101
|
Yao XL, Liu J, Lee E, Ling GSF, McCabe JT. Progesterone Differentially Regulates Pro- and Anti-Apoptotic Gene Expression in Cerebral Cortex Following Traumatic Brain Injury in Rats. J Neurotrauma 2005; 22:656-68. [PMID: 15941375 DOI: 10.1089/neu.2005.22.656] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the administration of progesterone has been shown to be neuroprotective in experimental models of traumatic brain injury (TBI), the mechanisms for this beneficial effect are still poorly understood. The present study examined the effects of progesterone on mRNA and protein levels of the Bcl-2 apoptosis regulatory genes, bax, bad, bcl-2, and bcl-x(L), in cerebral cortex after TBI. Male Sprague-Dawley rats were subjected to either sham surgery or lateral fluid percussion brain injury of moderate severity (2.4-2.6 atm). Within 1 h post-surgery, progesterone (4 mg/kg) or vehicle (corn oil) administration was initiated for 1-7 days postoperatively. Our results indicate that bax and bad mRNA levels and Bax and Bad protein expression in the ipsilateral, injured cerebral cortex were significantly elevated post-TBI, while mRNA levels of bcl-2 and bcl-x(L) or Bcl-2 and Bcl-x(L) protein expression were not changed. Under the sham-treated condition, progesterone significantly increased mRNA levels of the anti-apoptotic gene, bcl-2, but down-regulated pro-apoptotic gene expression (bax and bad) in cerebral cortex. After TBI, progesterone treatment reduced bax and bad mRNA levels in the ipsilateral cerebral cortex of TBI rats, and decreased Bax and Bad protein levels. In addition, bcl-2 and bcl-x(L) mRNA levels, as well as Bcl-2 and Bcl-x(L) protein expression, were increased by progesterone in TBI injured cortex. These data indicate that one of the neuroprotective mechanisms of progesterone may be related to its differential regulation of apoptotic signals.
Collapse
Affiliation(s)
- Xiang-Lan Yao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | | | | | |
Collapse
|
102
|
Lefebvre d'Hellencourt C, Harry GJ. Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. J Neurochem 2005; 93:206-20. [PMID: 15773920 DOI: 10.1111/j.1471-4159.2004.03017.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using a chemical-induced model of dentate granule (DG) cell death, cDNA microarray analysis was used to identify gene profiles from the laser-captured microdissected (LCM) hippocampal DG cell region versus the CA pyramidal cell layer (CA) from 21-day-old male CD1 mice injected with trimethyltin hydroxide (TMT; 3.0 mg/kg, i.p.). At 6 h post-TMT, lectin + microglia displaying a reactive morphology were in contact with active caspase 3+ neurons. By 18 h, amoeboid microglia and signs of phagocytosis, and a mild astrocytic response were present in the DG. There was no evidence of IgG extravasation in the hippocampus, or cell death and glial reactivity in the CA. Atlas 1.2K Clontech array detected 115 genes changed in the hippocampus with TMT and included genes associated with immediate-early responses, calcium homeostasis, cellular signaling, cell cycle, immunomodulation and DNA repair. Early responses localized to LCM DG samples consisted of elevations in inflammatory factors such as tumor necrosis factor-alpha and receptors, as well as MIP1alpha, CD14, CD18, and a decrease in factors associated with calcium buffering. By 18 h, in the DG, changes occurred in transcripts associated with apoptosis, cell adhesion, DNA repair, cell proliferation and growth. In the CA, a differential level of elevation was seen in CD86 antigen, zinc finger protein 38 and DNA damage inducible transcript 3. A significant number of genes was decreased at these early time points in both hippocampal regions.
Collapse
Affiliation(s)
- Christian Lefebvre d'Hellencourt
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
103
|
Lozada A, Maegele M, Stark H, Neugebauer EMA, Panula P. Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobiol 2005; 31:150-62. [PMID: 15771708 DOI: 10.1111/j.1365-2990.2004.00622.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Experimental fluid-percussion models produce brain injury by rapidly injecting saline into the closed cranium of rats. In this study our purpose was to determine how the central histaminergic system, which controls excitability and neurotransmitter release through G-protein coupled receptors, is affected by the pathophysiology of traumatic brain injury. We found that mast cell infiltration, as a result of the trauma, occurred primarily in the injured cortex and did not proceed beyond the fimbria of the hippocampus. In comparing injured animals with controls we found that H3 receptor binding densities are significantly decreased bilaterally in the cortex but are significantly increased bilaterally in the thalamus. H3 receptor binding densities may well be affected by mast cell secretion of mediators (i.e. histamine, heparin, leukotrienes), evidenced by detection of a cosecreted enzyme (mast cell tryptase) in the extracellular region. Moreover, we detected significant decreases in H1 and H3 receptor mRNA as well as Cu/Zn-dependent superoxide dismutase (SOD) mRNA in the thalamic region closest to the trauma. These significant decreases delineate the extent of cellular damage because of trauma and may underlie sustained cognitive and motor deficits displayed by these animals.
Collapse
Affiliation(s)
- A Lozada
- Department of Biology, Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
104
|
Li HH, Lee SM, Cai Y, Sutton RL, Hovda DA. Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 2004; 21:1141-53. [PMID: 15453985 DOI: 10.1089/neu.2004.21.1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microarray technology was employed to determine the differential pattern of gene expression within the hippocampus as a result of traumatic brain injury (TBI). The validity of the microarray data was confirmed using real-time RT-PCR. Following either moderate or severe lateral fluid percussion injury, rats were studied 0.5, 4, and 24 h after injury. In general, animals exhibited mRNA up or down regulation of approximately 10% of the genes studied. However, it was clear that the pattern of gene expression was influenced by both the severity of injury and the time after injury at which animals were studied. For example, genes encoding molecules for cellular signaling, synaptic plasticity, metabolism, ion channels and transporters were up regulated following severe injury, but down regulated following moderate injury. Furthermore, moderate injury was associated with an increasing number of responsive genes as a function of time post-injury. However, animals sustaining a severe level of injury exhibited decreasing number of responsive genes during the same post-injury period. The different patterns of gene expression between injury severity and across time after the insult suggests that the pathophysiological cascade induced by TBI is accompanied by a molecular response which, like the other aspects of the cellular response for survival, may indicate a "molecular window" that may offer an opportunity for therapeutic interventions involving gene therapy. Our results also suggest that fundamentally different pathophysiological processes or cascades may be induced by different severities of injury.
