101
|
Capco DG. Molecular and biochemical regulation of early mammalian development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 207:195-235. [PMID: 11352267 DOI: 10.1016/s0074-7696(01)07006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fertilization initiates a rapid series of changes that restructures the egg into the zygote and initiates the program of early development. These changes in the cell occur while the genetic complement of the egg and sperm are in a highly condensed state and unable to participate in transcription. The egg cytoplasm, formed by the maternal genome, contains the necessary components that mediate the early restructuring of egg into zygote. These changes are mediated by a series of cytoplasmic signal transduction events initiated by the rise in [Ca2+]i caused when the sperm penetrates the egg. The structural changes that the egg undergoes are rapid and result in the extensive remodeling of this specialized cell. Protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaM KII) are two pivotal signaling agents that mediate several of these rapid modifications in cell structure. Studies indicate the meiotic spindle serves as an architectural element in the egg that acts to colocalize elements from several of the key signaling pathways and may provide a means for these pathways to interact. In mammals, transcription begins earlier than in zygotes from other classes of organisms, starting several hours after fertilization in the male and female pronuclei and continuing in the embryonic nuclei. Studies indicate that nuclei undergo an initial state that is permissive for transcription, and then in Gap 2 of the two-cell embryo, enter a transcriptionally repressive state. These changes have been linked to the times during the cell cycle when the DNA is replicated, and also have been proposed as a requirement for proper initiation of the program of early development.
Collapse
Affiliation(s)
- D G Capco
- Department of Biology, Molecular and Cellular Biology Program, Arizona State University, Tempe 85287, USA
| |
Collapse
|
102
|
Abstract
While animal eggs await fertilization, their cell cycle needs to be halted. The molecule responsible for this arrest--the cytostatic factor--was first described in 1971. But its identity was not revealed until 1989, and even now questions remain about this elusive factor.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| |
Collapse
|
103
|
Pérez-Mongiovi D, Beckhelling C, Chang P, Ford CC, Houliston E. Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts. J Cell Biol 2000; 150:963-74. [PMID: 10973988 PMCID: PMC2175258 DOI: 10.1083/jcb.150.5.963] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2000] [Accepted: 07/07/2000] [Indexed: 11/22/2022] Open
Abstract
Although maturation/M phase promoting factor (MPF) can activate autonomously in Xenopus egg cytoplasm, indirect evidence suggests that nuclei and centrosomes may focus activation within the cell. We have dissected the contribution of these structures to MPF activation in fertilized eggs and in egg fragments containing different combinations of nuclei, centrosomes, and microtubules by following the behavior of Cdc2 (the kinase component of MPF), the regulatory subunit cyclin B, and the activating phosphatase Cdc25. The absence of the entire nucleus-centrosome complex resulted in a marked delay in MPF activation, whereas the absence of the centrosome alone caused a lesser delay. Nocodazole treatment to depolymerize microtubules through first interphase had an effect equivalent to removing the centrosome. Furthermore, microinjection of isolated centrosomes into anucleate eggs promoted MPF activation and advanced the onset of surface contraction waves, which are close indicators of MPF activation and could be triggered by ectopic MPF injection. Finally, we were able to demonstrate stimulation of MPF activation by the nucleus-centriole complex in vitro, as low concentrations of isolated sperm nuclei advanced MPF activation in cycling cytoplasmic extracts. Together these results indicate that nuclei and microtubule asters can independently stimulate MPF activation and that they cooperate to enhance activation locally.
Collapse
Affiliation(s)
- Daniel Pérez-Mongiovi
- UMR 7009, Centre National de la Recherche Scientifique/Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France
| | - Clare Beckhelling
- UMR 7009, Centre National de la Recherche Scientifique/Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Patrick Chang
- UMR 7009, Centre National de la Recherche Scientifique/Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France
| | - Christopher C. Ford
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Evelyn Houliston
- UMR 7009, Centre National de la Recherche Scientifique/Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France
| |
Collapse
|
104
|
Liu H, Zhang J, Krey LC, Grifo JA. In-vitro development of mouse zygotes following reconstruction by sequential transfer of germinal vesicles and haploid pronuclei. Hum Reprod 2000; 15:1997-2002. [PMID: 10967003 DOI: 10.1093/humrep/15.9.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We evaluated whether mouse oocytes reconstructed by germinal vesicle (GV) transfer can develop to blastocyst stage. The oocytes were artificially activated with sequential treatment of A23187 and anisomycin; fertilization was then established by transfer or exchange of pronuclei with those of zygotes fertilized in vivo. Type 1 zygotes were constructed by placing the male haploid pronucleus from a zygote into the cytoplasm of an oocyte that underwent GV transfer, in-vitro maturation and activation; for type 2 zygotes, the female pronucleus was removed from a zygote and replaced with the female pronucleus of an oocyte subjected to GV transfer, in-vitro maturation and activation. Karyotypes of activated oocytes and type 2 zygotes were also subjected to analysis. When cultured in human tubal fluid (HTF) medium, reconstructed oocytes matured and, following artificial activation, consistently developed a pronucleus with a haploid karyotype; the activation rate for this medium was two- to three-fold higher than that of oocytes cultured in M199 (87% versus 30% respectively). Following transfer of a male pronucleus, only 47% of the type 1 zygotes developed to morula or blastocyst stage and embryo morphology was poor. In contrast, 73% of the type 2 zygotes developed to morula or blastocyst stage, many even hatching, with few morphological anomalies. Normal karyotypes were observed in 88% of the type 2 zygotes analysed. These observations demonstrate that the nucleus of a mouse oocyte subjected to sequential nuclear transfer at GV and pronucleus stages is, nonetheless, capable of maturing meiotically, activating normally and supporting embryonic development to hatching blastocyst stage. In contrast, the developmental potential of the cytoplasm of such oocytes appears to be compromised by these procedures.
Collapse
Affiliation(s)
- H Liu
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
105
|
Alberio R, Motlik J, Stojkovic M, Wolf E, Zakhartchenko V. Behavior of M-phase synchronized blastomeres after nuclear transfer in cattle. Mol Reprod Dev 2000; 57:37-47. [PMID: 10954854 DOI: 10.1002/1098-2795(200009)57:1<37::aid-mrd6>3.0.co;2-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
M-phase synchronized bovine blastomeres were used to study the effect of nuclear-cytoplasmic synchronization on the developmental potential after nuclear transfer (NT). The capacity of nocodazole and benomyl to reversibly synchronize blastomeres from embryos in M-phase was evaluated. Nocodazole reversibly arrested bovine embryos at the studied stages and induced high rates of M-phases in morulae and compact morulae. In contrast, benomyl was less efficient than nocodazole to synchronize in M-phase. After transfer of an M-phase blastomere, premature chromatin condensation was the prevalent finding 1 hr post-fusion (hpf). Condensed chromosomes non-arranged in the equatorial plate (1-3 hpf) that acquired an organized structure over time (3-7 hpf) were subsequently observed. Anaphase-telophase structures were predominantly recorded at 4-9 hpf. About 50% of the embryos activated at both 3-4 and 6-7 hpf extruded a polar body-like structure 5 hr after activation, but this was not observed in embryos activated immediately after fusion. A significantly lower activation rate was observed for oocytes activated 3-4 hpf compared to those activated 6-7 hpf. However, the ability to undergo first cleavage was significantly lower in the latter group. Reconstructed embryos activated immediately after fusion showed no difference in the rate of activation compared to those activated 6-7 hpf, although the cleavage rate was higher. DNA synthesis was observed at a significantly higher rate in embryos activated both immediately and 3-4 hpf that did not extrude a PB-like structure than in those activated 3-4 hpf that extruded a polar body-like structure. Under the conditions tested M-phase donor cells cannot be properly remodeled after NT in cattle to trigger normal embryonic development. Our observations of chromatin structures together with DNA synthesis suggest that the failure in the development may be due to improper chromatin remodeling of mitotic nuclei after NT, which may result in chromosomal abnormalities incompatible with normal embryo development.
Collapse
Affiliation(s)
- R Alberio
- Department of Molecular Animal Breeding and Genetics, Ludwig-Maximilian University, Oberschleissheim, Germany
| | | | | | | | | |
Collapse
|
106
|
Jones KT, Nixon VL. Sperm-induced Ca(2+) oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1, 4,5-trisphosphate during mammalian fertilization. Dev Biol 2000; 225:1-12. [PMID: 10964460 DOI: 10.1006/dbio.2000.9826] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During mouse fertilization the spermatozoon induces a series of low-frequency long-lasting Ca(2+) oscillations. It is generally accepted that these oscillations are due to Ca(2+) release through the inositol 1,4,5-trisphosphate (InsP(3)) receptor. However, InsP(3) microinjection does not mimic sperm-induced Ca(2+) oscillations, leading to the suggestion that the spermatozoon causes Ca(2+) release by sensitizing the InsP(3) receptor to basal levels of InsP(3). This contradicts recent evidence that the spermatozoon triggers Ca(2+) oscillations by introducing a phospholipase C or else an activator of phospholipase C. Here we show for the first time that sperm-induced Ca(2+) oscillations may be mimicked by the photolysis of caged InsP(3) in both mouse metaphase II eggs and germinal vesicle stage oocytes. Eggs, and also oocytes that had displayed spontaneous Ca(2+) oscillations, gave long-lasting Ca(2+) oscillations when fertilized or when caged InsP(3) was photolyzed. In contrast, oocytes that had shown no spontaneous Ca(2+) oscillations did not generate many oscillations when fertilized or following photolysis of caged InsP(3). Fertilization in eggs was most closely mimicked when InsP(3) was uncaged at relatively low amounts for extended periods. Here we observed an initial Ca(2+) transient with superimposed spikes, followed by a series of single transients with a low frequency; all characteristics of the Ca(2+) changes at fertilization. We therefore show that InsP(3) can mimic the distinctive pattern of Ca(2+) release in mammalian eggs at fertilization. It is proposed that a sperm Ca(2+)-releasing factor operates by generating a continuous small amount of InsP(3) over an extended period of time, consistent with the evidence for the involvement of a phospholipase C.
