101
|
Wu T, Datta SA, Mitra M, Gorelick RJ, Rein A, Levin JG. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications. Virology 2010; 405:556-67. [PMID: 20655566 PMCID: PMC2963451 DOI: 10.1016/j.virol.2010.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/16/2010] [Accepted: 06/23/2010] [Indexed: 01/31/2023]
Abstract
The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with "nucleic acid-driven multimerization" of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template ("roadblock" mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Siddhartha A.K. Datta
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Mithun Mitra
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Alan Rein
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| |
Collapse
|
102
|
Tukulula M, Klein R, Kaye PT. Indolizine Studies, Part 5: Indolizine-2-carboxamides as Potential HIV-1 Protease Inhibitors[1]. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903219450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
103
|
Jin Y, Tan Z, He M, Tian B, Tang S, Hewlett I, Yang M. SAR and molecular mechanism study of novel acylhydrazone compounds targeting HIV-1 CA. Bioorg Med Chem 2010; 18:2135-2140. [DOI: 10.1016/j.bmc.2010.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/30/2022]
|
104
|
Pan J, Lai CB, Scott WRP, Straus SK. Synthetic Fusion Peptides of Tick-Borne Encephalitis Virus as Models for Membrane Fusion. Biochemistry 2009; 49:287-96. [DOI: 10.1021/bi9017895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhe Pan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - C. Benjamin Lai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Walter R. P. Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
105
|
Tavlarakis A, Zhou R. Linear interaction energy approximation for binding affinities of nevirapine and HEPT analogues with HIV-1 reverse transcriptase. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020902929828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
106
|
Kieffer TL, Kwong AD, Picchio GR. Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). J Antimicrob Chemother 2009; 65:202-12. [DOI: 10.1093/jac/dkp388] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
107
|
Grazul M, Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.06.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
108
|
Darnag R, Schmitzer A, Belmiloud Y, Villemin D, Jarid A, Chait A, Seyagh M, Cherqaoui D. QSAR Studies of HEPT Derivatives Using Support Vector Machines. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200810166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Savinkova LK, Ponomarenko MP, Ponomarenko PM, Drachkova IA, Lysova MV, Arshinova TV, Kolchanov NA. TATA box polymorphisms in human gene promoters and associated hereditary pathologies. BIOCHEMISTRY (MOSCOW) 2009; 74:117-29. [PMID: 19267666 DOI: 10.1134/s0006297909020011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TATA-binding protein (TBP) is the first basal factor that recognizes and binds a TATA box on TATA-containing gene promoters transcribed by RNA polymerase II. Data available in the literature are indicative of admissible variability of the TATA box. The TATA box flanking sequences can influence TBP affinity as well as the level of basal and activated transcription. The possibility of mediated involvement in in vivo gene expression regulation of the TBP interactions with variant TATA boxes is supported by data on TATA box polymorphisms and associated human hereditary pathologies. A table containing data on TATA element polymorphisms in human gene promoters (about 40 mutations have been described), associated with particular pathologies, their short functional characteristics, and manifestation mechanisms of TATA-box SNPs is presented. Four classes of polymorphisms are considered: TATA box polymorphisms that weaken and enhance promoter, polymorphisms causing TATA box emergence and disappearance, and human virus TATA box polymorphisms. The described examples are indicative of the polymorphism-associated severe pathologies like thalassemia, the increased risk of hepatocellular carcinoma, sensitivity to H. pylori infection, oral cavity and lung cancers, arterial hypertension, etc.
Collapse
Affiliation(s)
- L K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
110
|
Design, synthesis and anti-HIV integrase evaluation of 4-oxo-4H-quinolizine-3-carboxylic acid derivatives. Molecules 2009; 14:868-83. [PMID: 19255545 PMCID: PMC6254011 DOI: 10.3390/molecules14020868] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/16/2009] [Accepted: 02/06/2009] [Indexed: 11/23/2022] Open
Abstract
4-Oxo-4H-quinolizine-3-carboxylic acid derivatives bearing sulfamido, carboxylamido, benzimidazole and benzothiazole substituents have been designed and synthesized. The structures of these new compounds were confirmed by 1H-NMR, 13C- NMR, IR and ESI (or HRMS) spectra. Compounds were screened for possible HIV integrase inhibitory activity.
Collapse
|
111
|
Murugesan V, Prabhakar YS, Katti SB. CoMFA and CoMSIA studies on thiazolidin-4-one as anti-HIV-1 agents. J Mol Graph Model 2009; 27:735-43. [DOI: 10.1016/j.jmgm.2008.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/26/2022]
|
112
|
Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors. J Virol 2009; 83:3059-68. [PMID: 19176623 DOI: 10.1128/jvi.02539-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to determine whether mutations in Gag in human immunodeficiency virus type 1 (HIV-1) variants selected with a protease inhibitor (PI) affect the development of resistance to the same or a different PI(s), we generated multiple infectious HIV-1 clones carrying mutated Gag and/or mutated protease proteins that were identified in amprenavir (APV)-selected HIV-1 variants and examined their virological characteristics. In an HIV-1 preparation selected with APV (33 passages, yielding HIV(APVp33)), we identified six mutations in protease and six apparently critical mutations at cleavage and non-cleavage sites in Gag. An infectious recombinant clone carrying the six protease mutations but no Gag mutations failed to replicate, indicating that the Gag mutations were required for the replication of HIV(APVp33). An infectious recombinant clone that carried wild-type protease and a set of five Gag mutations (rHIV(WTpro)(12/75/219/390/409gag)) replicated comparably to wild-type HIV-1; however, when exposed to APV, rHIV(WTpro)(12/75/219/390/409gag) rapidly acquired APV resistance. In contrast, the five Gag mutations significantly delayed the acquisition of HIV-1 resistance to ritonavir and nelfinavir (NFV). Recombinant HIV-1 clones containing NFV resistance-associated mutations, such as D30N and N88S, had increased susceptibilities to APV, suggesting that antiretroviral regimens including both APV and NFV may bring about favorable antiviral efficacy. The present data suggest that the preexistence of certain Gag mutations related to PI resistance can accelerate the emergence of resistance to the PI and delay the acquisition of HIV resistance to other PIs, and these findings should have clinical relevance in the therapy of HIV-1 infection with PI-including regimens.
