101
|
Rao J, Peng T, Li N, Wang Y, Yan C, Wang K, Qiu F. Nephrotoxicity induced by natural compounds from herbal medicines - a challenge for clinical application. Crit Rev Toxicol 2022; 52:757-778. [PMID: 36815678 DOI: 10.1080/10408444.2023.2168178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herbal medicines (HMs) have long been considered safe and effective without serious toxic and side effects. With the continuous use of HMs, more and more attention has been paid to adverse reactions and toxic events, especially the nephrotoxicity caused by natural compounds in HMs. The composition of HMs is complex and various, especially the mechanism of toxic components has been a difficult and hot topic. This review comprehensively summarizes the kidney toxicity characterization and mechanism of nephrotoxic natural compounds (organic acids, alkaloids, glycosides, terpenoids, phenylpropanoids, flavonoids, anthraquinones, cytotoxic proteins, and minerals) from different sources. Recommendations for the prevention and treatment of HMs-induced kidney injury were provided. In vitro and in vivo models for evaluating nephrotoxicity and the latest biomarkers are also included in this investigation. More broadly, this review may provide theoretical basis for safety evaluation and further comprehensive development and utilization of HMs in the future.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
102
|
Nowowiejska J, Baran A, Flisiak I. Psoriasis and neurodegenerative diseases—a review. Front Mol Neurosci 2022; 15:917751. [PMID: 36226313 PMCID: PMC9549431 DOI: 10.3389/fnmol.2022.917751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic skin disease with underlying genetic, inflammatory and immunological background, which is a great medical problem, currently regarded as a systemic condition. Neurodegenerative diseases (NDs) are characterized by a progressive loss of nervous tissue, which affects elderly people more frequently; therefore, it is suspected that, due to society's aging, morbidity is going to increase. We performed a thorough review in order to investigate for the first time whether psoriasis may predispose to different particular neurodegenerative diseases—Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PubMed search resulted in the retrieval of 833 records, of which 77 eligible were included in the review. Our thorough analysis revealed there are some potential links between psoriasis and NDs (inflammation, oxidative stress, genetics, cardiometabolic disorders), but there is no strong evidence that psoriasis may predispose to NDs. Based on the evidence, it seems that the risk of PD in psoriatics is not increased, and the evidence for increased risk of AD slightly prevails the data that state the opposite. ALS risk does not seem to be increased in psoriatics. The paucity of original studies does not allow for the formulation of definitive conclusions but encourages to perform further investigations.
Collapse
|
103
|
Wang Y, Yu F, Li A, He Z, Qu C, He C, Ma X, Zhan H. The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Front Pharmacol 2022; 13:919967. [PMID: 36105187 PMCID: PMC9465315 DOI: 10.3389/fphar.2022.919967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Renal fibrosis is a key pathological change that occurs in the progression of almost all chronic kidney diseases . CKD has the characteristics of high morbidity and mortality. Its prevalence is increasing each year on a global scale, which seriously affects people’s health and quality of life. Natural products have been used for new drug development and disease treatment for many years. The abundant natural products in R. ribes L. can intervene in the process of renal fibrosis in different ways and have considerable therapeutic prospects. Purpose: The etiology and pathology of renal fibrosis were analyzed, and the different ways in which the natural components of R. ribes L. can intervene and provide curative effects on the process of renal fibrosis were summarized. Methods: Electronic databases, such as PubMed, Life Science, MEDLINE, and Web of Science, were searched using the keywords ‘R. ribes L.’, ‘kidney fibrosis’, ‘emodin’ and ‘rhein’, and the various ways in which the natural ingredients protect against renal fibrosis were collected and sorted out. Results: We analyzed several factors that play a leading role in the pathogenesis of renal fibrosis, such as the mechanism of the TGF-β/Smad and Wnt/β-catenin signaling pathways. Additionally, we reviewed the progress of the treatment of renal fibrosis with natural components in R. ribes L. and the intervention mechanism of the crucial therapeutic targets. Conclusion: The natural components of R. ribes L. have a wide range of intervention effects on renal fibrosis targets, which provides new ideas for the development of new anti-kidney fibrosis drugs.
Collapse
Affiliation(s)
- Yangyang Wang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangwei Yu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ao Li
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijia He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyan Qu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiying He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| | - Huakui Zhan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine-Sichuan Provincial Hospital of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| |
Collapse
|
104
|
Chew YL, Khor MA, Xu Z, Lee SK, Keng JW, Sang SH, Akowuah GA, Goh KW, Liew KB, Ming LC. Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules 2022; 27:molecules27175475. [PMID: 36080243 PMCID: PMC9457827 DOI: 10.3390/molecules27175475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional medicine is critical in disease treatment and management. Herbs are gaining popularity for disease management and treatment. Therefore, they can be utilised as complementary and alternative treatment (CAT) ingredients. Atopic dermatitis (AD) is one of the common non-communicable diseases. It is characterised by chronic inflammatory skin disease with intense pruritus and eczematous lesions. AD is associated with oxidative stress, microbial infection, and upregulation of inflammatory cytokines. Both children and adults could be affected by this skin disorder. The prevalence of AD is increasing along with the country’s level of development. This review revisited the literature on four medicinal herbs widely used as complementary medicine to manage AD. These therapeutic herbs are commonly eaten as food and used as spices in Asian cuisine. The four food herbs reviewed are Cassia alata, Coriandrum sativum, Curcuma longa Linn, and Azadirachta indica. Their traditional uses and phytochemical content will be covered. Four relevant pharmacological and biological activities of the plants crucial in AD management have been reviewed and discussed, including anti-inflammatory, anti-microbial, antioxidant, and wound recovery.
Collapse
Affiliation(s)
- Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-9101-8880; Fax: +603-9102-3606
| | - Mei-Ann Khor
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Zhao Xu
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71809, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| |
Collapse
|
105
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
106
|
Aloe-Emodin Suppresses Oxidative Stress and Inflammation via a PI3K-Dependent Mechanism in a Murine Model of Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9697887. [PMID: 35978995 PMCID: PMC9377882 DOI: 10.1155/2022/9697887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/25/2022] [Indexed: 12/22/2022]
Abstract
Background This study was designed to assess the impact of aloe-emodin (AE) on oxidative stress and inflammation in a murine model of LPS-induced sepsis. In addition, the mechanistic basis for anti-inflammatory and antioxidant activity was assessed. Methods Male ICR mice received an intraperitoneal injection of LPS (10 mg/kg), and the preventive properties of AE (80 or 150 mg/kg) on these mice were assessed by monitoring spleen index, and levels of inflammatory and oxidative stress-related factors. Peripheral blood TNF-α and IL-6 levels were assessed via ELISA kits, while changes in hepatic SOD and GSH-Px levels were assessed using appropriate biochemical kits. Splenic PI3K, AKT, and mTOR levels were assessed via qPCR and western blotting. Results Relative to animals in the LPS model group, those in the AE treatment groups exhibited reduced spleen index, decreased inflammatory cytokine levels, and improved SOD and GSH-Px activity in liver tissues. Splenic PI3K, Akt, and mTOR levels were also reduced in response to AE treatment. Conclusions These findings indicated that AE can alleviate sepsis-related tissue damage, inflammation, and oxidative stress, at least in part by suppressing the PI3K/Akt/mTOR signaling pathway. These results offer a clinical basis for the use of AE to treat sepsis and associated diseases.