Collapse
Affiliation(s)
- K T Jones
- Department of Physiological Sciences, The Medical School, University of Newcastle, Framlington Place, Newcastle, NE2 4HH, United Kingdom.
| | | |
Collapse
|
107
|
Brind S, Swann K, Carroll J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca(2+) or egg activation. Dev Biol 2000; 223:251-65. [PMID: 10882514 DOI: 10.1006/dbio.2000.9728] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization in mammals stimulates a series of Ca(2+) oscillations that continue for 3-4 h. Cell-cycle-dependent changes in the ability to release Ca(2+) are one mechanism that leads to the inhibition of Ca(2+) transients after fertilization. The downregulation of InsP(3)Rs at fertilization may be an additional mechanism for inhibiting Ca(2+) transients. In the present study we examine the mechanism of this InsP(3)R downregulation. We find that neither egg activation nor Ca(2+) transients are necessary or sufficient for the stimulation of InsP(3)R downregulation. First, parthenogenetic activation fails to stimulate downregulation. Second, downregulation persists when fertilization-induced Ca(2+) transients and egg activation are inhibited using BAPTA. Third, downregulation can be induced in immature oocytes that do not undergo egg activation. Other than fertilization, the only stimulus that downregulated InsP(3)Rs was microinjection of the potent InsP(3)R agonist adenophostin A. InsP(3)R downregulation was inhibited by the cysteine protease inhibitor ALLN but MG132 and lactacystin were not effective. Finally, we have injected maturing oocytes with adenophostin A and produced MII eggs depleted of InsP(3)Rs. We show that sperm-induced Ca(2+) signaling is inhibited in such InsP(3)R-depleted eggs. These data show that InsP(3)R binding is sufficient for downregulation and that Ca(2+) signaling at fertilization is mediated via the InsP(3)R.
Collapse
Affiliation(s)
- S Brind
- Department of Physiology, Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
108
|
Jellerette T, He CL, Wu H, Parys JB, Fissore RA. Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol 2000; 223:238-50. [PMID: 10882513 DOI: 10.1006/dbio.2000.9675] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fertilization in mammalian eggs is characterized by the presence of intracellular calcium ([Ca(2+)]i) oscillations. In mouse eggs, these oscillations cease after a variable period of time and this is accompanied by a decrease in inositol 1,4,5-trisphosphate receptor (IP3R) responsiveness and down-regulation of the IP3R type 1 (IP3R-1). To investigate the signaling pathway responsible for inducing IP3R-1 down-regulation during fertilization, mouse eggs were exposed to or injected with several Ca(2+)-releasing agonists and the amounts of IP3R-1 immunoreactivity evaluated by Western blotting. Exposure to ethanol or ionomycin, which induce a single [Ca(2+)]i rise, failed to signal down-regulation of IP3R-1. However, [Ca(2+)]i oscillations induced by injection of boar sperm fractions (SF), which presumably stimulate production of IP3, or adenophostin A, an IP3R agonist, both induced down-regulation of IP3R-1 of a magnitude similar to or greater than that observed after fertilization. Exposure to thimerosal, an oxidizing agent that modifies the IP3R without stimulating production of IP3, also initiated down-regulation of IP3R-1, although oscillations initiated by SrCl(2) failed to evoke down-regulation of IP3R-1. The degradation of IP3R-1 in mouse eggs appears to be mediated by the proteasome pathway because it was inhibited by preincubation with lactacystin, a very specific proteasome inhibitor. We therefore suggest that persistent stimulation of the phosphoinositide pathway in mouse eggs by the sperm during fertilization or by injection of SF leads to down-regulation of the IP3R-1.
Collapse
Affiliation(s)
- T Jellerette
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | | | | | | | |
Collapse
|
109
|
Winston N, Bourgain-Guglielmetti F, Ciemerych MA, Kubiak JZ, Senamaud-Beaufort C, Carrington M, Bréchot C, Sobczak-Thépot J. Early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products. Dev Biol 2000; 223:139-53. [PMID: 10864467 DOI: 10.1006/dbio.2000.9721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progression through the mammalian cell cycle is regulated by the sequential activation and inactivation of the cyclin-dependent kinases. In adult cells, cyclin A2-dependent kinases are required for entry into S and M phases, completion of S phase, and centrosome duplication. However, mouse embryos lacking the cyclin A2 gene nonetheless complete preimplantation development, but die soon after implantation. In this report, we investigated whether a contribution of maternal cyclin A2 mRNA and protein to early embryonic cell cycles might explain these conflicting observations. Our data show that a maternal stock of cyclin A2 mRNA is present in the oocyte and persists after fertilization until the second mitotic cell cycle, when it is degraded to undetectable levels coincident with transcriptional activation of the zygotic genome. A portion of maternally derived cyclin A2 protein is stable during the first mitosis and persists in the cytoplasm, but is completely degraded at the second mitosis. The ability of cyclin A2-null mutants to develop normally from the four-cell to the postimplantation stage in the absence of detectable cyclin A2 gene product indicates therefore that cyclin A2 is dispensable for cellular progression during the preimplantation nongrowth period of mouse embryo development.
Collapse
Affiliation(s)
- N Winston
- Unité 370, Faculté Necker, Institut National de la Santé et de la Recherche Médicale, 156 Rue de Vaugirard, Paris, 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Wojcik C, Benchaib M, Lornage J, Czyba JC, Guerin JF. Proteasomes in human spermatozoa. INTERNATIONAL JOURNAL OF ANDROLOGY 2000; 23:169-77. [PMID: 10844543 DOI: 10.1046/j.1365-2605.2000.00223.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we describe the localization of proteasomes in human spermatozoa by means of immunolabelling with different monoclonal and polyclonal antibodies detected by confocal microscopy. Western blotting confirmed the specificity of the antibodies and has shown that proteasomes are present in spermatozoa and in seminal fluid. In spermatozoa proteasomes are concentrated in the neck region where the centrioles are located. Some labelling was also detected at the periphery of the head, but no proteasomal antigens were detected in either the nucleus or associated with the flagellum. Proteasome inhibitors did not affect the motility of the spermatozoa, acrosome reaction nor zona binding. It is hypothesized that paternal proteasomes enter the oocyte during fertilization in tight association with the centrioles and may serve a special function during further development which can be associated with the function of a hypothetical proteolysis centre.
Collapse
Affiliation(s)
- C Wojcik
- Department of Histology and Embryology, Biostructure Centre, Warsaw Medical Academy, ul. Chalubinskiego 5, 02-004 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
111
|
Cheung A, Swann K, Carroll J. The ability to generate normal Ca(2+) transients in response to spermatozoa develops during the final stages of oocyte growth and maturation. Hum Reprod 2000; 15:1389-95. [PMID: 10831575 DOI: 10.1093/humrep/15.6.1389] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intracellular Ca(2+) oscillations at fertilization are responsible for triggering egg activation. The aim of this study was to examine the effect of the age of the oocyte donor and in-vitro maturation on the generation of Ca(2+) transients at fertilization. The results show that <10% of in-vivo and in-vitro matured oocytes from 19-day old mice develop to the blastocyst stage in vitro. In contrast, 43% of in-vivo and 25% of in-vitro matured oocytes from 24-day old mice developed to the blastocyst stage. In parallel experiments, intracellular Ca(2+) was monitored at fertilization. Oocytes from 19-day old mice generate significantly fewer transients than oocytes from 24-day old mice. In-vitro maturation significantly decreased the ability of oocytes from 19-day old mice but not 24-day old mice to generate Ca(2+) transients in response to spermatozoa. Furthermore, we investigated the effect of oocyte maturation on Ca(2+) signalling. Immature oocytes generated fewer Ca(2+) oscillations and ceased oscillating earlier than mature oocytes. These studies suggest that the ability to generate Ca(2+) transients in response to spermatozoa increases in the final stages of oocyte development and during oocyte maturation. This may contribute to the acquisition of developmental competence in the final stages of oogenesis.
Collapse
Affiliation(s)
- A Cheung
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
112
|
Abstract
The meiotic division in oocytes is arrested in the G2 phase of the cell cycle. Resumption of meiosis, also known as oocyte maturation, entails a G2 to M transition. At the G2-M boundary, maturation promoting factor (MPF) activation is usually induced via several ways, including tyrosine dephosphorylation of p34(cdc2) and synthesis of cyclin B according to cell type and species. Previous studies in our laboratory demonstrated that glucocorticoids directly inhibit the meiotic maturation of pig oocytes in vitro. The aim of this study was therefore to investigate the influence of glucocorticoids on the expression of p34(cdc2) and cyclin B1 in resumption of meiosis of pig oocytes. We detected the relative levels and association of p34(cdc2) and cyclin B1. Isolated cumulus-enclosed oocytes were cultured in Waymouth MB752/1 medium supplemented with sodium pyruvate (50 microgram/ml), LH (0.5 microgram/ml), FSH (0.5 microgram/ml), and estradiol-17beta (1 microgram/ml) in the presence or absence of dexamethasone (DEX) for 24 hr; they then were cultured without hormonal supplements in the presence or absence of DEX for an additional 24 hr. We found that cyclin B1, as well as p34(cdc2), was already present in fully grown G2-arrested pig oocytes when removed from the follicle. In these oocytes, cyclin B1 and p34(cdc2) were already associated in complex. Treatment with DEX at concentrations of 1 microgram/ml or above decreased the level of cyclin B1, but had no effect on the level of p34(cdc2). The exposure of oocytes to DEX also decreased the amount of complexed p34(cdc2)-cyclin B1. These findings suggest that the inhibitory action of DEX on meiotic maturation could be due, at least in part, to the reduced amount of p34(cdc2)-cyclin B1 complex.