Collapse
|
113
|
Němeček D, Overman SA, Hendrix RW, Thomas GJ. Unfolding thermodynamics of the Delta-domain in the prohead I subunit of phage HK97: determination by factor analysis of Raman spectra. J Mol Biol 2009; 385:628-41. [PMID: 18983851 PMCID: PMC2666443 DOI: 10.1016/j.jmb.2008.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/08/2008] [Accepted: 10/11/2008] [Indexed: 12/12/2022]
Abstract
An early step in the morphogenesis of the double-stranded DNA (dsDNA) bacteriophage HK97 is the assembly of a precursor shell (prohead I) from 420 copies of a 384-residue subunit (gp5). Although formation of prohead I requires direct participation of gp5 residues 2-103 (Delta-domain), this domain is eliminated by viral protease prior to subsequent shell maturation and DNA packaging. The prohead I Delta-domain is thought to resemble a phage scaffolding protein, by virtue of its highly alpha-helical secondary structure and a tertiary fold that projects inward from the interior surface of the shell. Here, we employ factor analysis of temperature-dependent Raman spectra to characterize the thermostability of the Delta-domain secondary structure and to quantify the thermodynamic parameters of Delta-domain unfolding. The results are compared for the Delta-domain within the prohead I architecture (in situ) and for a recombinantly expressed 111-residue peptide (in vitro). We find that the alpha-helicity (approximately 70%), median melting temperature (T(m)=58 degrees C), enthalpy (DeltaH(m)=50+/-5 kcal mol(-1)), entropy (DeltaS(m)=150+/-10 cal mol(-1) K(-1)), and average cooperative melting unit (n(c) approximately 3.5) of the in situ Delta-domain are altered in vitro, indicating specific interdomain interactions within prohead I. Thus, the in vitro Delta-domain, despite an enhanced helical secondary structure ( approximately 90% alpha-helix), exhibits diminished thermostability (T(m)=40 degrees C; DeltaH(m)=27+/-2 kcal mol(-1); DeltaS(m)=86+/-6 cal mol(-1) K(-1)) and noncooperative unfolding ( approximately 1) vis-à-vis the in situ Delta-domain. Temperature-dependent Raman markers of subunit side chains, particularly those of Phe and Trp residues, also confirm different local interactions for the in situ and in vitro Delta-domains. The present results clarify the key role of the gp5 Delta-domain in prohead I architecture by providing direct evidence of domain structure stabilization and interdomain interactions within the assembled shell.
Collapse
Affiliation(s)
- Daniel Němeček
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110
| | - Stacy A. Overman
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260
| | - George J. Thomas
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110
| |
Collapse
|
114
|
Fedoruk-Wyszomirska A, Szymański M, Wyszko E, Barciszewska MZ, Barciszewski J. Highly active low magnesium hammerhead ribozyme. J Biochem 2009; 145:451-9. [PMID: 19124457 DOI: 10.1093/jb/mvn182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hammerhead (HH) ribozymes can be used for highly specific inhibition of gene expression through the degradation of target mRNA. In vitro experiments with minimal HH domains demonstrated that the efficiency of catalysis is highly dependent on concentration of magnesium ions. Optimal ion requirements for HH-catalysed RNA cleavage are far from these found in the cell. Recently, it has been proposed that the efficiency of HH ribozymes can be increased at low magnesium concentration through stabilization of a catalytically active conformation by tertiary interactions between helices I and II. We designed a ribozyme stabilized by GAAA tetraloop and its receptor motifs and demonstrated that it can efficiently catalyse target RNA hydrolysis at submillimolar Mg(2+) concentrations in vitro as well as in cultured cells. Both unmodified and locked nucleic acid-modified extended ribozymes proved superior to the minimal core ribozyme and DNAzyme against the same target sequence.