Collapse
Affiliation(s)
- Hong Hua Li
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA
| | | | | | | | | |
Collapse
|
105
|
Abstract
We have used cDNA array analysis to examine the expression of genes in reactive astrocytes of dopamine-depleted striatum of rats in vivo, an animal model for Parkinson disease, compared to those from control striatum. The striatum of both normal adult rats and rats whose substantia nigra had been lesioned with 6-hydroxydopamine was removed one week following lesion. After fixing the tissue in RNAlater, individual astrocytes, isolated directly from dissociated striatum and confirmed to be astocytes by expression of glial fibrillary acidic protein (GFAP) mRNA using single cell RT-PCR, were used as the source of mRNA. Co-localization of GFAP with either of 2 antibodies known to label only reactive astrocytes in vivo confirmed that virtually all astrocytes in the lesioned striatum were reactive. The analysis has identified 29 genes whose expression is turned on or enhanced in dopamine-depleted striatal astrocytes and 2 whose expression is decreased. In situ hybridization was used to confirm the localization of 8 of these genes to astrocytes: these included GDNF, NGF, bFGF, TNF-alpha, MIP-1alpha, c-jun, Fra-1 and Fra-2. Understanding these gene differences that occur in astrocytes in response to dopamine depletion should enhance our ability to promote recovery from the injury.
Collapse
Affiliation(s)
- Takao Nakagawa
- Neurotrophic Factors Section, National Institute of Neurological Disorders and Stroke, NIH, DHHS, Bethesda, Md
| | - Joan P. Schwartz
- Neurotrophic Factors Section, National Institute of Neurological Disorders and Stroke, NIH, DHHS, Bethesda, Md
| |
Collapse
|
106
|
Vázquez-Chona F, Song BK, Geisert EE. Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis Sci 2004; 45:2737-46. [PMID: 15277499 PMCID: PMC2821791 DOI: 10.1167/iovs.03-1047] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The goal of this study was to define the temporal changes in gene expression after retinal injury and to relate these changes to the inflammatory and reactive response. A specific emphasis was placed on the tetraspanin family of proteins and their relationship with markers of reactive gliosis. METHODS Retinal tears were induced in adult rats by scraping the retina with a needle. After different survival times (4 hours, and 1, 3, 7, and 30 days), the retinas were removed, and mRNA was isolated, prepared, and hybridized to the Affymatrix RG-U34A microarray (Santa Clara, CA). Microarray results were confirmed by using RT-PCR and correlation to protein levels was determined. RESULTS Of the 8750 genes analyzed, approximately 393 (4.5%) were differentially expressed. Clustering analysis revealed three major profiles: (1) The early response was characterized by the upregulation of transcription factors; (2) the delayed response included a high percentage of genes related to cell cycle and cell death; and (3) the late, sustained profile clustered a significant number of genes involved in retinal gliosis. The late, sustained cluster also contained the upregulated crystallin genes. The tetraspanins Cd9, Cd81, and Cd82 were also associated with the late, sustained response. CONCLUSIONS The use of microarray technology enables definition of complex genetic changes underlying distinct phases of the cellular response to retinal injury. The early response clusters genes associate with the transcriptional regulation of the wound-healing process and cell death. Most of the genes in the late, sustained response appear to be associated with reactive gliosis.
Collapse
Affiliation(s)
- Félix Vázquez-Chona
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
107
|
Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci 2004; 24:3933-43. [PMID: 15102909 PMCID: PMC6729420 DOI: 10.1523/jneurosci.5646-03.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Consolidation of long-term memory (LTM) is a complex process requiring synthesis of new mRNAs and proteins. Many studies have characterized the requirement for de novo mRNA and protein synthesis; however, few studies have comprehensively identified genes regulated during LTM consolidation. We show that consolidation of long-term contextual memory in the hippocampus triggers altered expression of numerous genes encompassing many aspects of neuronal function. Like contextual memory formation, this altered gene expression required NMDA receptor activation and was specific for situations in which the animal formed an association between a physical context and a sensory stimulus. Using a bioinformatics approach, we found that regulatory elements for several transcription factors are over-represented in the upstream region of genes regulated during consolidation of LTM. Using a knock-out mouse, we found that c-rel, one of the transcription factors identified in our bioinformatics study, is necessary for hippocampus-dependent long-term memory formation.