Collapse
|
107
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
108
|
Peptide-Mediated Targeted Delivery of Aloe-Emodin as Anticancer Drug. Molecules 2022; 27:molecules27144615. [PMID: 35889487 PMCID: PMC9320513 DOI: 10.3390/molecules27144615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is one of the most diffuse cancers in the world and despite the availability of the different drugs employed against it, the need for new and particularly more specific molecules is ever growing. In this framework, natural products are increasingly assuming an important role as new anticancer drugs. Aloe-emodin (AE) is one of the best characterized molecules in this field. The functionalization of bioactive natural products with selected peptide sequences to enhance their bioavailability and specificity of action is a powerful and promising strategy. In this study, we analyzed the cell specificity, cell viability effects, intracellular distribution, and immune cell response of a new peptide conjugate of Aloe-emodin in SKBR3 and A549 cell lines by means of viability tests, flow cytometry, and confocal microscopy. The conjugate proved to be more effective at reducing cell viability than AE in both cell lines. Furthermore, the results showed that it was mainly internalized within the SKBR3 cells, showing a nuclear localization, while A459 cells displayed mainly a cytoplasmic distribution. A preserving effect of the conjugate on NKs’ cell function was also observed. The designed conjugate showed a promising specific activity towards HER2-expressing cells coupled with an enhanced water solubility and a higher cytotoxicity; thus, the resulting proof-of-concept molecule can be further improved as an anticancer compound.
Collapse
|
109
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
110
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
111
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
112
|
Peng M, Zheng Z, Chen S, Fang L, Feng R, Zhang L, Tang Q, Liu X. Sensitization of Non-Small Cell Lung Cancer Cells to Gefitinib and Reversal of Epithelial-Mesenchymal Transition by Aloe-Emodin Via PI3K/Akt/TWIS1 Signal Blockage. Front Oncol 2022; 12:908031. [PMID: 35677158 PMCID: PMC9168594 DOI: 10.3389/fonc.2022.908031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the impacts of AE (aloe-emodin) in gefitinib-resistant NSCLC (non-small cell lung cancer) cells and the corresponding mechanism. Methods PC9 and PC9-GR cells were cultured and treated by gefitinib, AE, or the combination of the two drugs. Then, viability, apoptosis, migration and invasion of cells were investigated using CCK-8, TUNEL, wound healing assay, and transwell assay, respectively. Female BALB/c nude mice were employed for the establishment of xenograft tumor models to examine the role of AE in tumor growth. Results PC9-GR cells showed reduced apoptosis and enhanced cell viability, migration and invasion upon treatment by gefitinib, compared with PC9 cells. E-cahherin in PC9-GR cells was down-regulated, while Vimentin, Snail2 (or Slug) and Twist1 in PC9-GR cells were up-regulated, compared with PC9 cells. Meanwhile, treatment by a combination of gefitinib and AE significantly strengthened apoptosis of PC9-GR cells, while attenuated their migration and invasion, compared with the control group or treatment by gefitinib or AE alone. WB results showed that AE could reverse EMT and activation of PI3K/AKT signalling pathway in PC9-GR cells. In vivo experiments showed that tumor growth and EMT of PC9-GR cells were dramatically repressed after treatment by a combination of AE and gefitinib. Additionally, the use of SC97 (a PI3K/Akt pathway activator) could counteract the effects of AE in gefitinib-resistant PC9 cells. Conclusions AE could enhance the gefitinib sensitivity of PC9-GR cells and reverse EMT by blocking PI3K/Akt/TWIS1 signal pathway.
Collapse
Affiliation(s)
- Minghui Peng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuifeng Zheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Shaoyang Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Fang
- Department of Oncology, Loudi Central Hospital, Loudi, China
| | - Rongxiu Feng
- Department of Radiation Oncology, Xiangtan Central Hospital, Changde, China
| | - Lijun Zhang
- Department of Oncology, Huaihua First People's Hospital, Changde, China
| | - Qingnan Tang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
113
|
Li T, Shi L, Liu W, Hu X, Hui Y, Di M, Xue S, Zheng Y, Yao M, Li C, Meng K. Aloe-Emodin Induces Mitochondrial Dysfunction and Pyroptosis by Activation of the Caspase-9/3/Gasdermin E Axis in HeLa Cells. Front Pharmacol 2022; 13:854526. [PMID: 35662735 PMCID: PMC9157280 DOI: 10.3389/fphar.2022.854526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited proliferation and migration and triggered caspase-dependent cell death of HeLa cells in a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed extensive changes in gene expressions in cellular pathways, including MAPK, p53, and PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.
Collapse
Affiliation(s)
- Tonghui Li
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Liuliu Shi
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Wenqiang Liu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Xuhao Hu
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Yuanjian Hui
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Shen Xue
- Department of Obstetrics and Gynecology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Department of Pharmacy, Hubei Aerospace Hospital, Xiaogan, China
| | - Mengjuan Yao
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
114
|
Wu W, Lu P, Huang Y, Zhu Z, Li C, Liu Y. Emodin regulates the autophagy via the miR-371a-5p/PTEN axis to inhibit hepatic malignancy. Biochem Biophys Res Commun 2022; 619:1-8. [PMID: 35724456 DOI: 10.1016/j.bbrc.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Emodin has been reported to fulfill an important function in suppressing the vicious outcome of liver cancer. We aimed to elucidate the partial underlying molecular mechanism of emodin in inhibiting liver cancer, and we applied miRNA-sequence analysis and corresponding molecular functional experiments to find that the inhibitory effect of emodin on liver cancer was partly mediated by cellular autophagy through the miR-371a-5p/PTEN axis. The expression level of miR-371a-5p was down-regulated after emodin treatment in liver cancer cell lines (LCCLs). Restoring the expression level of miR-371a-5p attenuated the suppression of emodin on LCCLs. Additionally, we performed the prediction in relevant online databases and found that PTEN might functioned as a downstream target of miR-371a-5p to participate in the regulation on the above process. What's more, the detection of autophagy-related protein markers showed that LC3II was elevated accompanied by the decreased P62. The above results revealed that PTEN functioned as a key target to regulate the autophagy in the process where emodin inhibited the malignant outcome of LCCLs via miR-371a-5p, which further provided a theoretical basis for the application of traditional Chinese medicine (TCM) on clinical tumors.
Collapse
Affiliation(s)
- Wu Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peilin Lu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujing Huang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
115
|
Design, synthesis and anti-inflammatory evaluation of aloe-emodin derivatives as potential modulators of Akt, NF-κB and JNK signaling pathways. Eur J Med Chem 2022; 238:114511. [DOI: 10.1016/j.ejmech.2022.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
|
116
|
Emodin Ameliorates Intestinal Dysfunction by Maintaining Intestinal Barrier Integrity and Modulating the Microbiota in Septic Mice. Mediators Inflamm 2022; 2022:5026103. [PMID: 35677734 PMCID: PMC9168211 DOI: 10.1155/2022/5026103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced inflammatory response leads to intestinal damage and secondary bacterial translocation, causing systemic infections and eventually death. Emodin is a natural anthraquinone derivative in many plants with promising bioactivities. However, the effects and mechanisms of emodin on sepsis-induced intestinal dysfunctions have not been well clarified yet. We found that emodin treatment suppressed the inflammatory response in the intestines of septic mice. Intestinal barrier function was also improved by emodin through enhancing ZO-1 and occludin expression, which prevented the secondary translocation of Escherichia coli. By proteome microarray investigation, JNK2 was identified as a direct target of emodin. In vitro study also showed that emodin inhibited LPS-induced inflammatory response in intestinal epithelial cells. Nuclear factors including NF-κB and AP-1 were further identified as downstream effectors of JNK2. Bioinformatic analysis based on 16s rRNA gene sequencing illustrated that emodin treatment significantly increased the alpha- and beta-diversity of gut microbiota in septic mice. Moreover, data according to functional prediction showed that emodin decreased the abundance of potential pathogenic bacteria in gut. Our findings have shown that emodin treatment prevented inflammatory induced barrier dysfunction and decreased the potential pathogenicity of lumen bacteria, reducing the hazard of lumen bacterial translocation during sepsis.
