101
|
Perricone AJ, Mohammad MK, Geller RL, Mosunjac MB. Cytodiagnostic Sensitivity of Fine Needle Aspiration Biopsy for Hodgkin's Lymphoma Is Decreased in Patients with Human Immunodeficiency Virus Infection. Acta Cytol 2019; 63:352-360. [PMID: 31234174 DOI: 10.1159/000501098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to evaluate the sensitivity of fine needle aspiration (FNA) for the diagnosis of Hodgkin's lymphoma (HL) in HIV-infected patients. STUDY DESIGN An electronic search was conducted to retrospectively identify patients diagnosed with HL who underwent FNA followed by confirmatory biopsy. FNAs were categorized as negative, atypical/suspicious/positive, or nondiagnostic. Diagnostic sensitivity in HIV+ and HIV- patients was statistically compared via Fisher's exact test, with a p value <0.05 considered significant. RESULTS Thirty-six patients meeting inclusion criteria were identified (24 HIV- and 12 HIV+). Average age was 36.0 ± 11.5 and 36.5 ± 7.4 years (means ± SD) in HIV- and HIV+ patients, respectively. The male-to-female ratio was 1.4:1 in HIV- patients versus 3:1 in HIV+ patients. Among these 36 patients, a total of 42 FNAs were performed. Overall sensitivity of FNA was 66.7% (95% confidence interval: 52.4-80.9%). When stratified by HIV status, a statistically significant difference in FNA sensitivity was detected, as sen-sitivity was 84.6% (70.8-98.4%) in HIV- patients versus only 37.5% (13.8-61.2%) in HIV+ patients (p =0.003). CONCLUSION The diagnostic sensitivity of FNA biopsy was significantly attenuated in the HIV+ cohort. In HIV-infected patients presenting with lymphadenopathy, increased clinical suspicion of HL is critical to avoid misdiagnosis.
Collapse
Affiliation(s)
- Adam J Perricone
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, Georgia, USA
| | - Mohammad K Mohammad
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, Georgia, USA
| | - Rachel L Geller
- Fulton County Medical Examiner's Office, Atlanta, Georgia, USA
| | - Marina B Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA,
- Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, Georgia, USA,
| |
Collapse
|
102
|
Follicular dendritic cells display microvesicle-associated LMP1 in reactive germinal centers of EBV+ classic Hodgkin lymphoma. Virchows Arch 2019; 475:175-180. [PMID: 31203443 PMCID: PMC6647529 DOI: 10.1007/s00428-019-02605-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Expression of the latent membrane protein-1 (LMP1) of Epstein-Barr virus (EBV) was investigated in 153 cases of EBV+ classic Hodgkin lymphoma (cHL); 120 cases were pediatric patients (< 14 years of age) from Iraq, and 33 cases were adult patients from Italy. We describe for the first time the presence of LMP1 protein in EBV-encoded RNA (EBER)-negative follicular dendritic cells (FDCs) of reactive germinal centers (GC) associated with EBV+ cHL. Presence of LMP1+ GCs was independent of geographic region and age of patients. Variable numbers of reactive GCs were present in 22.2% of cases (34 of 153), whereas LMP1 staining of FDCs was present in about a third of cases (10 of 34) with reactive GC. Most cases with LMP1+ GC were mixed-cellularity (MC) subtype, but some nodular sclerosis (NS) was also present. GC cells with LMP1+ FDCs were surrounded by numerous EBV-infected cells which were positive for EBER, LMP1, and CD30. Double immunolocalization analysis revealed that LMP1 was associated with CD63, an exosomal marker, and with CD21. The possibility is discussed that peri-follicular EBV-infected cells release LMP1 protein, perhaps through exosomes, and that the protein is then captured by FDCs and is presented to EBER-negative GC B cells.
Collapse
|
103
|
The pathology of epstein-barr virus lymphoproliferations. Hemasphere 2019; 3:HEMASPHERE-2019-0063. [DOI: 10.1097/hs9.0000000000000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 11/26/2022] Open
|
104
|
Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:386. [PMID: 31139570 PMCID: PMC6527808 DOI: 10.3389/fonc.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma, nasal type (ENKL), is a rare malignancy of Non-Hodgkin lymphoma characterized by an aggressive clinical course and poor prognosis. It shows strong association with Epstein-Barr virus infection and occurs more commonly in Asia and Latin America. Various genetic alterations have been identified in ENKL by gene expression profiling and sequencing techniques. The frequent deletion of chromosome 6q21 was reported to lead to the silence of several tumor suppressor genes. Also, there have been novel genetic mutations that were recently uncovered and were found to frequently activate several oncogenic pathways, including the JAK/STAT, NF-κB, and MAPK pathways. Besides, we believe that deregulated single genes and epigenetic dysregulation might be relevant to the mechanism of this disease and thus, may have the potential to shed lights on the development of new therapeutic strategies. The consensus on the standard treatment for ENKL has not yet been currently established. For localized ENKL patients, radiotherapy with concurrent chemotherapy and sequential patterns of chemotherapy and radiotherapy are recommended as first-line therapy. As for advanced or relapsed/refractory ENKL patients, the application of non-anthracycline-containing regimens have significantly improved the clinical outcome, contributing to higher response rate, longer overall survival and progression-free survival. Hematopoietic stem cell transplantation is widely recommended for consolidation after a complete remission or partial remission has been achieved. The anti-programmed death 1 antibody, an immune checkpoint inhibitor, has demonstrated favorable results in treating relapsed or refractory ENKL. Of the current ENKL treatment, researchers are still striving to validate how radiotherapy and chemotherapy should be optimally combined and which of the non-anthracycline-containing regimens is superior. In this review, we summarize the main genetic alterations frequently found in ENKL and their role in providing new insights into the therapeutic targets of this disease, and highlight the recent findings regarding new biologic markers, novel therapeutic strategies applied to this intriguing neoplasm.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
105
|
Dasari V, Sinha D, Neller MA, Smith C, Khanna R. Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: emerging strategies for clinical development. Expert Rev Vaccines 2019; 18:457-474. [PMID: 30987475 DOI: 10.1080/14760584.2019.1605906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) infects more than 95% of the world's population and is associated with infectious mononucleosis as well as a number of cancers in various geographical locations. Despite its significant health burden, no licenced prophylactic or therapeutic vaccines are available. Areas covered: Over the last two decades, our understanding of the role of EBV infection in the pathogenesis and immune regulation of EBV-associated diseases has provided new lines of research to conceptualize various novel prophylactic and therapeutic approaches to control EBV-associated disease. In this review, we evaluate the prophylactic and therapeutic vaccine approaches against EBV and various immunotherapeutic strategies against a number of EBV-associated malignancies. This review also describes the existing and future prospects of improved EBV-targeted therapeutic strategies. Expert opinion: It is anticipated that these emerging strategies will provide answers for the major challenges in EBV vaccine development and help improve the efficacy of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Debottam Sinha