Collapse
Affiliation(s)
- Jonathan M Levenson
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Yakubov E, Gottlieb M, Gil S, Dinerman P, Fuchs P, Yavin E. Overexpression of genes in the CA1 hippocampus region of adult rat following episodes of global ischemia. ACTA ACUST UNITED AC 2004; 127:10-26. [PMID: 15306117 DOI: 10.1016/j.molbrainres.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 12/29/2022]
Abstract
Ischemic stress is associated with marked changes in gene expression in the hippocampus--albeit little information exists on the activation of nonabundant genes. We have examined the expression of several known genes and identified novel ones in the adult rat hippocampus after a mild, transient, hypovolemic and hypotensive, global ischemic stress. An initial differential screening using a prototype array to assess gene expression after stress followed by a suppression subtractive hybridization protocol and cDNA microarray revealed 124 nonoverlapped transcripts predominantly expressed in the CA1 rat hippocampus region in response to ischemic stress. About 78% of these genes were not detected with nonsubtracted probes. Reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization on these 124 transcripts confirmed the differential expression of at least 83. Most robustly expressed were gene sequences NFI-B, ATP1B1, RHOGAP, PLA2G4A, BAX, CASP3, P53, MAO-A, FRA1, HSP70.2, and NR4A1 (NUR77), as well as sequence tags of unknown function. New stress-related genes of similar functional motifs were identified, reemphasizing the importance of functional grouping in the analysis of multiple gene expression profiles. These data indicate that ischemia elicits expression of an array of functional gene clusters that may be used as an index for stress severity and a template for target therapy design.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression/physiology
- Gene Expression Profiling
- Gene Expression Regulation
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Hippocampus/anatomy & histology
- Hippocampus/metabolism
- In Situ Hybridization/methods
- Ischemic Attack, Transient/genetics
- Ischemic Attack, Transient/metabolism
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotide Array Sequence Analysis/methods
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- E Yakubov
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
109
|
Dash PK, Kobori N, Moore AN. A molecular description of brain trauma pathophysiology using microarray technology: an overview. Neurochem Res 2004; 29:1275-86. [PMID: 15176484 DOI: 10.1023/b:nere.0000023614.30084.eb] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been estimated that 50% of human transcriptome, the collection of mRNA in a cell, is expressed in the brain, making it one of the most complex organs to understand in terms of genomic responses to injury. The availability of genome sequences for several organisms coupled with the increasing affordability of microarray technologies makes it feasible to monitor the mRNA levels of thousands of genes simultaneously. In this paper, we provide an overview of findings using both cDNA- and oligonucleotide-based microarray analyses after experimental traumatic brain injury (TBI). Specifically, the utility of this methodology as a means of cataloging the biochemical sequelae of brain trauma and elucidating novel genes or pathways for further study is discussed. Furthermore, we offer future directions for the continued evaluation of microarray results and discuss the usefulness of microarray techniques as a testing format for determining the efficacy of mechanism-based therapies.
Collapse
Affiliation(s)
- Pramod K Dash
- Department of Neurobiology and Anatomy, and The Vivian L. Smith Center for Neurologic Research, The University of Texas Medical School, Houston, Texas 77225, USA.
| | | | | |
Collapse
|
110
|
Marciano PG, Brettschneider J, Manduchi E, Davis JE, Eastman S, Raghupathi R, Saatman KE, Speed TP, Stoeckert CJ, Eberwine JH, McIntosh TK. Neuron-specific mRNA complexity responses during hippocampal apoptosis after traumatic brain injury. J Neurosci 2004; 24:2866-76. [PMID: 15044525 PMCID: PMC6729833 DOI: 10.1523/jneurosci.5051-03.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In an effort to understand the complexity of genomic responses within selectively vulnerable regions after experimental brain injury, we examined whether single apoptotic neurons from both the CA3 and dentate differed from those in an uninjured brain. The mRNA from individual active caspase 3(+)/terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling [TUNEL(-)] and active caspase 3(+)/TUNEL(+) pyramidal and granule neurons in brain-injured mice were amplified and compared with those from nonlabeled neurons in uninjured brains. Gene analysis revealed that overall expression of mRNAs increased with activation of caspase 3 and decreased to below uninjured levels with TUNEL reactivity. Cell type specificity of the apoptotic response was observed with both regionally distinct expression of mRNAs and differences in those mRNAs that were maximally regulated. Immunohistochemical analysis for two of the most highly differentially expressed genes (prion and Sos2) demonstrated a correlation between the observed differential gene expression after traumatic brain injury and corresponding protein translation.
Collapse
Affiliation(s)
- Paolo G Marciano
- Departments of Neuroscience, Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Cernak I, Vink R, Natale J, Stoica B, Lea PM, Movsesyan V, Ahmed F, Knoblach SM, Fricke ST, Faden AI. The "dark side" of endocannabinoids: a neurotoxic role for anandamide. J Cereb Blood Flow Metab 2004; 24:564-78. [PMID: 15129189 DOI: 10.1097/00004647-200405000-00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endocannabinoids, including 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine; AEA), have neuroprotective effects in the brain through actions at CB1 receptors. However, AEA also binds to vanilloid (VR1) receptors and induces cell death in several cell lines. Here we show that anandamide causes neuronal cell death in vitro and exacerbates cell loss caused by stretch-induced axonal injury or trophic withdrawal in rat primary neuronal cultures. Administered intracerebroventricularly, AEA causes sustained cerebral edema, as reflected by diffusion-weighted magnetic resonance imaging, regional cell loss, and impairment in long-term cognitive function. These effects are mediated, in part, through VR1 as well as through calpain-dependent mechanisms, but not through CB1 receptors or caspases. Central administration of AEA also significantly upregulates genes involved in pro-inflammatory/microglial-related responses. Thus, anandamide produces neurotoxic effects both in vitro and in vivo through multiple mechanisms independent of the CB1 receptor.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
McArthur DL, Chute DJ, Villablanca JP. Moderate and severe traumatic brain injury: epidemiologic, imaging and neuropathologic perspectives. Brain Pathol 2004; 14:185-94. [PMID: 15193031 PMCID: PMC8095962 DOI: 10.1111/j.1750-3639.2004.tb00052.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This article examines 3 contexts in which moderate or severe traumatic brain injury can be approached. The epidemiologic background of moderate and severe traumatic brain injury is presented, with particular attention paid to new findings from the study of a national hospital inpatient database. We review aspects of neuroimaging and how new imaging modalities can reveal fine detail about traumatic brain injury. Finally we examine the current state of neuropathologic evaluation of, and recent developments in, understanding of the neural disruptions that occur following traumatic brain injury, together with cellular reactions to these disruptions.