Collapse
|
115
|
Lee KK, Gan L, Tsuruta H, Moyer C, Conway JF, Duda RL, Hendrix RW, Steven AC, Johnson JE. Virus capsid expansion driven by the capture of mobile surface loops. Structure 2008; 16:1491-502. [PMID: 18940605 DOI: 10.1016/j.str.2008.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The capsids of tailed-DNA bacteriophages first assemble as procapsids, which mature by converting into a new form that is strong enough to contain a densely packed viral chromosome. We demonstrate that the intersubunit crosslinking that occurs during maturation of HK97 capsids actually promotes the structural transformation. Small-angle X-ray scattering and crosslinking assays reveal that a shift in the crosslink pattern accompanies conversion of a semimature particle, Expansion Intermediate-I/II, to a more mature state, Balloon. This transition occurs in a switch-like fashion. We find that crosslink formation shifts the global conformational balance to favor the balloon state. A pseudoatomic model of EI-I/II derived from cryo-EM provides insight into the relationship between crosslink formation and conformational switching.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Rawal RK, Tripathi R, Katti S, Pannecouque C, De Clercq E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur J Med Chem 2008; 43:2800-6. [PMID: 18242784 DOI: 10.1016/j.ejmech.2007.12.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
117
|
Goh GKM, Dunker AK, Uversky VN. A comparative analysis of viral matrix proteins using disorder predictors. Virol J 2008; 5:126. [PMID: 18947403 PMCID: PMC2579295 DOI: 10.1186/1743-422x-5-126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 10/23/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A previous study (Goh G.K.-M., Dunker A.K., Uversky V.N. (2008) Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics. 9 (Suppl. 2), S4) revealed that HIV matrix protein p17 possesses especially high levels of predicted intrinsic disorder (PID). In this study, we analyzed the PID patterns in matrix proteins of viruses related and unrelated to HIV-1. RESULTS Both SIVmac and HIV-1 p17 proteins were predicted by PONDR VLXT to be highly disordered with subtle differences containing 50% and 60% disordered residues, respectively. SIVmac is very closely related to HIV-2. A specific region that is predicted to be disordered in HIV-1 is missing in SIVmac. The distributions of PID patterns seem to differ in SIVmac and HIV-1 p17 proteins. A high level of PID for the matrix does not seem to be mandatory for retroviruses, since Equine Infectious Anemia Virus (EIAV), an HIV cousin, has been predicted to have low PID level for the matrix; i.e. its matrix protein p15 contains only 21% PID residues. Surprisingly, the PID percentage and the pattern of predicted disorder distribution for p15 resemble those of the influenza matrix protein M1 (25%). CONCLUSION Our data might have important implications in the search for HIV vaccines since disorder in the matrix protein might provide a mechanism for immune evasion.
Collapse
Affiliation(s)
- Gerard Kian-Meng Goh
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute of Molecular & Cell Biology, 138673, Singapore
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
118
|
Maslat AO, Bkhaitan M, Sheikha GA. Study of the Effects on DNA of Two Novel Nucleoside Derivatives Synthesized as Potential Anti-HIV Agents. Drug Chem Toxicol 2008; 30:41-53. [PMID: 17364863 DOI: 10.1080/01480540601017652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pursuit of antiviral active compounds against different classes of viruses, in particular HIV, HBV, and HTLV is an area of important and intense research. In the current study, two novel nucleoside derivatives belonging to a new class of isoxazolidine were successfully synthesized as potential anti-HIV agents by replacement of the furanose ring by a N,O-heterocyclic ring Both compounds were investigated for biological activity, namely, mutagenic and antimutagenic properties. Using Salmonella typhimurium strains TA97, TA100, and TA102, both compounds proved to be nonmutagenic, which may be considered an encouraging result to further elucidate other biological activities. Antimutagenic testing of the synthesized compounds revealed that they are active against the base-pair substitution mutagen sodium azide. However, they did not show any indication as antimutagenic agents against hydrogen peroxide and mitomycin C (oxidative mutagens) or against nitrophenylenediamine (a base-pair substitution and frameshift mutagen). Structure-activity relationship is also discussed. Testing these compounds as antiviral agents is highly recommended.
Collapse
Affiliation(s)
- Ahmed O Maslat
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan.
| | | | | |
Collapse
|
119
|
Goh GKM, Dunker AK, Uversky VN. Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics 2008; 9 Suppl 2:S4. [PMID: 18831795 PMCID: PMC2559894 DOI: 10.1186/1471-2164-9-s2-s4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To examine the usefulness of protein disorder predictions as a tool for the comparative analysis of viral proteins, a relational database has been constructed. The database includes proteins from influenza A and HIV-related viruses. Annotations include viral protein sequence, disorder prediction, structure, and function. Location of each protein within a virion, if known, is also denoted. Our analysis reveals a clear relationship between proximity to the RNA core and the percentage of predicted disordered residues for a set of influenza A virus proteins. Neuraminidases (NA) and hemagglutinin (HA) of major influenza A pandemics tend to pair in such a way that both proteins tend to be either ordered-ordered or disordered-disordered by prediction. This may be the result of these proteins evolving from being lipid-associated. High abundance of intrinsic disorder in envelope and matrix proteins from HIV-related viruses likely represents a mechanism where HIV virions can escape immune response despite the availability of antibodies for the HIV-related proteins. This exercise provides an example showing how the combined use of intrinsic disorder predictions and relational databases provides an improved understanding of the functional and structural behaviour of viral proteins.
Collapse
Affiliation(s)
- Gerard Kian-Meng Goh
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
120
|
Xi X, Sun Y, Karim CB, Grigoryants VM, Scholes CP. HIV-1 nucleocapsid protein NCp7 and its RNA stem loop 3 partner: rotational dynamics of spin-labeled RNA stem loop 3. Biochemistry 2008; 47:10099-110. [PMID: 18729386 DOI: 10.1021/bi800602e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tumbling dynamics of a 20-mer HIV-1 RNA stem loop 3 spin-labeled at the 5' position were probed in the nanosecond time range. This RNA interacted with the HIV-1 nucleocapsid Zn-finger protein, 1-55 NCp7, and specialized stopped-flow EPR revealed concomitant kinetics of probe immobilization from milliseconds to seconds. RNA stem loop 3 is highly conserved in HIV, while NCp7 is critical to HIV-RNA packaging and annealing. The 5' probe did not perturb RNA melting or the NCp7/RNA interaction monitored by gel shift and fluorescence. The 5'-labeled RNA tumbled with a subnanosecond isotropic correlation time (approximately 0.60 ns at room temperature) reflecting both local viscosity-independent bond rotation of the probe and viscosity-dependent diffusion of 40-60% of the RNA. The binding of NCp7 to spin-labeled RNA stem loop 3 in a 1:1 ratio increased the spin-labeled tumbling time by about 40%. At low ionic strength with a ratio of NCp7 to RNA >or=3 (i.e., an NCp7 to nucleotide ratio <or=7, which is the threshold ratio for chaperone effects), the probe tumbling time markedly increased to several nanoseconds, signifying a NCP7/RNA complex with restricted motion even at the initially mobile 5' position. Increasing the ionic strength to shield the electrostatic attraction between polyanionic RNA and polycationic NCp7 eliminated this immobilization. Forming the immobilized >or=3:1 complex also required intact Zn fingers. Stopped-flow EPR kinetics with NCP7/RNA mixed at a 4:1 ratio showed the major phase of NCp7 interaction with RNA stem loop 3 occurred within 4 ms, a second phase occurred with a time constant of approximately 30 ms, and a slower immobilization, possibly concomitant with large complex formation, proceeded over seconds. This work points the way for spin-labeling to investigate oligonucleotide-protein complexes, notably those lacking precise stoichiometry, that are requisite for viral packaging and genome fabrication.