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Michelle A Neller
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
106
|
Abar L, Sobiecki JG, Cariolou M, Nanu N, Vieira AR, Stevens C, Aune D, Greenwood DC, Chan DSM, Norat T. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann Oncol 2019; 30:528-541. [PMID: 30753270 DOI: 10.1093/annonc/mdz045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND To summarise the evidence on the associations between body mass index (BMI) and BMI in early adulthood, height, waist circumference (WC) and waist-to-hip ratio (WHR), and risk of lympho-haematopoietic cancers. METHOD We conducted a meta-analysis of prospective studies and identified relevant studies published up to December 2017 by searching PubMed. A random-effects model was used to calculate dose-response summary relative risks (RRs). RESULTS Our findings showed BMI, and BMI in early adulthood (aged 18-21 years) is associated with the risk of Hodgkin's and non-Hodgkin's lymphoma (HL and NHL), diffuse large beta-cell lymphoma (DLBCL), Leukaemia including acute and chronic myeloid lymphoma (AML and CML), and chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM). The summary RR per 5 kg/m2 increase in BMI were 1.12 [95% confidence interval (CI): 1.05-1.20] for HL, 1.05 (95% CI: 1.03-1.08) for NHL, 1.11 (95% CI: 1.05-1.16) for DLBCL, 1.06 (95% CI: 1.03-1.09) for ML, 1.09 (95% CI: 1.03-1.15) for leukaemia, 1.13 (95% CI: 1.04-1.24) for AML, 1.13 (95% CI: 1.05-1.22) for CML and 1.04 (95% CI: 1.00-1.09) for CLL, and were1.12 (95% CI: 1.05-1.19) for NHL, 1.22 (95% CI: 1.09-1.37) for DLBCL, and 1.19 (95% CI: 1.03-1.38) for FL for BMI in early adulthood analysis. Results on mortality showed a 15%, 16% and 17% increased risk of NHL, MM and leukaemia, respectively. Greater height increased the risk of NHL by 7%, DLBCL by 10%, FL by 9%, MM by 5% and Leukaemia by 7%. WHR was associated with increased risk of DLBCL by 12%. No association was found between higher WC and risk of MM. CONCLUSION Our results revealed that general adiposity in adulthood and early adulthood, and greater height may increase the risk of almost all types of lympho-haematopoietic cancers and this adds to a growing body of evidence linking body fatness to several types of cancers.
Collapse
Affiliation(s)
- L Abar
- Department of Epidemiology and Biostatistics, Imperial College London, London.
| | - J G Sobiecki
- Department of Epidemiology and Biostatistics, Imperial College London, London; Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge
| | - M Cariolou
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - N Nanu
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - A R Vieira
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - C Stevens
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - D Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | | | - D S M Chan
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - T Norat
- Department of Epidemiology and Biostatistics, Imperial College London, London
| |
Collapse
|
107
|
Wang R, Wang J, Zhang N, Wan Y, Liu Y, Zhang L, Pan S, Zhang C, Zhang H, Cao Y. The interaction between Vav1 and EBNA1 promotes survival of Burkitt's lymphoma cells by down-regulating the expression of Bim. Biochem Biophys Res Commun 2019; 511:787-793. [PMID: 30833082 DOI: 10.1016/j.bbrc.2019.02.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 01/11/2023]
Abstract
Vav1 is a guanine nucleotide exchange factor (GEF) predominantly expressed in hematopoietic cells, and functions in the development and antigen-stimulated response of lymphocytes. Burkitt's lymphoma (BL) is characterized as transformed B cell lymphoma, and is highly associated with Epstein-Barr virus (EBV). EBV nuclear antigen 1 (EBNA1) is the only viral protein expressed across all three types of latency and essential for the persistence of EBV genome. It is not clear yet how EBNA1 contributes to the growth advantage of latently infected cells such as in EBV+ lymphoma B cells. Here, we reported that Vav1 interacts with EBNA1 via its C-terminal SH3 domain. This interaction suppresses the expression of a pro-apoptotic Bcl-2 family member, Bim, resulting in the resistance of the BL cells to apoptotic inductions. Our data uncovered Vav1 as a novel target for EBNA1, and suggested a pro-survival role of Vav1 in the pathogenesis of EBV associated BLs.
Collapse
Affiliation(s)
- Ruikun Wang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yajuan Wan
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaohui Liu
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liming Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuang Pan
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Youjia Cao
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China; Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
108
|
Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9:3136. [PMID: 30809233 PMCID: PMC6379258 DOI: 10.3389/fimmu.2018.03136] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Common understanding suggests that the normal function of a "healthy" immune system safe-guards and protects against the development of malignancies, whereas a genetically impaired one might increase the likelihood of their manifestation. This view is primarily based on and apparently supported by an increased incidence of such diseases in patients with specific forms of immunodeficiencies that are caused by high penetrant gene defects. As I will review and discuss herein, such constellations merely represent the tip of an iceberg. The overall situation is by far more varied and complex, especially if one takes into account the growing difficulties to define what actually constitutes an immunodeficiency and what defines a cancer predisposition. The enormous advances in genome sequencing, in bioinformatic analyses and in the functional in vitro and in vivo assessment of novel findings together with the availability of large databases provide us with a wealth of information that steadily increases the number of sequence variants that concur with clinically more or less recognizable immunological problems and their consequences. Since many of the newly identified hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to ascertain. The analyses of large data sets, on the other hand, continuously supply us with low penetrant variants that, at least in statistical terms, are clearly tumor predisposing, although their specific relevance for the respective carriers still needs to be carefully assessed on an individual basis. Finally, defects and variants that affect the same gene families and pathways in both a constitutional and somatic setting underscore the fact that immunodeficiencies and cancer predisposition can be viewed as two closely related errors of development. Depending on the particular genetic and/or environmental context as well as the respective stage of development, the same changes can have either a neutral, predisposing and, in some instances, even a protective effect. To understand the interaction between the immune system, be it "normal" or "deficient" and tumor predisposition and development on a systemic level, one therefore needs to focus on the structure and dynamic functional organization of the entire immune system rather than on its isolated individual components alone.