Collapse
Affiliation(s)
- W Y Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | | | | |
Collapse
|
113
|
Deng MQ, Shen SS. A specific inhibitor of p34(cdc2)/cyclin B suppresses fertilization-induced calcium oscillations in mouse eggs. Biol Reprod 2000; 62:873-8. [PMID: 10727255 DOI: 10.1095/biolreprod62.4.873] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Fertilization-induced Ca(2+) oscillations in mouse eggs cease at the time of pronuclear formation when maturation-promoting factor (MPF) is inactivated, but the Ca(2+) oscillations are ceaseless if eggs are arrested at metaphase by colcemid, which maintains the activity of MPF. To determine the possible role of MPF in regulation of cytoplasmic Ca(2+) excitability, roscovitine, a specific inhibitor of p34(cdc2)/cyclin B kinase, was used to inactivate MPF, and its effect on fertilization-induced Ca(2+) oscillations was investigated. Our results showed that roscovitine at >/= 50 microM suppressed fertilization-induced Ca(2+) oscillations in normal and colcemid-treated metaphase II (MII) eggs after the first 1-2 Ca(2+) spikes. Roscovitine inhibition of fertilization-induced Ca(2+) oscillations could be reversed by extensive washing of the eggs. Histone H1 kinase activity in colcemid-treated MII eggs was similarly inhibited by roscovitine, which suggested that the cessation of fertilization-induced Ca(2+) oscillations is due to the inactivation of MPF. Thimerosal-induced Ca(2+) oscillations in Ca(2+)-, Mg(2+)-free medium was also suppressed by roscovitine, suggesting a general inhibitory effect of roscovitine on Ca(2+) oscillations. The inhibition may be achieved by disruption of Ca(2+) release and refilling of the calcium store. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca-ATPase, induced significantly less Ca(2+) release in roscovitine-treated eggs than in the non-drug-treated eggs. Taken together, our results suggest that MPF plays an important role in regulation of the cytoplasmic Ca(2+) excitability in mouse eggs.
Collapse
Affiliation(s)
- M Q Deng
- Department of Zoology & Genetics, Iowa State University, Ames, Iowa 50011-3223, USA.
| | | |
Collapse
|
114
|
Alberio R, Kubelka M, Zakhartchenko V, Hajdúch M, Wolf E, Motlik J. Activation of bovine oocytes by specific inhibition of cyclin-dependent kinases. Mol Reprod Dev 2000; 55:422-32. [PMID: 10694750 DOI: 10.1002/(sici)1098-2795(200004)55:4<422::aid-mrd10>3.0.co;2-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of bovine oocytes by experimental procedures that closely mimic normal fertilization and allow to obtain haploid oocytes is essential both for intracytoplasmic sperm injection (ICSI) and for nuclear transfer. Therefore, with the goal of producing haploid activated oocytes, this study evaluated whether bohemine, either alone or in combination with ionomycin, is able to activate young matured bovine oocytes. Furthermore, the effect of bohemine on the patterns of DNA synthesis after pronuclear formation as well as changes in histone H1 kinase and MAP kinase activities during the process of activation were studied. Our results with bohemine show that the specific inhibition of CDKs in metaphase II bovine oocytes induces parthenogenetic activation in a dose-dependent manner (25, 50, and 100 microM, respectively), either alone (3%, 30%, and 50%) or in combination with ionomycin (30%, 70%, and 87.5%). A single pronucleus and extrusion of the second polar body was observed (97%) when Ca(2+) influx was stimulated in the presence of bohemine, although pronuclear formation without polar body extrusion was observed when bohemine was used alone. Bohemine-activated oocytes started to synthesize DNA in the first hour (37%) after their removal from bohemine-supplemented medium (6-7 hr post-activation; hpa). A high synchrony in the S-phase was registered with more than 85% of parthenotes actively synthesizing DNA 8 hpa. By contrast, DNA synthesis was absent in oocytes cultured for 4, 6, and 8 hpa in the presence of bohemine and a low rate was observed by those cultured for 18 hr (30%) in bohemine-supplemented medium. This confirms the ability of the inhibitor to arrest the cell cycle in the G1/S boundary for at least 8 hr. A drop in histone H1 kinase activity was observed in bohemine-activated oocytes. The activity of MBP kinase decreased later than histone H1 kinase and even 4 hr after inomycin-bohemine treatment at least half of this activity was still detectable. Then, the MBP kinase activity decreased and the lowest level could be seen 6-8 hpa. In summary, our study shows that in vitro matured bovine oocytes can be successfully activated by a synthetic inhibitor of CDKs. This effect can be improved by combination with ionomycin. The targeting of CDKs in the way to activate bovine oocytes can be an approach to improve the efficiency of mammalian oocyte activation.
Collapse
Affiliation(s)
- R Alberio
- Department of Molecular Animal Breeding and Genetics, University of Munich, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
115
|
Fulka J, Tesarík J, Loi P, Moor RM. Manipulating the Human Embryo: Cell Cycle Checkpoint Controls. ACTA ACUST UNITED AC 2000; 2:1-7. [PMID: 16218841 DOI: 10.1089/15204550050145085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Micromanipulation techniques are widely used in assisted human reproduction and it is logical to assume that successes with recent animal cloning will invariably raise the question of human cloning along with its related ethical problems. However, it is often overlooked that even in animals many complications are still associated with this technique. The purpose of our article is to highlight and discuss some of these problems in the context of the eventual use of nuclear and/or cytoplasmic transfer techniques in assisted human reproduction.
Collapse
Affiliation(s)
- J Fulka
- Institute of Animal Production, POB 1, ISCARE, CS-104 01 Prague 10, Czech Republic.
| | | | | | | |
Collapse
|
116
|
Abstract
Eggs and early embryos appear to be programmed to undertake particular developmental decisions at characteristic times, although precisely how these decisions are timed is unknown. We discuss the possible roles and interactions during early vertebrate development of two broad categories of timers: 1) those that involve cyclic or sequential mechanisms, referred to as clocks; and 2) those that require an increase or decrease in some factor to a threshold level for progression of time, referred to as hourglass timers. It is concluded that both clock-like timers linked to various features of the cell cycle and hourglass timers are involved in early developmental timing. The possible involvement of elements of circadian clock timers is also considered. BioEssays 22:57-63, 2000.
Collapse
Affiliation(s)
- M H Johnson
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
117
|
Zong ZP, Fujikawa-Yamamoto K, Li AL, Yamaguchi N, Chang YG, Murakami M, Odashima S, Ishikawa Y. Both low and high concentrations of staurosporine induce G1 arrest through down-regulation of cyclin E and cdk2 expression. Cell Struct Funct 1999; 24:457-63. [PMID: 10698260 DOI: 10.1247/csf.24.457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Staurosporine has been reported to cause arrest of cells in G1 phase at low concentration and in G2 phase at high concentration. This raises the question of why the effects of staurosporine on the cell cycle depend on the applied concentration. In order to verify these multiple functions of staurosporine in Meth-A cells, we used cyclin E as a landmark of G1/S transition, cyclin B as a landmark of G2/M transition and MPM2 as a hallmark of M phase. We found that staurosporine arrested cells in G1 phase at a low concentration (20 nM) and in G2/M phase at a high concentration (200 nM). However, 200 nM staurosporine increased the expression of cyclin B and cdc2 proteins, suggesting that the cells progressed through the G2/M transition, and increased the expression of MPM2 protein, indicating that the cells entered M phase. Moreover, 200 nM staurosporine increased the expression of p53 and p21 proteins and inhibited the expression of cyclin E and cdk2 proteins, suggesting that the cells were arrested in the G1 phase of the next cycle. Morphological observation showed similar results as well. These data suggest that the G2/M accumulation induced by 200 nM staurosporine does not reflect G2 arrest, but rather results from M phase arrest, followed by progression from M phase to the G1 phase of the next cycle without cytokinesis, and finally arrest of the cells in G1 phase.
Collapse
Affiliation(s)
- Z P Zong
- Division of Basic Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Beckhelling C, Penny C, Clyde S, Ford C. Timing of calcium and protein synthesis requirements for the first mitotic cell cycle in fertilised Xenopus eggs. J Cell Sci 1999; 112 ( Pt 22):3975-84. [PMID: 10547358 DOI: 10.1242/jcs.112.22.3975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitosis is governed by the activity of the M-phase promoting factor (MPF). In some systems, particularly early embryos, transient increases in calcium concentration have been shown to be necessary for mitosis and regulate its timing. By microinjection of the calcium buffer, dibromoBAPTA, into fertilised Xenopus eggs, we have assessed whether calcium events are required to initiate MPF activation and inactivation. Since initial experiments showed that this buffer inhibited protein synthesis, we measured when mitosis and cleavage became independent of translation. We found that, after a period of protein synthesis essential for cleavage, there was a phase during which continued translation affected the timing of cleavage, but was not essential for its occurrence. Measurement of MPF activity in single embryos injected with calcium buffer at different times in the first cell cycle, showed that there were two sensitive periods. The first period of sensitivity blocked MPF activation and coincided with the time at which cleavage became completely independent of protein synthesis. The second sensitive period occurred just before histone kinase activity peaked, and was necessary for kinase inactivation. Preventing inactivation in this way arrested egg extracts in mitosis. These results support the view that transient increases in free calcium concentration contribute to mitotic progression by first triggering MPF activation and subsequently, with elevated MPF activity, inducing its inactivation.