Collapse
|
117
|
Deng Z, Sun H, Bheemanaboina RRY, Luo Y, Zhou CH. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett 2022; 64:128695. [PMID: 35314326 DOI: 10.1016/j.bmcl.2022.128695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 μg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.
Collapse
Affiliation(s)
- Zhao Deng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
118
|
Españo E, Kim J, Kim JK. Utilization of Aloe Compounds in Combatting Viral Diseases. Pharmaceuticals (Basel) 2022; 15:ph15050599. [PMID: 35631425 PMCID: PMC9145703 DOI: 10.3390/ph15050599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plants contain underutilized resources of compounds that can be employed to combat viral diseases. Aloe vera (L.) Burm. f. (syn. Aloe barbadensis Mill.) has a long history of use in traditional medicine, and A. vera extracts have been reported to possess a huge breadth of pharmacological activities. Here, we discuss the potential of A. vera compounds as antivirals and immunomodulators for the treatment of viral diseases. In particular, we highlight the use of aloe emodin and acemannan as lead compounds that should be considered for further development in the management and prevention of viral diseases. Given the immunomodulatory capacity of A. vera compounds, especially those found in Aloe gel, we also put forward the idea that these compounds should be considered as adjuvants for viral vaccines. Lastly, we present some of the current limitations to the clinical applications of compounds from Aloe, especially from A. vera.
Collapse
|
119
|
Ma Q, Wang CZ, Sawadogo WR, Bian ZX, Yuan CS. Herbal Medicines for Constipation and Phytochemical Comparison of Active Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:723-732. [PMID: 35331086 DOI: 10.1142/s0192415x2250029x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constipation is a very common medical condition worldwide, negatively affecting patients' quality of life and healthcare system. Rhubarb, senna leaf, and aloe are three frequently used herbal medications for achieving regular bowel movement. Rhubarb is also a key ingredient in MaZiRenWan, a Chinese medicine formula used every so often for constipation in oriental countries. We reviewed and summarized the major chemical components from these three botanicals, including dianthrones, anthraquinone glycosides, free anthraquinones, and other polyphenols. The purgative actions of these constituents have been compared. Anthraquinone, especially its dianthrone compounds such as sennoside A and sennoside B, as natural stimulant laxatives, possesses significant effects to promote gastrointestinal motility and relieve functional constipation. Furthermore, the safety, reported side effects, and other benefits of anthraquinone compounds are presented. To date, many anti-constipation natural products are being used but their research is relatively limited, and thus, more investigations in this field are indeed needed.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China.,Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Wamtinga R Sawadogo
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
120
|
Unveiling Potential Mechanisms of Spatholobi Caulis against Lung Metastasis of Malignant Tumor by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1620539. [PMID: 35356244 PMCID: PMC8959948 DOI: 10.1155/2022/1620539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
Background Lung metastasis of malignant tumor signifies worse prognosis and immensely deteriorates patients' life quality. Spatholobi Caulis (SC) has been reported to reduce lung metastasis, but the mechanism remains elusive. Methods The active components and corresponding targets of SC were obtained from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database and the SwissTargetPrediction database. The disease targets were acquired from DisGeNET and GeneCards databases. Venn map was composed to figure out intersection targets by using R. The PPI network was constructed through STRING and Cytoscape, and MCODE plug-in was used to sift hub targets. Gene Ontology (GO)-Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out by utilizing clusterProfiler package (R3.6.1) with adjusted P value <0.05. Network of SC-active components-intersection targets-KEGG pathway was accomplished with Cytoscape. Molecular docking between hub targets and active components was performed, analyzed, and visualized by AutoDockTools, AutoDock Vina, PLIP Web tool, and PYMOL. Results 24 active components and 123 corresponding targets were screened, and the number of disease targets and intersection targets was 1074 and 47, respectively. RELA, JUN, MAPK1, MAPK14, STAT3, IL-4, ESR1, and TP53 were the 8 hub targets. GO analysis and KEGG analysis elucidated that SC could ameliorate lung metastasis mainly by intervening oxidative stress, AGE-RAGE signaling pathway, and microRNAs in cancer. All 8 hub targets were proven to combine successfully with active components of SC. Conclusion Inflammation is the core factor that integrates all these targets, biological process, and signaling pathways, which indicates that SC prevents or reduces lung metastasis mainly by dispelling inflammation.
Collapse
|
121
|
Aloe emodin 3-O-glucoside inhibits cell growth and migration and induces apoptosis of non-small-cell lung cancer cells via suppressing MEK/ERK and Akt signalling pathways. Life Sci 2022; 300:120495. [PMID: 35341826 DOI: 10.1016/j.lfs.2022.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
Abstract
AIMS Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer with a high mortality rate. Glycosylation of phenolic compounds may increase water-solubility and pharmacological activities and reduce the toxicity of aglycones. This study aimed to evaluate and compare the anticancer effect of aloe emodin 3-O-glucoside (AE3G) and its aglycone, aloe emodin (AE), against NSCLC. MAIN METHOD A human adenocarcinoma cell line (A549) and BALB/c nu/nu xenograft mice harboring A549 cells were used as the NSCLC models. Inhibition of cell migration, disruption of mitochondrial membrane potential (MMP), DNA fragmentation, and expression levels of apoptotic proteins were measured by western blot, wound healing assay, JC-1 staining, or TUNEL staining. Histopathological changes in tumour tissues were observed by H&E and TUNEL staining. RESULTS With no significant cytotoxicity against noncancerous cells (Vero cells), AE3G (5-50 μM) significantly and more effectively inhibited the growth, attachment, migration, Bcl-2 expression, and activation of MEK/ERK and Akt signalling proteins and induced cytochrome c release and Bax expression in A549 cells than AE. AE3G augmented the collapse of MMP, cleavage of caspases (caspase 9, 8, and 3) and PARP, and DNA fragmentation. Intraperitoneal injection of AE3G (13 and 26 mg/kg/day) reduced the tumour volume and weight and induced apoptotic cell death in tumour tissues of xenograft NSCLC mice. SIGNIFICANCE The present study demonstrated that AE3G significantly and more effectively diminished human NSCLC cell growth and migration by triggering mitochondria-dependent intrinsic apoptosis than AE, providing AE3G as a new potent candidate to prevent or treat human NSCLC.
