101
|
Statin Adverse Events in Primary Prevention: Between Randomized Trials and Observational Studies. Am J Med Sci 2015; 350:330-7. [PMID: 26181083 DOI: 10.1097/maj.0000000000000527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable debate exists regarding who might benefit from statins for primary prevention. Statins have wide pleotropic effects, which contribute to their efficacy in lowering cardiovascular disease but may also result in adverse events (AEs). Caveats in identifying AEs in randomized controlled trials (RCTs) include the lack of a standardized definition of statin-associated AEs, the differences in properties of different statins, the selectivity of RCTs in choosing their participants, the presence of high rate of nonadherence/withdrawal from trials and other concerns related to study design and conflict of interest. Caveats in identifying or overestimating AEs in observational studies include failure to identify baseline confounders, ascertainment bias, confounding by indication and healthy user bias. Statin use in observational studies may be a surrogate marker for higher socioeconomic standards, access to health care or use of other preventive services. Integrating evidence from both RCTs and observational studies is of paramount importance for appropriate patient-centered decision.
Collapse
|
102
|
microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 2015; 243:523-32. [DOI: 10.1016/j.atherosclerosis.2015.10.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
|
103
|
Wrona A, Balbus J, Hrydziuszko O, Kubica K. Two-compartment model as a teaching tool for cholesterol homeostasis. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:372-377. [PMID: 26628662 DOI: 10.1152/advan.00141.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins and lipids. Maintaining cholesterol homeostasis is a highly regulated process with multiple factors acting at both molecular and tissue levels. Furthermore, to regulate the circulatory transport of cholesterol in lipoproteins, the amount of cholesterol present depends on and is controlled by cholesterol dietary intake, de novo synthesis, usage, and excretion; abnormal and/or unbalanced cholesterol levels have been shown to lead to severe outcomes, e.g., cardiovascular diseases. To investigate cholesterol transport in the circulatory system, we have previously developed a two-compartment mathematical model. Here, we show how this model can be used as a teaching tool for cholesterol homeostasis. Using the model and a hands-on approach, students can familiarize themselves with the basic components and mechanisms behind balanced cholesterol circulatory transport as well as investigate the consequences of and countermeasures to abnormal cholesterol levels. Among others, various treatments of high blood cholesterol levels can be simulated, e.g., with commonly prescribed de novo cholesterol synthesis inhibitors.
Collapse
Affiliation(s)
- Artur Wrona
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland; and
| | - Joanna Balbus
- Department of Pure and Applied Mathematics, Wroclaw University of Technology, Wroclaw, Poland
| | - Olga Hrydziuszko
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland; and
| | - Krystian Kubica
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland; and
| |
Collapse
|
104
|
Seo HS, Choi MH. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures. J Steroid Biochem Mol Biol 2015; 153:72-9. [PMID: 25910582 DOI: 10.1016/j.jsbmb.2015.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.
Collapse
Affiliation(s)
- Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea; Korea University-Korea Institute of Science and Technology Graduated School of Converging Science and Technology, Seoul 152-703, South Korea
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
105
|
Mercer JL, Argus JP, Crabtree DM, Keenan MM, Wilks MQ, Chi JTA, Bensinger SJ, Lavau CP, Wechsler DS. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS One 2015; 10:e0129776. [PMID: 26075887 PMCID: PMC4467867 DOI: 10.1371/journal.pone.0129776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer's disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease.