Collapse
Affiliation(s)
- Oskar A. Haas
- Department of Clinical Genetics, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
109
|
Abstract
Orbital lymphomas constitute 50-60% of ocular adnexal lymphomas. A total of 2211 cases of orbital lymphoma with a known subtype have been reported in the last 24 years (1994-2017). The vast majority of orbital lymphomas are of B-cell origin (97%), of which extranodal marginal zone B-cell lymphoma (EMZL) (59%) is the most common subtype, followed by diffuse large B-cell lymphoma (23%), follicular lymphoma (9%), and mantle cell lymphoma (5%). Orbital lymphoma is primarily a disease of the elderly. Gender distribution varies according to lymphoma subtype. However, extranodal marginal zone B-cell lymphoma (53%) and follicular lymphoma (75%) show a female predominance, whereas diffuse large B-cell lymphoma shows an even gender distribution. Mantle cell lymphoma has a striking male predominance of 80%. The histopathological subtype and the clinical stage of the disease are the best indicators of prognosis and patient outcome. Low-grade lymphomas such as extranodal marginal zone B-cell lymphoma and FL have a good prognosis, whereas high-grade lymphomas (diffuse large B-cell lymphoma and mantle cell lymphoma) are associated with a poor prognosis. When managing solitary low-grade lymphomas, radiotherapy is the treatment of choice. Chemotherapy, with or without radiotherapy, should be chosen for disseminated and high-grade lymphomas.
Collapse
Affiliation(s)
- Tine Gadegaard Olsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
110
|
Bedri S, Sultan AA, Alkhalaf M, Al Moustafa AE, Vranic S. Epstein-Barr virus (EBV) status in colorectal cancer: a mini review. Hum Vaccin Immunother 2018; 15:603-610. [PMID: 30380978 DOI: 10.1080/21645515.2018.1543525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a well-characterized oncovirus, associated with several malignancies. The complex and heterogeneous nature of colorectal cancer (CRC) has led to many epidemiological causal associations with CRC. However, a direct causal link between microbial infections and CRC has not been established yet. Our review indicates that the current evidence for the presence and role in EBV in CRC is insufficient and contradictory. The design of the analyzed studies, sample size as well as methodology used for EBV detection varied markedly and consequently may not lead to meaningful conclusions. The presence of EBV in other colorectal tumors (lymphomas, smooth muscle tumors) is in line with their status at other anatomic locations and may have therapeutic implications with EBV-specific vaccines. On the other hand, studies exploring EBV in colorectal adenoma-carcinoma sequence and its molecular genetic characteristics are largely missing and may significantly contribute to a better understanding of the role of EBV in CRC.
Collapse
Affiliation(s)
| | - Ali A Sultan
- b Weill Cornell Medicine - Qatar , Cornell University, Qatar Foundation - Education City , Doha , Qatar
| | | | - Ala-Eddin Al Moustafa
- d College of Medicine , Qatar University , Doha , Qatar.,e Syrian Research Cancer Centre of the Syrian Society against Cancer , Aleppo , Syria.,f Oncology Department , McGill University , Quebec , Montreal , Canada
| | - Semir Vranic
- d College of Medicine , Qatar University , Doha , Qatar
| |
Collapse
|
111
|
Synchronous discordant Epstein-Barr virus (EBV)–positive nodal T/NK-cell lymphoma and EBV-positive diffuse large B cell lymphoma in a patient with a history of EBV-positive Burkitt lymphoma. J Hematop 2018. [DOI: 10.1007/s12308-018-0334-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
112
|
Yin H, Qu J, Peng Q, Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2018; 208:573-583. [PMID: 30386928 PMCID: PMC6746687 DOI: 10.1007/s00430-018-0570-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022]
Abstract
The early stage of oncogenesis is linked to the disorder of the cell cycle. Abnormal gene expression often leads to cell cycle disorders, resulting in malignant transformation of human cells. Epstein–Barr virus (EBV) is associated with a diverse range of human neoplasms, such as malignant lymphoma, nasopharyngeal carcinoma and gastric cancer. EBV mainly infects human lymphocytes and oropharyngeal epithelial cells. EBV is latent in lymphocytes for a long period of time, is detached from the cytoplasm by circular DNA, and can integrate into the chromosome of cells. EBV expresses a variety of latent genes during latent infection. The interaction between EBV latent genes and oncogenes leads to host cell cycle disturbances, including the promotion of G1/S phase transition and inhibition of cell apoptosis, thereby promoting the development of EBV-associated neoplasms. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis involve diverse genes and signal pathways. Here, we review the molecular mechanisms of EBV-driven cell cycle progression and promoting oncogenesis.
Collapse
Affiliation(s)
- Huali Yin
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.,Department of Pathology, Central Hospital of Shaoyang, Hunan, China
| | - Jiani Qu
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Qiu Peng
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Runliang Gan
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
113
|
Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci Rep 2018; 8:15438. [PMID: 30337610 PMCID: PMC6193935 DOI: 10.1038/s41598-018-33758-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBER1 and EBER2) are two highly abundant, non-protein coding RNAs consistently expressed in all EBV infected cells, but their function remains poorly understood. Conventional in situ hybridization studies have indicated that these RNAs are present exclusively in the nucleus. We have recently demonstrated that EBERs can be excreted from infected cells via exosomes. However, the details of the steps involved in their excretion remain unknown. In this study, we aimed to directly track the journey of EBERs from the nucleus to the excretory exosomes of EBV immortalized B-lymphocytes. Using a combination of molecular and novel immuno-gold labelled electron microscopy (EM) based techniques, we demonstrate the presence of EBERs, not only in the nucleus, but also in the cytoplasm of EBV infected B cell lines. EBERs were also seen in exosomes shed from infected cells along with the EBER binding protein La. Our results show, for the first time, that at least a proportion of EBERs are transported from the nucleus to the cytoplasm where they appear to be loaded into multi-vesicular bodies for eventual excretion via exosomes.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
114
|
Vistarop AG, Cohen M, Huaman F, Irazu L, Rodriguez M, De Matteo E, Preciado MV, Chabay PA. The interplay between local immune response and Epstein-Barr virus-infected tonsillar cells could lead to viral infection control. Med Microbiol Immunol 2018; 207:319-327. [PMID: 30046954 DOI: 10.1007/s00430-018-0553-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Epstein Barr virus (EBV) gains access to the host through tonsillar crypts. Our aim was to characterize microenvironment composition around EBV+ cells in tonsils from pediatric carriers, to disclose its role on viral pathogenesis. LMP1 expression, assessed by immunohistochemistry (IHC), was used to discriminate EBV + and - zones in 41 tonsil biopsies. Three regions were defined: Subepithelial (SE), interfollicular (IF) and germinal center (GC). CD8, GrB, CD68, IL10, Foxp3, PD1, CD56 and CD4 markers were evaluated by IHC; positive cells/100 total cells were counted. CD8+, GrB+, CD68+ and IL10+ cells were prevalent in EBV+ zones at the SE region (p < 0.0001, p = 0.03, p = 0.002 and p = 0.002 respectively, Wilcoxon test). CD4+ and CD68+ cell count were higher in EBV + GC (p = 0.01 and p = 0.0002 respectively, Wilcoxon test). Increment of CD8, GrB and CD68 at the SE region could indicate a specific response that may be due to local homing at viral entry, which could be counterbalanced by IL10, an immunosuppressive cytokine. Additionally, it could be hypothesized that CD4 augment at the GC may be involved in the EBV-induced B-cell growth control at this region, in which macrophages could also participate.
