101
|
Zhong PC, Shu R, Wu HW, Liu ZW, Shen XL, Hu YJ. Altered gene expression in glycolysis-cholesterol synthesis axis correlates with outcome of triple-negative breast cancer. Exp Biol Med (Maywood) 2021; 246:560-571. [PMID: 33243007 PMCID: PMC7934150 DOI: 10.1177/1535370220975206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
Identification of molecular subtypes of clinically resectable triple-negative breast cancer (TNBC) is of great importance to achieve better clinical outcomes. Inter- and intratumor metabolic heterogeneity improves cancer survival, and the interaction of various metabolic pathways may affect treatment outcome of TNBC. We speculated that TNBC can be categorized into prognostic metabolic subtype according to the expression changes of glycolysis and cholesterol synthesis. The genome, transcriptome, and clinical data were downloaded from the Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium and subsequently analyzed by integrated bioinformatics methods. Four subtypes, namely, glycolytic, cholesterogenic, quiescent, and mixed, were classified according to the normalized median expressions of the genes involved in glycolysis and cholesterol synthesis. In the four subtypes, the cholesterogenic type was correlated with the shortest median survival (log rank P = 0.044), while patients with high-expressed glycolytic genes tended to have a longer survival. Tumors with PIK3CA amplification and dynein axonemal heavy chain 2 deletion exhibited higher expressions of cholesterogenic genes than other mutant oncogenes. The expressions of mitochondrial pyruvate carrier MPC1 and MPC2 were the lowest in quiescent tumor, and MPC2 expression was higher in cholesterogenic tumor compared with glycolytic or quiescent tumor (t-test P < 0.001). Glycolytic and cholesterogenic gene expressions were related to the expressions of prognostic genes in some other types of cancers. Classification of glycolytic and cholesterogenic pathways according to metabolic characteristics provides a new understanding to previously identified subtypes of TNBC and could improve personalized treatments based on tumor metabolic profiles.
Collapse
Affiliation(s)
- Peng-Cheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Rong Shu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Hui-Wen Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
102
|
Chou PC, Choi HH, Huang Y, Fuentes-Mattei E, Velazquez-Torres G, Zhang F, Phan L, Lee J, Shi Y, Bankson JA, Wu Y, Wang H, Zhao R, Yeung SCJ, Lee MH. Impact of diabetes on promoting the growth of breast cancer. Cancer Commun (Lond) 2021; 41:414-431. [PMID: 33609419 PMCID: PMC8118590 DOI: 10.1002/cac2.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type II diabetes mellitus (DM2) is a significant risk factor for cancers, including breast cancer. However, a proper diabetic breast cancer mouse model is not well-established for treatment strategy design. Additionally, the precise diabetic signaling pathways that regulate cancer growth remain unresolved. In the present study, we established a suitable mouse model and demonstrated the pathogenic role of diabetes on breast cancer progression. METHODS We successfully generated a transgenic mouse model of human epidermal growth factor receptor 2 positive (Her2+ or ERBB2) breast cancer with DM2 by crossing leptin receptor mutant (Leprdb/+ ) mice with MMTV-ErbB2/neu) mice. The mouse models were administrated with antidiabetic drugs to assess the impacts of controlling DM2 in affecting tumor growth. Magnetic resonance spectroscopic imaging was employed to analyze the tumor metabolism. RESULTS Treatment with metformin/rosiglitazone in MMTV-ErbB2/Leprdb/db mouse model reduced serum insulin levels, prolonged overall survival, decreased cumulative tumor incidence, and inhibited tumor progression. Anti-insulin resistance medications also inhibited glycolytic metabolism in tumors in vivo as indicated by the reduced metabolic flux of hyperpolarized 13 C pyruvate-to-lactate reaction. The tumor cells from MMTV-ErbB2/Leprdb/db transgenic mice treated with metformin had reprogrammed metabolism by reducing levels of both oxygen consumption and lactate production. Metformin decreased the expression of Myc and pyruvate kinase isozyme 2 (PKM2), leading to metabolism reprogramming. Moreover, metformin attenuated the mTOR/AKT signaling pathway and altered adipokine profiles. CONCLUSIONS MMTV-ErbB2/Leprdb/db mouse model was able to recapitulate diabetic HER2+ human breast cancer. Additionally, our results defined the signaling pathways deregulated in HER2+ breast cancer under diabetic condition, which can be intervened by anti-insulin resistance therapy.
Collapse
Affiliation(s)
- Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hyun Ho Choi
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| | - Yizhi Huang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guermarie Velazquez-Torres
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fanmao Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liem Phan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jaehyuk Lee
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - James A Bankson
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Wu
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiying Zhao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
103
|
Morales-Polanco F, Bates C, Lui J, Casson J, Solari CA, Pizzinga M, Forte G, Griffin C, Garner KEL, Burt HE, Dixon HL, Hubbard S, Portela P, Ashe MP. Core Fermentation (CoFe) granules focus coordinated glycolytic mRNA localization and translation to fuel glucose fermentation. iScience 2021; 24:102069. [PMID: 33554071 PMCID: PMC7859310 DOI: 10.1016/j.isci.2021.102069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Glycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells. Detailed live cell and smFISH studies in yeast show that the mRNAs are actively translated in granules, and this translation appears critical for the localization. Furthermore, this arrangement is likely to facilitate the higher level organization and control of the glycolytic pathway. Indeed, the degree of fermentation required by cells is intrinsically connected to the extent of mRNA localization to granules. On this basis, we term these granules, core fermentation (CoFe) granules; they appear to represent translation factories, allowing high-level coordinated enzyme synthesis for a critical metabolic pathway.
Collapse
Affiliation(s)
- Fabian Morales-Polanco
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christian Bates
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jennifer Lui
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Joseph Casson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Clara A Solari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mariavittoria Pizzinga
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Gabriela Forte
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Claire Griffin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Kirsten E L Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Harriet E Burt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Hannah L Dixon
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Hubbard
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Paula Portela
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mark P Ashe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
104
|
p62-Induced Cancer-Associated Fibroblast Activation via the Nrf2-ATF6 Pathway Promotes Lung Tumorigenesis. Cancers (Basel) 2021; 13:cancers13040864. [PMID: 33670717 PMCID: PMC7922306 DOI: 10.3390/cancers13040864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are important in tumor progression. The autophagy adaptor protein, p62/SQSTM1/Sequestosome-1, is up-regulated in tumors, but down-regulated in CAFs in the early stages of lung adenocarcinoma. We investigated whether p62-induced autophagy might control CAF activation. Under CAF-inducing conditions, like hypoxia or cancer cell co-cultures, p62 ablation or autophagy inhibition with hydroxychloroquine (HCQ) impaired CAF activation and reduced transforming growth factor beta (TGFβ) production, which impeded tumor growth. During CAF activation, p62-induced autophagy up-regulated the expression of the anti-oxidant signaling protein, nuclear factor erythroid 2-related factor 2 (Nrf2), and the ER-stress response regulator, activating transcription factor 6 (ATF6). Genetically or pharmacologically inhibiting the Nrf2-ATF6 pathway totally blocked CAF activation and tumor progression. These results demonstrate that p62 is a key modulator of primary lung adenocarcinoma progression. Thus, targeting the p62-Nrf2 autophagy signaling pathway might be a novel, stroma-focused, cancer prevention and/or treatment strategy.