Collapse
Affiliation(s)
- C Beckhelling
- Biology Building, School of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | |
Collapse
|
119
|
Stojkovic M, Motlik J, Kölle S, Zakhartchenko V, Alberio R, Sinowatz F, Wolf E. Cell-Cycle Control and Oocyte Maturation: Review of Literature. Reprod Domest Anim 1999. [DOI: 10.1111/j.1439-0531.1999.tb01261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
120
|
Liu L, Yang X. Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol Reprod 1999; 61:1-7. [PMID: 10377024 DOI: 10.1095/biolreprod61.1.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.
Collapse
Affiliation(s)
- L Liu
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
121
|
Dominko T, Mitalipova M, Haley B, Beyhan Z, Memili E, McKusick B, First NL. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol Reprod 1999; 60:1496-502. [PMID: 10330111 DOI: 10.1095/biolreprod60.6.1496] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The transfer of nuclei from one cell to another provides a powerful tool for studying the interactions between the cytoplasm of one cell and the nucleus of another. This study was designed to examine the ability of the bovine metaphase oocyte cytoplasm to support mitotic cell cycles under the direction of differentiated somatic cell nuclei of various mammalian species. Skin fibroblast cells from cows, sheep, pigs, monkeys, and rats were used as sources of donor nuclei. Nuclear transfer units produced by fusion of enucleated bovine oocytes and individual fibroblasts from all species examined underwent transition to interphase accompanied by nuclear swelling, further progression through the cell cycle, and completion of the first mitosis. Regardless of the species of donor fibroblasts used, some cleaving units progressed further and developed to advanced stages, as evidenced by continuation of cell proliferation and formation of a blastocoele cavity at the time appropriate for the donor fibroblast species. Although no pregnancies have been carried to term after transfer of embryos into surrogate animals, these observations suggest that mechanisms regulating early embryonic development may be conserved among mammalian species and that bovine oocyte cytoplasm can support the introduced differentiated nucleus regardless of chromosome number, species, or age of the donor fibroblast.
Collapse
Affiliation(s)
- T Dominko
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Shi Q, Schmid TE, Adler I. Griseofulvin-induced aneuploidy and meiotic delay in male mouse germ cells: detected by using conventional cytogenetics and three-color FISH. Mutat Res 1999; 441:181-90. [PMID: 10333532 DOI: 10.1016/s1383-5718(99)00046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Griseofulvin (GF) was tested in male mouse germ cells for the induction of meiotic delay and aneuploidy. Starved mice were orally treated with 500, 1000 and 2000 mg/kg of GF in corn oil and testes were sampled 22 h later for meiotic delay analysis and chromosome counting in spermatocytes at the second meiotic metaphase (MMII). A dose-related increase in meiotic delay by dose-dependently arresting spermatocytes in first meiotic metaphase (MMI) or/and prolonging interkinesis was observed. Hyperhaploid MMII cells were not significantly increased. Sperm were sampled from the Caudae epididymes 22 days after GF-treatment of the males for three-color fluorescence in situ hybridization (FISH). The frequencies of diploidies were 0.01-0.02% in sperm of the solvent control animals and increased dose-dependently to 0.03%, 0.068% and 0.091%, respectively, for 500, 1000 and 2000 mg/kg of GF. The frequencies of disomic sperm were increased significantly above the controls in all GF-treated groups but showed no dose response. The data for individual classes of disomic sperm indicated that MII was more sensitive than MI to GF-induced non-disjunction in male mice. A comparison of the present data from male mice and literature data from female mice suggests that mouse oocytes are more sensitive than mouse spermatocytes to GF-induced meiotic delay and aneuploidy.
Collapse
Affiliation(s)
- Q Shi
- Institut fuer Saeugetiergenetik, GSF Forschungszentrum fuer Umwelt und Gesundheit, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
123
|
Tarsounas M, Pearlman RE, Moens PB. Meiotic activation of rat pachytene spermatocytes with okadaic acid: the behaviour of synaptonemal complex components SYN1/SCP1 and COR1/SCP3. J Cell Sci 1999; 112 ( Pt 4):423-34. [PMID: 9914155 DOI: 10.1242/jcs.112.4.423] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphatase inhibitor okadaic acid accelerates meiotic events in rodent germ cells in culture. Isolated pachytene spermatocytes treated with okadaic acid proceed to a metaphase I arrest in a few hours as opposed to the similar process in vivo, which requires several days. Leptotene/zygotene spermatocytes cannot be activated in this way, suggesting that okadaic acid enables cells to bypass a sensor of the meiotic progression, which is pachytene specific. We monitored the chromosome behaviour accompanying the transition to metaphase I in rat spermatocytes with antibodies against COR1/SCP3, a component of the meiotic chromosome cores, and against the synaptic protein, SYN1/SCP1. Okadaic acid induced a rapid synaptonemal complex dissolution and bivalent separation, followed by chromosome condensation and chiasmata formation, similar to the succession of events in untreated cells. The similarity between meiosis I induced with okadaic acid and the meiosis I events in vivo extends to the dissolution of the nuclear membrane and the disappearance of the microtubule network at the onset of metaphase I. This cell culture system provides a model for the in vivo transition from pachytene to metaphase I and therefore can be used in the study of this transition at the molecular level. The effect of okadaic acid is most likely mediated by the activation of tyrosine kinases, as addition of genistein, a general tyrosine kinase inhibitor, completely abolishes the observed effect of okadaic acid on chromosome metabolism. The okadaic acid-induced progression to the metaphase I arrest is not affected by the inhibition of protein synthesis. However, pachytene spermatocytes incubated in the presence of protein synthesis inhibitors for 6 hours show loss of synapsis which is abnormal in that it is not accompanied by chiasmata formation. The two meiosis-specific proteins, SYN1/SCP1 and COR1/SCP3, are efficiently phosphorylated in vitro by extracts from isolated pachytene cells. Extracts from cells that have reached metaphase I upon okadaic acid treatment, with concomitant displacement of SYN1/SCP1 and COR1/SCP3 from their chromosomes, do not have this capability. These data support the hypothesis that phosphorylation of SYN1/SCP1 and COR1/SCP3 targets their removal from the chromosomes and that activity of the kinases involved correlates with the presence of these two proteins on the chromosomes.
Collapse
Affiliation(s)
- M Tarsounas
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada.
| | | | | |
Collapse
|
124
|
Mowat MR, Stewart N. Mechanisms of cell cycle blocks at the G2/M transition and their role in differentiation and development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:73-100. [PMID: 9928527 DOI: 10.1007/978-3-642-72149-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- M R Mowat
- Manitoba Institute of Cell Biology, Manitoba Cancer Treatment and Research Foundation, Winnipeg, Canada
| | | |
Collapse
|
125
|
Tateno H, Kamiguchi Y. Improvement of male pronuclear formation during cross-fertilization between Chinese hamster spermatozoa and Syrian hamster oocytes by nocodazole, and chromosome analysis of hybrid zygotes. Mol Reprod Dev 1999. [DOI: 10.1002/(sici)1098-2795(199901)52:1<117::aid-mrd14>3.0.co;2-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
126
|
Polanski Z, Ledan E, Brunet S, Louvet S, Verlhac MH, Kubiak JZ, Maro B. Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes. Development 1998; 125:4989-97. [PMID: 9811583 DOI: 10.1242/dev.125.24.4989] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the mechanisms involved in the progression of meiotic maturation in the mouse, we used oocytes from two strains of mice, CBA/Kw and KE, which differ greatly in the rate at which they undergo meiotic maturation. CBA/Kw oocytes extrude the first polar body about 7 hours after breakdown of the germinal vesicle (GVBD), whilst the oocytes from KE mice take approximately 3–4 hours longer. In both strains, the kinetics of spindle formation are comparable. While the kinetics of MAP kinase activity are very similar in both strains (although slightly faster in CBA/Kw), the rise of cdc2 kinase activity is very rapid in CBA/Kw oocytes and slow and diphasic in KE oocytes. When protein synthesis is inhibited, the activity of the cdc2 kinase starts to rise but arrests shortly after GVBD with a slightly higher level in CBA/Kw oocytes, which may correspond to the presence of a larger pool of cyclin B1 in prophase CBA/Kw oocytes. After GVBD, the rate of cyclin B1 synthesis is higher in CBA/Kw than in KE oocytes, whilst the overall level of protein synthesis and the amount of messenger RNA coding for cyclin B1 are identical in oocytes from both strains. The injection of cyclin B1 messenger RNA in KE oocytes increased the H1 kinase activity and sped up first polar body extrusion. Finally, analysis of the rate of maturation in hybrids obtained after fusion of nuclear and cytoplasmic fragments of oocytes from both strains suggests that both the germinal vesicle and the cytoplasm contain factor(s) influencing the length of the first meiotic M phase. These results demonstrate that the rate of cyclin B1 synthesis controls the length of the first meiotic M phase and that a nuclear factor able to speed up cyclin B synthesis is present in CBA/Kw oocytes.