Collapse
Affiliation(s)
- Aldana G Vistarop
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina. .,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina.
| | - Melina Cohen
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Fuad Huaman
- Histopathological Laboratory, National Academy of Medicine, Buenos Aires, Argentina
| | - Lucia Irazu
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcelo Rodriguez
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elena De Matteo
- Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Victoria Preciado
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Paola A Chabay
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| |
Collapse
|
115
|
Are EBV-related and EBV-unrelated Hodgkin lymphomas different with regard to susceptibility to checkpoint blockade? Blood 2018; 132:17-22. [DOI: 10.1182/blood-2018-02-833806] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract
Epstein-Barr virus (EBV)–related and EBV-unrelated classical Hodgkin lymphomas (cHLs) are morphologically and phenotypically indistinguishable. However, the tumor microenvironment of EBV-related cHLs contains higher numbers of macrophages and higher expression levels of PD-L1 than that of EBV-unrelated cHLs. Moreover, viral oncoprotein LMP1 may sustain an immunosuppressive microenvironment by inducing/enhancing production of immunosuppressive cytokines and the expression of PD-1. The presence of enhanced immunosuppressive features in EBV-related cHL should make EBV-related cHL patients more susceptible to checkpoint blockade.
Collapse
|
116
|
Makino K, Takeichi O, Imai K, Inoue H, Hatori K, Himi K, Saito I, Ochiai K, Ogiso B. Porphyromonas endodontalis reactivates latent Epstein-Barr virus. Int Endod J 2018; 51:1410-1419. [PMID: 29858508 DOI: 10.1111/iej.12959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
AIM To determine whether Porphyromonas endodontalis can reactivate latent Epstein-Barr virus (EBV). METHODOLOGY The concentrations of short-chain fatty acids (SCFAs) in P. endodontalis culture supernatants were determined using high-performance liquid chromatography. A promoter region of BamHI fragment Z leftward open reading frame 1 (BZLF-1), which is a transcription factor that controls the EBV lytic cycle, was cloned into luciferase expression vectors. Then, the luciferase assay was performed using P. endodontalis culture supernatants. Histone acetylation using Daudi cells treated with P. endodontalis culture supernatants was examined using Western blotting. BZLF-1 mRNA and BamHI fragment Z EB replication activator (ZEBRA) protein were also detected quantitatively using real-time polymerase chain reaction (PCR) and Western blotting. Surgically removed periapical granulomas were examined to detect P. endodontalis, EBV DNA, and BZLF-1 mRNA expression using quantitative real-time PCR. Statistical analysis using Steel tests was performed. RESULTS The concentrations of n-butyric acid in P. endodontalis culture supernatants were significantly higher than those of other SCFAs (P = 0.0173). Using B-95-8-221 Luc cells treated with P. endodontalis culture supernatants, the luciferase assay demonstrated that P. endodontalis induced BZLF-1 expression. Hyperacetylation of histones was also observed with the culture supernatants. BZLF-1 mRNA and ZEBRA protein were expressed by Daudi cells in a dose-dependent manner after the treatment with P. endodontalis culture supernatants. P. endodontalis and BZLF-1 in periapical granulomas were also detected. The expression levels of BZLF-1 mRNA were similar to the numbers of P. endodontalis cells in each specimen. CONCLUSIONS n-butyric acid produced by P. endodontalis reactivated latent EBV.
Collapse
Affiliation(s)
- K Makino
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - H Inoue
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - K Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - I Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Kanagawa, Japan
| | - K Ochiai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
117
|
Roder DM, Warr A, Patterson P, Allison KR. Australian Adolescents and Young Adults: Trends in Cancer Incidence, Mortality, and Survival Over Three Decades. J Adolesc Young Adult Oncol 2018; 7:326-338. [DOI: 10.1089/jayao.2017.0095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- David M. Roder
- Cancer Epidemiology Research Group, Centre for Population Research, Samson Institute for Health Research, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Pandora Patterson
- CanTeen Australia, Sydney, Australia
- Cancer Nursing Research Unit, University of Sydney, Sydney, Australia
| | | |
Collapse
|
118
|
El‐Zimaity H, Di Pilato V, Novella Ringressi M, Brcic I, Rajendra S, Langer R, Dislich B, Tripathi M, Guindi M, Riddell R. Risk factors for esophageal cancer: emphasis on infectious agents. Ann N Y Acad Sci 2018; 1434:319-332. [DOI: 10.1111/nyas.13858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Vincenzo Di Pilato
- Department of Clinical and Experimental MedicineUniversity of Florence Florence Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational MedicineUniversity of Florence Florence Italy
- Gastrointestinal Surgery UnitFlorence Careggi University Hospital Florence Italy
| | - Iva Brcic
- Institute of PathologyMedical University of Graz Graz Austria
| | - Shanmugarajah Rajendra
- Gastro‐Intestinal Viral Oncology GroupIngham Institute for Applied Medical Research, Liverpool Sydney New South Wales Australia
- South Western Sydney Clinical SchoolUniversity of New South Wales, Kensington Sydney New South Wales Australia
- Department of Gastroenterology & HepatologyBankstown‐Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown Sydney New South Wales Australia
| | - Rupert Langer
- Institute of PathologyUniversity of Bern Bern Switzerland
| | - Bastian Dislich
- Institute of PathologyKantonsspital Baselland Liestal Switzerland
| | - Monika Tripathi
- Cambridge University HospitalsNHS Foundation Trust Cambridge UK
| | - Maha Guindi
- Department of Pathology and laboratory MedicineCedars‐Sinai Medical Center Los Angeles California
| | - Robert Riddell
- Department of Pathology and Laboratory MedicineMount Sinai Hospital Toronto Ontario Canada
| |
Collapse
|
119
|
Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clin Immunol 2018; 190:22-31. [DOI: 10.1016/j.clim.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/23/2018] [Accepted: 02/18/2018] [Indexed: 12/18/2022]
|
120
|
Akhtar S, Vranic S, Cyprian FS, Al Moustafa AE. Epstein-Barr Virus in Gliomas: Cause, Association, or Artifact? Front Oncol 2018; 8:123. [PMID: 29732319 PMCID: PMC5919939 DOI: 10.3389/fonc.2018.00123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM) is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV) that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever) and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS) lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s), glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors.