Collapse
|
122
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
123
|
Khazeei Tabari MA, Mirjalili R, Khoshhal H, Shokouh E, Khandan M, Hasheminasabgorji E, Hafezi-Moghadam A, Bagheri A. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4708527. [PMID: 35310030 PMCID: PMC8926515 DOI: 10.1155/2022/4708527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Diabetes mellitus (DM), hyperglycemia, and hypertension can result in diabetic retinopathy (DR), which is a major cause of blindness on a global scale. Development of DR is associated with decreased endothelial cells, increased basal membrane thickness, permeation of the retinal blood barrier, and neovascularization in patients. The purpose of the present review is to provide an overview of the findings regarding applications of phytochemicals for DR treatment and could be a beneficial resource for further clinical studies and also a basis for pharmaceutical purposes for drug design. Materials and Methods. A narrative literature review was performed from electronic databases including Web of Science, PubMed, and Scopus to analyze the effects of different phytochemicals to prevent or treat oxidation, angiogenesis, and inflammation in diabetic retinopathy. The inclusion criteria were original studies, which included the effects of different phytochemicals on diabetic retinopathy. The exclusion criteria included studies other than original articles, studies which assessed the effects of phytochemicals on nondiabetic retinopathy, and studies which used phytochemical-rich extracts. Results and Conclusions. Studies have shown that increased levels of inflammatory cytokines, angiogenic, and oxidative stress factors are involved in the progression and pathogenesis of DR. Therefore, phytochemicals with their anti-inflammatory, antiangiogenic, and antioxidant properties can prevent DR progression and retinal damage through various cellular mechanisms. It is also shown that some phytochemicals can simultaneously affect the inflammation, oxidation, and angiogenesis in DR.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razie Mirjalili
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Shokouh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
124
|
Liu FJ, Gu TJ, Wei DY. Emodin alleviates sepsis-mediated lung injury via inhibition and reduction of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J Med Sci 2022; 38:253-260. [PMID: 34806822 DOI: 10.1002/kjm2.12476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Inflammation plays an important role during sepsis, and excessive inflammation can result in organ damage, chronic inflammation, fibrosis, and scarring. The study aimed to investigate the specific mechanism of emodin by constructing in vivo and in vitro septic lung injury models via inhibition and reduction of NF-kB and high mobility group box 1 (HMGB1) pathways. A cecal ligation and puncture (CLP) model was built for adult male Sprague-Dawley rats. Concentrations of TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid were determined using commercially available ELISA kits. Hematoxylin and eosin staining was used for the right lung inferior lobes. Myeloperoxidase (MPO) activity of the lung tissue was detected by using the MPO kit. Murine alveolar epithelial cell line (MLE-12) cells were used for flow cytometry and Western blot to analyze the apoptosis rate and protein expression. Emodin significantly decreased CLP-induced cell apoptosis, upregulated expression of sirtuin 1 (SIRT1), and inhibited p-p65/p65 and HMGB1. In lipopolysaccharide (LPS) treated cell model, emodin treatment markedly decreased LPS-induced release of IL-1, IL-6, and tumor necrosis factor (TNF)-α, inhibited LPS-induced cell apoptosis and suppressed protein levels of P-P65/P65 and HMGB1. However, science of SIRT1 reversed the above effects by treatment of emodin. In summarize, this study found that emodin can alleviate sepsis-induced lung injury in vivo and in vitro through regulation of SIRT1.
Collapse
Affiliation(s)
- Fu-Jing Liu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ti-Jun Gu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong-Yue Wei
- Department of Pediatric, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
125
|
Tang X, Zhang Y, Liu X, Li X, Zhao H, Cui H, Shi Y, Chen Y, Xu H, Meng Z, Zhao L, Chen H, Wang Z, Zhu M, Lin Y, Yang B, Zhang Y. Aloe-emodin derivative produces anti-atherosclerosis effect by reinforcing AMBRA1-mediated endothelial autophagy. Eur J Pharmacol 2022; 916:174641. [PMID: 34800465 DOI: 10.1016/j.ejphar.2021.174641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is an inflammatory disease of high lethality associated with endothelial dysfunction. Due to the pathophysiological complexity and our incomplete understanding of the mechanisms for the development and progression of atherosclerosis, effective means for the prevention and treatment of atherosclerosis still need further exploration. This study was designed to investigate the potential effects and underlying mechanisms of aloe-emodin derivative (AED) on atherosclerosis. High fat diet (HFD) treated ApoE-/- mice were used as an animal model of atherosclerosis. Intragastric administration of aloe-emodin (AE) or AED for 12 weeks markedly reduced the atherosclerotic plaque in aorta with decreased plaque area, lipid accumulation, macrophage infiltration, collagen content and metabolic abnormalities. By comparison, AED produced more potent anti-atherosclerosis effects than AE at the same dose. AED enhanced production of autophagy flux in cultured human aortic endothelial cells (HAECs). Moreover, AED increased the expression of activating molecule in Beclin1-regulated autophagy 1 (AMBRA1), a key protein involved in autophagosome formation. Furthermore, knockdown of AMBRA1 blocked the promotion effect of AED on autophagy in HAECs. Taken together, AED facilitates endothelial autophagy via AMBRA1 during the progression of atherosclerosis, suggesting the potential application of this compound for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiaohan Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hongrui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hao Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yang Shi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yongchao Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Honglin Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ziyu Meng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Limin Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhixia Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Mengying Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yuan Lin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne, Australia.
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China.
| |
Collapse
|
126
|
Ma W, Zhang M, Cui Z, Wang X, Niu X, Zhu Y, Yao Z, Ye F, Geng S, Liu C. Aloe-emodin-mediated antimicrobial photodynamic therapy against dermatophytosis caused by Trichophyton rubrum. Microb Biotechnol 2022; 15:499-512. [PMID: 34165875 PMCID: PMC8867962 DOI: 10.1111/1751-7915.13875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Trichophyton rubrum is responsible for the majority of dermatophytosis. Current systemic and topical antifungals against dermatophytosis are often tedious and sometimes unsatisfactory. Antimicrobial photodynamic therapy (aPDT) is a non-invasive alternative suitable for the treatment of superficial fungal infections. This work investigated the photodynamic inactivation efficacy and effects of aloe-emodin (AE), a natural photosensitizer (PS) against T. rubrum microconidia in vitro, and evaluated the treatment effects of AE-mediated aPDT for T. rubrum-caused tinea corporis in vivo and tinea unguium ex vivo. The photodynamic antimicrobial efficacy of AE on T. rubrum microconidia was evaluated by MTT assay. The inhibition effect of AE-mediated aPDT on growth of T. rubrum was studied. Intracellular location of AE, damage induced by AE-mediated aPDT on cellular structure and surface of microconidia and generation of intracellular ROS were investigated by microscopy and flow cytometry. The therapeutic effects of AE-mediated aPDT against dermatophytosis were assessed in T. rubrum-caused tinea corporis guinea pig model and tinea unguium ex vivo model. AE-mediated aPDT effectively inactivated T. rubrum microconidia in a light energy dose-dependent manner and exhibited strong inhibitory effect on growth of T. rubrum. Microscope images indicated that AE is mainly targeted to the organelles and caused damage to the cytoplasm of microconidia after irradiation through generation of abundant intracellular ROS. AE-mediated aPDT demonstrated effective therapeutic effects for T. rubrum-caused tinea corporis on guinea pig model and tinea unguium in ex vivo model. The results obtained suggest that AE is a potential PS for the photodynamic treatment of dermatophytosis caused by T. rubrum, but its permeability in skin and nails needs to be improved.