Collapse
Affiliation(s)
- Z Polanski
- Laboratoire de Biologie Cellulaire du Développement, Institut Jacques Monod, CNRS, Université Paris 6 and Université Paris 7, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
OBJECTIVES Correlations between parental age, aneuploidy in germ cells and recent findings on aetiological factors in mammalian trisomy formation are reviewed. METHODS Data from observations in human oocytes, molecular studies on the origin of extra chromosomes in trisomies, experiments in a mouse model system, and transgenic approaches are shown. RESULTS Errors in chromosome segregation are most frequent in meiosis I of oogenesis in mammals and predominantly predispose specific chromosomes and susceptible chiasmate configurations to maternal age-related nondisjunction. Studies on spindle structure, cell cycle and chromosome behaviour in oocytes of the CBA/Ca mouse used as a model for the maternal age-effect suggest that hormonal homeostasis and size of the follicle pool influence the quality, maturation competence and spindle size of the mammalian oocyte. Predisposition to errors in chromosome segregation are critically dependent on altered cell cycles. Compromised protein synthesis and mitochondrial function affect maturation kinetics and spindle formation, and cause untimely segregation of chromosomes (predivision), mimicking an aged phenotype. CONCLUSIONS Altered cell cycles and untimely resolution of chiasmata but also nondisjunction of late segregating homologues caused by asynchrony in cytoplasmic and nuclear maturation appear to be causal to errors in chromosome segregation with advanced maternal age. Oocytes appear to lack checkpoints guarding against untimely chromosome segregation. Genes and exposures affecting pool size, hormonal homeostasis and interactions between oocytes and their somatic compartment and thus quality of follicles and oocytes have the potential to critically influence chromosome distribution in female meiosis and affect fertility in humans and other mammals.
Collapse
|
128
|
Ciemerych MA, Kubiak JZ. Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Dev Biol 1998; 200:198-211. [PMID: 9705227 DOI: 10.1006/dbio.1998.8930] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that during in vitro maturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H x C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.
Collapse
Affiliation(s)
- M A Ciemerych
- Institute of Zoology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
129
|
Andreassen PR, Lacroix FB, Villa-Moruzzi E, Margolis RL. Differential subcellular localization of protein phosphatase-1 alpha, gamma1, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol 1998; 141:1207-15. [PMID: 9606212 PMCID: PMC2137188 DOI: 10.1083/jcb.141.5.1207] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatase-1 (PP-1) is involved in the regulation of numerous metabolic processes in mammalian cells. The major isoforms of PP-1, alpha, gamma1, and delta, have nearly identical catalytic domains, but they vary in sequence at their extreme NH2 and COOH termini. With specific antibodies raised against the unique COOH-terminal sequence of each isoform, we find that the three PP-1 isoforms are each expressed in all mammalian cells tested, but that they localize within these cells in a strikingly distinct and characteristic manner. Each isoform is present both within the cytoplasm and in the nucleus during interphase. Within the nucleus, PP-1 alpha associates with the nuclear matrix, PP-1 gamma1 concentrates in nucleoli in association with RNA, and PP-1 delta localizes to nonnucleolar whole chromatin. During mitosis, PP-1 alpha is localized to the centrosome, PP-1 gamma1 is associated with microtubules of the mitotic spindle, and PP-1 delta strongly associates with chromosomes. We conclude that PP-1 isoforms are targeted to strikingly distinct and independent sites in the cell, permitting unique and independent roles for each of the isoforms in regulating discrete cellular processes.
Collapse
Affiliation(s)
- P R Andreassen
- Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS), 38027 Grenoble cedex 1, France
| | | | | | | |
Collapse
|
130
|
Dupont G. Link between fertilization-induced Ca2+ oscillations and relief from metaphase II arrest in mammalian eggs: a model based on calmodulin-dependent kinase II activation. Biophys Chem 1998; 72:153-67. [PMID: 9652092 DOI: 10.1016/s0301-4622(98)00131-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian eggs are ovulated in metaphase II of meiosis, in a state characterized by high levels of cyclin B and of active maturation promoting factor (MPF). This arrest is mediated by an activity referred to as cytostatic factor (CSF) which prevents the degradation of cyclin. Fertilization triggers a train of Ca2+ spikes which is responsible for the decrease in activity of both MPF and CSF. The decline in MPF however much precedes that in CSF. Experimental observations on mammalian eggs indicate that the kinetics of cell cycle resumption much depends on the temporal pattern of the repetitive Ca2+ spikes. Here, we propose a theoretical model which accounts for Ca(2+)-induced relief from metaphase II arrest in mammalian eggs. The model is based on the fact that Ca2+/calmodulin kinase II (CaMKII) activation is the primary event leading to inactivation of both CSF and MPF. To account for experimental observations, it has to be assumed that CaMKII activation affects the level of the active form of the anaphase promoting complex (APC), which initiates the degradation of cyclin, through two pathways characterized by different time scales. Thus, we hypothesize that CaMKII activation by Ca2+ leads to the transformation of a mediator protein from a form which stimulates the inactivation of the APC into a form which gradually and indirectly induces the deactivation of CSF. In consequence, a sufficient number of Ca2+ spikes first triggers the decrease of MPF, thus allowing the egg to enter in interphase, and later that of CSF. Finally, when CSF is low and when Ca2+ oscillations have stopped, the level of MPF can increase again, a phenomenon that would correspond to the first mitosis. This model also accounts for the observed dependence of the time of entry in interphase (marked by the appearance of the pronuclei) on the frequency of Ca2+ spikes, as well as for the possible entry in metaphase III arrest, a pathological state of the egg which results from an insufficient activation by Ca2+. This study provides some theoretical prediction as to the time of the first mitosis as a function of the temporal pattern of Ca2+ oscillations.
Collapse
Affiliation(s)
- G Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
131
|
Abstract
Usually, oocyte meiosis reinitiation appears as a two step process during which release from the prophase block is followed by a second arrest in metaphase I or II. In this review, we will examine the mechanisms required to maintain the metaphase arrest and stabilize MPF activity at this stage. Then, we will analyse the processes required to exit from the metaphase block. These may drive the cells forward to the metaphase-anaphase transition, as a result of fertilization, activation or protein synthesis inhibition. Instead, inhibiting protein phosphorylation drives the oocyte back to interphase. All these treatments result in derepression of DNA synthesis.
Collapse
Affiliation(s)
- P Colas
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
132
|
Dorée M, Le Peuch C, Morin N. Onset of chromosome segregation at the metaphase to anaphase transition of the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:309-18. [PMID: 9552373 DOI: 10.1007/978-1-4615-1809-9_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome segregation is one of the most important acts in the life of the cell. Unequal inheritance of chromosomes (aneuploidy) is a cause of a number of disorders, particularly in humans, even though eukaryotic cells can arrest or delay the transition from metaphase to anaphase if an event critical to the completion of metaphase is impaired. In this report, we review recent advances in our knowledge of how the complex process of chromosome segregation is coupled with cell cycle progression, and starts at onset of anaphase with sister chromatids separation of the replicated chromosomes.
Collapse
Affiliation(s)
- M Dorée
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 9008, Montpellier, France
| | | | | |
Collapse
|
133
|
Santella L, Kyozuka K, De Riso L, Carafoli E. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 1998; 23:123-30. [PMID: 9601607 DOI: 10.1016/s0143-4160(98)90110-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteolysis is a key event in the control of the cell cycle. Most of the proteins which are degraded at specific cycle points, e.g. cyclins A, B, and E, are substrates of the ubiquitin/proteasome pathway. The Ca2+ dependent neutral protease calpain also cleaves cell cycle proteins, among them cyclin D1 and the c-mos proto-oncogene product which is a component of the CSF. The proteasome itself, however, may be under Ca2+ control through the binding of Ca2+ to its 29 kDa regulatory subunit. Calpain undergoes relocation among cell compartments during the various steps of the mitotic and meitotic cycles. It promotes the initiation and the progression of mitosis when injected into the perinuclear space of synchronized PtK1 cells, and the resumption of meiosis when directly injected into the nuclei of prophase-arrested starfish oocytes. Apart from the proteins mentioned above, most of the substrates of calpain which become cleaved during mitosis and meiosis are still unknown. Microtubule-associated proteins are likely candidates.
Collapse
Affiliation(s)
- L Santella
- Stazione Zoologica A. Dohrn, Napoli, Italy
| | | | | | | |
Collapse
|
134
|
Pérez-Mongiovi D, Chang P, Houliston E. A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus. J Cell Sci 1998; 111 ( Pt 3):385-93. [PMID: 9427686 DOI: 10.1242/jcs.111.3.385] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the period of mitosis, two surface contraction waves (SCWs) progress from the animal to vegetal poles of the Xenopus egg. It has been shown that these SCWs occur in parallel with the activation of MPF and with its subsequent inactivation in the animal and vegetal hemispheres, suggesting that they are responses to propagated waves of MPF activity across the egg. We have analysed the mechanism of MPF regulation in different regions of the egg in detail in relation to SCW progression. The distributions of histone HI kinase activity and of Cdc2 and cyclin B (the catalytic and regulatory subunits of MPF) were followed by dissection of intact eggs following freezing and in cultured fragments separated by ligation. Cdc2 was found to be distributed evenly throughout the egg cytoplasm. Loss of phosphorylated (inactive) forms of Cdc2 coincided spatially with the wave of MPF activation, while cyclin B2 accumulation occurred in parallel in animal and vegetal regions. In ligated vegetal pole fragments no MPF activation or Cdc2 dephosphorylation were detectable. A wave of cyclin B destruction that occurred in concert with the second SCW was also blocked. Taken together these results indicate that the triggering mechanism for MPF activation requires components specific to the animal cytoplasm, acting via Cdc2 dephosphorylation, and that MPF activation subsequently propagates autocatalytically across the egg. SCW progression in the vegetal hemisphere was followed directly by time-lapse videomicroscopy of subcortical mitochondrial islands. The first SCW traversed the vegetal pole at the time of MPF activation in this region. Like MPF activation and inactivation, SCWs were blocked in the vegetal region by ligation. These observations reinforce the hypothesis that the first SCW is a direct consequence of the MPF activation wave. It may reflect depolymerisation of the subcortical microtubule network since it coincided exactly with the arrest of the microtubule-dependent movement of ‘cortical rotation’ and was related in direction in most eggs. The cyclin B destruction wave and associated cortical contraction of the second SCW may be localised downstream consequences of the MPF activation wave, or they may propagate independently from the animal cytoplasm.