Collapse
Affiliation(s)
- Jacob L. Mercer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph P. Argus
- Department of Microbiology, Immunology and Molecular Genetics, Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donna M. Crabtree
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
| | - Melissa M. Keenan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Moses Q. Wilks
- Department of Radiology, Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jen-Tsan Ashley Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Steven J. Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine P. Lavau
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
| | - Daniel S. Wechsler
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina, United States of America
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
106
|
Platt FM, Wassif C, Colaco A, Dardis A, Lloyd-Evans E, Bembi B, Porter FD. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 2015; 15:173-94. [PMID: 25184529 DOI: 10.1146/annurev-genom-091212-153412] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom;
| | | | | | | | | | | | | |
Collapse
|
107
|
Son HH, Kim SH, Moon JY, Chung BC, Park MJ, Choi MH. Serum sterol profiling reveals increased cholesterol biosynthesis in childhood obesity. J Steroid Biochem Mol Biol 2015; 149:138-45. [PMID: 25725317 DOI: 10.1016/j.jsbmb.2015.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
Quantitative sterol profiling in obese children and their clinical implications have not been fully investigated. The aim of study was to evaluate the metabolic changes in serum cholesterol and its precursors and metabolites, and their associations with clinical characteristics of childhood obesity. A total of 253 children aged 6-14 years (72 obese, 39 overweight, and 72 normal controls; 147 girls and 106 boys) were recruited. Anthropometric indices, body composition, and fasting total lipid profiles were determined. Serum concentrations of 20 sterols, as their free fraction, were analyzed through gas chromatography-mass spectrometry-based metabolite profiling. There were no significant differences in total- and LDL-cholesterols between groups. Serum levels of the main cholesterol precursors, lanosterol (P<0.02) and lathosterol (P<0.0001), were significantly higher in obese children. In addition, they showed positive correlations with waist to hip ratio, body fat percent, and body fat mass. The metabolic ratios of lanosterol and lathosterol to cholesterol were also elevated (P<0.01 both), indicating the up-regulation of cholesterol biosynthesis with childhood obesity. In contrast, the absorption of plant sterols tended to show a compensatory decrease in obese children. Strong correlations between free cholesterol and total- and LDL-cholesterols were observed (r>0.760, P<0.001), while there was no correlation with HDL-cholesterols. The levels of total cholesteryl ester were closely associated with triglyceride (r=0.763, P<0.001). Quantitative results indicate that childhood obesity may increase cholesterol synthesis while maintaining overall cholesterol homeostasis.
Collapse
Affiliation(s)
- Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Shin Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul 139-707, Republic of Korea
| | - Ju-Yeon Moon
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Bong Chul Chung
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul 139-707, Republic of Korea.
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
108
|
Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sci 2015; 132:77-84. [PMID: 25916803 DOI: 10.1016/j.lfs.2015.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
Abstract
AIMS Hypolipidemic drugs are prescribed in the most of cases for the treatment of cardiovascular diseases. Several studies have showed that the gut microbiota is able to regulate the host cholesterol metabolism. This study aimed to investigate the potential impact of hypolipidemic drugs on the gut microbiota in mice, and to correlate it to the regulation of cholesterol metabolism. MAIN METHODS Male C57Bl/6J mice were divided into four groups fed either a control diet alone (CT), or supplemented with simvastatin (0.1% w/w, Zocor®, MSD), or ezetimibe (0.021% w/w, Ezetrol®, MSD) or a combination of simvastatin and ezetimibe (0.1% and 0.021%, respectively) for one week. KEY FINDINGS The combination of ezetimibe and simvastatin is required to observe a drop in cholesterolemia, linked to a huge activation of hepatic SREBP-2 and the consequent increased expression of genes involved in LDL cholesterol uptake and cholesterol synthesis. The gut microbiota analysis revealed no change in total bacteria, and in major Gram positive and Gram negative bacteria, but a selective significant increase in Lactobacillus spp. in mice treated with the ezetimibe and a decrease by the combination. The changes in lactobacilli level observed in ezetimibe or combination treated-mice are negatively correlated to expression of genes related to cholesterol metabolism. SIGNIFICANCE The present study showed that ezetimibe taken alone is able to modify the composition of gut microbiota in favor of Lactobacillus spp. These results suggest that members of the genus Lactobacillus play an important role in cholesterol metabolism, even in normocholesterolemic mouse model.
Collapse
|
109
|
Scott CC, Vossio S, Vacca F, Snijder B, Larios J, Schaad O, Guex N, Kuznetsov D, Martin O, Chambon M, Turcatti G, Pelkmans L, Gruenberg J. Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis. EMBO Rep 2015; 16:741-52. [PMID: 25851648 DOI: 10.15252/embr.201540081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefania Vossio
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Fabrizio Vacca
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Berend Snijder
- Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jorge Larios
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Dmitry Kuznetsov
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Martin
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marc Chambon
- Biomolecular Screening Facility, SV-PTECH-PTCB, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, SV-PTECH-PTCB, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Lucas Pelkmans
- Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
110
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
111
|
Kim E, Kim S, Park Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int J Food Sci Nutr 2015; 66:308-13. [PMID: 25582172 DOI: 10.3109/09637486.2014.1000839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this study is to investigate that sorghum extract (SE) exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism-related protein expression. C57BL/6 mice were fed a modified AIN-93G diet (NC) with saline, or a modified AIN-93G diet with 2% cholesterol and 0.25% cholic acid with either saline (HC) or 600 mg SE/kg body weight (HC-SE). Levels of total cholesterol and triglycerides in serum and liver were significantly lower in HC-SE than in HC. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, sterol regulatory elementary binding protein2 and fatty acid synthase were significantly lower, whereas phosphorylated AMP-activated protein kinase expression was significantly higher in HC-SE than in HC. Cholesterol 7-α hydroxylase expression was also significantly higher in mice given SE than in those given HC. These results suggest that the cholesterol-lowering effect of SE may be related to the regulation of hepatic cholesterol metabolism in this mouse model.