Collapse
Affiliation(s)
- David L McArthur
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1752, USA.
| | | | | |
Collapse
|
113
|
Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 2004; 186:221-34. [PMID: 15026258 DOI: 10.1016/j.expneurol.2003.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 11/27/2003] [Accepted: 12/10/2003] [Indexed: 11/24/2022]
Abstract
The effects of a unilateral, penetrating brain trauma on IGF-I, BDNF and NT-3 were studied immunocytochemically in the rat. BDNF and NT-3 were decreased in the peritraumatic area, but increased in the adjacent region, 4 and 12 h post-injury. One week following the trauma, BDNF remained low in the peritraumatic area, but was restored to normal levels in the adjacent, while no effect of injury on NT-3 levels was detected in either area. Injury resulted in an increase in IGF-I levels in the peritraumatic area, which was most pronounced 1 week following the trauma, indicating that IGF-I could participate in endogenous repair processes. We thus administered IGF-I immediately following the trauma and investigated its effects on injury-induced changes in neurotrophin levels. Administration of IGF-I partially reversed the injury-induced decrease in BDNF and NT-3 in the peritraumatic area observed 4 and 12 h post-injury, while at the same time-points, it completely cancelled the effects of injury in the adjacent region. One week after the trauma, BDNF levels were dramatically increased in both the peritraumatic and adjacent area, reaching levels even higher than those of the sham-operated animals, following IGF-I administration. Our results showing that IGF-I not only counteracts injury-induced changes in neurotrophins, but can also further increase their levels, indicate that this growth factor could mediate repair and/or protective processes, following brain trauma.
Collapse
Affiliation(s)
- Ilias Kazanis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, Athens 11527, Greece
| | | | | | | |
Collapse
|
114
|
Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J, Bukhman YV, Young TA, Charles V, Palfreyman MG. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004; 24:2667-77. [PMID: 15028759 PMCID: PMC6729526 DOI: 10.1523/jneurosci.5377-03.2004] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 12/27/2022] Open
Abstract
Electroconvulsive therapy (ECT) remains the treatment of choice for drug-resistant patients with depressive disorders, yet the mechanism for its efficacy remains unknown. Gene transcription changes were measured in the frontal cortex and hippocampus of rats subjected to sham seizures or to 1 or 10 electroconvulsive seizures (ECS), a model of ECT. Among the 3500-4400 RNA sequences detected in each sample, ECS increased by 1.5- to 11-fold or decreased by at least 34% the expression of 120 unique genes. The hippocampus produced more than three times the number of gene changes seen in the cortex, and many hippocampal gene changes persisted with chronic ECS, unlike in the cortex. Among the 120 genes, 77 have not been reported in previous studies of ECS or seizure responses, and 39 were confirmed among 59 studied by quantitative real time PCR. Another 19 genes, 10 previously unreported, changed by <1.5-fold but with very high significance. Multiple genes were identified within distinct pathways, including the BDNF-MAP kinase-cAMP-cAMP response element-binding protein pathway (15 genes), the arachidonic acid pathway (5 genes), and more than 10 genes in each of the immediate-early gene, neurogenesis, and exercise response gene groups. Neurogenesis, neurite outgrowth, and neuronal plasticity associated with BDNF, glutamate, and cAMP-protein kinase A signaling pathways may mediate the antidepressant effects of ECT in humans. These genes, and others that increase only with chronic ECS such as neuropeptide Y and thyrotropin-releasing hormone, may provide novel ways to select drugs for the treatment of depression and mimic the rapid effectiveness of ECT.
Collapse
|
115
|
Wintzer M, Mladinic M, Lazarevic D, Casseler C, Cattaneo A, Nicholls J. Strategies for identifying genes that play a role in spinal cord regeneration. J Anat 2004; 204:3-11. [PMID: 14690473 PMCID: PMC1571237 DOI: 10.1111/j.1469-7580.2004.00258.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A search for genes that promote or block CNS regeneration requires numerous approaches; for example, tests can be made on individual candidate molecules. Here, however, we describe methods for comprehensive identification of genes up- and down-regulated in neurons that can and cannot regenerate after injury. One problem concerns identification of low-abundance genes out of the 30,000 or so genes expressed by neurons. Another difficulty is knowing whether a single gene or multiple genes are necessary. When microchips and subtractive differential display are used to identify genes turned on or off, the numbers are still too great to test which molecules are actually important for regeneration. Candidates are genes coding for trophic, inhibitory, receptor and extracellular matrix molecules, as well as unknown genes. A preparation useful for narrowing the search is the neonatal opossum. The spinal cord and optic nerve can regenerate after injury at 9 days but cannot at 12 days after birth. This narrow window allows genes responsible for the turning off of regeneration to be identified. As a next step, sites at which they are expressed (forebrain, midbrain, spinal cord, neurons or glia, intracellular or extracellular) must be determined. An essential step is to characterize proteins, their levels of expression, and their importance for regeneration. Comprehensive searches for molecular mechanisms represent a lengthy series of experiments that could help in devising strategies for repairing injured spinal cord.
Collapse
|
116
|
Yoshiya K, Tanaka H, Kasai K, Irisawa T, Shiozaki T, Sugimoto H. Profile of gene expression in the subventricular zone after traumatic brain injury. J Neurotrauma 2004; 20:1147-62. [PMID: 14651803 DOI: 10.1089/089771503770802844] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells, which reside in the subventricular zone (SVZ) and dentate gyrus (DG) of adult mammals, give rise to new neurons throughout life. However, these neural stem cells do not appear to contribute to regeneration in the damaged central nervous system. Following traumatic brain injury (TBI) in adult rats, the number of proliferating cells labeled with bromodeoxyuridine (BrdU) is significantly increased in the bilateral SVZ and DG; however, these proliferating cells do not contribute to effective regeneration in the damaged area. To gain insight into the molecular mechanisms of these biological actions, changes in gene expression in the SVZ after brain trauma were examined by cDNA microarray. Of 9,596 genes screened, 97 were upregulated and 204 were downregulated. Classifying these genes according to their function suggests that TBI affects a broad range of cellular functions. The validity of the data was confirmed by RT-PCR. The expression of some genes localized in the SVZ was confirmed by in situ hybridization. This combined strategy is effective for comprehensive analysis of the pathophysiological changes in the SVZ after brain injury and should contribute to the understanding of the molecular events that occur after injury. In the future, this may enable regeneration of the damaged central nervous system.