Collapse
|
105
|
Zhang S, Xin F, Zhang X. The compound packaged in virions is the key to trigger host glycolysis machinery for virus life cycle in the cytoplasm. iScience 2021; 24:101915. [PMID: 33385116 PMCID: PMC7770649 DOI: 10.1016/j.isci.2020.101915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/07/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Viruses depend on the host metabolic machinery to complete their life cycle in the host cytoplasm. However, the key viral factors initiating the host machinery after the virus enters the cytoplasm remain unclear. Here, we found that compounds packaged in the virions of white spot syndrome virus, such as palmitic amide, could trigger the viral life cycle in the host cytoplasm. Palmitic amide promoted virus infection by enhancing host glycolysis by binding to triosephosphate isomerase to enhance its enzymatic activity. The glycolysis enhancement resulted in lactate accumulation, thereby promoting hypoxia-inducible factor 1 (HIF-1) expression. HIF-1 upregulation further enhanced glycolysis, which in turn promoted virus infection. Therefore, our study presented novel insight into the initiation of the virus life cycle in host cells. Palmitic amide packaged in WSSV virions significantly promoted virus infection Palmitic amide was released to upregulate HIF-1, leading to the enhanced glycolysis Palmitic amide directly bound to TPI and promoted its activity The enhanced TPI activity can upregulate glycolysis and the expression of HIF-1
Collapse
Affiliation(s)
- Siyuan Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fan Xin
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
106
|
Martínez-Ordoñez A, Seoane S, Avila L, Eiro N, Macía M, Arias E, Pereira F, García-Caballero T, Gómez-Lado N, Aguiar P, Vizoso F, Perez-Fernandez R. POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene 2021; 40:2725-2740. [PMID: 33714987 PMCID: PMC8049871 DOI: 10.1038/s41388-021-01740-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Metabolic reprogramming is considered hallmarks of cancer. Aerobic glycolysis in tumors cells has been well-known for almost a century, but specific factors that regulate lactate generation and the effects of lactate in both cancer cells and stroma are not yet well understood. In the present study using breast cancer cell lines, human primary cultures of breast tumors, and immune deficient murine models, we demonstrate that the POU1F1 transcription factor is functionally and clinically related to both metabolic reprogramming in breast cancer cells and fibroblasts activation. Mechanistically, we demonstrate that POU1F1 transcriptionally regulates the lactate dehydrogenase A (LDHA) gene. LDHA catalyzes pyruvate into lactate instead of leading into the tricarboxylic acid cycle. Lactate increases breast cancer cell proliferation, migration, and invasion. In addition, it activates normal-associated fibroblasts (NAFs) into cancer-associated fibroblasts (CAFs). Conversely, LDHA knockdown in breast cancer cells that overexpress POU1F1 decreases tumor volume and [18F]FDG uptake in tumor xenografts of mice. Clinically, POU1F1 and LDHA expression correlate with relapse- and metastasis-free survival. Our data indicate that POU1F1 induces a metabolic reprogramming through LDHA regulation in human breast tumor cells, modifying the phenotype of both cancer cells and fibroblasts to promote cancer progression.
Collapse
Affiliation(s)
- Anxo Martínez-Ordoñez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain ,grid.5386.8000000041936877XPresent Address: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Samuel Seoane
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leandro Avila
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Gijón, Spain
| | - Manuel Macía
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Efigenia Arias
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabio Pereira
- grid.488911.d0000 0004 0408 4897Department of Radiation Oncology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomas García-Caballero
- grid.488911.d0000 0004 0408 4897Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Gómez-Lado
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Aguiar
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Román Perez-Fernandez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
107
|
Nisar S, Bhat AA, Hashem S, Yadav SK, Rizwan A, Singh M, Bagga P, Macha MA, Frenneaux MP, Reddy R, Haris M. Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. J Transl Med 2020; 18:471. [PMID: 33298096 PMCID: PMC7727217 DOI: 10.1186/s12967-020-02656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is an efficient way to cure cancer by modulating the patient’s immune response. However, the immunotherapy response is heterogeneous and varies between individual patients and cancer subtypes, reinforcing the need for early benefit predictors. Evaluating the infiltration of immune cells in the tumor and changes in cell-intrinsic tumor characteristics provide potential response markers to treatment. However, this approach requires invasive sampling and may not be suitable for real-time monitoring of treatment response. The recent emergence of quantitative imaging biomarkers provides promising opportunities. In vivo imaging technologies that interrogate T cell responses, metabolic activities, and immune microenvironment could offer a powerful tool to monitor the cancer response to immunotherapy. Advances in imaging techniques to identify tumors' immunological characteristics can help stratify patients who are more likely to respond to immunotherapy. This review discusses the metabolic events that occur during T cell activation and differentiation, anti-cancer immunotherapy-induced T cell responses, focusing on non-invasive imaging techniques to monitor T cell metabolism in the search for novel biomarkers of response to cancer immunotherapy.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Santosh K Yadav
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Arshi Rizwan
- Department of Nephrology, AIIMS, New Delhi, India
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | | | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
108
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
109
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
110
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
111
|
Sangermano F, Delicato A, Calabrò V. Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie 2020; 179:205-216. [PMID: 33058958 DOI: 10.1016/j.biochi.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The Y Box binding protein 1 (YB-1) belongs to the highly conserved Cold Shock Domain protein family and is a major component of messenger ribonucleoprotein particles (mRNPs) in various organisms and cells. Cold Shock proteins are multifunctional nucleic acids binding proteins involved in a variety of cellular functions. Biological activities of YB-1 range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. The role of YB-1 in malignant cell transformation and fate transition is the subject of intensive investigation. Besides, emerging evidence indicates that YB-1 participates in several DNA damage repair pathways as a non-canonical DNA repair factor thus pointing out that the protein can allow cancer cells to evade conventional anticancer therapies and avoid cell death. Here, we will attempt to collect and summarize the current knowledge on this subject and provide the basis for further lines of inquiry.
Collapse
Affiliation(s)
- Felicia Sangermano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy.
| | - Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
112
|
Han J, Zhang Y, Xu J, Zhang T, Wang H, Wang Z, Jiang Y, Zhou L, Yang M, Hua Y, Cai Z. Her4 promotes cancer metabolic reprogramming via the c-Myc-dependent signaling axis. Cancer Lett 2020; 496:57-71. [PMID: 33038488 DOI: 10.1016/j.canlet.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/27/2022]
Abstract
Despite the growing recognition of metabolic reprogramming as an important hallmark of cancer in the past few years, the molecular mechanisms underlying metabolic alterations during tumorigenesis remain unclear. In this study, we identified a critical role of Her4 in rewiring cancer metabolism toward tumor-promoting metabolic processes, including increased glycolysis, glutaminolysis, mitochondrial biogenesis, and oxidative phosphorylation, which may in part cooperate to promote tumorigenesis. We found that overexpression of Her4 promoted the stabilization of c-Myc through a CIP2A-mediated increase in c-MycS62 phosphorylation and GSK3β-mediated decrease in c-MycT58 phosphorylation, both of which decreased c-Myc degradation. Furthermore, Her4 was found to increase glucose uptake and tumor growth in an osteosarcoma xenograft model. Overall, these findings provide a better understanding of the involvement of Her4 in tumorigenesis and document its potential role in metabolic reprogramming for the first time. We believe that our study might lead to promising opportunities for targeted metabolic therapy for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yangfeng Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Mengkai Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China.