Collapse
Affiliation(s)
- Wenpeng Ma
- Department of Pathogenic Microbiology & ImmunologySchool of Basic Medical SciencesXi'an Jiao Tong University Health Science Center76 West Yanta RoadXi'an710061China
- Clinical LaboratoryThe Second Hospital of Weinan2 East Chaoyang StreetWeinan714000China
| | - Miaomiao Zhang
- Department of Pathogenic Microbiology & ImmunologySchool of Basic Medical SciencesXi'an Jiao Tong University Health Science Center76 West Yanta RoadXi'an710061China
| | - Zixin Cui
- Department of Pathogenic Microbiology & ImmunologySchool of Basic Medical SciencesXi'an Jiao Tong University Health Science Center76 West Yanta RoadXi'an710061China
- Department of InfectionThe First Affiliated Hospital of College of MedicineXi'an Jiao Tong University227 West Yanta RoadXi'an710061China
| | - Xiaopeng Wang
- Department of DermatologyThe Second Affiliated Hospital of College of MedicineXi'an Jiao Tong University157 Xi Wu RoadXi'an710004China
| | - Xinwu Niu
- Department of DermatologyThe Second Affiliated Hospital of College of MedicineXi'an Jiao Tong University157 Xi Wu RoadXi'an710004China
| | - Yanyan Zhu
- Department of DermatologyThe Second Affiliated Hospital of College of MedicineXi'an Jiao Tong University157 Xi Wu RoadXi'an710004China
| | - Zhihong Yao
- Department of Pathogenic Microbiology & ImmunologySchool of Basic Medical SciencesXi'an Jiao Tong University Health Science Center76 West Yanta RoadXi'an710061China
- Department of Clinical MedicineHanzhong Vocational and Technical College81 Zongying TownHanzhong723002China
| | - Feng Ye
- Department of InfectionThe First Affiliated Hospital of College of MedicineXi'an Jiao Tong University227 West Yanta RoadXi'an710061China
| | - Songmei Geng
- Department of DermatologyThe Second Affiliated Hospital of College of MedicineXi'an Jiao Tong University157 Xi Wu RoadXi'an710004China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology & ImmunologySchool of Basic Medical SciencesXi'an Jiao Tong University Health Science Center76 West Yanta RoadXi'an710061China
| |
Collapse
|
127
|
Dileep Kumar G, Siva B, Ashwini K, Vinod Kumar J, Ramalingam V, Sai Balaji A, Suresh Babu K. Design, synthesis, cytotoxic, and anti-inflammatory activities of some novel analogues of aloe-emodin isolated from the rhizomes of Rheum emodi. Nat Prod Res 2022; 37:1511-1517. [PMID: 35021945 DOI: 10.1080/14786419.2021.2024531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In connection with our continuous efforts in the synthesis of derivatives from major compounds isolated from traditional medicinal plants, in the present study we have attempted to synthesize the furan-conjugated aloe-emodin derivatives (5a-j) using a three-component reaction. The synthesized derivatives were assessed for anticancer activity against five different cancer cell lines using the in vitro MTT assay and the results showed that most of the derivatives are potent against cancer cells comparing with the control. Compounds 5a and 5e showed excellent activity against all the cancer cells with less than 12.5 µM and arrested the cell cycle at the G0/G1 phase in both CAL27 and SCC9 cells. Compound 5e induces the early apoptosis in CAL27 cells and compounds 5a and 5e induce early and late apoptosis, respectively, in SCC9 cells. Moreover, compounds 5b, 5c, 5i, and 5j showed excellent anti-inflammatory activity in LPS-stimulated RAW 264.7 cells by inhibiting IL-6 production. The molecular docking studies revealed that compound 5e has strong interaction with the CLK kinase and protein kinase II through hydrogen binding Asp325 and Lys290.
Collapse
Affiliation(s)
- G Dileep Kumar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bandi Siva
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - K Ashwini
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - J Vinod Kumar
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - V Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - A Sai Balaji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
128
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration. Curr Mol Pharmacol 2022; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aβ- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
129
|
Yang M, Shrestha SK, Soh Y, Heo SM. Effects of aloe-emodin on alveolar bone in Porphyromonas gingivalis-induced periodontitis rat model: a pilot study. J Periodontal Implant Sci 2022; 52:383-393. [DOI: 10.5051/jpis.2104060203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ming Yang
- Department of Periodontology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Periodontology, School of Dentistry, Beihua University, Jilin, China
| | - Saroj K Shrestha
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Yunjo Soh
- Laboratory of Pharmacology, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, South Korea
| | - Seok-Mo Heo
- Department of Periodontology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
130
|
Rajput A, De A, Mondal A, Das K, Maity B, Husain SM. A biocatalytic approach towards the preparation of natural deoxyanthraquinones and their impact on cellular viability. NEW J CHEM 2022. [DOI: 10.1039/d1nj05513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural deoxyanthraquinones synthesized using a chemoenzymatic approach and tested for cell viability shows less toxicity compared to the respective anthraquiones.
Collapse
Affiliation(s)
- Anshul Rajput
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Arijit De
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Amit Mondal
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Syed Masood Husain
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
131
|
Cui Z, Zhang M, Geng S, Niu X, Wang X, Zhu Y, Ye F, Liu C. Antifungal Effect of Antimicrobial Photodynamic Therapy Mediated by Haematoporphyrin Monomethyl Ether and Aloe Emodin on Malassezia furfur. Front Microbiol 2021; 12:749106. [PMID: 34867868 PMCID: PMC8637056 DOI: 10.3389/fmicb.2021.749106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Infectious dermatological diseases caused by Malassezia furfur are often chronic, recurrent, and recalcitrant. Current therapeutic options are usually tedious, repetitive, and associated with adverse effects. Alternatives that broaden the treatment options and reduce side effects for patients are needed. Antimicrobial photodynamic therapy (aPDT) is an emerging approach that is quite suitable for superficial infections. The aim of this study is to investigate the antimicrobial efficacy and effect of aPDT mediated by haematoporphyrin monomethyl ether (HMME) and aloe emodin (AE) on clinical isolates of M. furfur in vitro. The photodynamic antimicrobial efficacy of HMME and AE against M. furfur was assessed by colony forming unit (CFU) assay. The uptake of HMME and AE by M. furfur cells was investigated by fluorescence microscopy. Reactive oxygen species (ROS) probe and flow cytometry were employed to evaluate the intracellular ROS level. The effect of HMME and AE-mediated aPDT on secreted protease and lipase activity of M. furfur was also investigated. The results showed that HMME and AE in the presence of light effectively inactivated M. furfur cells in a photosensitizer (PS) concentration and light energy dose-dependent manner. AE exhibited higher antimicrobial efficacy against M. furfur than HMME under the same irradiation condition. HMME and AE-mediated aPDT disturbed the fungal cell envelop, significantly increased the intracellular ROS level, and effectively inhibited the activity of secreted protease and lipase of M. furfur cells. The results suggest that HMME and AE have potential to serve as PSs in the photodynamic treatment of dermatological diseases caused by M. furfur, but further ex vivo or in vivo experiments are needed to verify that they can meet the requirements for clinical practice.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
132
|
Hu YH, Quan ZY, Li DK, Wang CY, Sun ZX. Inhibition of CYP3A4 enhances aloe-emodin induced hepatocyte injury. Toxicol In Vitro 2021; 79:105276. [PMID: 34875353 DOI: 10.1016/j.tiv.2021.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
Aloe-emodin (AE) is a natural hydroxyanthraquinone derivative that was found in many medicinal plants and ethnic medicines. AE showed a wide array of pharmacological activities including anticancer, antifungal, laxative, antiviral, and antibacterial effects. However, increasing number of published studies have shown that AE may have some hepatotoxicity effects but the mechanism is not fully understood. Studies have shown that the liver injury induced by some free hydroxyanthraquinone compounds is associated with the inhibition of some metabolic enzymes. In this study, the CYP3A4 and CYP3A1 were found to be the main metabolic enzymes of AE in human and rat liver microsomes respectively. And AE was metabolized by liver microsomes to produce hydroxyl metabolites and rhein. When CYP3A4 was knocked down in L02 and HepaRG cells, the cytotoxicity of AE was increased significantly. Furthermore, AE increased the rates of apoptosis of L02 and HepaRG cells, accompanied by Ca2+ elevation, mitochondrial membrane potential (MMP) loss and reactive oxygen species (ROS) overproduction. The mRNA expression of heme oxygenase-1 in L02 and HepaRG cells increased significantly in the high-dose of AE (40 μmol/L) group, and the mRNA expression of quinone oxidoreductase-1 was activated by AE in all concentrations. Taken together, the inhibition of CYP3A4 enhances the hepatocyte injury of AE. AE can induce mitochondrial injury and the imbalance of oxidative stress of hepatocytes, which results in hepatocyte apoptosis.