Collapse
Affiliation(s)
- Eunyoung Kim
- Department of Food and Nutrition, Hanyang University , Seoul , South Korea
| | | | | |
Collapse
|
112
|
Lewinska M, Juvan P, Perse M, Jeruc J, Kos S, Lorbek G, Urlep Z, Keber R, Horvat S, Rozman D. Hidden disease susceptibility and sexual dimorphism in the heterozygous knockout of Cyp51 from cholesterol synthesis. PLoS One 2014; 9:e112787. [PMID: 25393872 PMCID: PMC4231084 DOI: 10.1371/journal.pone.0112787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
We examined the genotype-phenotype interactions of Cyp51+/- mice carrying one functional allele of lanosterol 14α-demethylase from cholesterol biosynthesis. No distinct developmental or morphological abnormalities were observed by routine visual inspection of Cyp51+/- and Cyp51+/+ mice and fertility was similar. We further collected a large data-set from female and male Cyp51+/- mice and controls fed for 16 weeks with three diets and applied linear regression modeling. We used 3 predictor variables (genotype, sex, diet), and 39 response variables corresponding to the organ characteristics (7), plasma parameters (7), and hepatic gene expression (25). We observed significant differences between Cyp51+/- and wild-type mice in organ characteristics and blood lipid profile. Hepatomegaly was observed in Cyp51+/- males, together with elevated total and low-density lipoprotein cholesterol. Cyp51+/- females fed high-fat, high-cholesterol diet were leaner and had elevated plasma corticosterone compared to controls. We observed elevated hepatocyte apoptosis, mitosis and lipid infiltration in heterozygous knockouts of both sexes. The Cyp51+/- females had a modified lipid storage homeostasis protecting them from weight-gain when fed high-fat high-cholesterol diet. Malfunction of one Cyp51 allele therefore initiates disease pathways towards cholesterol-linked liver pathologies and sex-dependent response to dietary challenge.
Collapse
Affiliation(s)
- Monika Lewinska
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Peter Juvan
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Perse
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Jera Jeruc
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Spela Kos
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI–1000, Ljubljana, Slovenia
| | - Gregor Lorbek
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Ziga Urlep
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
113
|
Tettey P, Simpson S, Taylor BV, van der Mei IAF. Vascular comorbidities in the onset and progression of multiple sclerosis. J Neurol Sci 2014; 347:23-33. [PMID: 25454639 DOI: 10.1016/j.jns.2014.10.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 02/02/2023]
Abstract
Vascular comorbidities are common in the general population and are associated with adverse health outcomes. In people with multiple sclerosis (MS), an increasing amount of evidence suggests that vascular comorbidities are also common, but an association with MS risk and disability has not been conclusively established. This review aims to critically examine published data on the relationship between vascular comorbidities (including vascular risk factors) and MS. The evidence suggests an increased risk of MS in people with a high BMI during childhood or adolescence but not adulthood. People with established MS appear to have a slightly increased risk of cardiovascular disease and a greater proportion of people with MS die from cardiovascular disease, which has important implications for clinicians trying to identify risk factors for cardiovascular disease and reviewing treatment options. In relation to whether vascular comorbidities influence MS clinical disability or other aspects of the disease course, the key finding was that having type-2-diabetes, hypertension, dyslipidaemia or peripheral vascular disease at any point in the disease course may be associated with a greater progression in disability. Additionally, a negative effect of high cholesterol and triglycerides and a positive effect of higher HDL (high density lipoprotein) levels on acute inflammatory activity were observed on magnetic resonance imaging. The results of the published clinical trials of statins as an intervention in MS were however conflicting and care needs to be taken when treating people with MS with statins. Taken together, the literature seems to indicate a potential association of vascular comorbidities with MS risk and disability, but the number of prospective studies was sparse, thus precluding ascription of causality. We therefore recommend that future studies of the frequency and effects of vascular comorbidities on MS risk and disability should be prospective and objective where relevant.