Collapse
Affiliation(s)
- D Pérez-Mongiovi
- Unité de Biologie Cellulaire Marine, ERS 643 CNRS-Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France
| | | | | |
Collapse
|
135
|
Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K. Ubiquitin-dependent degradation of cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem 1998; 273:1387-92. [PMID: 9430673 DOI: 10.1074/jbc.273.3.1387] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During the endomitotic cell cycle of megakaryocytic cell lines, the levels of cyclin B1 and the activity of cyclin B1-dependent Cdc2 kinase, although detectable, are reduced as compared with megakaryocytes undergoing a mitotic cell cycle. The levels of cyclin A, however, are comparable during both cell cycles. The expression of cyclin B1 mRNA is also equivalent in proliferating and polyploidizing cells. In the current study, we found that the rate of cyclin B1 protein degradation is enhanced in polyploidizing megakaryocytes. This finding has led us to further investigate whether the ubiquitin-proteosome pathway responsible for cyclin B degradation is accelerated in these cells. Our data indicate that polyploidizing megakaryocytic cell lines nad primary bone marrow cells treated with the megakaryocyte proliferation- and ploidy-promoting factor, the c-Mpl ligand, display increased activities of the ubiquitin-proteosome pathway, which degrades cyclin B, as compared with proliferating megakaryocytic cell lines or diploid bone marrow cells, respectively. This degradation has all the hallmarks of a ubiquitin pathway, including the dependence on ATP, the appearance of high molecular weight conjugated forms of cyclin B, and inhibition of the proteolytic process by a mutated form of the ubiquitin-conjugating enzyme Ubc4. Our studies also indicate that the ability to degrade cyclin A is equivalent in both the mitotic and endomitotic cell cycles. The increased potential of polyploid megakaryocytes to degrade cyclin B may be part of the cellular programming that leads to aborted mitosis.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
136
|
Abstract
Injection of sperm preparations into mammalian oocytes and eggs has been shown to elicit persistent [Ca2+]i oscillations that closely resemble fertilization-associated Ca2+ release. However, the ability of these sperm fractions to initiate egg activation has not been clearly demonstrated. In the present experiments, mouse eggs injected with a porcine sperm preparation were evaluated for early and late events of activation. Events monitored included, among early events, the generation of [Ca2+]i oscillations and cortical granule exocytosis and, among late events, the decrease in histone H1 and myelin basic protein kinase activities, polar body extrusion, pronuclear formation, and cleavage to the two-cell stage. Injection of sperm fractions consistently evoked [Ca2+]i oscillations that, in turn, initiated all events of activation. Uninjected control eggs or eggs injected with buffer or heat-treated sperm fractions failed to show Ca2+ responses or activation. In addition, injection of sperm fractions into recently ovulated eggs (experiments were concluded within 15 hr after human chorionic gonadotropin administration) induced high rates of activation, while similarly aged eggs exposed to 7% ethanol for 5 min, a known parthenogenetic treatment, failed to activate. Together these results indicate that injection of sperm fractions elicits [Ca2+]i oscillations that are capable of initiating normal egg activation. These results support the hypothesis that a sperm component participates in the generation of fertilization-associated [Ca2+]i oscillations.
Collapse
Affiliation(s)
- H Wu
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
137
|
Stals H, Bauwens S, Traas J, Van Montagu M, Engler G, Inzé D. Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle, phragmoplast, and chromosomes. FEBS Lett 1997; 418:229-34. [PMID: 9428718 DOI: 10.1016/s0014-5793(97)01368-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A polyclonal antiserum against the p34cdc2 homologue of Arabidopsis thaliana, CDC2aAt, was used in parallel with a polyclonal antiserum against the PSTAIRE motif to study the subcellular localization of CDC2 during the cell cycle of isolated root tip cells of Medicago sativa. During interphase, CDC2 was located in the nucleus and in the cytoplasm. The cytoplasmic localization persisted during the complete cell cycle, whereas the nuclear signal disappeared at nuclear envelope breakdown. At the beginning of anaphase, the anti-CDC2aAt antibody transiently co-localized with condensed chromosomes. The chromosomal co-localization disappeared as anaphase continued and remained excluded from the separated chromosomes until cytokinesis, when CDC2 re-located to the newly forming nuclei. We also observed a co-localization of CDC2 with three microtubular structures, the pre-prophase band, the spindle, and the phragmoplast.
Collapse
Affiliation(s)
- H Stals
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Oocyte and egg are suitable model systems for studying cell division since meiotic maturation resembles a G2/M transition and early embryonic divisions are precisely timed and occur without zygotic transcription. The analysis of oocytes and eggs from different species provides the opportunity to understand the roles of proteins that the critical to the progression and maintenance of the cell cycle. Among them, cyclins are certainly worthy of investigation. Mitotic cyclins (cyclins A and B) are clearly implicated in meiosis and early embryonic cell cycles. More recent studies have revealed that G1-type cyclins (cyclins E and D) could also play a role in both processes and cyclin H has been suggesed to participate to CAK activity (cdc2-activating kinase) in oocytes. The study of cyclins in oocytes and eggs clearly offer insights into their roles during the cell cycle.
Collapse
Affiliation(s)
- F Taieb
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
139
|
Schutte B, Nieland L, van Engeland M, Henfling ME, Meijer L, Ramaekers FC. The effect of the cyclin-dependent kinase inhibitor olomoucine on cell cycle kinetics. Exp Cell Res 1997; 236:4-15. [PMID: 9344580 DOI: 10.1006/excr.1997.3700] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the cyclin-dependent (CDK) inhibitors olomoucine and roscovitine on cell kinetics was studied. To this end, nonsmall cell lung cancer (NSCLC) cell line MR65 and neuroblastoma cell line CHP-212 were pulse labeled with bromodeoxyuridine (BrdUrd) and chased in culture medium, to which various concentrations of olomoucine or roscovitine were added. A dose-dependent inhibition of the G1/S-phase and G2/ M-/G1 transitions was observed. Furthermore, S-phase progression was also inhibited in a dose-dependent manner. Similarly, roscovitine, another CDK inhibitor with a 10-fold higher efficiency for both CDK1 and CDK2 as compared to olomoucine, showed the same effects at a 10-fold lower concentration. At the highest tested doses both olomoucine (200 microM) and roscovitine (40 microM) induced a complete cell cycle block in both cell lines, paralleled by the appearance of apoptotic figures. In these cultures a decrease in CDK1 protein level was found as shown by Western blotting. Bivariate CDK1/DNA analysis confirmed these observations and showed that a subpopulation of cells with characteristics of apoptosis became CDK1 negative. The presented data suggest that cyclins and CDKs are involved at an important nodal point shared by pathways regulating cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- B Schutte
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
140
|
Colonna R, Tatone C, Francione A, Rosati F, Callaini G, Corda D, Di Francesco L. Protein kinase C is required for the disappearance of MPF upon artificial activation in mouse eggs. Mol Reprod Dev 1997; 48:292-9. [PMID: 9291480 DOI: 10.1002/(sici)1098-2795(199710)48:2<292::aid-mrd18>3.0.co;2-#] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to investigate the implication of protein kinase C (PKC) in the mouse egg activation process. We used OAG (1-oleoyl-2-acetyl-sn-glycerol) as a PKC activator, calphostin C as a specific PKC inhibitor, and the calcium ionophore A23187 as a standard parthenogenetic agent. The exposure of zona-free eggs to 150 microM or 50 microM OAG for 10 min resulted in meiosis II completion in approximately 80% of instances. By contrast, at a lower concentration (25 microM), the PKC stimulator was ineffective as parthenogenetic agent. Shortly after the application of 150 microM OAG, the cytosolic Ca2+ concentration ([Ca2+]i) increased transiently in all the eggs examined, whereas after the addition of 50 microM OAG, [Ca2+]i remained unchanged for at least 20 min. During this period, the activity of M-phase promoting factor (MPF) dramatically decreased and most of the eggs entered anaphase except when the PKC was inhibited by calphostin C. Similarly, MPF inactivation and meiosis resumption were prevented in calphostin C-loaded eggs following treatment with A23187, even though the ionophore-induced Ca2+ signalling was not affected. Taken together, our results indicate that stimulation of PKC is a sufficient and necessary event to induce meiosis resumption in mouse eggs and strongly suggest that, in this species, the mechanism by which a transient calcium burst triggers MPF inactivation involves a PKC-dependent pathway.