Collapse
Affiliation(s)
- Kazuhisa Yoshiya
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
117
|
Lu XCM, Williams AJ, Yao C, Berti R, Hartings JA, Whipple R, Vahey MT, Polavarapu RG, Woller KL, Tortella FC, Dave JR. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J Neurosci Res 2004; 77:843-57. [PMID: 15334602 DOI: 10.1002/jnr.20218] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Temporal changes in gene expression were measured using DNA microarrays after 30-min or 2-hr transient middle cerebral artery occlusion (MCAo) in rats. Total RNA was extracted from the injured hemisphere at 30 min, 4 hr, 8 hr, 24 hr, 3 days, and 7 days after MCAo for GeneChip analysis using Affymetrix U34 Rat Neurobiology arrays (1,322 functional genes). In total, 267 genes were expressed differentially: 166 genes were upregulated, 94 genes were downregulated, and 7 genes were biphasically up- and downregulated. Among all differentially expressed genes, 88 were newly identified as associated with ischemic brain injury. Most affected genes were distributed among 12 functional categories. Immediate early genes, transcription factors, and heat shock proteins were upregulated as early as 30 min after MCAo, followed by the upregulation of inflammation, apoptosis, cytoskeletal, and metabolism genes, which peaked within 4-24 hr of injury. Neurotrophic growth factors exhibited a sustained upregulation beginning 24 hr after MCAo and persisting through 7 days post-injury. Three classes of genes were downregulated with distinct temporal patterns: ion channel genes and neurotransmitter receptor genes were downregulated between 8-24 hr after injury, whereas synaptic proteins genes were downregulated between 3-7 days after MCAo. Downregulation of synaptic protein gene expression after ischemic injury is of particular interest because of its conspicuously delayed pattern as a functional group, which has not been reported previously and may play a role in post-injury recovery.
Collapse
Affiliation(s)
- X-C May Lu
- Division of Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kobayashi MS, Takahashi Y, Nagata T, Nishida Y, Murata A, Ishikawa K, Asai S. Screening for control genes in rat global cerebral ischemia using high-density oligonucleotide array. J Neurosci Res 2004; 76:512-8. [PMID: 15114623 DOI: 10.1002/jnr.20094] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From conventional relative gene expression analyses (Northern blotting, in situ hybridization, and RT-PCR), it has been reported that the expression of control genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin, used as references may be affected by ischemia. Therefore, we extended searching and evaluation at the mRNA level of transcripts whose expression levels were not changed by cerebral ischemia, using a high-density oligonucleotide array and statistical analysis in a rat global cerebral ischemia and reperfusion model. We added a hyperthermic factor and localization factor to ischemia and identified transcripts with a stable expression level under conditions even more disadvantageous than ischemia only. Screening of more than 8,000 transcripts with the Rat Genome U34A array yielded 28 transcripts, which we listed and classified according to their expression level. Widely used control genes, GAPDH and beta-actin, were not included, although cyclophilin A was included. In addition, we conducted a functional classification based on gene ontology. Under the functional classification of the 28 transcripts, many genes tended to be associated with metabolism. In conclusion, use of several transcripts is recommended, such as those we identified, as references in the analysis of gene expression in pathological models of ischemia.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genetic and Genomic Medicine, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
In the postgenomic era, integrating data obtained from array technologies (e.g., oligonucleotide microarrays) with published information on eukaryotic genomes is beginning to yield biomarkers and therapeutic targets that are key for the diagnosis and treatment of disease. Nevertheless, identifying and validating these drug targets has not been a trivial task. Although a plethora of bioinformatics tools and databases are available, major bottlenecks for this approach reside in the interpretation of vast amounts of data, its integration into biologically representative models, and ultimately the identification of pathophysiologically and therapeutically useful information. In the field of neuroscience, accomplishing these goals has been particularly challenging because of the complex nature of nerve tissue, the relatively small adaptive nature of induced-gene expression changes, as well as the polygenic etiology of most neuropsychiatric diseases. This report combines published data sets from multiple transcript profiling studies that used GeneChip microarrays to illustrate a postanalysis approach for the interpretation of data from neuroscience microarray studies. By defining common gene expression patterns triggered by diverse events (administration of psychoactive drugs and trauma) in different nerve tissues (telencephalic brain areas and spinal cord), we broaden the conclusions derived from each of the original studies. In addition, the evaluation of the identified overlapping gene lists provides a foundation for generating hypotheses relating alterations in specific sets of genes to common physiological processes. Our approach demonstrates the significance of interpreting transcript profiling data within the context of common pathways and mechanisms rather than specific to a given tissue or stimulus. We also highlight the use of gene expression patterns in predictive biology (e.g., in toxicogenomics) as well as the utility of combining data derived from multiple microarray studies that examine diverse biological events for a broader interpretation of data from a particular microarray study.