Collapse
Affiliation(s)
- Ying-Huan Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zheng-Yang Quan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Deng-Ke Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng-Yu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhen-Xiao Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
133
|
Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschner M, Batiha GE. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Phytother Res 2021; 35:6530-6551. [PMID: 34396612 PMCID: PMC8441799 DOI: 10.1002/ptr.7228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/14/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
The flare-up in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in December 2019 in Wuhan, China, and spread expeditiously worldwide has become a health challenge globally. The rapid transmission, absence of anti-SARS-CoV-2 drugs, and inexistence of vaccine are further exacerbating the situation. Several drugs, including chloroquine, remdesivir, and favipiravir, are presently undergoing clinical investigation to further scrutinize their effectiveness and validity in the management of COVID-19. Natural products (NPs) in general, and plants constituents specifically, are unique sources for various effective and novel drugs. Immunostimulants, including vitamins, iron, zinc, chrysin, caffeic acid, and gallic acid, act as potent weapons against COVID-19 by reinvigorating the defensive mechanisms of the immune system. Immunity boosters prevent COVID-19 by stimulating the proliferation of T-cells, B-cells, and neutrophils, neutralizing the free radicals, inhibiting the immunosuppressive agents, and promoting cytokine production. Presently, antiviral therapy includes several lead compounds, such as baicalin, glycyrrhizin, theaflavin, and herbacetin, all of which seem to act against SARS-CoV-2 via particular targets, such as blocking virus entry, attachment to host cell receptor, inhibiting viral replication, and assembly and release.
Collapse
Affiliation(s)
- Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Abdul Haleem Khan
- Department of PharmacyForman Christian College (A Chartered University)LahorePakistan
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAl‐BeheiraEgypt
| |
Collapse
|
134
|
Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M. Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol 2021; 236:7440-7449. [PMID: 34041746 PMCID: PMC8530838 DOI: 10.1002/jcp.30416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis accompanies a number of pathological conditions and results in altered myocardial structure, biomechanical properties and function. The signaling networks leading to fibrosis are complex, contributing to the general lack of progress in identifying effective therapeutic approaches to prevent or reverse this condition. Several studies have shown protective effects of emodin, a plant-derived anthraquinone, in animal models of fibrosis. A number of questions remain regarding the mechanisms whereby emodin impacts fibrosis. Transforming growth factor beta 1 (TGF-β1) is a potent stimulus of fibrosis and fibroblast activation. In the present study, experiments were performed to evaluate the effects of emodin on activation and function of cardiac fibroblasts following treatment with TGF-β1. We demonstrate that emodin attenuates TGF-β1-induced fibroblast activation and collagen accumulation in vitro. Emodin also inhibits activation of several canonical (SMAD2/3) and noncanonical (Erk1/2) TGF-β signaling pathways, while activating the p38 pathway. These results suggest that emodin may provide an effective therapeutic agent for fibrosis that functions via specific TGF-β signaling pathways.
Collapse
Affiliation(s)
- Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ethan Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
135
|
Shi G, Jiang H, Feng J, Zheng X, Zhang D, Jiang C, Zhang J. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114108. [PMID: 33839199 DOI: 10.1016/j.jep.2021.114108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm. f. (Aloe vera) is a medicinal herb that used in Traditional Chinese Medicine (TCM) practice for the treatment of gastrointestinal diseases such as constipation and colitis. Recent studies also reported its beneficial effect in mitigating ulcerative colitis (UC). Nevertheless, the underlying mechanisms of Aloe vera against UC remain largely unknown. AIM OF THE STUDY This study aimed to explore a relation between the therapeutical effects of Aloe vera in UC and colonic mucus secretion, and further investigate the underlying pathways through which Aloe vera regulates colon mucus as well as preliminarily studied the main active constitute of Aloe vera to alleviate UC. MATERIALS AND METHODS UPLC-MS/MS were employed to analyze the Aloe vera extract. The rat models of UC were induced by free subjected to fresh 3% dextran sulfate sodium (DSS) solution for 8 days and then accessed to tap water for 2 days. Aloe vera extract (18 mg/kg and 72 mg/kg) or 5-ASA (400 mg/kg) was administered orally from day 1-10. At the end of experiment, rats were sacrificed and the colon tissues were harvested for analysis. UC symptoms was evaluated by disease activity index (DAI), colon length and H&E staining. The Alcian blue stain were determined colon mucus layer. Myeloperoxidase (MPO) activity, mucin and inflammatory cytokines in colon tissues were determined by ELISA. The expression of related proteins on PI3K/AKT and PKC/ERK signaling pathway was analyzed by Western blot. We then evaluated the effects of three main components of Aloe vera (Aloe-emodin, aloin A and B) on mucin secretion and cytokine expression in vitro by ELISA. RESULTS Oral supplement with Aloe vera extract resulted in a significantly decreased DSS-induced UC symptoms, including decreased DAI, prevention of the colon length shortening, and alleviation of the pathological changes occurring in colon. The expression of colonic pro-inflammatory mediators, including IL-6, IL-1β and TNF-α were suppressed, yet the expression of IL-10 was up-regulated by Aloe vera treatment. Moreover, Aloe vera significantly up-regulated the expressions of mucin proteins (e.g., MUC2 and MUC5AC) and increased the thickness of mucus layer in the colon. Further, we revealed that Aloe vera significantly upregulated p-PKC and p-ERK expression and downregulated p-PI3K and p-AKT expression. Finally, we discovered that treat with aloin A markedly decreased IL-6 levels and increased MUC2 expression in LPS-stimulated LS174T cell. CONCLUSION These results support that Aloe vera improved UC by enhancing colon mucus barrier functions in addition to reducing inflammation. Moreover, aloin A might be a main active components of Aloe vera to ameliorate UC.
Collapse
Affiliation(s)
- Gaofeng Shi
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Hui Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jianrong Feng
- Department of colorectal surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Xian Zheng
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Cuihua Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Jian Zhang
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| |
Collapse
|
136
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
137
|
Yang F, Cao Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W, Xie Y. Transformation and degradation of barbaloin in aqueous solutions and aloe powder under different processing conditions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
138
|
de Souza Collares Maia Castelo-Branco D, Dos Santos Araújo G, Fonseca XMQC, de Melo Guedes GM, da Rocha MG, Brilhante RSN, de Aguiar Cordeiro R, Sidrim JJC, Pereira-Neto WA, Rocha MFG. Anthraquinones from Aloe spp. inhibit Cryptococcus neoformans sensu stricto: effects against growing and mature biofilms. BIOFOULING 2021; 37:809-817. [PMID: 34634964 DOI: 10.1080/08927014.2021.1958793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on growing and mature biofilms of Cryptococcus neoformans sensu stricto. The compounds were added at the moment of inducing biofilm growth or after growth for 72 h to evaluate their effects on growing and mature biofilms, respectively. Then, biofilm biomass was evaluated by crystal violet staining and metabolic activity by the XTT reduction assay. Morphological alterations were also evaluated by laser scanning confocal microscopy. Aloe emodin and barbaloin affected growing biofilms and disrupted mature biofilms, reducing metabolic activity by > 60% and biomass by > 70%. Chrysophanol only inhibited mature biofilms, but to a lesser extent. In conclusion, anthraquinones, especially aloe emodin and barbaloin, show a relevant effect against growing and mature biofilms of C. neoformans sensu stricto.