Collapse
Affiliation(s)
- R Colonna
- Department of Biomedical Science and Technology, University of L'Aquila, Italy
| | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Resumption of meiosis at fertilization is mediated by increased levels of calcium which activate several calcium-dependent enzymes. Calpain, a neutral calcium-activated thiol protease, is present in the cytoplasm of many cells. Its activation is associated with limited autolysis and relocalization in the cell. Calpain is thought to participate in the regulation of mitosis and resumption of meiosis in Xenopus oocytes. In this study we followed the activation and localization of calpain during maturation and fertilization in rat eggs using a polyclonal antibody raised against chicken muscle calpain. A band of 80 kDa was detected in GV oocytes and its level increased in unfertilized MII eggs. At the early stages of fertilization, we observed a transient decrease in the level of calpain which was regained at the pronuclear stage. Adding Ca2+ to lysate of MII eggs resulted in an additional band, representing the degraded fragment of the activated protein. In eggs activated by ionomycin, calpain level decreased, followed by an increase in a dynamic similar to that observed in fertilized eggs. Egg activation also led to changes in calpain localization. A homogenous distribution was observed in GV and in MII eggs, while in activated eggs it was localized predominantly overlying the metaphase plate. In the current study we demonstrate the presence of calpain in the rat egg. During maturation, calpain level increases; however, during egg activation, in response to [Ca2+]i changes, calpain undergoes autolysis, translocaton, and fluctuation in its level. We therefore suggest a correlation between calpain activation and fertilization.
Collapse
Affiliation(s)
- M Malcov
- Department of Embryology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
142
|
Hanai K, Suganuma N, Kikkawa F, Furuhashi M, Tomoda Y. Effects of gonadotropin, estrogen, and progesterone on c-mos gene expression in mouse oocytes in vivo and in vitro. J Obstet Gynaecol Res 1997; 23:389-97. [PMID: 9311182 DOI: 10.1111/j.1447-0756.1997.tb00863.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To analyze the effects of gonadotropin and ovarian steroid hormones on the gene expression of c-mos in mouse oocytes. METHODS The changes of c-mos messenger RNA (mRNA) levels in oocytes were examined after the administration of pregnant mare's serum gonadotropin (PMSG) in vivo, or after incubation with estrogen and/or progesterone in vitro. Five IU PMSG was injected intraperitoneally to female immature mice, and human chorionic gonadotropin was also injected intraperitoneally 48 hours after the PMSG injection, with or without mating with male mice. The oocytes were collected from follicles or oviducts at 24, 30, 36, 42, 48, 60, 72, and 84 hours after the injection. The RNAs were extracted from 5 oocytes at each time point, and a reverse-transcription polymerase chain reaction using specific primers to c-mos DNA was performed to measure the relative amount of c-mos mRNA. RESULTS The c-mos mRNA in oocytes at 36 hours after the injection was 2.7 times higher than that at 24 hours. The c-mos mRNA level gradually decreased thereafter, and after ovulation the level was only 1/10 of the peak level. When the oocytes that were retrieved 24 hours after PMSG injection were incubated with 800 ng/ml estradiol 17-beta or 600 ng/ml progesterone for 120 minutes, the c-mos gene expression was significantly suppressed or stimulated, respectively, in comparison with the absence of these substances. CONCLUSION Although the regulatory mechanism of c-mos gene expression in oocytes is still unclear because the result obtained from the in vitro study, that estrogen suppressed the c-mos gene expression directly, was inconsistent with the result of the in vivo study, that increases of both c-mos mRNA and estrogen occurred simultaneously with PMSG stimulation in the early phase of preovulatory oocytes, our present study revealed that gonadotropin and steroid hormones might affect c-mos gene expression in mouse oocytes indirectly and/or directly.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Estradiol/blood
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Genes, mos/drug effects
- Genes, mos/genetics
- Gonadotropins, Equine/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Oocytes/cytology
- Oocytes/drug effects
- Oocytes/physiology
- Pregnancy
- Progesterone/blood
- Progesterone/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Time Factors
Collapse
Affiliation(s)
- K Hanai
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
143
|
Pavlok A, Kaláb P, Bobák P. Fertilisation competence of bovine normally matured or aged oocytes derived from different antral follicles: morphology, protein synthesis, H1 and MBP kinase activity. ZYGOTE 1997; 5:235-46. [PMID: 9460908 DOI: 10.1017/s0967199400003671] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have investigated the fertilisation competence, protein synthesis, histone H1 kinase and myelin basic protein (MBP) kinase activities in three categories of bovine oocytes (derived from three size categories of follicles: M--medium, 2.5-5.0 mm; S--small, 1.5-2.5 mm; T--tiny, 1.0-1.5 mm). In contrast to more or less normal meiotic maturation (85.6%) and fertilisation (70.8%) of M oocytes cultured for 24 h, the fertilisation of M oocytes cultured for 40 h was associated with increased rates of retarded male pronuclear development and retention of the second polar body. The S and T oocytes cultured for 24 h or 40 h were mostly arrested at defective late diakinesis-metaphase I (77.5-100%) stage. After fertilisation of S and T oocytes cultured for 24 h no polar body was extruded and formation of one, three or four female pronuclei, together with mostly normal male pronuclei, was observed. The fertilisation of S and T oocytes after 40 h culture resulted in a higher number of female and a decreased number of male pronuclei. A major change in the pattern of protein synthesis was associated with the resumption of meiosis. There were no significant differences in the profile of protein synthesis between oocyte categories in all groups either matured or fertilised. The H1 kinase activity reached comparable increased levels in oocytes of all categories matured for 24 h and decreased during the 40 h culture, most significantly in M oocytes. The MBP kinase activity was at approximately the same high level in all categories of oocytes after 24 h of culture and remained stable until 40 h. The fertilisation after 24 h of culture resulted, in M oocytes, in low levels of both H1 and MBP kinase activities; in S oocytes, only H1 kinase was completely inactivated while MBP kinase activity decreased to some extent; in T oocytes, both H1 and MBP kinase activity decreased. Fertilisation of all oocyte categories after 40 h culture resulted in complete inactivation of both these kinases to their basal levels.
Collapse
Affiliation(s)
- A Pavlok
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libĕchov, Czech Republic.
| | | | | |
Collapse
|
144
|
Sette C, Bevilacqua A, Bianchini A, Mangia F, Geremia R, Rossi P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development 1997; 124:2267-74. [PMID: 9187152 DOI: 10.1242/dev.124.11.2267] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A truncated form of the c-kit tyrosine kinase receptor, corresponding to the phosphotransferase portion of the cytoplasmic catalytic domain and the carboxyterminus (tr-kit), is accumulated during late mouse spermiogenesis. Here we report that tr-kit is specifically localized in the residual sperm cytoplasm, with maximal accumulation in the midpiece of the flagellum, suggesting that it can enter the egg during fertilization. Microinjection of extracts from COS cells expressing a recombinant tr-kit protein into metaphase II-arrested mouse oocytes caused complete oocyte activation, including cortical granule exocytosis, completion of the 2nd meiotic division, formation of a parthenogenetic pronucleus and progression through cleavage stages. No activation above background levels was obtained with extracts from mock-transfected COS cells. Similar results were obtained by microinjection of in vitro synthesized tr-kit mRNA into metaphase II-arrested oocytes. Tr-kit-induced parthenogenetic egg activation was completely inhibited by oocyte preincubation with the Ca2(+)-chelating agent BAPTA-AM or with a specific inhibitor of phospholipase C activity. Tr-kit-induced egg activation was associated with a decrease in activity of mitogen-activated protein kinase, an essential component of the cytostatic factor. These results candidate tr-kit as a putative sperm factor required for triggering activation of mouse eggs at fertilization.
Collapse
Affiliation(s)
- C Sette
- Dipartimento di Sanitá Pubblica e Biologia Cellulare, Sezione di Anatomia, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
145
|
Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci U S A 1997; 94:5107-12. [PMID: 9144198 PMCID: PMC24639 DOI: 10.1073/pnas.94.10.5107] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1996] [Accepted: 02/18/1997] [Indexed: 02/04/2023] Open
Abstract
During mitosis an inhibitory activity associated with unattached kinetochores prevents PtK1 cells from entering anaphase until all kinetochores become attached to the spindle. To gain a better understanding of how unattached kinetochores block the metaphase/anaphase transition we followed mitosis in PtK1 cells containing two independent spindles in a common cytoplasm. We found that unattached kinetochores on one spindle did not block anaphase onset in a neighboring mature metaphase spindle 20 microm away that lacked unattached kinetochores. As in cells containing a single spindle, anaphase onset occurred in the mature spindles x = 24 min after the last kinetochore attached regardless of whether the adjacent immature spindle contained one or more unattached kinetochores. These findings reveal that the inhibitory activity associated with an unattached kinetochore is functionally limited to the vicinity of the spindle containing the unattached kinetochore. We also found that once a mature spindle entered anaphase the neighboring spindle also entered anaphase x = 9 min later regardless of whether it contained monooriented chromosomes. Thus, anaphase onset in the mature spindle catalyzes a "start anaphase" reaction that spreads globally throughout the cytoplasm and overrides the inhibitory signal produced by unattached kinetochores in an adjacent spindle. Finally, we found that cleavage furrows often formed between the two independent spindles. This reveals that the presence of chromosomes and/or a spindle between two centrosomes is not a prerequisite for cleavage in vertebrate somatic cells.