| |
Collapse
|
113
|
Gopu V, Fan L, Shetty RS, Nagaraja M, Shetty S. Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 2020; 5:137969. [PMID: 32841217 PMCID: PMC7566714 DOI: 10.1172/jci.insight.137969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Increased metabolism distinguishes myofibroblasts or fibrotic lung fibroblasts (fLfs) from the normal lung fibroblasts (nLfs). The mechanism of metabolic activation in fLfs has not been fully elucidated. Furthermore, the antifibrogenic effects of caveolin-1 scaffolding domain peptide CSP/CSP7 involving metabolic reprogramming in fLfs are unclear. We therefore analyzed lactate and succinate levels, as well as the expression of glycolytic enzymes and hypoxia inducible factor-1α (HIF-1α). Lactate and succinate levels, as well as the basal expression of glycolytic enzymes and HIF-1α, were increased in fLfs. These changes were reversed following restoration of p53 or its transcriptional target microRNA-34a (miR-34a) expression in fLfs. Conversely, inhibition of basal p53 or miR-34a increased glucose metabolism, glycolytic enzymes, and HIF-1α in nLfs. Treatment of fLfs or mice having bleomycin- or Ad-TGF-β1-induced lung fibrosis with CSP/CSP7 reduced the expression of glycolytic enzymes and HIF-1α. Furthermore, inhibition of p53 or miR-34a abrogated CSP/CSP7-mediated restoration of glycolytic flux in fLfs in vitro and in mice with pulmonary fibrosis and lacking p53 or miR-34a expression in fibroblasts in vivo. Our data indicate that dysregulation of glucose metabolism in fLfs is causally linked to loss of basal expression of p53 and miR-34a. Treatment with CSP/CSP7 constrains aberrant glucose metabolism through restoration of p53 and miR-34a.
Collapse
|
114
|
Dixon TA, Pretorius IS. Drawing on the Past to Shape the Future of Synthetic Yeast Research. Int J Mol Sci 2020; 21:E7156. [PMID: 32998303 PMCID: PMC7583028 DOI: 10.3390/ijms21197156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Some years inspire more hindsight reflection and future-gazing than others. This is even more so in 2020 with its evocation of perfect vision and the landmark ring to it. However, no futurist can reliably predict what the world will look like the next time that a year's first two digits will match the second two digits-a numerical pattern that only occurs once in a century. As we leap into a new decade, amid uncertainties triggered by unforeseen global events-such as the outbreak of a worldwide pandemic, the accompanying economic hardship, and intensifying geopolitical tensions-it is important to note the blistering pace of 21st century technological developments indicate that while hindsight might be 20/20, foresight is 50/50. The history of science shows us that imaginative ideas, research excellence, and collaborative innovation can, for example, significantly contribute to the economic, cultural, social, and environmental recovery of a post-COVID-19 world. This article reflects on a history of yeast research to indicate the potential that arises from advances in science, and how this can contribute to the ongoing recovery and development of human society. Future breakthroughs in synthetic genomics are likely to unlock new avenues of impactful discoveries and solutions to some of the world's greatest challenges.
Collapse
Affiliation(s)
- Thomas A. Dixon
- Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW 2109, Australia;
| | - Isak S. Pretorius
- Chancellery and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
115
|
14-3-3 σ: A potential biomolecule for cancer therapy. Clin Chim Acta 2020; 511:50-58. [PMID: 32950519 DOI: 10.1016/j.cca.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
As more studies have focused on the function of 14-3-3 proteins, their role in tumor progression has gradually improved. In the 14-3-3 protein family, 14-3-3σ is the protein that is most associated with tumor occurrence and development. In some malignancies, 14-3-3σ acts as a tumor suppressor via p53 and tumor suppressor genes. In most tumors, 14-3-3σ overexpression increases resistance to chemotherapy and radiotherapy and mediates the G2-M checkpoint after DNA damage. Although 14-3-3σ overexpression has been closely associated with poorer prognosis in pancreatic, gastric and colorectal cancer, its role in gallbladder and nasopharyngeal cancer remains less clear. As such, the function of 14-3-3σ in specific cancer types needs to be further clarified. It has been hypothesized that a role may be related to its molecular chaperone function combined with various protein ligands. In this review, we examine the role of 14-3-3σ in tumor development and drug resistance. We discuss the potential of targeting 14-3-3σ regulators in cancer therapy and treatment.
Collapse
|
116
|
Ferreri C, Sansone A, Ferreri R, Amézaga J, Tueros I. Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways. Metabolites 2020; 10:metabo10090345. [PMID: 32854444 PMCID: PMC7570129 DOI: 10.3390/metabo10090345] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount and composition are dependent on dietary supply and tumor microenviroment. Research in this subject highlighted the crucial event of membrane formation, which is regulated by the fatty acids' molecular properties. The growing understanding of the pathways that create the fatty acid pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids open interesting perspectives for biomarker discovery and nutritional strategies to control cancer, also in combination with therapies. All these subjects are described using an integrated approach taking into account biochemical, biological and analytical aspects, delineating innovations in cancer prevention, diagnostics and treatments.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the hospital pathway, Pitigliano Hospital, Via Nicola Ciacci, 340, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| |
Collapse
|
117
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
118
|
Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target. Med Oncol 2020; 37:72. [PMID: 32725458 DOI: 10.1007/s12032-020-01394-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Cancer cells alter their metabolism by switching from glycolysis to oxidative phosphorylation (OXPHOS), regardless of oxygen availability. Metabolism may be a molecular target in acute myeloid leukemia (AML), where mutations in metabolic genes have been described. This study evaluated glycolysis and OXPHOS as therapeutic targets. The sensitivity to 2-deoxy-D-glucose (2-DG; glycolysis inhibitor) and oligomycin (OXPHOS inhibitor) was tested in six AML cell lines (HEL, HL-60, K-562, KG-1, NB-4, THP-1). These cells were characterized for IDH1/2 exon 4 mutations, reactive oxygen species, and mitochondrial membrane potential. Metabolic activity was assessed by resazurin assay, whereas cell death and cell cycle were assessed by flow cytometry. Glucose uptake and metabolism-related gene expression were analyzed by 18F-FDG and RT-PCR/qPCR, respectively. No IDH1/2 exon 4 mutations were detected. HEL cells had the highest 18F-FDG uptake and peroxides/superoxide anion levels, whereas THP-1 showed the lowest. 2-DG reduced metabolic activity in all cell lines with HEL, KG-1, and NB-4 being the most sensitive cells. Oligomycin decreased metabolic activity in a cell line-dependent manner, the THP-1 resistant and HL-60 being the most sensitive. Both inhibitors induced apoptosis and cell cycle arrest in a cell line- and compound-dependent manner. 2-DG decreased 18F-FDG uptake in HEL, HL-60, KG-1, and NB-4, while oligomycin increased the uptake in K-562. Metabolism gene expression had different responses to treatments. In conclusion, HEL and KG-1 show to be more glycolytic, whereas HL-60 was more OXPHOS dependent. Results suggest that AML cells reprogram their metabolism to overcome OXPHOS inhibition suggesting that glycolysis may be a better therapeutic target.