Collapse
Affiliation(s)
- Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Xhaulla Maria Quariguasi Cunha Fonseca
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Gleiciane da Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
139
|
Li T, Lu Y, Zhang H, Wang L, Beier RC, Jin Y, Wang W, Li H, Hou X. Antibacterial Activity and Membrane-Targeting Mechanism of Aloe-Emodin Against Staphylococcus epidermidis. Front Microbiol 2021; 12:621866. [PMID: 34484130 PMCID: PMC8415635 DOI: 10.3389/fmicb.2021.621866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant Staphylococcus epidermidis (S. epidermidis) dwarfs the current antibiotic development and calls for the discovery of new antibacterial agents. Aloe-emodin is a plant-derived compound that holds promise to battle against these strains. This work reports the antimicrobial activity of aloe-emodin against S. epidermidis and other Gram-positive pathogenic species, manifesting minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) around 4-32 and 32-128 μg/mL, respectively. For Gram-negative bacteria tested, the MICs and MBCs of aloe-emodin were 128-256 and above 1024 μg/mL, respectively. Aloe-emodin at the MBC for 4 h eradicated 96.9% of S. epidermidis cells. Aloe-emodin treatment led to deformities in the morphology of S. epidermidis cells and the destroy of the selective permeability of the cell membranes. Analysis of the transcriptional profiles of aloe-emodin-treated cells revealed changes of genes involved in sulfur metabolism, L-lysine and peptidoglycan biosynthesis, and biofilm formation. Aloe-emodin therefore can safely control Gram-positive bacterial infections and proves to target the bacterial outer membrane.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Yan Lu
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Lei Wang
- Beijing Huafukang Bioscience Co., Ltd., Beijing, China
| | - Ross C. Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Yajie Jin
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wenjing Wang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Huanrong Li
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
140
|
Artemether confers neuroprotection on cerebral ischemic injury through stimulation of the Erk1/2-P90rsk-CREB signaling pathway. Redox Biol 2021; 46:102069. [PMID: 34303216 PMCID: PMC8327154 DOI: 10.1016/j.redox.2021.102069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability among adults. Despite the economic burden of the disease, available treatment options are still very limited. With the exception of anti-thrombolytics and hypothermia, current therapies fail to reduce neuronal injury, neurological deficits and mortality rates, suggesting that the development of novel and more effective therapies against ischemic stroke is urgent. In the present study, we found that artemether, which has been used in the clinic as an anti-malarial drug, was able to improve the neurological deficits, attenuate the infarction volume and the brain water content in a middle cerebral artery occlusion (MCAO) animal model. Furthermore, artemether treatment significantly suppressed cell apoptosis, stimulated cell proliferation and promoted the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), P90rsk and cAMP responsive element-binding protein (CREB). Artemether protective effect was attenuated by PD98059, an ERK1/2 inhibitor, administration. Similarly, in oxygen-glucose deprivation/reperfusion (OGD/RP) cell models, artemether pre-treatment induced the suppression of the intracellular ROS, the down-regulation of LDH activity, the reduction of caspase 3 activity and of the apoptosis cell rate and reversed the decrease of mitochondrial membrane potential. As with MCAO animal model, artemether promoted the activation of Erk1/2-P90rsk-CREB signaling pathway. This effect was blocked by the inhibition or knock-down of ERK1/2. The present study provides evidences of the neuroprotective effect of artemether unravelling its potential as a new therapeutic candidate for the prevention and treatment of stroke. Artemether conferred neuroprotection in a middle cerebral artery occlusion (MCAO) animal model. Artemether conferred neuroprotection on oxygen-glucose deprivation/reperfusion-induced cell injury model. Artemether promoted the activation of Erk1/2-P90rsk-CREB signaling pathway in vitro and in vivo.
Collapse
|
141
|
Zhao D, Feng SX, Zhang HJ, Zhang N, Liu XF, Wan Y, Zhou YX, Li JS. Pharmacokinetics, tissue distribution and excretion of five rhubarb anthraquinones in rats after oral administration of effective fraction of anthraquinones from rheum officinale. Xenobiotica 2021; 51:916-925. [PMID: 34110981 DOI: 10.1080/00498254.2021.1940353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhubarb, a famous traditional Chinese medicine, shows a wide range of physiological activities and pharmacological benefits. Rhubarb anthraquinones are perceived as the pharmacologically active compounds of Rhubarb, and understanding metabolism of them is crucial to assure safety and effectiveness of clinical application. In this study, the pharmacokinetics, tissue distribution and excretion of five rhubarb anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion) were systematically investigated after oral administration of rhubarb extract to rats.An HPLC method was developed and validated for quantitation of five rhubarb anthraquinones in rat plasma, tissues, urine and faeces to investigate the Pharmacokinetic characteristics. The results showed that the proposed method was suitable for the quantification of five anthraquinones in plasma, tissue and excreta samples with satisfactory linear (r > 0.99), precision (<10%) and recovery (85.12-104.20%). The plasma concentration profiles showed a quick absorption with the mean Tmax of 0.42-0.75 h and t1/2 of 6.60-15.11 h for five anthraquinones. The analytes were widely distributed in most of the tissues. Approximately 0.13-10.59% and 28.47-81.14% of five anthraquinones were recovered in urine and faeces within 132 h post-dosing, which indicated the major elimination route was faeces excretion.In summary, this study lays a foundation for elucidating the pharmacokinetic rule of rhubarb anthraquinone and the important data can provide reliable scientific resource for further research.
Collapse
Affiliation(s)
- Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| | - Hao-Jie Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Na Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue-Fang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Yan Wan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| | | | - Jian-Sheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| |
Collapse
|
142
|
Galli CL, Cinelli S, Ciliutti P, Melzi G, Marinovich M. Aloe-emodin, a hydroxyanthracene derivative, is not genotoxic in an in vivo comet test. Regul Toxicol Pharmacol 2021; 124:104967. [PMID: 34062205 DOI: 10.1016/j.yrtph.2021.104967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023]
Abstract
Aloe-emodin, one of the molecules belonging to the group of hydroxyanthracene derivatives, was recently described as genotoxic in vivo. Indeed, the EFSA judged that aloe-emodin, together with other similar molecules (emodin and danthron) and extracts from the leaf of Aloe species containing hydroxyanthracene derivatives, could represent a risk factor for colorectal cancer mediated by a genotoxic effect. Given the marked uncertainty regarding the conclusions in the opinion of the EFSA ANS Panel and conflicts in the epidemiological data on which the opinion is based, a new in vivo study (in vivo alkaline comet assay in mice - OECD 489) was conducted to test the potential genotoxicity of aloe-emodin at doses of 250, 500, 1000 and 2000 mg/kg bw/day on preparations of single cells from the kidney and colon of treated male mice. Following treatment with the test item, no clinical signs were observed in animals in any treatment group. Slight body-weight loss was randomly observed in all groups treated with the test item and was more evident in the groups dosed at 1000 and 2000 mg/kg bw/day. Under these experimental conditions, aloe-emodin showed no genotoxic activity. Possible oxidative damage to colon tissues could not be excluded based on the results obtained after repair enzyme treatment.
Collapse
Affiliation(s)
- Corrado L Galli
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy.
| | - Serena Cinelli
- European Research Biology Center ERBC, Pomezia, Rome, Italy
| | - Paola Ciliutti
- European Research Biology Center ERBC, Pomezia, Rome, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| |
Collapse
|
143
|
Marine Anthraquinones: Pharmacological and Toxicological Issues. Mar Drugs 2021; 19:md19050272. [PMID: 34068184 PMCID: PMC8152984 DOI: 10.3390/md19050272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.
Collapse
|
144
|
Jiang D, Ding S, Mao Z, You L, Ruan Y. Integrated analysis of potential pathways by which aloe-emodin induces the apoptosis of colon cancer cells. Cancer Cell Int 2021; 21:238. [PMID: 33902610 PMCID: PMC8077783 DOI: 10.1186/s12935-021-01942-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.