Collapse
Affiliation(s)
- Sergio Kaiser
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-0438, USA
| | | |
Collapse
|
120
|
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology and Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
121
|
Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI. Gene Expression Profile Changes Are Commonly Modulated across Models and Species after Traumatic Brain Injury. J Neurotrauma 2003; 20:907-27. [PMID: 14588109 DOI: 10.1089/089771503770195777] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Brain trauma is a major cause of morbidity and mortality, both in adult and pediatric populations. Much of the functional deficit derives from delayed cell death resulting from induction of neurotoxic factors that overwhelm endogenous neuroprotective responses. To identify the potential molecular mechanisms underlying such delayed responses, we compared gene expression patterns using high-density oligonucleotide arrays at 4, 8, 24, and 72 h after moderate levels of lateral fluid percussion-induced brain injury in rats and lateral controlled cortical impact injury in mice (a total of 47 profiles). Expression of 82 genes in 12 functional categories was significantly changed in both species after trauma. The largest number of gene expression changes were found in the functional groups related to inflammation (17%), transcription regulation (16%), and cell adhesion/extracellular matrix (15%). Fifty percent of genes similarly altered across models had not been previously implicated in traumatic brain injury. Of particular interest were expression changes in genes linked to neurodegeneration, such as ATF3 and lysosomal membrane glycoprotein 2, and to neuroprotection including lipocortin 1, calponin 3, gelsolin, Id-1, and p45 NF-E2. Gene expression profiling across species and models may help identify candidate molecular pathways induced by brain injury, some of which may provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joanne E Natale
- Research Centers for Genetic Medicine and Neuroscience, Children's National Medical Center, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
122
|
He Z, Bateman A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med (Berl) 2003; 81:600-12. [PMID: 12928786 DOI: 10.1007/s00109-003-0474-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 07/10/2003] [Indexed: 10/26/2022]
Abstract
Progranulin (Pgrn) is a pluripotent secreted growth factor that mediates cell cycle progression and cell motility. It activates the extracellular regulated kinases and phosphatidyl inositol-3 kinase signal cascades, among others, and increases expression of cyclins D and B. Structurally, it belongs to none of the well-established growth factor families. It regulates developmental events as diverse as the onset of cavitation in the preimplantation embryo and male-specific brain differentiation. During wound repair it promotes granulation and neovascularization. It regulates inflammation through a tripartite loop with secretory leukocyte protease inhibitor (SLPI) which protects pgrn from proteolysis, and elastase, which digests it to smaller peptides. Intact pgrn is anti-inflammatory through the inhibition of some of the actions of tumor necrosis factor, while the proteolytic peptides may stimulate the production of proinflammatory cytokines such as interleukin 8. Pgrn is highly expressed in aggressive cancer cell lines and clinical specimens including breast, ovarian, and renal cancers as well as gliomas. In experimental systems it confers an aggressive phenotype on poorly tumorigenic epithelial cancer cells. The malignancy of highly tumorigenic progranulin-expressing cell lines depends on the expression level of the pgrn gene since attenuating pgrn mRNA levels in pgrn-responsive cells greatly inhibits tumor progression. Given its actions in wound repair and tumorigenesis pgrn may prove a useful clinical target, both for prognosis and for therapy.
Collapse
Affiliation(s)
- Zhiheng He
- Vascular Cell Biology and Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
123
|
Gilbert RW, Costain WJ, Blanchard ME, Mullen KL, Currie RW, Robertson HA. DNA microarray analysis of hippocampal gene expression measured twelve hours after hypoxia-ischemia in the mouse. J Cereb Blood Flow Metab 2003; 23:1195-211. [PMID: 14526230 DOI: 10.1097/01.wcb.0000088763.02615.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell death from cerebral ischemia is a dynamic process. In the minutes to days after an ischemic insult, progressive changes in cellular morphology occur. Associated with these events is the regulation of competing programs of gene expression; some are protective against ischemic insult, and others contribute to delayed cell death. Many genes involved in these processes have been identified, but individually, these findings have provided only limited insight into the systems biology of cerebral ischemia. Attempts to characterize the coordinated expression of large numbers of genes in cerebral ischemia has only recently become possible. Today, DNA microarray technology provides a powerful tool for investigating parallel expression changes for thousands of genes at one time. In this study, adult mice were subjected to 30 minutes of hypoxia-ischemia (HI), and the hippocampus was examined 12 hours later for differential gene expression using a 15K high-density mouse EST array. The genomic response to HI is complex, affecting approximately 7% of the total number of ESTs examined. Assigning differentially expressed ESTs to molecular functional groups revealed that HI affects many pathways including the molecular chaperones, transcription factors, kinases, and calcium ion binding genes. A comprehensive list of regulated genes should prove valuable in advancing our understanding of the pathogenesis of cerebral ischemia.
Collapse
Affiliation(s)
- Robert W Gilbert
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
124
|
Rall JM, Matzilevich DA, Dash PK. Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol Appl Neurobiol 2003; 29:118-31. [PMID: 12662320 DOI: 10.1046/j.1365-2990.2003.00439.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Damage to the frontal cortex and to the hippocampus, both in terms of cell loss and neuronal dysfunction, is thought to underlie many of the neurological and behavioural consequences of traumatic brain injury (TBI). Several studies have indicated that the hippocampus is particularly susceptible to central nervous system insults, whereas the frontal cortex possesses relatively higher capacities for regeneration and plasticity. It has been postulated that dissimilarities in the gene expression profiles in these structures, both in the normal and the postinjury states, may underlie these differences. In order to explore this issue, mRNA samples taken from the frontal cortex and the hippocampus of uninjured animals were subjected to high-density microarray analysis. The analysis indicated that the mRNA levels of 65 genes were differentially expressed between these two brain regions. Among these, genes involved in intracellular signalling, neurotransmitter release, and genes encoding for channels and receptors were identified. Samples taken from animals injured using controlled cortical impact (a model of TBI) showed altered mRNA levels for 341 frontal cortex genes 24 h following injury. These genes can be broadly classified into one of 12 functional classes: cell cycle, metabolism, reactive oxygen metabolism, inflammation, receptors, channels and transporters, signal transduction, cytoskeleton, membrane proteins, neuropeptides, growth factors, and proteins involved in transcription/translation. The expression profile of these genes is compared to the expression profile of 241 genes in the hippocampus 24 h following cortical impact injury as previously reported by our laboratory. In addition to genes previously reported in the literature, this study found several genes that have not been associated with TBI. The functional implications of changes in the expression of some of these genes are discussed.