Collapse
|
119
|
Fernández-Calero T, Davyt M, Perelmuter K, Chalar C, Bampi G, Persson H, Tosar JP, Hafstað V, Naya H, Rovira C, Bollati-Fogolín M, Ehrlich R, Flouriot G, Ignatova Z, Marín M. Fine-tuning the metabolic rewiring and adaptation of translational machinery during an epithelial-mesenchymal transition in breast cancer cells. Cancer Metab 2020; 8:8. [PMID: 32699630 PMCID: PMC7368990 DOI: 10.1186/s40170-020-00216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT BACKGROUND During breast cancer progression, the epithelial to mesenchymal transition has been associated with metastasis and endocrine therapy resistance; however, the underlying mechanisms remain elusive. To gain insight into this process, we studied the transition undergone by MCF7-derived cells, which is driven by the constitutive nuclear expression of a MKL1 variant devoid of the actin-binding domain (MKL1 ΔN200). We characterized the adaptive changes that occur during the MKL1-induced cellular model and focused on regulation of translation machinery and metabolic adaptation. METHODS We performed a genome-wide analysis at the transcriptional and translational level using ribosome profiling complemented with RNA-Seq and analyzed the expression of components of the translation machinery and enzymes involved in energy metabolism. NGS data were correlated with metabolomic measurements and quantification of specific mRNAs extracted from polysomes and western blots. RESULTS Our results reveal the expression profiles of a luminal to basal-like state in accordance with an epithelial to mesenchymal transition. During the transition, the synthesis of ribosomal proteins and that of many translational factors was upregulated. This overexpression of the translational machinery appears to be regulated at the translational level. Our results indicate an increase of ribosome biogenesis and translation activity. We detected an extensive metabolic rewiring occurring in an already "Warburg-like" context, in which enzyme isoform switches and metabolic shunts indicate a crucial role of HIF-1α along with other master regulatory factors. Furthermore, we detected a decrease in the expression of enzymes involved in ribonucleotide synthesis from the pentose phosphate pathway. During this transition, cells increase in size, downregulate genes associated with proliferation, and strongly upregulate expression of cytoskeletal and extracellular matrix genes. CONCLUSIONS Our study reveals multiple regulatory events associated with metabolic and translational machinery adaptation during an epithelial mesenchymal-like transition process. During this major cellular transition, cells achieve a new homeostatic state ensuring their survival. This work shows that ribosome profiling complemented with RNA-Seq is a powerful approach to unveil in-depth global adaptive cellular responses and the interconnection among regulatory circuits, which will be helpful for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Av. 8 de Octubre, 2738 Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Giovana Bampi
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Helena Persson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Völundur Hafstað
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | | | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gilles Flouriot
- Université de Rennes 1-IRSET, Campus Santé de Villejean, 35000 Rennes, France
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| |
Collapse
|
120
|
Shattuck-Brandt RL, Chen SC, Murray E, Johnson CA, Crandall H, O'Neal JF, Al-Rohil RN, Nebhan CA, Bharti V, Dahlman KB, Ayers GD, Yan C, Kelley MC, Kauffmann RM, Hooks M, Grau A, Johnson DB, Vilgelm AE, Richmond A. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clin Cancer Res 2020; 26:3803-3818. [PMID: 32234759 PMCID: PMC7367743 DOI: 10.1158/1078-0432.ccr-19-1895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on BRAF mutation status, but no available agents are available for NRAS, NF1, CDKN2A, PTEN, and TP53 mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to BRAF or NRAS mutations, while loss or mutation of CDKN2A occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53. Here, we investigated the therapeutic efficacy of over-riding MDM2-mediated degradation of p53 in melanoma with an MDM2 inhibitor that interrupts MDM2 ubiquitination of p53, treating tumor-bearing mice with the MDM2 inhibitor alone or combined with MAPK-targeted therapy. EXPERIMENTAL DESIGN To characterize the ability of the MDM2 antagonist, KRT-232, to inhibit tumor growth, we established patient-derived xenografts (PDX) from 15 patients with melanoma. Mice were treated with KRT-232 or a combination with BRAF and/or MEK inhibitors. Tumor growth, gene mutation status, as well as protein and protein-phosphoprotein changes, were analyzed. RESULTS One-hundred percent of the 15 PDX tumors exhibited significant growth inhibition either in response to KRT-232 alone or in combination with BRAF and/or MEK inhibitors. Only BRAFV600WT tumors responded to KRT-232 treatment alone while BRAFV600E/M PDXs exhibited a synergistic response to the combination of KRT-232 and BRAF/MEK inhibitors. CONCLUSIONS KRT-232 is an effective therapy for the treatment of either BRAFWT or PAN WT (BRAFWT, NRASWT) TP53WT melanomas. In combination with BRAF and/or MEK inhibitors, KRT-232 may be an effective treatment strategy for BRAFV600-mutant tumors.
Collapse
Affiliation(s)
- Rebecca L Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Murray
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Christopher Andrew Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly Crandall
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamye F O'Neal
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rami Nayef Al-Rohil
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Caroline A Nebhan
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vijaya Bharti
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Kimberly B Dahlman
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rondi M Kauffmann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Hooks
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ana Grau
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B Johnson
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Vilgelm
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
121
|
Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S, He X, Ma J, Xiang J, Jiang G, Wen X, Feng Z, Wu Y, Feng T, Xu L, Chen K, Zhang X, Wei R, Zhang C, Cen B, Xie H, Song P, Liu J, Zheng S, Xu X. USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut 2020; 69:1322-1334. [PMID: 31776228 DOI: 10.1136/gutjnl-2019-319616] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to elucidate the mutual regulation mechanism of ubiquitin-specific protease 22 (USP22) and hypoxia inducible factor-1α (HIF1α), and the mechanism they promote the stemness of hepatocellular carcinoma (HCC) cells under hypoxic conditions. DESIGN Cell counting, migration, self-renewal ability, chemoresistance and expression of stemness genes were established to detect the stemness of HCC cells. Immunoprecipitation, ubiquitination assay and chromatin immunoprecipitation assay were used to elucidate the mutual regulation mechanism of USP22 and HIF1α. HCC patient samples and The Cancer Genome Atlas data were used to demonstrate the clinical significance. In vivo USP22-targeting experiment was performed in mice bearing HCC. RESULTS USP22 promotes hypoxia-induced HCC stemness and glycolysis by deubiquitinating and stabilising HIF1α. As direct target genes of HIF1α, USP22 and TP53 can be transcriptionally upregulated by HIF1α under hypoxic conditions. In TP53 wild-type HCC cells, HIF1α induced TP53-mediated inhibition of HIF1α-induced USP22 upregulation. In TP53-mutant HCC cells, USP22 and HIF1α formed a positive feedback loop and promote the stemness of HCC. HCC patients with a loss-of-function mutation at TP53 and high USP22 and/or HIF1α expression tend to have a worse prognosis. The USP22-targeting lipopolyplexes caused high tumour inhibition and high sorafenib sensitivity in mice bearing HCC. CONCLUSION USP22 promotes hypoxia-induced HCC stemness by a HIF1α/USP22 positive feedback loop on TP53 inactivation. USP22 is a promising target for the HCC therapy.