Collapse
Affiliation(s)
| | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
121
|
Vranic S, Cyprian FS, Akhtar S, Al Moustafa AE. The Role of Epstein-Barr Virus in Cervical Cancer: A Brief Update. Front Oncol 2018; 8:113. [PMID: 29719817 PMCID: PMC5913353 DOI: 10.3389/fonc.2018.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) belongs to the group of gamma-herpes viruses and was the first recognized human oncovirus. EBV is responsible for infectious mononucleosis and multiple lymphoid and epithelial malignancies including B-cell lymphomas (Burkitt lymphoma, Hodgkin lymphoma, and post-transplant lymphoproliferative disorder), various T-cell/NK lymphoproliferative disorders, nasopharyngeal carcinoma, and gastric carcinoma, respectively. In addition, the presence of EBV has been documented in other cancers including breast, prostate, oral, and salivary gland carcinomas. The presence and role of EBV in cervical cancer and its precursor lesions (CIN) have also been described, but the results from the literature are inconsistent, and the causal role of EBV in cervical cancer pathogenesis has not been established yet. In the present review, we briefly surveyed and critically appraised the current literature on EBV in cervical cancer and its variants (lymphoepithelioma-like carcinoma) as well as its precursor lesions (CIN). In addition, we discussed the possible interactions between EBV and human papilloma virus as well as between EBV and immune checkpoint regulators (PD-L1). Though further studies are needed, the available data suggest a possible causal relationship between EBV and cervical cancer pathogenesis.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
122
|
Zhang Y, Liu W, Chai JC, Zhao Z, Xiao H, Luo B. Association study of MUS81 gene polymorphisms and EBV-associated tumors in China. Future Virol 2018. [DOI: 10.2217/fvl-2018-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Single nucleotide polymorphisms of MUS81 have been reported to be associated with several human tumors, but not with EBV infection. This study focused on identifying the relationship between MUS81 polymorphisms and EBV-associated tumors in China. Materials & methods: Three single nucleotide polymorphism loci of MUS81 were detected using the Sequenom MassARRAY technology. Results: The rs13817 genotype AA and allele A, rs648732 genotype TT and allele T were both significantly increased in EBV-associated gastric carcinoma (EBVaGC) than controls. Heterozygous TC of rs659857 was remarkably reduced in EBVaGC and EBV-associated nasopharyngeal carcinoma. Furthermore, significant differences were found between lymphoma and controls without an EBV association. Conclusion: Our findings indicated a strong relationship between MUS81 polymorphisms and the susceptibility to EBVaGC, EBV-associated nasopharyngeal carcinoma and lymphoma.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, PR China
- Department of Clinical Laboratory, Central Hospital of Zibo, 54 Gongqingtuan Road, ZiBo, 255036, PR China
| | - Wen Liu
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Ju-Chuan Chai
- Department of Clinical Laboratory, Central Hospital of Zibo, 54 Gongqingtuan Road, ZiBo, 255036, PR China
| | - Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Hua Xiao
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, PR China
| |
Collapse
|
123
|
Cuceu C, Hempel WM, Sabatier L, Bosq J, Carde P, M'kacher R. Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives. Cancers (Basel) 2018; 10:cancers10040091. [PMID: 29587466 PMCID: PMC5923346 DOI: 10.3390/cancers10040091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022] Open
Abstract
The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15–20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management.
Collapse
Affiliation(s)
- Corina Cuceu
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - William M Hempel
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Laure Sabatier
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Jacques Bosq
- Departement of Anapathology, Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| | - Radhia M'kacher
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
- Cell Environment, DNA damages R&D, Oncology section, 75020 Paris, France.
| |
Collapse
|
124
|
Differential IgM expression distinguishes two types of pediatric Burkitt lymphoma in mouse and human. Oncotarget 2018; 7:63504-63513. [PMID: 27566574 PMCID: PMC5325380 DOI: 10.18632/oncotarget.11531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL) is primarily a childhood cancer in parts of Africa and Brazil. Classic studies describe eBL as a homogeneous entity based on t(8;14) IgH-Myc translocation and clinical response to cytotoxic therapy. By contrast, sporadic BL (sBL) in Western countries is considered more heterogeneous, and affects both children and adults. It is overrepresented in AIDS patients. Unlike diffuse large B cell lymphoma (DLBCL), molecular subtypes within BL have not been well defined. We find that differential IgM positivity can be used to describe two subtypes of pediatric Burkitt lymphoma both in a high incidence region (Brazil), as well as in a sporadic region (US), suggesting the phenotype is not necessarily geographically isolated. Moreover, we find that IgM positivity also distinguishes between early and late onset BL in the standard Eμ-Myc mouse model of BL. This suggests that the t(8;14) translocation not only can take place before, but also after isotype switch recombination, and that IgM-negative, t(8;14) positive lymphomas in children should nevertheless be considered BL.
Collapse
|
125
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
126
|
Menter T, Tzankov A. Mechanisms of Immune Evasion and Immune Modulation by Lymphoma Cells. Front Oncol 2018; 8:54. [PMID: 29564225 PMCID: PMC5845888 DOI: 10.3389/fonc.2018.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Targeting cancer cells by modulating the immune system has become an important new therapeutic option in many different malignancies. Inhibition of CTLA4/B7 and PD1/PDL1 signaling is now also being investigated and already successfully applied to various hematologic malignancies. Methods A literature review of PubMed and results of our own studies were compiled in order to give a comprehensive overview on this topic. Results We elucidate the pathophysiological role of immunosuppressive networks in lymphomas, ranging from changes in the cellular microenvironment composition to distinct signaling pathways such as PD1/PDL1 or CTLA4/B7/CD28. The prototypical example of a lymphoma manipulating and thereby silencing the immune system is Hodgkin lymphoma. Also other lymphomas, e.g., primary mediastinal B-cell lymphoma and some Epstein–Barr virus (EBV)-driven malignancies, use analogous survival strategies, while diffuse large B-cell lymphoma of the activated B-cell type, follicular lymphoma and angioimmunoblastic T-cell lymphoma to name a few, exert further immune escape strategies each. These insights have already led to new treatment opportunities and results of the most important clinical trials based on this concept are briefly summarized. Immune checkpoint inhibition might also have severe side effects; the mechanisms of the rather un(der)recognized hematological side effects of this treatment approach are discussed. Conclusion Silencing the host’s immune system is an important feature of various lymphomas. Achieving a better understanding of distinct pathways of interactions between lymphomas and different immunological microenvironment compounds yields substantial potential for new treatment concepts.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
127
|
Ahn H, Yang JM, Jeon YK, Paik JH. Clinicopathologic implications of TNFAIP3/A20 deletions in extranodal NK/T-cell lymphoma. Genes Chromosomes Cancer 2018; 57:231-239. [DOI: 10.1002/gcc.22524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hyein Ahn
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| | - Jeong Mi Yang
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| | - Yoon Kyung Jeon
- Department of Pathology; Seoul National University Hospital, Seoul National University College of Medicine; Seoul Korea
| | - Jin Ho Paik
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| |
Collapse
|
128
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Thymidine kinase and protein kinase in drug-resistant herpesviruses: Heads of a Lernaean Hydra. Drug Resist Updat 2018; 37:1-16. [PMID: 29548479 DOI: 10.1016/j.drup.2018.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of β-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.