Collapse
Affiliation(s)
- J M Rall
- The Vivian L Smith Center for Neurologic Research, Department of Neurobiology, The University of Texas Medical School, Houston, TX 77225, USA
| | | | | |
Collapse
|
125
|
Long Y, Zou L, Liu H, Lu H, Yuan X, Robertson CS, Yang K. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 2003; 71:710-20. [PMID: 12584729 DOI: 10.1002/jnr.10524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using a cDNA microarray method, we analyzed gene expression profiles in mouse hippocampus after traumatic brain injury (TBI). Of 6,400 randomly selected arrayed genes and expressed sequence tags from a mouse cDNA library, 253 were found to be differentially expressed (106 increased and 147 decreased). Genes involved in cell homeostasis and calcium signaling were primarily up-regulated while those encoding mitochondrial enzymes, metabolic molecules, and structural proteins were predominantly down-regulated. Equal numbers of genes related to inflammatory reactions showed increased or decreased expression. Importantly, a large proportion of the dysregulated genes we identified have not been reported as differentially expressed in TBI models. Semiquantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analyses of representative genes confirmed the validity of the corresponding microarray findings. Thus, our microarray-based evaluation of gene expression in traumatically injured hippocampus identified both known and novel genes that respond to TBI. Further investigation of these candidate molecules may suggest new ways to attenuate the traumatic effects of brain injury.
Collapse
Affiliation(s)
- Yan Long
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003; 71:208-19. [PMID: 12503083 DOI: 10.1002/jnr.10486] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proper CNS function depends on concerted expression of thousands of genes in a controlled and timely manner. Traumatic brain injury (TBI) in mammals results in neuronal death and neurological dysfunction, which might be mediated by altered expression of several genes. By employing a CNS-specific GeneChip and real-time polymerase chain reaction (PCR), the present study analyzed the gene expression changes in adult rat cerebral cortex in the first 24 hr after a controlled cortical impact injury. Many functional families of genes not previously implicated in TBI-induced brain damage are altered in the injured cortex. These include up-regulated transcription factors (SOCS-3, JAK-2, STAT-3, CREM, IRF-1, SMN, silencer factor-B, ANIA-3, ANIA-4, and HES-1) and signal transduction pathways (cpg21, Narp, and CRBP) and down-regulated transmitter release mechanisms (CITRON, synaptojanin II, ras-related rab3, neurexin-1beta, and SNAP25A and -B), kinases (IP-3-kinase, Pak1, Ca(2+)/CaM-dependent protein kinases), and ion channels (K(+) channels TWIK, RK5, X62839, and Na(+) channel I). In addition, several genes previously shown to play a role in TBI pathophysiology, including proinflammatory genes, proapoptotic genes, heat shock proteins, immediate early genes, neuropeptides, and glutamate receptor subunits, were also observed to be altered in the injured cortex. Real-time PCR analysis confirmed the GeneChip data for many of these transcripts. The novel physiologically relevant gene expression changes observed here might explain some of the molecular mechanisms of TBI-induced neuronal damage.
Collapse
|
127
|
Abstract
Symptomatic temporal lobe epilepsy typically develops in three phases: brain insult --> latency period (epileptogenesis) --> recurrent seizures (epilepsy). We hypothesized that remodeling of neuronal circuits underlying epilepsy is associated with altered gene expression during epileptogenesis. Epileptogenesis was induced by electrically triggered status epilepticus (SE) in rats. Animals were continuously monitored with video-EEG, and the hippocampus and temporal lobe were collected either during epileptogenesis (1, 4 and 14 days) or after the first spontaneous seizures (14 days) for cDNA array analysis. Altogether, 282 genes had altered expression, from which 87 were in the hippocampus and 208 in the temporal lobe (overlap in 13). Assessment of hippocampal gene expression during epileptogenesis indicated that 37 genes were altered in the 1-day group, 12 in the 4-day group and 14 in the 14-day epileptogenesis group. There were 42 genes with altered expression in the 14-day epilepsy group. In the temporal lobe, the number of genes with altered expression was 29 in the 1-day group, 155 in the 4-day group, 32 in the 14-day epileptogenesis group and 62 in the 14-day epilepsy group. Products of the altered genes are involved in neuronal plasticity, gliosis, organization of the cytoskeleton or extracellular matrix, cell adhesion, signal transduction, regulation of cell cycle, and metabolism. As most of these genes have not previously been implicated in epileptogenesis or epilepsy, these data open new avenues for understanding the molecular basis of epileptogenesis and provide new targets for rational development of anti-epileptogenic treatments for patients with an elevated risk of epileptogenesis after brain injury.
Collapse
Affiliation(s)
- Katarzyna Lukasiuk
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70 211 Kuopio, Finland
| | | | | |
Collapse
|
128
|
Raghavendra Rao VL, Bowen KK, Dhodda VK, Song G, Franklin JL, Gavva NR, Dempsey RJ. Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J Neurochem 2002; 83:1072-86. [PMID: 12437578 DOI: 10.1046/j.1471-4159.2002.01208.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification of novel modulators of ischemic neuronal death helps in developing new strategies to prevent the stroke-induced neurological dysfunction. Hence, the present study evaluated the gene expression changes in rat cerebral cortex at 6 and 24 h of reperfusion following transient middle cerebral artery occlusion (MCAO) by GeneChip analysis. Transient MCAO resulted in selective increased mRNA levels of genes involved in stress, inflammation, transcription and plasticity, and decreased mRNA levels of genes which control neurotransmitter function and ionic balance. In addition to a number of established ischemia-related genes, many genes not previously implicated in transient focal ischemia-induced brain damage [suppressor of cytokine signaling (SOCS)-3, cAMP responsive element modulator (CREM), cytosolic retinol binding protein (CRBP), silencer factor-B, survival motor neuron (SMN), interferon-gamma regulatory factor-1 (IRF-1), galanin, neurotrimin, proteasome subunit RC8, synaptosomal-associated protein (SNAP)-25 A and B, synapsin 1a, neurexin 1-beta, ras-related rab3, vesicular GABA transporter (VGAT), digoxin carrier protein, neuronal calcium sensor-1 and neurodap] were observed to be altered in the ischemic cortex. Real-time PCR confirmed the GeneChip results for several of these transcripts. SOCS-3 is a gene up-regulated after ischemia which modulates inflammation by controlling cytokine levels. Antisense knockdown of ischemia-induced SOCS-3 protein expression exacerbated transient MCAO-induced infarct volume assigning a neuroprotective role to SOCS-3, a gene not heretofore implicated in ischemic neuronal damage.