Collapse
Affiliation(s)
- Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Qiaonan Shan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Qifan Zhan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Qianwei Ye
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Peng Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Shengjun Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19014, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19014, Pennsylvania, USA
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guangjiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Xue Wen
- Department of Pathology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19014, Pennsylvania, USA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19014, Pennsylvania, USA
| | - Tingting Feng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China.,Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Kangchen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Chenzhi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Beini Cen
- NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Penghong Song
- NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8J 0B4, Canada
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China .,NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
122
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
123
|
Rodrigues TS, Alvarez ARP, Gembre AF, Forni MFPDAD, de Melo BMS, Alves Filho JCF, Câmara NOS, Bonato VLD. Mycobacterium tuberculosis-infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. J Leukoc Biol 2020; 108:1225-1238. [PMID: 32557929 DOI: 10.1002/jlb.3ma0520-113r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis kills more than 1 million people every year, and its control depends on the effective mechanisms of innate immunity, with or without induction of adaptive immune response. We investigated the interaction of type II alveolar epithelial cells (AEC-II) infected by Mycobacterium tuberculosis with dendritic cells (DCs). We hypothesized that the microenvironment generated by this interaction is critical for the early innate response against mycobacteria. We found that AEC-II infected by M. tuberculosis induced DC maturation, which was negatively regulated by HIF-1α-inducible NOS2 axis, and switched DC metabolism from an early and short peak of glycolysis to a low energetic status. However, the infection of DCs by M. tuberculosis up-regulated NOS2 expression and inhibited AEC-II-induced DC maturation. Our study demonstrated, for the first time, that HIF-1α-NOS2 axis plays a negative role in the maturation of DCs during M. tuberculosis infection. Such modulation might be useful for the exploitation of molecular targets to develop new therapeutic strategies against tuberculosis.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Transplantation Immunology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
124
|
Gutkin DW, Shurin MR, El Azher MA, Shurin GV, Velikokhatnaya L, Prosser D, Shin N, Modugno F, Stemmer P, Elishaev E, Lokshin A. Novel protein and immune response markers of human serous tubal intraepithelial carcinoma of the ovary. Cancer Biomark 2020; 26:471-479. [PMID: 31658047 DOI: 10.3233/cbm-190528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecologic diseases in the USA and Europe. High-grade serous carcinoma (HGSC) of the ovary, the most aggressive type of ovarian cancer, is typically diagnosed at advanced stages when the 5-year survival is dismal. Since the cure rate for stage I HGSC is high, early detection of localized initial disease may improve patient outcomes. Serous tubal intraepithelial carcinoma (STIC) is considered to be a precursor lesion of HGSC. Discovery of biomarkers associated with STIC could aid in the development of an HGSC screening algorithm. Using immunohistochemical staining, we have demonstrated overexpression of UCHL1, ADAMTS13, and GAPDH in patients' STIC lesions, but not in cancer-free fallopian tubes. We additionally demonstrated a marked increase of T cells in perineoplastic stroma surrounding STIC lesions (largely CD4 + cells), but not in normal fallopian tubes and HGSC. FOXP3 + T regulatory cells are absent in STIC lesions but are present in HGSC. These observations indicate the microenvironment surrounding a STIC lesion may be immune promoting in contrast to the immune suppressive microenvironment of invasive carcinoma. In summary, we have identified UCHL1, ADAMTS13, and GAPDH as novel potentially useful markers associated with early stages of HGSC tumorigenesis and possibly contribute to STIC immunogenicity. The lack of immune suppression in the STIC microenvironment indicates that the immune system can still recognize and keep STIC controlled at this stage of the tumor development.
Collapse
Affiliation(s)
- Dmitriy W Gutkin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Michael R Shurin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mounia Alaoui El Azher
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Galina V Shurin
- Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Liudmila Velikokhatnaya
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Denise Prosser
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Namhee Shin
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Francesmary Modugno
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Esther Elishaev
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Anna Lokshin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
125
|
Sellitto A, D’Agostino Y, Alexandrova E, Lamberti J, Pecoraro G, Memoli D, Rocco D, Coviello E, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061477. [PMID: 32516978 PMCID: PMC7353068 DOI: 10.3390/cancers12061477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Coviello
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi (SA), Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| |
Collapse
|
126
|
Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, Zhu Y, Zhang J, Luo P, Gu L. Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis. Drug Des Devel Ther 2020; 14:2091-2100. [PMID: 32546972 PMCID: PMC7261662 DOI: 10.2147/dddt.s248872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemia threatens so many lives around the world. Dihydroartemisinin (DHA), as a typical derivative of artemisinin (ART), can efficiently inhibit leukemia, but the controversial mechanisms are still controversial. Many reports showed that tumor cells acquire energy through the glycolysis pathway, pyruvate kinase M2 (PKM2) plays a crucial role in regulating glycolysis. However, it is unclear whether PKM2 or other key molecules are involved in DHA induced cytotoxicity in leukemia cells. Thus, this paper systematically investigated the anticancer effect and mechanism of DHA on human chronic myeloid leukemia K562 cells. METHODS In vitro, cytotoxicity was detected with CCK-8. Glucose uptake, lactate production and pyruvate kinase activity were investigated to evaluate the effect of DHA on K562 cells. To elucidate the cellular metabolism alterations induced by DHA, the extracellular acidification rate was assessed using Seahorse XF96 extracellular flux analyzer. Immunofluorescence, real-time PCR, and Western blotting were used to investigate the molecular mechanism. RESULTS We found that DHA prevented cell proliferation in K562 cells through inhibiting aerobic glycolysis. Lactate product and glucose uptake were inhibited after DHA treatment. Results showed that DHA modulates glucose uptake through downregulating glucose transporter 1 (GLUT1) in both gene and protein levels. The cytotoxicity of DHA on K562 cells was significantly reversed by PKM2 agonist DASA-58. Pyruvate kinase activity was significantly reduced after DHA treatment, decreased expression of PKM2 was confirmed in situ. CONCLUSION The present study implicated that DHA inhibits leukemia cell proliferation by regulating glycolysis and metabolism, which mediated by downregulating PKM2 and GLUT1 expression. Our finding might enrich the artemisinins' antitumor mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou730050, People’s Republic of China
| | - Dandan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yuqing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yanqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yongping Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Piao Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| |
Collapse
|
127
|
Bristot IJ, Kehl Dias C, Chapola H, Parsons RB, Klamt F. Metabolic rewiring in melanoma drug-resistant cells. Crit Rev Oncol Hematol 2020; 153:102995. [PMID: 32569852 DOI: 10.1016/j.critrevonc.2020.102995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.
Collapse
Affiliation(s)
- Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil.
| | - Camila Kehl Dias
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Henrique Chapola
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Fábio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| |
Collapse
|
128
|
Chen Z, Li S, Shen L, Wei X, Zhu H, Wang X, Yang M, Zheng X. NF-kappa B interacting long noncoding RNA enhances the Warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis 2020; 11:323. [PMID: 32382013 PMCID: PMC7206073 DOI: 10.1038/s41419-020-2520-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023]
Abstract
In various malignant tumors, NF-kappa B interacting long noncoding RNA (NKILA) displays antitumor activity by inhibiting the NF-kappa B pathway. However, the role of NKILA in gliomas remains unclear. Surprisingly, this study showed that NKILA is significantly upregulated in gliomas, and the increased levels of NKILA were correlated with a decrease in patient survival time. NKILA increased the expression level of hypoxia-inducible factor-1α, and the activity of the hypoxia pathway in gliomas. Furthermore, we demonstrated that NKILA enhances the Warburg effect and angiogenesis in gliomas both in vitro and in vivo. Therefore, NKILA is a potential therapeutic target in gliomas. In addition, we showed that a 20(S)-Rg3 monomer suppresses NKILA accumulation and reverses its stimulation of the Warburg effect and angiogenesis in gliomas, both in vitro and in vivo. Therefore, this study not only identified NKILA as a potential therapeutic target in gliomas, but also demonstrated a practical approach to treatment.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Shiting Li
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xiangyu Wei
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xueyi Wang
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Min Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| |
Collapse
|
129
|
Cai J, Wang D, Liang S, Peng J, Zhao F, Liu J. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands. FASEB J 2020; 34:8671-8685. [PMID: 32359096 DOI: 10.1096/fj.201903088r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
During lactation, an improper glucose supply often threatens mammary gland (MG) health. However, information is limited on the metabolic trajectories and molecules that regulate lactating MGs with an excessive glucose supply. Based on the network analysis of transcriptome and microRNAs, we found that the oversupply of glucose-induced severe glucose metabolic disorders in MGs of lactating goats, shifting lactose synthesis to acute fermentative glycolysis which caused increased flux of glucose metabolism into lactate. Moreover, NF-κB2 played a key role in regulating glycolysis, exhibiting a metabolic shift when MGs had an excessive supply of glucose. In primary mammary epithelial cells, fermentative glycolysis, and intracellular concentration of reactive oxygen species (ROS) were reduced by ganoderic acid A through blocking NF-κB2, while activation of NF-κB2 with phorbol myristate acetate (PMA) upregulated fermentative glycolysis and increased cellular ROS accumulation under excessive glucose. Thus, we established an NF-κB2-targeting method to reform the metabolic shift toward glycolysis caused by glucose oversupply by integrating NF-κB2 blockade and intracellular ROS scavenging.