Collapse
Affiliation(s)
- Dimitri Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
129
|
Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, Ishikawa K, Wakisaka N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci 2018; 109:272-278. [PMID: 29247573 PMCID: PMC5797826 DOI: 10.1111/cas.13473] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein‐Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre‐invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1‐expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development.
Collapse
Affiliation(s)
- Tomokazu Yoshizaki
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Mitsuharu Aga
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Miyako Hatano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takayoshi Ueno
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuya Ishikawa
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Naohiro Wakisaka
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
130
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
131
|
Ambrosio MR, Mundo L, Gazaneo S, Picciolini M, Vara PS, Sayed S, Ginori A, Lo Bello G, Del Porro L, Navari M, Ascani S, Yonis A, Leoncini L, Piccaluga PP, Lazzi S. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget 2017; 8:107356-107373. [PMID: 29296171 PMCID: PMC5746073 DOI: 10.18632/oncotarget.22219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive lymphoma, often arising in the context of immunodeficiency and associated with Epstein-Barr virus (EBV) infection. The most frequently detected genetic alteration is the deregulation of MYC gene through the translocation - t(8;14)(q24;q32). The diagnosis of PBL is often challenging because it has an overlap in morphology, immunophenotype, cytogenetics and virus association with other lymphomas and plasma cell neoplasms; further, its molecular basis remains elusive. In the present study we aimed to better define the possible contribution of EBV infection as well as miRNA deregulation in PBL pathogenesis. We studied 23 cases of PBL, 19 Burkitt lymphomas (BL), and 17 extra-medullary plasmacytoma (EMPC). We used qPCR and immunohistochemistry to assess EBV latency patterns, while micro-RNA (miRNA) profiling was performed by next generation sequencing (Illumina) and validated by qPCR. Our analysis revealed a non-canonical EBV latency program with the partial expression of some proteins characterizing latency II and the activation of an abortive lytic cycle. Moreover, we identified miRNA signatures discriminating PBL from BL and EMPC. Interestingly, based on the miRNA profile, PBL appeared constituted by two discrete subgroups more similar to either BL or EMPC, respectively. This pattern was confirmed in an independent set of cases studied by qPCR and corresponded to different clinico-pathological features in the two groups, including HIV infection, MYC rearrangement and disease localization. In conclusion, we uncovered for the first time 1) an atypical EBV latency program in PBL; 2) a miRNA signature distinguishing PBL from the closest malignant counterparts; 3) the molecular basis of PBL heterogeneity.
Collapse
Affiliation(s)
| | - Lucia Mundo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Sara Gazaneo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | | | | | | | - Alessandro Ginori
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
- Pathology Unit, Ospedale Civico di Carrara, Carrara, Italy
| | - Giuseppe Lo Bello
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Leonardo Del Porro
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Ascani
- Section of Pathology, Azienda Ospedaliera S. Maria di Terni, University of Perugia, Perugia, Italy
| | | | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| |
Collapse
|
132
|
Rodriguez S, Roussel M, Tarte K, Amé-Thomas P. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response. Front Immunol 2017; 8:1434. [PMID: 29163507 PMCID: PMC5671495 DOI: 10.3389/fimmu.2017.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Mikaël Roussel
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| |
Collapse
|
133
|
Lv DW, Zhong J, Zhang K, Pandey A, Li R. Understanding Epstein-Barr Virus Life Cycle with Proteomics: A Temporal Analysis of Ubiquitination During Virus Reactivation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:27-37. [PMID: 28271981 DOI: 10.1089/omi.2016.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus associated with cancer, including Burkitt lymphoma, nasopharyngeal, and gastric carcinoma. EBV reactivation in latently infected B cells is essential for persistent infection whereby B cell receptor (BCR) activation is a physiologically relevant stimulus. Yet, a global view of BCR activation-regulated protein ubiquitination is lacking when EBV is actively replicating. We report here, for the first time, the long-term effects of IgG cross-linking-regulated protein ubiquitination and offer a basis for dissecting the cellular environment during the course of EBV lytic replication. Using the Akata-BX1 (EBV+) and Akata-4E3 (EBV-) Burkitt lymphoma cells, we monitored the dynamic changes in protein ubiquitination using quantitative proteomics. We observed temporal alterations in the level of ubiquitination at ∼150 sites in both EBV+ and EBV- B cells post-IgG cross-linking, compared with controls with no cross-linking. The majority of protein ubiquitination was downregulated. The upregulated ubiquitination events were associated with proteins involved in RNA processing. Among the downregulated ubiquitination events were proteins involved in apoptosis, ubiquitination, and DNA repair. These comparative and quantitative proteomic observations represent the first analysis on the effects of IgG cross-linking at later time points when the majority of EBV genes are expressed and the viral genome is actively being replicated. In all, these data enhance our understanding of mechanistic linkages connecting protein ubiquitination, RNA processing, apoptosis, and the EBV life cycle.
Collapse
Affiliation(s)
- Dong-Wen Lv
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Jun Zhong
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kun Zhang
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Akhilesh Pandey
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Diana Helis Henry Medical Research Foundation , New Orleans, Louisiana
| | - Renfeng Li
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia.,5 Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia.,6 Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
134
|
An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1. J Virol 2017; 91:JVI.00530-17. [PMID: 28794034 DOI: 10.1128/jvi.00530-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis.IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell.