Collapse
Affiliation(s)
- Xiangmei Xi
- Department of Chemistry, University at Albany-SUNY, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
121
|
Rawal RK, Tripathi R, Kulkarni S, Paranjape R, Katti SB, Pannecouque C, De Clercq E. 2-(2,6-Dihalo-phenyl)-3-heteroaryl-2-ylmethyl-1, 3-thiazolidin-4-ones: Anti-HIV agents. Chem Biol Drug Des 2008; 72:147-54. [DOI: 10.1111/j.1747-0285.2008.00683.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
122
|
Synthesis and anti-HIV-1 activity of S-dihydro(alkyloxy)benzyloxypyrimidine derivatives. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-007-0834-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
123
|
Kline ER, Sutliff RL. The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. J Investig Med 2008; 56:752-69. [PMID: 18525451 PMCID: PMC2586126 DOI: 10.1097/jim.0b013e3181788d15] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recent in vitro and in vivo studies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.
Collapse
Affiliation(s)
- Erik R Kline
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, Emory University/Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | | |
Collapse
|
124
|
Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol 2008; 18:203-17. [PMID: 18406133 DOI: 10.1016/j.sbi.2008.02.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 01/10/2023]
Abstract
HIV assembly and replication proceed through the formation of morphologically distinct immature and mature viral capsids that are organized by the Gag polyprotein (immature) and by the fully processed CA protein (mature). The Gag polyprotein is composed of three folded polypeptides (MA, CA, and NC) and three smaller peptides (SP1, SP2, and p6) that function together to coordinate membrane binding and Gag-Gag lattice interactions in immature virions. Following budding, HIV maturation is initiated by proteolytic processing of Gag, which induces conformational changes in the CA domain and results in the assembly of the distinctive conical capsid. Retroviral capsids are organized following the principles of fullerene cones, and the hexagonal CA lattice is stabilized by three distinct interfaces. Recently identified inhibitors of viral maturation act by disrupting the final stage of Gag processing, or by inhibiting the formation of a critical intermolecular CA-CA interface in the mature capsid. Following release into a new host cell, the capsid disassembles and host cell factors can potently restrict this stage of retroviral replication. Here, we review the structures of immature and mature HIV virions, focusing on recent studies that have defined the global organization of the immature Gag lattice, identified sites likely to undergo conformational changes during maturation, revealed the molecular structure of the mature capsid lattice, demonstrated that capsid architectures are conserved, identified the first capsid assembly inhibitors, and begun to uncover the remarkable biology of the mature capsid.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
125
|
Kyere SK, Joseph PRB, Summers MF. The p12 domain is unstructured in a murine leukemia virus p12-CA(N) Gag construct. PLoS One 2008; 3:e1902. [PMID: 18382677 PMCID: PMC2277328 DOI: 10.1371/journal.pone.0001902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/25/2008] [Indexed: 02/05/2023] Open
Abstract
The Gag polyproteins of gammaretroviruses contain a conserved p12 domain between MA and CA that plays critical roles in virus assembly, reverse transcription and nuclear integration. Here we show using nuclear magnetic resonance, that p12 is unstructured in a Moloney murine leukemia virus (MMLV) Gag fragment that includes the N-terminal domain of CA (p12-CA(N)). Furthermore, no long range interactions were observed between the domains, as has been previously predicted. Flexibility appears to be a common feature of Gag "late" domains required for virus release during budding. Residues near the N-terminus of CA(N) that form a beta-hairpin in the mature CA protein are unfolded in p12-CA(N), consistent with proposals that hairpin formation helps trigger capsid assembly.
Collapse
Affiliation(s)
- Sampson K. Kyere
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Prem Raj B. Joseph
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Michael F. Summers
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
126
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
127
|
Wong HC, Shin R, Krishna NR. Solution structure of a double mutant of the carboxy-terminal dimerization domain of the HIV-1 capsid protein. Biochemistry 2008; 47:2289-97. [PMID: 18220423 DOI: 10.1021/bi7022128] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As in other retroviruses, the HIV-1 capsid (CA) protein is composed of two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), joined by a flexible linker. The dimerization of the CTD is thought to be a critical step in the assembly of the immature and mature viral capsids. The precise nature of the functional form of CTD dimerization interface has been a subject of considerable interest. Previously, the CTD dimer was thought to involve a face-to-face dimerization observed in the early crystallographic studies. Recently, the crystallographic structure for a domain-swapped CTD dimer has been determined. This dimer, with an entirely different interface that includes the major homology region (MHR) has been suggested as the functional form during the Gag assembly. The structure determination of the monomeric wt CTD of HIV-1 has not been possible because of the monomer-dimer equilibrium in solution. We report the NMR structure of the [W184A/M185A]-CTD mutant in its monomeric form. These mutations interfere with dimerization without abrogating the assembly activity of Gag and CA. The NMR structure shows some important differences compared to the CTD structure in the face-to-face dimer. Notably, the helix-2 is much shorter, and the kink seen in the crystal structure of the wt CTD in the face-to-face dimer is absent. These NMR studies suggest that dimerization-induced conformational changes may be present in the two crystal structures of the CTD dimers and also suggest a mechanism that can simultaneously accommodate both of the distinctly different dimer models playing functional roles during the Gag assembly of the immature capsids.