Collapse
Affiliation(s)
- Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulin Liang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqi Zhao
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
130
|
Cheng Y, Wang D, Jiang J, Huang W, Li D, Luo J, Gu W, Mo W, Wang C, Li Y, Gu S, Xu Y. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression. Prostate 2020; 80:640-652. [PMID: 32282098 DOI: 10.1002/pros.23976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Androgen receptor (AR) is crucial for prostate cancer (PCa) initiation and malignant progression. Only half of androgen-responsive genes have been identified as having androgen-responsive elements, suggesting that AR regulates downstream genes through other transcriptional factors. However, whether and how AR regulates the progression via regulating these androgen-responsive genes remains unclear. METHODS Androgen-responsive and activity-changed (AC) transcriptional factors (TFs) were identified based on the time-course gene-expression array and gene promoter regions analysis. The intersection of androgen-responsive and AC TFs was selected the core TFs, which were used to construct the core transcriptional regulatory network. GO enrichment analysis, cell proliferation assays, glycolysis experiments, and reverse transcription polymerase chain reaction analysis were used to analyze and validate the functions of the network. As one of the core TFs, the function and mechanism of IRF1 have been further explored. RESULTS We devised a new integrated approach to select core TFs and construct core transcriptional regulatory network in PCa. The 24 core TFs and core transcriptional regulatory network participate in regulating PCa cell proliferation, RNA splicing, and cancer metabolism. Further validations showed that AR signaling could promote glycolysis via inducing glycolytic enzymes in PCa cells. IRF1, a novel target of AR, served as a tumor suppressor by inhibiting PCa proliferation, cell cycle, and glycolysis. CONCLUSIONS It is the first time to demonstrate the regulating role of the AR-mediated transcriptional regulatory network in a series of important biological processes in PCa cells. IRF1, an AR-regulated TF, acts as tumor suppressor in this core transcriptional regulatory network, which highlights the therapeutic potential of targeting this regulatory network for PCa.
Collapse
Affiliation(s)
- Yihang Cheng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
131
|
Wang Y, Jia A, Bi Y, Wang Y, Liu G. Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Cells 2020; 9:cells9041011. [PMID: 32325683 PMCID: PMC7226088 DOI: 10.3390/cells9041011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immunosuppressive cells that play crucial roles in promoting tumor growth and protecting tumors from immune recognition in tumor-bearing mice and cancer patients. Recently, it has been shown that the metabolic activity of MDSCs plays an important role in the regulation of their inhibitory function, especially in the processes of tumor occurrence and development. The MDSC metabolism, such as glycolysis, fatty acid oxidation and amino acid metabolism, is rewired in the tumor microenvironment (TME), which enhances the immunosuppressive activity, resulting in effector T cell apoptosis and suppressive cell proliferation. Herein, we summarized the recent progress in the metabolic reprogramming and immunosuppressive function of MDSCs during tumorigenesis.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
- Correspondence: ; Tel./Fax: +86-10-58800026
| |
Collapse
|
132
|
Choi SH, Jin CC, Do SK, Lee SY, Choi JE, Kang HG, Kim JH, Lee JH, Hong MJ, Lee WK, Jeong JY, Shin KM, Lee YH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Park JY. Polymorphisms in Glycolysis-Related Genes Are Associated with Clinical Outcomes of Paclitaxel-Cisplatin Chemotherapy in Non-Small Cell Lung Cancer. Oncology 2020; 98:468-477. [PMID: 32252059 DOI: 10.1159/000504175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was conducted to investigate whether polymorphisms in glycolysis-related genes are associated with clinical outcomes of patients with advanced-stage non-small cell lung cancer (NSCLC) undergoing chemotherapy. METHODS A total of 377 patients with NSCLC were enrolled. Sixty-five single-nucleotide polymorphisms in 26 genes involved in the glycolytic pathway were evaluated. The associations of the variants with the chemotherapy response and overall survival (OS) were analyzed. RESULTS Among the 65 variants investigated, PFKL rs2073436C>G and GPI rs7248411C>G significantly correlated with clinical outcomes after chemotherapy in multivariate analyses. PFKL rs2073436C>G was significantly associated with both a worse response to chemotherapy (adjusted odds ratio [aOR] = 0.64, 95% CI = 0.45-0.90, p = 0.01) and a worse OS (adjusted hazard ratio [aHR] = 1.35, 95% CI = 1.14-1.61, p = 0.001). GPI rs7248411C>G was significantly associated with both a better chemotherapy response (aOR = 1.58, 95% CI = 1.07-2.23, p = 0.02) and a better OS (aHR = 0.80, 95% CI = 0.66-0.98, p = 0.03). When stratified by tumor histology, PFKL rs2073436C>G was significantly associated with OS only in squamous cell carcinoma, whereas GPI rs7248411C>G exhibited a significant association with the chemotherapy response and OS only in adenocarcinoma. CONCLUSION This result suggests that the PFKL rs2073436C>G and GPI rs7248411C>G are useful for predicting the clinical outcome of first-line paclitaxel-cisplatin chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hyun Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea, .,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea, .,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,
| |
Collapse
|
133
|
Khan MA, Zubair H, Anand S, Srivastava SK, Singh S, Singh AP. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett 2020; 473:176-185. [PMID: 31923436 PMCID: PMC7067140 DOI: 10.1016/j.canlet.2020.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer. Metabolic rewiring in cancer cells occurs due to the activation of oncogenes, inactivation of tumor suppressor genes, and/or other adaptive changes in cell signaling pathways. Furthermore, altered metabolism is also reported in tumor-corrupted stromal cells as a result of their interaction with cancer cells or due to their adaptation in the dynamic tumor microenvironment. Metabolic alterations are associated with dysregulation of metabolic enzymes and tumor-stromal metabolic crosstalk is vital for the progressive malignant journey of the tumor cells. Therefore, several therapies targeting metabolic enzymes have been evaluated and/or are being investigated in preclinical and clinical studies. In this review, we discuss some important metabolic enzymes that are altered in tumor and/or stromal cells, and focus on their role in supporting tumor growth. Moreover, we also discuss studies carried out in various cancers to target these metabolic abnormalities for therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
134
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
135
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
136
|
Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother 2020; 69:535-548. [PMID: 31965268 DOI: 10.1007/s00262-019-02457-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
From a metabolic perspective, cancer may be considered as a metabolic disease characterized by reprogrammed glycolytic metabolism. The aim of the present study was to investigate CD147-mediated glucose metabolic regulation in hepatocellular carcinoma (HCC) and its contribution to altered immune responses in the tumor microenvironment. Several HCC cell lines and corresponding nude mice xenografts models differing in CD147 expressions were established to directly investigate the role of CD147 in the reprogramming of glucose metabolism, and to determine the underlying molecular mechanisms. Immunohistochemistry (IHC) analyses and flow cytometry were used to identify the relationship between reprogrammed glycolysis and immunosuppression in HCC. Upregulated CD147 expressions were found to be associated with enhanced expressions of GLUT1, MCT1 in HCC tumorous tissues. CD147 promoted the glycolytic metabolism in HCC cell lines in vitro via the PI3K/Akt/mTOR signaling pathway. A positive correlation existed between a profile of immunosuppressive lymphocytes infiltration and CD147 expression in HCC tissues. Accumulation of FOXP3-expressing regulatory T cells was induced under a stimulation with lactate in vitro. In conclusion, CD147 promoted glycolytic metabolism in HCC via the PI3K/Akt/mTOR signaling pathway, and was related to immunosuppression in HCC.