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Wadsworth Center, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
146
|
Thibier C, De Smedt V, Poulhe R, Huchon D, Jessus C, Ozon R. In vivo regulation of cytostatic activity in Xenopus metaphase II-arrested oocytes. Dev Biol 1997; 185:55-66. [PMID: 9169050 DOI: 10.1006/dbio.1997.8543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metaphase II arrest of Xenopus oocyte is characterized by the presence of M-phase-promoting factor (MPF) and of a microtubular spindle, both of which are stable in the presence of protein synthesis inhibitors. We studied in vivo this equilibrium state that is settled during meiotic maturation. At time of germinal vesicle breakdown (GVBD), cdc2 kinase and MAP kinase activities are stimulated. A component of the cyclin ubiquitin ligase, CDC27, is phosphorylated at the same time and remains phosphorylated until fertilization, indicating that an important component of the ligase complex is modified as early as GVBD. During a first period extending from GVBD until the cortical anchorage of the metaphase II spindle, homogeneous pools of cdc2 kinase and mitogen-activated protein (MAP) kinase activities are present in oocyte and are strictly dependent on protein turnover, since protein synthesis inhibition induces their total inactivation and drives oocytes into interphase. The metaphase II spindle, once anchored into the cortex, is no more sensitive to protein synthesis inhibition, likewise MAP kinase activity. During this cellular arrest, cdc2 kinase is divided into two distinctly regulated pools. The first one contains cyclin B that actively turns over and is subjected to a microtubular checkpoint. The second one is stable. Alteration of intracellular compartmentation of metaphase II oocytes either by gentle centrifugation or by cold shock inactivates MAP kinase and targets all cyclin B molecules for full destruction. We therefore suggest that MAP kinase participates to the cytostatic activity by preventing part of cyclin B molecules from entering the ubiquitination/degradation machinery which is still turned on in metaphase II oocytes.
Collapse
Affiliation(s)
- C Thibier
- Laboratorie de Physiologie de la Reproduction, URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
This study was undertaken parthenogenetically to activate Chinese hamster oocytes in vitro by chemical stimuli. Oocytes were exposed to five different chemical agents, ethanol (EtOH), strontium chloride (SrCl2), cycloheximide (CHX), phorbol ester (PMA), and ionophore A23187 (IA23). No parthenogenetic activation was observed in the oocytes treated with 8% EtOH for 8-11 min, 1.7 mM and 5.0 mM SrCl2 for 1 hr, 100 microM and 400 microM CHX for 2 hr, and 81 nM and 162 nM PMA for 5 min. In contrast, 89.7% of oocytes parthenogenetically extruded the second polar body in treatment with 3 microM IA23 for 5 min, but only 22.6% of them formed a pronucleus and developed to 2-cell embryos. The remaining ova stopped their cell cycle immediately after completion of the second meiotic division. They had unichromatid chromosomes (monads), which are called MIII chromosomes. Treatment with 5 microM IA23 for 5 min was so deleterious that > 90% of oocytes were degenerated. However, oocyte activation was significantly improved when the treatment with 3 microM IA23 for 5 min was followed by treatment with 8% EtOH for 10 min, 100 microM CHX for 2 hr, 81 nM PMA for 5 min or 3 microM IA23 for 5 min: rates of pronuclear formation were 54.4%, 84.3%, 34.2%, and 54.6%, respectively. More than 80% of pronucleate ova successfully developed into 2-cell stage. Additive treatment with 5 mM SrCl2 for 1 hr had no positive effect on pronuclear formation. Incidences of aneuploidy (4.6%) and structural chromosome aberrations (1.0%) in parthenogenons produced by combined stimuli of IA23 and CHX were not significantly different from those (3.8% and 1.6%, respectively) in female pronuclei of ova fertilized in vitro, showing that combined treatments with IA23 and CHX cause neither nondisjunction at the second meiotic division nor structural aberrations in MII chromosomes. The present technique for parthenogenetic activation of Chinese hamster oocytes may be useful as an assessment system to detect aneugenic and clastogenic effects of mutagens on mammalian oocytes.
Collapse
Affiliation(s)
- H Tateno
- Department of Biological Sciences, Asahikawa Medical College, Japan
| | | |
Collapse
|
148
|
Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL. The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 1997; 110 ( Pt 4):421-9. [PMID: 9067594 DOI: 10.1242/jcs.110.4.421] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exit from mitosis in animal cells is substantially delayed when spindle assembly is inhibited, spindle bipolarity is disrupted, or when a monopolar spindle is formed. These observations have led to the proposal that animal cells have a ‘spindle assembly’ checkpoint for the metaphase-anaphase transition that monitors bipolar spindle organization. However, the existence of such a checkpoint is uncertain because perturbations in spindle organization can produce unattached kinetochores, which by themselves are known to delay anaphase onset. In this study we have tested if cells monitor bipolar spindle organization, independent of kinetochore attachment, by analyzing the duration of mitosis in sea urchin zygotes and vertebrate somatic cells containing multipolar spindles in which all kinetochores are attached to spindle poles. We found that sea urchin zygotes containing tripolar or tetrapolar spindles progressed from nuclear envelope breakdown to anaphase onset with normal timing. We also found that the presence of supernumerary, unpaired spindle poles did not greatly prolong mitosis. Observation of untreated PtK1 cells that formed tripolar or tetrapolar spindles revealed that they progressed through mitosis, on average, at the normal rate. More importantly, the interval between the bipolar attachment of the last monooriented chromosome and anaphase onset was normal. Thus, neither of these cell types can detect the presence of gross aberrations in spindle architecture that inevitably lead to aneuploidy. We conclude that animal cells do not have a checkpoint for the metaphase-anaphase transition that monitors defects in spindle architecture independent of the checkpoint that monitors kinetochore attachment to the spindle. For dividing cells in which spindle microtubule assembly is not experimentally compromised, we propose that the completion of kinetochore attachment is the event which limits the time of the metaphase-anaphase transition.
Collapse
Affiliation(s)
- G Sluder
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | | | | | |
Collapse
|
149
|
Lessman CA, Wang T, Gard DL, Woods CW. Microinjection of anti-alpha-tubulin antibody (DM1A) inhibits progesterone-induced meiotic maturation and deranges the microtubule array in follicle-enclosed oocytes of the frog, Rana pipiens. ZYGOTE 1997; 5:83-95. [PMID: 9223249 DOI: 10.1017/s0967199400003592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microinjection of anti-alpha-tubulin (Dm1A) inhibited progesterone-induced meiotic maturation in large follicle-enclosed oocytes of the frog, Rana pipiens. DM1A (46 nl; 10 mg/ml) injection significantly increased the ED50 value for progesterone as determined by germinal vesicle dissolution (GVD) bioassay. By contrast, low doses of microinjected DM1A (46 nl; 2.5 mg/ml), anti-actin (clone KJ43A), anti-cytokeratin (C-11), anti-intermediate filament antibody (IFA), generic IgG (46 nl; 20 mg/ml) or sodium azide (46 nl; 1 mg/ml), an antibody preservative, were without inhibitory effect in this bioassay. Microinjected, affinity-purified DM1A (46 nl; 7.5 mg/ml) was also inhibitory, but preabsorption with pure tubulin prior to injection significantly reduced the inhibitory effect. DM1A injection had no effect on centrifugation-induced germinal vesicle migration (GVM). Previous work indicated that drugs (e.g. demecolcine and nocodazole), which destabilise microtubules, enhance both centrifugation-induced GVM and progesterone-induced GVD in Rana oocytes. Taking these results together, it is suggested that DM1A injection may have differential effects on microtubules in this cell. Thus, while the majority of microtubules were apparently depolymerised by DM1A (46 nl; 10 mg/ml) injection, a small subpopulation appeared to be stabilised as bundles. Confocal immunofluorescence microscopy of follicle-enclosed oocytes after DM1A injection revealed a major loss of microtubules throughout the cell; however, apparent sparse bundles of microtubules arranged in an approximately 600 microns shell were associated with the injectate region 24 h post-injection. By contrast, control follicle-enclosed oocytes topically labelled with DM1A post-fixation had extensive microtubule arrays similar to those previously reported in Xenopus oocytes. Intracellular recording after DM1A injection and progesterone treatment yielded an intermediate membrane potential (Vm = -31.8 mV) compared with control (immature) DM1A-injected cells (Vm = -44.7 mV) or potassium balanced salt solution (KBS)-injected cells matured with progesterone (Vm = -13.9 mV). These results suggest that DM1A injection does not completely inhibit electrophysiological changes initiated by progesterone. Working hypotheses are proposed that suggest a role for microtubules in the action of progesterone which normally lifts the prophase I block in the Rana follicle-enclosed oocyte.
Collapse
Affiliation(s)
- C A Lessman
- Department of Microbiology & Molecular Cell Sciences, University of Memphis, Tennessee 38152-6041, USA.
| | | | | | | |
Collapse
|
150
|
Abstract
Mos, a protein kinase, is specifically expressed and functions during meiotic maturation (or G2/M progression) of vertebrate oocytes. When expressed ectopically, however, it can also readily induce oncogenic transformation (or uncontrolled G1/S transitions) in somatic cells. In both of these cell types, Mos activates mitogen-activated protein kinase (MAPK), which seems largely to mediate its different functions in both oocyte maturation and cellular transformation. In oocyte maturation, the Mos-MAPK pathway probably serves to activate and stabilize M-phase promoting factor (MPF) (possibly by inhibiting some negative regulator(s) of this factor), while in cellular transformation, it seems to stabilize and activate the nuclear oncoprotein c-Fos as well as to induce transcription of its gene. Thus, the different functions of Mos in oocytes and somatic cells may arise chiefly from its different MAPK-mediated targets in the respective cell types. This review discusses the cellular basis that may enable Mos to act differently in oocytes and somatic cells.
Collapse
Affiliation(s)
- N Sagata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|