Collapse
Affiliation(s)
- Hing C Wong
- Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2041, USA
| | | | | |
Collapse
|
128
|
Darlix JL, Lévy Y. Le virus du Sida au milieu du gué vingt-cinq ans après. Med Sci (Paris) 2008; 24:4-6. [DOI: 10.1051/medsci/20082414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
129
|
Kozísek M, Bray J, Rezácová P, Sasková K, Brynda J, Pokorná J, Mammano F, Rulísek L, Konvalinka J. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J Mol Biol 2007; 374:1005-16. [PMID: 17977555 DOI: 10.1016/j.jmb.2007.09.083] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/24/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.
Collapse
Affiliation(s)
- Milan Kozísek
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Tong J, Liu S. Three-Dimensional Holographic Vector of Atomic Interaction Field Applied in QSAR of Anti-HIV HEPT Analogues. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200710076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
131
|
Bennett A, Liu J, Van Ryk D, Bliss D, Arthos J, Henderson RM, Subramaniam S. Cryoelectron Tomographic Analysis of an HIV-neutralizing Protein and Its Complex with Native Viral gp120. J Biol Chem 2007; 282:27754-9. [PMID: 17599917 DOI: 10.1074/jbc.m702025200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identifying structural determinants of human immunodeficiency virus (HIV) neutralization is an important component of rational drug and vaccine design. We used cryoelectron tomography and atomic force microscopy to characterize the structure of an extremely potent HIV-neutralizing protein, D1D2-Ig alpha tp (abbreviated as D1D2-IgP), a polyvalent antibody construct that presents dodecameric CD4 in place of the Fab regions. We show that D1D2-IgP has a novel structure, displaying greater flexibility of its antibody arms than the closely related IgM. Using simian immunodeficiency virus in complex with D1D2-IgP, we present unequivocal evidence that D1D2-IgP can cross-link surface spikes on the same virus and on neighboring viruses. The observed binding to the viral envelope spikes is the result of specific CD4-gp120 interaction, because binding was not observed with MICA-IgP, a construct that is identical to D1D2-IgP except that major histocompatibility complex Class I-related Chain A (MICA) replaces the CD4 moiety. CD4-mediated binding was also associated with a significantly elevated proportion of ruptured viruses. The ratio of inactivated to CD4-liganded gp120-gp41 spikes can be much greater than 1:1, because all gp120-gp41 spikes on the closely apposed surfaces of cross-linked viruses should be incapable of accessing the target cell surface and mediating entry, as a result of inter-virus spike cross-linking. These results implicate flexibility rather than steric bulk or polyvalence per se as a structural explanation for the extreme potency of D1D2-IgP and thus suggest polyvalence presented on a flexible scaffold as a key design criterion for small molecule HIV entry inhibitors.
Collapse
Affiliation(s)
- Adam Bennett
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Park SH, Opella SJ. Conformational changes induced by a single amino acid substitution in the trans-membrane domain of Vpu: implications for HIV-1 susceptibility to channel blocking drugs. Protein Sci 2007; 16:2205-15. [PMID: 17766368 PMCID: PMC2204142 DOI: 10.1110/ps.073041107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The channel-forming trans-membrane domain of Vpu (Vpu TM) from HIV-1 is known to enhance virion release from the infected cells and is a potential target for ion-channel blockers. The substitution of alanine at position 18 by a histidine (A18H) has been shown to render HIV-1 infections susceptible to rimantadine, a channel blocker of M2 protein from the influenza virus. In order to describe the influence of the mutation on the structure and rimantadine susceptibility of Vpu, we determined the structure of A18H Vpu TM, and compared it to those of wild-type Vpu TM and M2 TM. Both isotropic and orientationally dependent NMR frequencies of the backbone amide resonance of His18 were perturbed by rimantadine, and those of Ile15 and Trp22 were also affected, suggesting that His18 is the key residue for rimantadine binding and that residues located on the same face of the TM helix are also involved. A18H Vpu TM has an ideal, straight alpha-helix spanning residues 6-27 with an average tilt angle of 41 degrees in C14 phospholipid bicelles, indicating that the tilt angle is increased by 11 degrees compared to that of wild-type Vpu TM. The longer helix formed by the A18H mutation has a larger tilt angle to compensate for the hydrophobic mismatch with the length of the phospholipids in the bilayer. These results demonstrate that the local change of the primary structure plays an important role in secondary and tertiary structures of Vpu TM in lipid bilayers and affects its ability to interact with channel blockers.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0307, USA
| | | |
Collapse
|
133
|
Chiacchio U, Rescifina A, Iannazzo D, Piperno A, Romeo R, Borrello L, Sciortino MT, Balestrieri E, Macchi B, Mastino A, Romeo G. Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J Med Chem 2007; 50:3747-50. [PMID: 17580846 DOI: 10.1021/jm070285r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphonated carbocyclic 2'-oxa-3'-azanucleosides have been synthesized and tested for their antiretroviral activity. The obtained results have shown that some of the compounds were as powerful as azydothymidine in inhibiting the reverse transcriptase activity of the human retrovirus T-cell leukemia/lymphotropic virus type 1 and in protecting human peripheral blood mononuclear cells against human retrovirus T-cell leukemia/lymphotropic virus type 1 transmission in vitro. These data indicate that phosphonated carbocyclic 2'-oxa-3'-azanucleosides possess the necessary requirements to efficiently counteract infections caused by human retroviruses.
