell lymphoma. As cyclin D1 mutants that are refractory to nuclear export display heighten oncogenicity in vitro compared with WT D1, we generated mice expressing FLAG-D1/T286A, a constitutively nuclear mutant, under the control of the immunoglobulin enhancer, Emu. D1/T286A transgenic mice universally develop a mature B-cell lymphoma. Expression of D1/T286A in B lymphocytes results in S phase entry in resting lymphocytes and increased apoptosis in spleens of young premalignant mice. Lymphoma onset correlates with perturbations in p53/MDM2/p19Arf expression and with BcL-2 overexpression suggesting that alterations in one or both of these pathways may contribute to lymphoma development. Our results describe a cyclin D1-driven model of B-cell lymphomagenesis and provide evidence that nuclear-retention of cyclin D1 is oncogenic in vivo.
Collapse
Affiliation(s)
- Andrew B. Gladden
- The Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rebecca Woolery
- The Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J. Alan Diehl
- The Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Corresponding Author: J. Alan Diehl, Ph.D., Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center, 454 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, tel: (215)746-6389, fax: (215)746-5511,
| |
Collapse
|
144
|
Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM. Regulation of IgH gene assembly: role of the intronic enhancer and 5'DQ52 region in targeting DHJH recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:2439-47. [PMID: 16456003 DOI: 10.4049/jimmunol.176.4.2439] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.
Collapse
Affiliation(s)
- Roshi Afshar
- Department of Microbiology/Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
Successful V(D)J recombination at the T-cell receptor beta (Tcrb) locus is critical for early thymocyte development. The locus is subject to a host of regulatory mechanisms that impart a strict developmental order to Tcrb recombination events and that insure that Tcrb recombination occurs in an allelically excluded fashion. Progress has been made in the understanding of the cis-acting control of Tcrb locus chromatin structure and the extent to which such accessibility control can account for the developmental regulation of Tcrb recombination. However, recent studies in our laboratory and elsewhere have made it abundantly clear that accessibility control is only part of the story, and multiple additional mechanisms impact both the developmental activation and inactivation of locus recombination events. Here we evaluate our current understanding of developmental regulation at the Tcrb locus. We highlight the many unresolved issues and we discuss how recent concepts emerging from studies of other antigen receptor loci may (or may not) help to resolve these issues.
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
146
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
147
|
Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y. In vitro and in vivo characterization of a novel CCR3 antagonist, YM-344031. Biochem Biophys Res Commun 2005; 339:1217-23. [PMID: 16343433 DOI: 10.1016/j.bbrc.2005.11.141] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 11/22/2005] [Indexed: 11/26/2022]
Abstract
Eosinophils play a prominent proinflammatory role in a broad range of diseases, including atopic dermatitis and asthma. Eotaxin-1 and its receptor CCR3 are implicated in the recruitment of eosinophils from blood into inflammatory tissues, therefore inhibition of Eotaxin-1/CCR3 interaction may have therapeutic potential for allergic inflammation with eosinophil infiltration. YM-344031, a novel and selective small molecule CCR3 antagonist, potently inhibited ligand binding (IC(50)=3.0nM), ligand-induced Ca(2+) flux (IC(50)=5.4nM), and the chemotaxis of human CCR3-expressing cells (IC(50)=19.9nM). YM-344031 (1-10mg/kg) orally administered to cynomolgus monkeys significantly inhibited Eotaxin-1-induced eosinophil shape change in whole blood. Additionally, orally administered YM-344031 (100mg/kg) prevented both immediate- and late-phase allergic skin reactions in a mouse allergy model. YM-344031 therefore has potential as a novel and orally available compound for the treatment of allergic inflammation, such as atopic dermatitis and asthma.
Collapse
Affiliation(s)
- Keiko Suzuki
- Inflammation Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Wikström I, Bergqvist I, Holmberg D, Forssell J. Dmu expression causes enrichment of MZ B cells, but is non permissive for B cell maturation in Rag2-/- mice even if combined with Bcl-2. Mol Immunol 2005; 43:1316-24. [PMID: 16321440 DOI: 10.1016/j.molimm.2005.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/24/2005] [Indexed: 11/17/2022]
Abstract
Rearrangements in reading frame 2 promote the expression of a truncated heavy chain, the Dmu protein. Dmu can assemble into a pre-B cell receptor like complex that appears to induce a subset of signals elicited by full length mu, but cannot promote the pro-B to pre-B cell transition of Rag-/- B cells. In order to determine if this could stem from an impaired survival signal not properly induced by the Dmu protein, we introduced Bcl-2 into Dmu-transgenic, Rag2-/- mice. Despite the fact that the Bcl-2 transgene expression promoted some increase in the fraction of CD43- B cells, an identical increase was also observed in Rag2-/- mice. Moreover, whereas in mu-transgenic Rag2-/-Bcl-2+ mice, CD2 and CD25 expression were up regulated and c-Kit was down regulated, these markers were unaltered in Dmu-transgenic Rag2-/- Bcl-2+ mice compared to Rag2-/- Bcl-2+ mice, indicating that Dmu cannot support pre-B cell maturation despite extended survival of B cell precursors by Bcl-2. In addition, we observed that in Dmu-transgenic recombination competent mice, the Dmu induced partial block is permissive for marginal zone B cell development whereas the formation of follicular B cells is severely reduced. While the Dmu protein is expressed in peripheral B cells escaping the block, only a minor fraction of Dmu is exposed to the outer cell surface.
Collapse
Affiliation(s)
- Ingela Wikström
- Institute for Medical Biosciences, Department of Medical and Clinical Genetics, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
149
|
Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 2005; 5:578-84. [PMID: 15999097 DOI: 10.1038/nri1649] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain - the surrogate light chain and the pre-TCR alpha-chain, respectively - as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.
Collapse
Affiliation(s)
- Fritz Melchers
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Schumannstrasse 21-22, D-10117 Berlin, Germany.
| |
Collapse
|
150
|
von Boehmer H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 2005; 5:571-7. [PMID: 15999096 DOI: 10.1038/nri1636] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of alphabeta T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the alphabeta-TCR in which the pre-TCR alpha-chain that is covalently associated with the TCR beta-chain is a 'surrogate' TCR alpha-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR alpha-chain that has different capabilities from the TCR alpha-chain. As described here, I consider that experimental evidence favours the latter view.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|