Collapse
|
137
|
San-Millán I, Julian CG, Matarazzo C, Martinez J, Brooks GA. Is Lactate an Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells. Front Oncol 2020; 9:1536. [PMID: 32010625 PMCID: PMC6971189 DOI: 10.3389/fonc.2019.01536] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
Lactate is a ubiquitous molecule in cancer. In this exploratory study, our aim was to test the hypothesis that lactate could function as an oncometabolite by evaluating whether lactate exposure modifies the expression of oncogenes, or genes encoding transcription factors, cell division, and cell proliferation in MCF7 cells, a human breast cancer cell line. Gene transcription was compared between MCF7 cells incubated in (a) glucose/glutamine-free media (control), (b) glucose-containing media to stimulate endogenous lactate production (replicating some of the original Warburg studies), and (c) glucose-containing media supplemented with L-lactate (10 and 20 mM). We found that both endogenous, glucose-derived lactate and exogenous, lactate supplementation significantly affected the transcription of key oncogenes (MYC, RAS, and PI3KCA), transcription factors (HIF1A and E2F1), tumor suppressors (BRCA1, BRCA2) as well as cell cycle and proliferation genes involved in breast cancer (AKT1, ATM, CCND1, CDK4, CDKN1A, CDK2B) (0.001 < p < 0.05 for all genes). Our findings support the hypothesis that lactate acts as an oncometabolite in MCF7 cells. Further research is necessary on other cell lines and biopsy cultures to show generality of the findings and reveal the mechanisms by which dysregulated lactate metabolism could act as an oncometabolite in carcinogenesis.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO, United States
| | - Colleen G Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher Matarazzo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Janel Martinez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - George A Brooks
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
138
|
Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim SH, Park J. Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8105735. [PMID: 32802877 PMCID: PMC7426758 DOI: 10.1155/2020/8105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
It is widely acknowledged that cancer cell energy metabolism relies mainly on anaerobic glycolysis; this phenomenon is described as the Warburg effect. However, whether the Warburg effect is caused by genetic dysregulation in cancer or is the cause of cancer remains unknown. The exact reasons and physiology of this abnormal metabolism are unclear; therefore, many researchers have attempted to reduce malignant cell growth in tumors in preclinical and clinical studies. Anticancer strategies based on the Warburg effect have involved the use of drug compounds and dietary changes. We recently reviewed applications of the Warburg effect to understand the benefits of this unusual cancer-related metabolism. In the current article, we summarize diet strategies for cancer treatment based on the Warburg effect.
Collapse
Affiliation(s)
- Quangdon Tran
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeyeong Kim
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gyeyeong Kong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Nayoung Gong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- 3College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- 4Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon 34520, Republic of Korea
| | - Seon-Hwan Kim
- 5Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jongsun Park
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
139
|
Al-Bedeary S, Getta H, Al-Sharafi D. The hallmarks of cancer and their therapeutic targeting in current use and clinical trials. IRAQI JOURNAL OF HEMATOLOGY 2020. [DOI: 10.4103/ijh.ijh_24_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
140
|
Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci 2020; 77:305-321. [PMID: 31432232 PMCID: PMC11104916 DOI: 10.1007/s00018-019-03278-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is prone to distant metastasis and is expected to become the second leading cause of cancer-related death. In an extremely nutrient-deficient and hypoxic environment resulting from uncontrolled growth, vascular disturbances and desmoplastic reactions, pancreatic cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. Notably, pancreatic cancer cells show extensive enhancement of glycolysis, including glycolytic enzyme overexpression and increased lactate production, and this is caused by mitochondrial dysfunction, cancer driver genes, specific transcription factors, a hypoxic tumor microenvironment and stromal cells, such as cancer-associated fibroblasts and tumor-associated macrophages. The metabolic switch from oxidative phosphorylation to glycolysis in pancreatic cancer cells regulates the invasion-metastasis cascade by promoting epithelial-mesenchymal transition, tumor angiogenesis and the metastatic colonization of distant organs. In addition to aerobic glycolysis, oxidative phosphorylation also plays a critical role in pancreatic cancer metastasis in ways that remain unclear. In this review, we expound on the intracellular and extracellular causes of the enhancement of glycolysis in pancreatic cancer and the strong association between glycolysis and cancer metastasis, which we expect will yield new therapeutic approaches targeting cancer metabolism.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
141
|
Yuan P, Yang T, Mu J, Zhao J, Yang Y, Yan Z, Hou Y, Chen C, Xing J, Zhang H, Li J. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett 2020; 469:498-509. [DOI: 10.1016/j.canlet.2019.11.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
|
142
|
Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol 2019; 47:357-364. [PMID: 31799699 DOI: 10.1111/1440-1681.13223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Telomeres are specialized genomic structures that protect chromosomal ends to maintain genomic stability. Telomeric length is primarily regulated by the telomerase complex, essentially consisting of an RNA template (TERC), an enzymatic subunit (telomerase reverse transcriptase, TERT). In humans, telomerase activity is repressed during embryonic differentiation and is absent in most somatic cells. However, it is upregulated or reactivated in 80%-90% of the primary tumours in humans. The human TERT (hTERT) plays a pivotal role in cellular immortality and tumourigenesis. However, the molecular mechanisms of telomerase functioning in cancer have not been fully understood beyond the telomere maintenance. Several research groups, including ours, have demonstrated that hTERT possesses vital functions independent of its telomere maintenance, including angiogenesis, inflammation, cancer cell stemness, and epithelial-mesenchymal transformation (EMT). All these telomere-independent activities of hTERT may contribute to the regulation of the dynamics and homeostasis of the tumour microenvironment (TME), thereby promoting tumour growth and development. Cancer progression and metastasis largely depend upon the interactions between cancer cells and their microenvironment. In this review, the involvement of TERT in the tumour microenvironment and the underlying implications in cancer therapeutics have been summarized.
Collapse
Affiliation(s)
- Ning Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Xue-Hua Guo
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
143
|
Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, Salido-Guadarrama I, Rodríguez-Bautista R, Montaño S, Muñiz-Mendoza R, Arriaga-Canon C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Hernández G, Herrera LA. MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities. Front Oncol 2019; 9:1404. [PMID: 31921661 PMCID: PMC6917641 DOI: 10.3389/fonc.2019.01404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Dysregulated metabolism is a common feature of cancer cells and is considered a hallmark of cancer. Altered tumor-metabolism confers an adaptive advantage to cancer cells to fulfill the high energetic requirements for the maintenance of high proliferation rates, similarly, reprogramming metabolism confers the ability to grow at low oxygen concentrations and to use alternative carbon sources. These phenomena result from the dysregulated expression of diverse genes, including those encoding microRNAs (miRNAs) which are involved in several metabolic and tumorigenic pathways through its post-transcriptional-regulatory activity. Further, the identification of key actionable altered miRNA has allowed to propose novel targeted therapies to modulated tumor-metabolism. In this review, we discussed the different roles of miRNAs in cancer cell metabolism and novel miRNA-based strategies designed to target the metabolic machinery in human cancer.