Collapse
|
135
|
Alegría-Landa V, Manzarbeitia F, Salvatierra Calderón MG, Requena L, Rodríguez-Pinilla SM. Cutaneous intravascular natural killer/T cell lymphoma with peculiar immunophenotype. Histopathology 2017; 71:994-1002. [DOI: 10.1111/his.13332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Félix Manzarbeitia
- Department of Pathology; Fundación Jiménez Díaz; Universidad Autónoma; Madrid Spain
| | - Maria G Salvatierra Calderón
- Department of Haematology; Hospital Universitario Rey Juan Carlos; Universidad Rey Juan Carlos, Móstoles; Madrid Spain
| | - Luis Requena
- Department of Dermatology; Fundación Jiménez Díaz; Universidad Autónoma; Madrid Spain
| | | |
Collapse
|
136
|
Wilms T, Khan G, Coates PJ, Sgaramella N, Fåhraeus R, Hassani A, Philip PS, Norberg Spaak L, Califano L, Colella G, Olofsson K, Loizou C, Franco R, Nylander K. No evidence for the presence of Epstein-Barr virus in squamous cell carcinoma of the mobile tongue. PLoS One 2017; 12:e0184201. [PMID: 28926591 PMCID: PMC5604943 DOI: 10.1371/journal.pone.0184201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) comprises a large group of cancers in the oral cavity and nasopharyngeal area that typically arise in older males in association with alcohol/tobacco usage. Within the oral cavity, the mobile tongue is the most common site for tumour development. The incidence of tongue squamous cell carcinoma (TSCC) is increasing in younger people, which has been suggested to associate with a viral aetiology. Two common human oncogenic viruses, human papilloma virus (HPV) and Epstein-Barr virus (EBV) are known causes of certain types of SCCHN, namely the oropharynx and nasopharynx, respectively. EBV infects most adults worldwide through oral transmission and establishes a latent infection, with sporadic productive viral replication and release of virus in the oral cavity throughout life. In view of the prevalence of EBV in the oral cavity and recent data indicating that it infects tongue epithelial cells and establishes latency, we examined 98 cases of primary squamous cell carcinoma of the mobile tongue and 15 cases of tonsillar squamous cell carcinoma for the presence of EBV-encoded RNAs (EBERs), EBV DNA and an EBV-encoded protein, EBNA-1. A commercially available in situ hybridisation kit targeting EBER transcripts (EBER-ISH) showed a positive signal in the cytoplasm and/or nuclei of tumour cells in 43% of TSCCs. However, application of control probes and RNase A digestion using in-house developed EBER-ISH showed identical EBER staining patterns, indicating non-specific signals. PCR analysis of the BamH1 W repeat sequences did not identify EBV genomes in tumour samples. Immunohistochemistry for EBNA-1 was also negative. These data exclude EBV as a potential player in TSCC in both old and young patients and highlight the importance of appropriate controls for EBER-ISH in investigating EBV in human diseases.
Collapse
Affiliation(s)
- Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
- * E-mail: (TW); (KN)
| | - Gulfaraz Khan
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | - Philip J. Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| | | | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- University Paris Diderot, INSERM UMRS1162, 27 rue Juliette Dodu, Paris, France
| | - Asma Hassani
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | - Pretty S. Philip
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | | | - Luigi Califano
- Department of Neuroscience Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Colella
- Second University of Naples, Multidisciplinary Department of Medical, Surgical and Dental Specialties, Naples, Italy
| | | | - Christos Loizou
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Renato Franco
- Dipartimento Universitario di Anatomia Patologica, Seconda Universita' Degli Studi di Napoli, Piazza Miraglia, Naples, Italy
| | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- * E-mail: (TW); (KN)
| |
Collapse
|
137
|
Carvalho D, Russo P, Bernardes C, Saiote J, Ramos G, Mascarenhas L, Borges N, Ramos J. Hodgkin's Lymphoma in Crohn's Disease Treated with Infliximab. GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2017; 24:279-284. [PMID: 29255769 DOI: 10.1159/000455180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/15/2016] [Indexed: 01/26/2023]
Abstract
Introduction Lymphoproliferative disorders, particularly non-Hodgkin's and Hodgkin's lymphomas, are rare in patients with inflammatory bowel diseases. The use of thiopurines and infection by Epstein-Barr virus are well-known cofactors that can raise its prevalence. Other risk factors such as disease activity and biological treatment are the subject of discussion, without enough data in the literature to confirm a potential association. Methods We report a case of Hodgkin's lymphoma in a patient who had been treated with azathioprine and was on long-term monotherapy with infliximab. Conclusions We stress the importance of recognizing the possible occurrence of a lymphoproliferative disorder in association with anti-tumor necrosis factor-α therapy.
Collapse
Affiliation(s)
- Diana Carvalho
- Gastroenterology and Hepatology Department, Lisbon, Portugal
| | - Pedro Russo
- Gastroenterology and Hepatology Department, Lisbon, Portugal
| | | | - Joana Saiote
- Gastroenterology and Hepatology Department, Lisbon, Portugal
| | - Gonçalo Ramos
- Gastroenterology and Hepatology Department, Lisbon, Portugal
| | | | - Nuno Borges
- General Surgery Department, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Jaime Ramos
- Gastroenterology and Hepatology Department, Lisbon, Portugal
| |
Collapse
|
138
|
Almeida JFM, Campos AH, Marcello MA, Bufalo NE, Rossi CL, Amaral LHP, Marques AB, Cunha LL, Alvarenga CA, Tincani PC, Tincani AJ, Ward LS. Investigation on the association between thyroid tumorigeneses and herpesviruses. J Endocrinol Invest 2017; 40:823-829. [PMID: 28276007 DOI: 10.1007/s40618-017-0609-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Herpesviruses have been associated with various human malignancies and with thyroid autoimmunity. Aiming to investigate the presence of these viruses in thyroid nodules, we analyzed serum and thyroid tissue from 183 patients (83 benign and 100 malignant thyroid nodules). We also obtained 104 normal thyroid tissues extracted from the contralateral lobe of these patients. We used ELISA to screen the serology of all patients and a real-time quantitative PCR to analyze thyroid tissue viral load in antibody-positive patients. In addition, the presence of herpesviruses was tested by histological analysis in 20 EBV-positive tissues using the expression of LMP-1 by immunohistochemistry (IHC) and EBER by in situ hybridization (ISH). There was no evidence of HSV-2 or CMV DNA, but we found EBV DNA sequences in 29 (16%) thyroid tissue samples. We also found 7 positive EBV cases out of 104 normal tissues. Viral load was higher in tumors than in their respective normal tissues (p = 0.0002). ISH analysis revealed EBER expression in 11 out of 20 (52%) EBV-positive tissues, mostly in malignant cases (8/11, 73%). The presence of high EBV copy numbers in thyroid tumors and the expression of EBER only in malignant cases suggest an association between EBV and thyroid malignancies. However, we did not find any association between the presence of EBV and/or its viral load and any clinical or pathological tumor feature. Further studies aiming to clarify the mechanisms of EBV infection in thyroid cells are necessary to support a possible role in the development of thyroid cancer.