Collapse
Affiliation(s)
- Ugo Chiacchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg Med Chem 2007; 15:3134-42. [PMID: 17349793 DOI: 10.1016/j.bmc.2007.02.044] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/17/2022]
Abstract
A series of 2-(2,6-dihalophenyl)-3-(substituted pyrimidinyl)-1,3-thiazolidin-4-ones were designed on the prediction of quantitative structure-activity relationship (QSAR) studies, synthesized, and evaluated as HIV-1 reverse transcriptase inhibitors. Our attempts in correlating the identified molecular surface features related properties for modeling the HIV-1 RT inhibitory activity resulted in some statistically significant QSAR models with good predictive ability. The results showed that compounds 4m and 4n were highly active in inhibiting HIV-1 replication with EC(50) values in the range of 22-28 nM in MT-4 as well as in CEM cells with selectivity indexes of >10,000. The derived models collectively suggest that the compounds should be compact without bulky substitution on its peripheries for better HIV-1 RT inhibitory activity. These models also indicate a preference for hydrophobic compounds to obtain good HIV-1 RT inhibitory activity.
Collapse
Affiliation(s)
- Ravindra K Rawal
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India
| | | | | | | | | |
Collapse
|
135
|
Qiang W, Yang J, Weliky DP. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide to lipid distances reveal the intimate contact of beta strand peptide with membranes and the proximity of the Ala-14-Gly-16 region with lipid headgroups. Biochemistry 2007; 46:4997-5008. [PMID: 17417873 PMCID: PMC2631438 DOI: 10.1021/bi6024808] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) infection begins with fusion between viral and host cell membranes and is catalyzed by the HIV gp41 fusion protein. The approximately 20 N-terminal apolar residues of gp41 are called the HIV fusion peptide (HFP), interact with the host cell membrane, and play a key role in fusion. In this study, the membrane location of peptides which contained the HFP sequence (AVGIGALFLGFLGAAGSTMGARS) was probed in samples containing either only phospholipids or phospholipids and cholesterol. Four HFPs were examined which each contained 13CO labeling at three sequential residues between G5 and G16. The 13CO chemical shifts indicated that HFP had predominant beta strand conformation over the labeled residues in the samples. The internuclear distances between the HFP 13CO groups and the lipid 31P atoms were measured using solid-state nuclear magnetic resonance rotational-echo double-resonance experiments. The shortest 13CO-31P distances of 5-6 A were observed for HFP labeled between A14 and G16 and correlated with intimate association of beta strand HFP and membranes. These results were confirmed with measurements using HFPs singly labeled with 13CO at A6 or A14. To our knowledge, these data are the first measurements of distances between HIV fusion peptide nuclei and lipid P, and qualitative models of the membrane location of oligomeric beta strand HFP which are consistent with the experimental data are presented. Observation of intimate contact between beta strand HFP and membranes provides a rationale for further investigation of the relationship between structure and fusion activity for this conformation.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Jun Yang
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
136
|
Abstract
Emissive nucleoside analogues that are sensitive to their microenvironment can serve as probes for exploring RNA folding and recognition. We have previously described the synthesis of an environmentally sensitive furan-containing uridine and its triphosphate, and have demonstrated that T7 RNA polymerase recognizes this modified ribonucleoside triphosphate as a substrate in in vitro transcription reactions. Here we report the enzymatic preparation of fluorescently tagged HIV-1 TAR constructs and study their interactions with a Tat peptide. Two extreme labeling protocols are examined, where either all native uridine residues are replaced with the corresponding modified fluorescent analogue, or only key residues are site-specifically modified. For the HIV-1 Tat-TAR system, labeling all native uridine residues resulted in relatively small changes in emission upon increasing concentrations of the Tat peptide. In contrast, when the two bulge U residues were site-specifically labeled, a reasonable fluorescence response was observed upon Tat titration. The scope and limitations of such fluorescently tagged RNA systems are discussed.
Collapse
|
137
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6:1917-32. [PMID: 17391016 PMCID: PMC2588348 DOI: 10.1021/pr060394e] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
138
|
Franke R, Hirsch T, Eichler J. A rationally designed synthetic mimic of the discontinuous CD4-binding site of HIV-1 gp120. J Recept Signal Transduct Res 2007; 26:453-60. [PMID: 17118792 DOI: 10.1080/10799890600923179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.