Collapse
Affiliation(s)
- Prudence Tettey
- Menzies Research Institute Tasmania, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Research Institute Tasmania, University of Tasmania, Australia
| | - Bruce V Taylor
- Menzies Research Institute Tasmania, University of Tasmania, Australia
| | | |
Collapse
|
114
|
Renaud HJ, Cui YJ, Lu H, Zhong XB, Klaassen CD. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing. PLoS One 2014; 9:e104560. [PMID: 25102070 PMCID: PMC4125194 DOI: 10.1371/journal.pone.0104560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5–Day 5 (perinatal-enriched), Day 10–Day 20 (pre-weaning-enriched), and Day 25–Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3. These data shed new light on the ontogeny of homeostatic regulation of hepatic energy metabolism, which could ultimately provide new therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Helen J. Renaud
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yue Julia Cui
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut, United States of America
| | - Curtis D. Klaassen
- College of Medicine, University of Kansas, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
115
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
116
|
Kuzaj P, Kuhn J, Dabisch-Ruthe M, Faust I, Götting C, Knabbe C, Hendig D. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism? Lipids Health Dis 2014; 13:118. [PMID: 25064003 PMCID: PMC4124508 DOI: 10.1186/1476-511x-13-118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. METHODS In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. RESULTS Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. CONCLUSION Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum NRW, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32 545 Bad Oeynhausen, Germany.
| |
Collapse
|
117
|
Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One 2014; 9:e98482. [PMID: 25014655 PMCID: PMC4094430 DOI: 10.1371/journal.pone.0098482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients.
Collapse
|
118
|
Gérardin P, Sampériz S, Ramful D, Boumahni B, Bintner M, Alessandri JL, Carbonnier M, Tiran-Rajaoefera I, Beullier G, Boya I, Noormahomed T, Okoï J, Rollot O, Cotte L, Jaffar-Bandjee MC, Michault A, Favier F, Kaminski M, Fourmaintraux A, Fritel X. Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis 2014; 8:e2996. [PMID: 25033077 PMCID: PMC4102444 DOI: 10.1371/journal.pntd.0002996] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/22/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Little is known about the neurocognitive outcome in children exposed to perinatal mother-to-child Chikungunya virus (p-CHIKV) infection. METHODS The CHIMERE ambispective cohort study compared the neurocognitive function of 33 p-CHIKV-infected children (all but one enrolled retrospectively) at around two years of age with 135 uninfected peers (all enrolled prospectively). Psychomotor development was assessed using the revised Brunet-Lezine scale, examiners blinded to infectious status. Development quotients (DQ) with subscores covering movement/posture, coordination, language, sociability skills were calculated. Predictors of global neurodevelopmental delay (GND, DQ ≤ 85), were investigated using multivariate Poisson regression modeling. Neuroradiologic follow-up using magnetic resonance imaging (MRI) scans was proposed for most of the children with severe forms. RESULTS The mean DQ score was 86.3 (95%CI: 81.0-91.5) in infected children compared to 100.2 (95%CI: 98.0-102.5) in uninfected peers (P<0.001). Fifty-one percent (n = 17) of infected children had a GND compared to 15% (n = 21) of uninfected children (P<0.001). Specific neurocognitive delays in p-CHIKV-infected children were as follows: coordination and language (57%), sociability (36%), movement/posture (27%). After adjustment for maternal social situation, small for gestational age, and head circumference, p-CHIKV infection was found associated with GND (incidence rate ratio: 2.79, 95%CI: 1.45-5.34). Further adjustments on gestational age or breastfeeding did not change the independent effect of CHIKV infection on neurocognitive outcome. The mean DQ of p-CHIKV-infected children was lower in severe encephalopathic children than in non-severe children (77.6 versus 91.2, P<0.001). Of the 12 cases of CHIKV neonatal encephalopathy, five developed a microcephaly (head circumference <-2 standard deviations) and four matched the definition of cerebral palsy. MRI scans showed severe restrictions of white matter areas, predominant in the frontal lobes in these children. CONCLUSIONS The neurocognitive outcome of children exposed to perinatal mother-to-child CHIKV infection is poor. Severe CHIKV neonatal encephalopathy is associated with an even poorer outcome.