Collapse
Affiliation(s)
- J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A H Campos
- Department of Anatomic Pathology, AC Camargo Cancer Center, Taguá Street, 440, Liberdade, São Paulo, SP, 01508-010, Brazil
| | - M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C L Rossi
- Clinical Pathology Department, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, São Paulo, 13083-888, Brazil
| | - L H P Amaral
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A B Marques
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C A Alvarenga
- Laboratory of Pathology, Clinical Pathology Institute (IPC), Av. Orosimbo Maia, 165, Vila Itapura, Campinas, São Paulo, 13023-002, Brazil
| | - P C Tincani
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A J Tincani
- Head and Neck Surgery Department, University of Campinas Teaching Hospital (HC-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, SP, 13083-888, Brazil
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
| |
Collapse
|
139
|
Enrique Rendón-Macías M, Alfonso Valencia-Ramón E, Fajardo-Gutiérrez A. Clinical and Epidemiological Characteristics of Burkitt Lymphomas in Pediatric Patients from Two Defined Socioeconomic Regions in Mexico. J Trop Pediatr 2017; 63:253-259. [PMID: 28082663 DOI: 10.1093/tropej/fmw082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We analyzed clinical and epidemiological characteristics of Burkitt lymphoma (BL) in two defined socioeconomic regions in Mexico: high socioeconomic region (HSER; with two political jurisdictions) and low socioeconomic region (LSER; with three jurisdictions). Of the 63 cases registered in the Childhood Cancer Registry (1996-2013), 45 (71.4%) were from HSER and 18 (28.6%) from LSER. The incidence was higher in the LSER (3.1 vs. 1.4 cases per million children/year). The sporadic form and Stages III/IV predominated in both regions. Only one post-renal transplant (HSER) was found. The male/female ratio was higher in the LSER (5.0 vs. 1.4). The peak incidence was in the 1-4 age group for LSER, and in the 5-9 age group for HSER. This difference in the sporadic BL by socioeconomic regions may be related to different exposure factors.
Collapse
Affiliation(s)
- Mario Enrique Rendón-Macías
- Instituto Mexicano del Seguro Social México, Unidad de Investigación en Epidemiología Clínica Unidad Médica de Alta Especialidad Hospital de Pediatría Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | | | - Arturo Fajardo-Gutiérrez
- Instituto Mexicano del Seguro Social México, Unidad de Investigación en Epidemiología Clínica Unidad Médica de Alta Especialidad Hospital de Pediatría Centro Médico Nacional Siglo XXI, Ciudad de México, México
| |
Collapse
|
140
|
Shimizu Y, Nakajima A, Inoue E, Shidara K, Sugimoto N, Seto Y, Tanaka E, Momohara S, Taniguchi A, Yamanaka H. Characteristics and risk factors of lymphoproliferative disorders among patients with rheumatoid arthritis concurrently treated with methotrexate: a nested case-control study of the IORRA cohort. Clin Rheumatol 2017; 36:1237-1245. [DOI: 10.1007/s10067-017-3634-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/04/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
|
141
|
Yan J, Wang J, Zhang W, Chen M, Chen J, Liu W. Solitary plasmacytoma associated with Epstein-Barr virus: a clinicopathologic, cytogenetic study and literature review. Ann Diagn Pathol 2017; 27:1-6. [DOI: 10.1016/j.anndiagpath.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
142
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
143
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
144
|
EBV Infection and Glucose Metabolism in Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:75-90. [DOI: 10.1007/978-981-10-5765-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
145
|
Lee YM, Kim JM, Kim SY. Human Herpes Virus 8/Epstein-Barr Virus-Copositive, Plasmablastic Microlymphoma Arising in Multicentric Castleman's Disease of an Immunocompetent Patient. J Pathol Transl Med 2016; 51:99-102. [PMID: 28013535 PMCID: PMC5267541 DOI: 10.4132/jptm.2016.09.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yong-Moon Lee
- Department of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Man Kim
- Department of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sam-Yong Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
146
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
147
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
148
|
Abstract
Understanding the molecular pathogenesis of peripheral T cell lymphomas (PTCLs) has lagged behind that of B cell lymphomas due to disease rarity. However, novel approaches are gradually clarifying these mechanisms, and gene profiling has identified specific signaling pathways governing PTCL cell survival and growth. For example, genetic alterations have been discovered, including signal transducer and activator of transcription (STAT)3 and STAT5b mutations in several PTCLs, disease-specific ras homolog family member A (RHOA) mutations in angioimmunoblastic T cell lymphoma (AITL), and recurrent translocations at the dual specificity phosphatase 22 (DUSP22) locus in anaplastic lymphoma receptor tyrosine kinase (ALK)-negative anaplastic large cell lymphomas (ALCLs). Intriguingly, some PTCL-relevant mutations are seen in apparently normal blood cells as well as tumor cells, while others are confined to tumor cells. These data have dramatically changed our understanding of PTCL origins: once considered to originate from mature T lymphocytes, some PTCLs are now believed to emerge from immature hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
149
|
Montgomery ND, Coward WB, Johnson S, Yuan J, Gulley ML, Mathews SP, Kaiser-Rogers K, Rao KW, Sanger WG, Sanmann JN, Fedoriw Y. Karyotypic abnormalities associated with Epstein–Barr virus status in classical Hodgkin lymphoma. Cancer Genet 2016; 209:408-416. [DOI: 10.1016/j.cancergen.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
|
150
|
Mameli G, Fozza C, Niegowska M, Corda G, Ruda MF, Barraqueddu F, Dessì L, Podda L, Dore F, Sechi LA. Epstein-Barr virus infection is associated to patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Leuk Lymphoma 2016; 58:466-469. [PMID: 27268403 DOI: 10.1080/10428194.2016.1190976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Giuseppe Mameli
- a Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Claudio Fozza
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Magdalena Niegowska
- a Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Giovanna Corda
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Maria Francesca Ruda
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Francesca Barraqueddu
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Laura Dessì
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Luigi Podda
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Fausto Dore
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Leonardo A Sechi
- a Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| |
Collapse
|