Collapse
Affiliation(s)
- Raimo Franke
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
139
|
Burkala E, Poss M. Evolution of feline immunodeficiency virus Gag proteins. Virus Genes 2007; 35:251-64. [PMID: 17265140 DOI: 10.1007/s11262-006-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/13/2006] [Indexed: 01/23/2023]
Abstract
We evaluated the predicted biochemical properties of Gag proteins from a diverse group of feline immunodeficiency viruses (FIV) to determine how different evolutionary histories of virus and host have changed or constrained these important structural proteins. Our data are based on FIV sequences derived from domestic cat (FIVfca), cougar (FIVpco), and lions (FIVple). Analyses consisted of determining the selective forces acting at each position in the protein and the comparing predictions for secondary structure, charge, hydrophobicity and flexibility for matrix, capsid and nucleocapsid, and the C-terminal peptide, which comprise the Gag proteins. We demonstrate that differences among the FIV Gag proteins have largely arisen by neutral evolution, although many neutrally evolving regions have maintained biochemical features. Regions with predicted differences in biochemical features appear to involve intramolecular interactions and structural elements that undergo conformational changes during particle maturation. In contrast, the majority of sites involved in intermolecular contacts on the protein surface are constrained by purifying selection. There is also conservation of sites that interact with host proteins associated with cellular trafficking and particle budding. NC is the only protein with evidence of positive selection, two of which occur in the N-terminal region responsible for RNA binding and interaction with host proteins.
Collapse
Affiliation(s)
- Evan Burkala
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
140
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
141
|
Darlix JL, Garrido JL, Morellet N, Mély Y, de Rocquigny H. Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:299-346. [PMID: 17586319 DOI: 10.1016/s1054-3589(07)55009-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jean-Luc Darlix
- LaboRetro, Unité INSERM de Virologie Humaine, IFR128, ENS Sciences de Lyon 46 allée d'Italie, Lyon, France
| | | | | | | | | |
Collapse
|
142
|
Imai M, Baranyi L, Okada N, Okada H. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments. Biochem Biophys Res Commun 2006; 353:851-6. [PMID: 17210123 DOI: 10.1016/j.bbrc.2006.12.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 01/09/2023]
Abstract
HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent.
Collapse
Affiliation(s)
- Masaki Imai
- Department of Molecular Biology, Nagoya City University School of Medicine, Nagoya, Aichi 467-8601, and Choju Medical Institute, Fukushimura Hospital, Toyohashi, Japan
| | | | | | | |
Collapse
|
143
|
Nermut MV, Mulloy B. Consideration of the three-dimensional structure of core shells (capsids) in spherical retroviruses. Micron 2006; 38:462-70. [PMID: 17223564 DOI: 10.1016/j.micron.2006.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The problem of three-dimensional organization of retroviral cores has been a matter of interest for the past 30 years. The general opinion in favor of icosahedral symmetry based on electron microscopy observations was questioned when cryo-electron microscopy failed to provide convincing evidence in its favor. More recent studies by cryo-electron microscopy, X-ray crystallography and in vitro assembly of the CA domain of Human immuno deficiency virus (HIV), Murine leukemia virus (MuLV) and Rous sarcoma virus (RSV) threw new light on the organization of retroviral cores. In this communication we report how we produced a three-dimensional (3D) model of MuLV core using data from CA assembly on a lipid film [Ganser, B.K., Cheng, A., Sundquist, W.I., Yeager, M., 2003. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly. EMBO J. 22, 2886-2892]. The resulting structure revealed that the molecular organization of the core shell is specific and the presence of a 5,3,2 rotational symmetry of the 3D model provides support for icosahedral shape of MuLV cores. The model made it possible to determine the diameter of the cores and calculate the number of CA copies as well as the molecular mass of a core of specific diameter. Thus MuLV cores 68 (or 81.6) nm in diameter consist of 1500 (or 2160) copies of CA. About 12% of molecules from fullerene-like Gag shells versus 71% of molecules of closely packed (core-like). Gag shells were not incorporated into the core shells (capsids). Our 3D models received support from X-ray data of MuLV CA NTD domain published by Mortuza et al. [Mortuza, G., Haire, L.F., Stevens, A., Smerdon, S.J., Stoye, J.P., Taylor, I.A., 2004. High resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431, 481-485].
Collapse
Affiliation(s)
- Milan V Nermut
- Laboratory for Molecular Structure, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts. EN6 3QG, UK.
| | | |
Collapse
|
144
|
Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg Med Chem 2006; 15:1725-31. [PMID: 17178227 DOI: 10.1016/j.bmc.2006.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/25/2006] [Accepted: 12/02/2006] [Indexed: 11/21/2022]
Abstract
Compounds having isothiourea or thiourea functional group have shown high anti-HIV-1 activity. Therefore, a series of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones were designed, synthesized, and evaluated for anti-HIV-1 RT activity. The results of in vitro tests showed that the compound 9 exhibited EC50 at 0.26 microM with minimal toxicity in MT-4 cells as compared to 0.35 microM for thiazobenzimidazole (TBZ). It may be inferred from the present data that majority of compounds in this series exhibit higher selectivity index than TBZ.
Collapse
Affiliation(s)
- Ravindra K Rawal
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India
| | | | | | | | | |
Collapse
|
145
|
Verli H, Calazans A, Brindeiro R, Tanuri A, Guimarães JA. Molecular dynamics analysis of HIV-1 matrix protein: clarifying differences between crystallographic and solution structures. J Mol Graph Model 2006; 26:62-8. [PMID: 17067836 DOI: 10.1016/j.jmgm.2006.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/12/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
One of the main structural features of the mature HIV-1 virion is the matrix protein (p17). This partially globular protein presents four helixes centrally organized and a fifth one, H5, projecting away from the packed bundle of helixes. Comparison between solution and crystallographic data of p17 indicates a 6 A displacement of a short 3(10) helix and a partial unfolding of H5 in solution related to crystal. While the behavior of the 3(10) helix has been previously addressed to virion assembly, the relevance and origin of H5 partial unfolding is possibly related to the contacts between p17 and other viral elements, such as p24. In this context, we present a 40 ns conformational sampling of monomeric p17 using molecular dynamics simulations. The performed simulations presented a progressive conversion of the p17 crystallographic structure to the NMR conformation, suggesting that the biological form of this protein may have its C-terminal portion partially unfolded.