Collapse
Affiliation(s)
- Dongxiao Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shufei Ding
- Shaoxing Hospital Of Traditional Chinese Medicine, Shaoxing, 312000, People's Republic of China
| | - Zhujun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Liyan You
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yeping Ruan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
145
|
Nephrotoxicity of Herbal Products in Europe-A Review of an Underestimated Problem. Int J Mol Sci 2021; 22:ijms22084132. [PMID: 33923686 PMCID: PMC8074082 DOI: 10.3390/ijms22084132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Currently in Europe, despite the many advances in production technology of synthetic drugs, the interest in natural herbal medicines continues to increase. One of the reasons for their popular use is the assumption that natural equals safe. However, herbal medicines contain pharmacologically active ingredients, some of which have been associated with adverse effects. Kidneys are particularly susceptible to injury induced by toxins, including poisonous constituents from medicinal plants. The most recognized herb-induced kidney injury is aristolochic acid nephropathy connected with misuse of certain Traditional Chinese herbal medicines. Data concerning nephrotoxicity of plant species of European origin are scarce. Here, we critically review significant data of the nephrotoxicity of several plants used in European phytotherapy, including Artemisia herba-alba, Glycyrrhiza glabra, Euphorbia paralias, and Aloe). Causative mechanisms and factors predisposing to intoxications from the use of herbs are discussed. The basic intention of this review is to improve pharmacovigilance of herbal medicine, especially in patients with chronic kidney diseases.
Collapse
|
146
|
Cheng G, Pi Z, Zhuang X, Zheng Z, Liu S, Liu Z, Song F. The effects and mechanisms of aloe-emodin on reversing adriamycin-induced resistance of MCF-7/ADR cells. Phytother Res 2021; 35:3886-3897. [PMID: 33792091 DOI: 10.1002/ptr.7096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles for clinical effective chemotherapy. In this study, the effects and possible mechanisms of aloe-emodin (AE) were investigated on reversing the adriamycin (ADR)-induced resistance of MCF-7/ADR cells. AE could significantly reverse the ADR resistance in MCF-7/ADR cells. The combination of AE (20 μM) and ADR had no effect on the P-glycoprotein (P-gp) level, but notably promoted the accumulation of ADR in drug-resistant cells. The efflux function of P-gp required ATP, but AE reduced the intracellular ATP level. AE played a reversal role might through inhibiting the efflux function of P-gp. The research result of energy metabolism pathways indicated that combination of AE and ADR could inhibit glycolysis, tricarboxylic acid (TCA) cycle, glutamine metabolism, and related amino acid synthesis pathways. Moreover, we found AE not only reversed ADR-induced resistant but also induced autophagy as a defense mechanism. In addition, the combination of AE and ADR arrested G2/M cell cycle and induced apoptosis through DNA damage, ROS generation, caspase-3 activation. Our study indicated that AE could be a potential reversal agent to resensitize ADR resistant in tumor chemotherapy and inhibiting autophagy might be an effective strategy to further enhance the reversal activity of AE.
Collapse
Affiliation(s)
- Guorong Cheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
147
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
148
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
149
|
Nam J, Seol DW, Lee CG, Wee G, Yang S, Pan CH. Obtusifolin, an Anthraquinone Extracted from Senna obtusifolia (L.) H.S.Irwin & Barneby, Reduces Inflammation in a Mouse Osteoarthritis Model. Pharmaceuticals (Basel) 2021; 14:ph14030249. [PMID: 33802005 PMCID: PMC7999271 DOI: 10.3390/ph14030249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease that causes cartilage dysfunction and inflammation. Obtusifolin, an anthraquinone extracted from Senna obtusifolia (L.) H.S.Irwin & Barneby seeds, has anti-inflammatory functions; it could be used as a drug component to relieve OA symptoms. In this study, we investigated the effects of obtusifolin on OA inflammation. In vitro, interleukin (IL)-1β (1 ng/mL)-treated mouse chondrocytes were co-treated with obtusifolin at different concentrations. The expression of matrix metalloproteinase (Mmp) 3, Mmp13, cyclooxygenase 2 (Cox2), and signaling proteins was measured by polymerase chain reaction and Western blotting; collagenase activity and the PGE2 level were also determined. In vivo, OA-induced C57BL/6 mice were administered obtusifolin, and their cartilage was stained with Safranin O to observe damage. Obtusifolin inhibited Mmp3, Mmp13, and Cox2 expression to levels similar to or more than those after treatment with celecoxib. Additionally, obtusifolin decreased collagenase activity and the PGE2 level. Furthermore, obtusifolin regulated OA via the NF-κB signaling pathway. In surgically induced OA mouse models, the cartilage destruction decreased when obtusifolin was administered orally. Taken together, our results show that obtusifolin effectively reduces cartilage damage via the regulation of MMPs and Cox2 expression. Hence, we suggest that obtusifolin could be a component of another OA symptom reliever.
Collapse
Affiliation(s)
- Jiho Nam
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Degenerative InterDiseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dong-Won Seol
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea;
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
- Correspondence: (G.W.); (S.Y.); (C.-H.P.); Tel.: +82-53-790-5732 (G.W.); +31-219-5065 (S.Y.); +82-33-350-3652 (C.-H.P.)
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Degenerative InterDiseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (G.W.); (S.Y.); (C.-H.P.); Tel.: +82-53-790-5732 (G.W.); +31-219-5065 (S.Y.); +82-33-350-3652 (C.-H.P.)
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea;
- Division of BioMedical Science & Technology, KIST School, Korea University of Science and Technology (UST), Gangneung 25451, Korea
- Correspondence: (G.W.); (S.Y.); (C.-H.P.); Tel.: +82-53-790-5732 (G.W.); +31-219-5065 (S.Y.); +82-33-350-3652 (C.-H.P.)
| |
Collapse
|
150
|
Gan D, Su Q, Su H, Wu L, Chen J, Han B, Xiang M. Burn Ointment Promotes Cutaneous Wound Healing by Modulating the PI3K/AKT/mTOR Signaling Pathway. Front Pharmacol 2021; 12:631102. [PMID: 33762951 PMCID: PMC7982805 DOI: 10.3389/fphar.2021.631102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Burn ointment (BO) is a clinically useful medicine for the treatment of burns and scalds. However, there is no enough scientific evidence to report the effect of BO on wound healing and its analgesic and anti-inflammatory efficacy. The aim of this work was to evaluate the anti-inflammatory and analgesic efficacy of BO and to reveal the potential wound healing properties and related mechanisms of BO. In this work, the content of active ingredients of BO was determined by high-performance liquid chromatography (HPLC). Two animal models of inflammation were used to study its anti-inflammatory activity, and a hot plate method was used to evaluate its analgesic effect. In addition, mouse incision and rat burn models were used to investigate the effect of BO on the anti-inflammatory and wound healing mechanisms. The results showed that BO was safe for topical application, and BO could significantly inhibit auricular swelling in mice and paw swelling in rats and significantly prolong the latency period of paw licking in the hot plate experiment in mice. It can also accelerate wound healing and repair scars by promoting the formation of new epithelial tissues in rat burn models. In addition, BO significantly downregulated the serum level of TNF-α and significantly increased the serum levels of VEGF and TGF-β1. Also, BO promoted the expression of collagen I and increased the ratio in p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR pathways. Our results demonstrate the safety and efficacy of BO and suggest that activation of the PI3K/AKT/mTOR signaling pathway may play an important role in the promotion of wound healing by BO.
Collapse
Affiliation(s)
- Dali Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qiyuan Su
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hanwen Su
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun Chen
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional Chinese and Western Medicine), Wuhan, China
| | - Bing Han
- Department of Pathology, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|