Collapse
|
129
|
Yan XD, Hanson AJ, Nahreini P, Koustas WT, Andreatta C, Prasad KN. Altered expression of genes regulating cell growth, proliferation, and apoptosis during adenosine 3',5'-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture. In Vitro Cell Dev Biol Anim 2002; 38:529-37. [PMID: 12703981 DOI: 10.1290/1071-2690(2002)038<0529:aeogrc>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An elevation of the intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) induces terminal differentiation in neuroblastoma (NB) cells in culture; however, genetic alterations during differentiation have not been fully identified. To investigate this, we used Mouse Genome U74A microarray containing approximately 6000 functionally characterized genes to measure changes in gene expression in murine NB cells 30 min and 4, 24, and 72 h after treatment with cAMP-stimulating agents. Based on the time of increase in differentiated functions and their status (reversible versus irreversible) after treatment with cAMP-stimulating agents, the induction of differentiation in NB cells was divided into three distinct phases: initiation (about 4 h after treatment when no increase in differentiated functions is detectable), promotion (about 24 h after treatment when an increase in differentiated functions occurs, but they are reversible upon the removal of cAMP), and maintenance (about 72 h after treatment when differentiated functions are maximally expressed, but they are irreversible upon the removal of cAMP). Results showed that alterations in expression of genes regulating cell growth, proliferation, apoptosis, and necrosis occurred during cAMP-induced differentiation of NB cells. Genes that were upregulated during the initiation, promotion, or maintenance phase were called initiators, promoters, or maintainers of differentiation. Genes that were downregulated during the initiation, promotion, or maintenance phase were called suppressors of initiation, promotion, or maintenance phase. Genes regulating growth may act as initiators, promoters, maintainers, or suppressors of these phases. Genes regulating cell proliferation may primarily act as suppressors of promotion. Genes regulating cell cycle may behave as suppressors of initiation or promotion, whereas those regulating apoptosis and necrosis may act as initiators or suppressors of initiation or promotion. The fact that genetic signals for differentiation occurred 30 min after treatment with cAMP, whereas cell-cycle genes were downregulated at a later time, suggests that decision for NB cells to differentiate is made earlier and not at the cell-cycle stage, as commonly believed.
Collapse
Affiliation(s)
- Xiang-Dong Yan
- Center for Vitamins and Cancer Research, Department of Radiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
130
|
Alder J, Thakker-Varia S, Black IB. Transcriptional analysis in the brain: trophin-induced hippocampal synaptic plasticity. Neurochem Res 2002; 27:1079-92. [PMID: 12462406 DOI: 10.1023/a:1020909022145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene profiling in the central nervous system presents unique challenges due to the unprecedented heterogeneity of cells, systems and functions in time and space. We have employed a multidisciplinary approach using whole cell patch clamp recording and transcriptional analysis to define the genomic basis of trophin-induced hippocampal synaptic plasticity. Transcriptional analysis of single cells by linear amplification of antisense RNA has added a new dimension of sensitivity and selectivity to the study of the complex and heterogeneous population of neurons. We describe different gene expression profiling techniques that offer novel approaches to monitoring thousands of genes in parallel, fostering identification of circuits involved in learning and memory.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | |
Collapse
|
131
|
Abstract
Genomic technologies such as DNA microarrays have been used to study biological processes involved in various normal and disease states; in addition, parallel transcriptional profiling methods hold a great deal of promise for the neurosciences. However, such experiments are technically more demanding and there are unique methodological difficulties for their use in the context of neurobiology and the study of central nervous system disorders.
Collapse
Affiliation(s)
- Carrolee Barlow
- The Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
132
|
Marciano PG, Eberwine JH, Ragupathi R, Saatman KE, Meaney DF, McIntosh TK. Expression profiling following traumatic brain injury: a review. Neurochem Res 2002; 27:1147-55. [PMID: 12462413 DOI: 10.1023/a:1020973308941] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex sequence of putative autodestructive and neuroprotective cellular cascades. It is hypothesized that the genomic responses of cells in the injured brain serve as the basis for these cascades. Traditional methods for analyzing differential gene expression following brain trauma demonstrate that immediate early genes, cytokines, transcription factors, and neurotrophic factors can all participate in the brain's active and directed response to injury, and may do so concurrently. It is this complexity and multiplicity of interrelated molecular mechanisms that has demanded new methods for comprehensive and parallel evaluation of putative as well as novel gene targets. Recent advances in DNA microarray technology have enabled the simultaneous evaluation of thousands of genes and the subsequent generation of massive amounts of biological data relevant to CNS injury. This emerging technology can serve to further current knowledge regarding recognized molecular cascades as well as to identify novel molecular mechanisms that occur throughout the post-traumatic period. The elucidation of the complex alterations in gene expression underlying the pathological sequelae following TBI is of central importance in the design of future therapeutic agents.
Collapse
Affiliation(s)
- Paolo G Marciano
- Department of Neuroscience, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|