Collapse
Affiliation(s)
- Hugo Verli
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil.
| | | | | | | | | |
Collapse
|
146
|
Zhang Z, Zheng M, Du L, Shen J, Luo X, Zhu W, Jiang H. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues. J Comput Aided Mol Des 2006; 20:281-93. [PMID: 16897578 DOI: 10.1007/s10822-006-9050-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r(2)(cv) values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.
Collapse
Affiliation(s)
- Zhenshan Zhang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
147
|
Silvestri R, Maga G. Current state-of-the-art in preclinical and clinical development of novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.7.939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
148
|
Lim LW, Tomatsu M, Takeuchi T. Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation. Anal Bioanal Chem 2006; 386:614-20. [PMID: 16724223 DOI: 10.1007/s00216-006-0458-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/28/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
This paper describes use of a novel glass bead-based immobilized-enzyme micro column for simple and swift on-line protein digestion then peptide separation by reversed-phase HPLC. The inexpensive and easily made immobilized-enzyme micro column was prepared from aminopropyl controlled-pore glass that was reacted first with glutaraldehyde then with trypsin in the presence of phosphate buffer. Tryptic digestion of bovine serum albumin (BSA) was achieved simply by passing pretreated protein solution through the laboratory made immobilized-trypsin column; the tryptic fragments were then separated by reversed-phase HPLC. The peptide separation was found to be identical to separation of a sample which had undergone conventional enzymatic protein digestion in solution. Digestion of BSA by the immobilized-trypsin column decreased with increasing flow rate of the solution through the column, and 1.0 muL min(-1) was found to be the optimum flow rate for on-line protein digestion with our system. It was also found that the sample required pretreatment with urea before injection, because of a change in the properties of the protein in the presence of urea, and the immobilized-trypsin column lost its function in the presence of acetonitrile. This on-line proteomics system enables simple and rapid protein digestion and was successfully applied to partially micro two-dimensional (2D) chromatographic separation of proteins.
Collapse
Affiliation(s)
- Lee Wah Lim
- Department of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | | | | |
Collapse
|
149
|
Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F. Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 2006; 80:3189-204. [PMID: 16537587 PMCID: PMC1440361 DOI: 10.1128/jvi.80.7.3189-3204.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) potent transactivator Tat protein mediates pleiotropic effects on various cell functions. Posttranslational modification of Tat affects its activity during viral transcription. Tat binds to TAR and subsequently becomes acetylated on lysine residues by histone acetyltransferases. Novel protein-protein interaction domains on acetylated Tat are then established, which are necessary for both sustained transcriptional activation of the HIV-1 promoter and viral transcription elongation. In this study, we investigated the identity of proteins that preferentially bound acetylated Tat. Using a proteomic approach, we identified a number of proteins that preferentially bound AcTat, among which p32, a cofactor of splicing factor ASF/SF-2, was identified. We found that p32 was recruited to the HIV-1 genome, suggesting a mechanism by which acetylation of Tat may inhibit HIV-1 splicing needed for the production of full-length transcripts. Using Tat from different clades, harboring a different number of acetylation sites, as well as Tat mutated at lysine residues, we demonstrated that Tat acetylation affected splicing in vivo. Finally, using confocal microscopy, we found that p32 and Tat colocalize in vivo in HIV-1-infected cells.
Collapse
Affiliation(s)
- Reem Berro
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Kylene Kehn
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Cynthia de la Fuente
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anne Pumfery
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Richard Adair
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Wade
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anamaris M. Colberg-Poley
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Hiscott
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Fatah Kashanchi
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
- Corresponding author. Mailing address: The George Washington University, 2300 I St., NW, Ross Hall, Room 551, Washington, DC 20037. Phone: (202) 994-1781. Fax: (202) 994-1780. E-mail:
| |
Collapse
|
150
|
Semenova EA, Johnson AA, Marchand C, Davis DA, Yarchoan R, Pommier Y. Preferential inhibition of the magnesium-dependent strand transfer reaction of HIV-1 integrase by alpha-hydroxytropolones. Mol Pharmacol 2006; 69:1454-60. [PMID: 16418335 DOI: 10.1124/mol.105.020321] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integration is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1); therefore, inhibitors of HIV-1 integrase are candidates for antiretroviral therapy. Two 7-hydroxytropolone derivatives (alpha-hydroxytropolones) were found to inhibit HIV-1 integrase. A structure-activity relationship investigation with several tropolone derivatives from The National Cancer Institute compound repository demonstrated that the 7-hydroxy group is essential for integrase inhibition. alpha-Hydroxytropolones preferentially inhibit strand transfer and are inhibitory both in the presence of magnesium or manganese. Lack of inhibition of disintegration in the presence of magnesium coupled with results from different cross-linking assays suggests alpha-hydroxytropolones as interfacial inhibitors. We propose that alpha-hydroxytropolones chelate the divalent metal (Mg2+ or Mn2+) in the enzyme active site. The most active compound against HIV-1 integrase in biochemical assays [2,4,6-cycloheptatrien-1-one, 2,7-dihydroxy-4-isopropyl (NSC 18806) IC50 = 4.8 +/- 2.5 microM] exhibits weak cytoprotective activity against HIV-1(IIIB) in a cell-based assay. alpha-Hydroxytropolones represent a new family of inhibitors for the development of novel drugs against HIV infection.
Collapse
Affiliation(s)
- Elena A Semenova
- Laboratory of Molecular Pharmacology, Bldg. 37, Room 5068, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|