Collapse
Affiliation(s)
- Abraham Pedroza-Torres
- Cátedra CONACyT-Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Sandra L Romero-Córdoba
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Montserrat Justo-Garrido
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Iván Salido-Guadarrama
- Biología Computacional, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Rubén Rodríguez-Bautista
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán, Mexico
| | - Rodolfo Muñiz-Mendoza
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Greco Hernández
- Laboratorio de Traducción y Cáncer, Unidad de Investigaciones Biomedicas en Cáncer, Instituto Nacional de Cancerolgía, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
144
|
Tian Y, Li S, Zhao T. The discovery of how cells sense and adapt to oxygen availability. CHINESE SCIENCE BULLETIN-CHINESE 2019. [DOI: 10.1360/tb-2019-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
145
|
Glypican-3 Enhances Reprogramming of Glucose Metabolism in Liver Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2560650. [PMID: 31781603 PMCID: PMC6875211 DOI: 10.1155/2019/2560650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Glypican-3(GPC3) is a transmembrane protein which has been found to be frequently overexpressed on the surfaces of liver cancer (LC) cells, which contributes to both the growth and metastasis of LC cells. Recently, the expression of GPC3 has been reported to be inversely associated with glucose metabolism activity in LC patients, suggesting that GPC3 may play a role in the regulation of glucose metabolism in LC. However, the role of GPC3 in glucose metabolism reprogramming, as well as in LC cell growth and metastasis, is unknown. Here, we found that GPC3 significantly contributed to the reprogramming of glucose metabolism in LC cells. On the one hand, GPC3 enhanced the glycolysis of LC cells through upregulation of the glycolytic genes of Glut1, HK2, and LDH-A. On the other hand, GPC3 repressed mitochondrial respiration through downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), which has been well known as a crucial regulator in mitochondrial biogenesis. Mechanistic investigations revealed that HIF-1α was involved in both GPC3-regulated upregulation of glycolytic genes of HK2, PKM2, and Glut1 and downregulation of mitochondrial biogenesis regulator PGC-1α in LC cells. Additionally, GPC3-regulated reprogramming of glucose metabolism played a critical role in the growth and metastasis of LC cells. Conclusion. Our findings demonstrate that GPC3 is a critical regulator of glucose metabolism reprogramming in LC cells, which provides a strong line of evidence for GPC3 as an important therapeutic target to normalize glucose metabolic aberrations responsible for LC progression.
Collapse
|
146
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
147
|
Kouzi F, Zibara K, Bourgeais J, Picou F, Gallay N, Brossaud J, Dakik H, Roux B, Hamard S, Le Nail LR, Hleihel R, Foucault A, Ravalet N, Rouleux-Bonnin F, Gouilleux F, Mazurier F, Bene MC, Akl H, Gyan E, Domenech J, El-Sabban M, Herault O. Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells. Oncogene 2019; 39:1198-1212. [PMID: 31649334 PMCID: PMC7002301 DOI: 10.1038/s41388-019-1069-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell–cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.
Collapse
Affiliation(s)
- Farah Kouzi
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE, DSST, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Jerome Bourgeais
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Frederic Picou
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Nathalie Gallay
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Julie Brossaud
- Department of Nuclear Medicine, Bordeaux University Hospital, Pessac, France
| | - Hassan Dakik
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Benjamin Roux
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Sophie Hamard
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | | | - Rita Hleihel
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amelie Foucault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Noemie Ravalet
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Florence Rouleux-Bonnin
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Fabrice Gouilleux
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Frederic Mazurier
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Marie C Bene
- Department of Biological Hematology, Nantes University Hospital, CRCINA, Nantes, France
| | - Haidar Akl
- PRASE, DSST, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Emmanuel Gyan
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Hematology and Cell Therapy, Tours University Hospital, Tours, France
| | - Jorge Domenech
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Herault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France. .,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France. .,Department of Biological Hematology, Tours University Hospital, Tours, France.
| |
Collapse
|
148
|
Role of mitochondria in rescuing glycolytically inhibited subpopulation of triple negative but not hormone-responsive breast cancer cells. Sci Rep 2019; 9:13748. [PMID: 31551501 PMCID: PMC6760198 DOI: 10.1038/s41598-019-50141-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) subtype is among the most aggressive cancers with the worst prognosis and least therapeutic targetability while being more likely to spread and recur. Cancer transformations profoundly alter cellular metabolism by increasing glucose consumption via glycolysis to support tumorigenesis. Here we confirm that relative to ER-positive cells (MCF7), TNBC cells (MBA-MD-231) rely more on glycolysis thus providing a rationale to target these cells with glycolytic inhibitors. Indeed, iodoacetate (IA), an effective GAPDH inhibitor, caused about 70% drop in MDA-MB-231 cell viability at 20 μM while 40 μM IA was needed to decrease MCF7 cell viability only by 30% within 4 hours of treatment. However, the triple negative cells showed strong ability to recover after 24 h whereas MCF7 cells were completely eliminated at concentrations <10 μM. To understand the mechanism of MDA-MB-231 cell survival, we studied metabolic modulations associated with acute and extended treatment with IA. The resilient TNBC cell population showed a significantly greater count of cells with active mitochondria, lower apoptotic markers, normal cell cycle regulations, moderately lowered ROS, but increased mRNA levels of p27 and PARP1; all compatible with enhanced cell survival. Our results highlight an interplay between PARP and mitochondrial oxidative phosphorylation in TNBC that comes into play in response to glycolytic disruption. In the light of these findings, we suggest that combined treatment with PARP and mitochondrial inhibitors may provide novel therapeutic strategy against TNBC.
Collapse
|
149
|
Lu Y, Wang L, Ding W, Wang D, Wang X, Luo Q, Zhu L. Ammonia mediates mitochondrial uncoupling and promotes glycolysis via HIF-1 activation in human breast cancer MDA-MB-231 cells. Biochem Biophys Res Commun 2019; 519:153-159. [PMID: 31481238 DOI: 10.1016/j.bbrc.2019.08.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
It has been reported that ammonia produced by glutaminolysis activates the HIF-1 pathway in several types of cancer cells, but the underlying mechanisms remain unclear. In this study, the effects of ammonia on the activation of HIF-1 pathway and glycolysis in MDA-MB-231 breast cancer cells were investigated and the underlying mechanisms involved were elucidated. The results showed that NH4Cl concentration-dependently increased the protein level of HIF-1α and enhanced the transactivation activity of HIF-1 in MDA-MB-231 cells. In addition, NH4Cl increased the expression of GluT1 and LDHA and promoted aerobic glycolysis by activating the HIF-1 pathway. Further study revealed that NH4Cl increased the mitochondrial ROS level and decreased the cellular Fe2+ level in MDA-MB-231 cells. Activation of the HIF-1 pathway induced by NH4Cl was inhibited by addition of the antioxidant NAC or the NADPH oxidase (NOX) inhibitor apocynin, indicating the involvement of the NOX-induced ROS generation. When MDA-MB-231 cells were treated with NH4Cl, the oxygen consumption of cells increased, followed by the decreased mitochondrial membrane potential and cellular ATP level, indicating the uncoupling of mitochondria. In conclusion, NH4Cl activated the HIF-1 signaling pathway and promoted aerobic glycolysis in MDA-MB-231 cells, likely through the promotion of mitochondrial ROS release and mitochondrial uncoupling.
Collapse
Affiliation(s)
- Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Lu Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Wangwang Ding
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| |
Collapse
|
150
|
Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, Wang F, Yang L, Xiang Z, Cui H. The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol 2019; 57:59-71. [DOI: 10.1016/j.semcancer.2018.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|