Collapse
Affiliation(s)
- Patrick Gérardin
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
- INSERM CIC-EC (CIE2), Saint-Pierre, La Réunion, France
- INSERM UMRS 953, “Epidemiological Research Unit on Perinatal Health and Women and Children Health”, UPMC Université Paris 6, Paris, France
| | | | - Duksha Ramful
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
- INSERM CIC-EC (CIE2), Saint-Pierre, La Réunion, France
- GRI, Research Group on Immunopathology and Infection, EA4517, Université de La Réunion, INSERM UMRS 945 “Immunity and Infection” Saint-Denis, La Réunion, France
| | - Brahim Boumahni
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
| | - Marc Bintner
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
| | | | | | | | - Gilles Beullier
- Centre Hospitalier Gabriel Martin, Saint-Paul, La Réunion, France
| | - Irénée Boya
- Centre Hospitalier de l'Est Réunion, Saint-Benoît, La Réunion, France
| | | | - Jocelyn Okoï
- Clinique Durieux, Le Tampon, La Réunion, France
- Centre d'Action Médico-Sociale Précoce (CAMSP), Saint-Louis, La Réunion, France
| | | | - Liliane Cotte
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
| | | | - Alain Michault
- CHU de La Réunion Saint-Denis/Saint-Pierre, La Réunion, France
| | | | - Monique Kaminski
- INSERM UMRS 953, “Epidemiological Research Unit on Perinatal Health and Women and Children Health”, UPMC Université Paris 6, Paris, France
| | | | - Xavier Fritel
- INSERM UMRS 953, “Epidemiological Research Unit on Perinatal Health and Women and Children Health”, UPMC Université Paris 6, Paris, France
- Poitiers University Hospital, Poitiers, France
- INSERM CIC-P 0802, Poitiers, France
| |
Collapse
|
119
|
Goedeke L, Fernández-Hernando C. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration. Neurobiol Dis 2014; 72 Pt A:48-53. [PMID: 24907491 DOI: 10.1016/j.nbd.2014.05.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer's disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington's disease and Parkinson's disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer's disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer's disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer's disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
120
|
Matysik S, Schmitz G, Bauer S, Kiermaier J, Matysik FM. Potential of gas chromatography–atmospheric pressure chemical ionization–time-of-flight mass spectrometry for the determination of sterols in human plasma. Biochem Biophys Res Commun 2014; 446:751-5. [DOI: 10.1016/j.bbrc.2014.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
|
121
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
122
|
Ma K, Malhotra P, Soni V, Hedroug O, Annaba F, Dudeja A, Shen L, Turner JR, Khramtsova EA, Saksena S, Dudeja PK, Gill RK, Alrefai WA. Overactivation of intestinal SREBP2 in mice increases serum cholesterol. PLoS One 2014; 9:e84221. [PMID: 24465397 PMCID: PMC3896331 DOI: 10.1371/journal.pone.0084221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
Sterol Response Element Binding Protein 2 (SREBP2) transcription factor is a master regulator of cholesterol homeostasis. Treatment with statins, inhibitors of cholesterol synthesis, activates intestinal SREBP2, which may hinder their cholesterol-lowering effects. Overactivation of SREBP2 in mouse liver was shown to have no effect on plasma cholesterol. However, the influence of activating intestinal SREBP2 on plasma cholesterol is not known. We have generated a novel transgenic mouse model with intestine specific overexpression of active SREBP2 (ISR2) driven by villin promoter. ISR2 mice showed overexpression of active SREBP2 specifically in the intestine. Microarray analysis of jejunal RNA from ISR2 mice showed a significant increase in genes involved in fatty acid and cholesterol synthesis. Cholesterol and triglyceride (TG) in jejunum and liver (mg/g protein) were significantly increased in ISR2 vs wild type mice. Serum Cholesterol was significantly increased in VLDL and LDL fractions whereas the level of serum triglycerides was decreased in ISR2 vs wild type mice. In conclusion, activation of intestinal SREBP2 alone seems to be sufficient to increase plasma cholesterol, highlighting the essential role of intestine in maintaining cholesterol homeostasis in the body.
Collapse
Affiliation(s)
- Ke Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vinay Soni
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Omar Hedroug
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Fadi Annaba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amish Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Le Shen
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jerrold R. Turner
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Waddah A. Alrefai
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
123
|
Tu C, Li J, Jiang X, Sheflin LG, Pfeffer BA, Behringer M, Fliesler SJ, Qu J. Ion-current-based proteomic profiling of the retina in a rat model of Smith-Lemli-Opitz syndrome. Mol Cell Proteomics 2013; 12:3583-98. [PMID: 23979708 PMCID: PMC3861709 DOI: 10.1074/mcp.m113.027847] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/21/2013] [Indexed: 12/26/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is one of the most common recessive human disorders and is characterized by multiple congenital malformations as well as neurosensory and cognitive abnormalities. A rat model of SLOS has been developed that exhibits progressive retinal degeneration and visual dysfunction; however, the molecular events underlying the degeneration and dysfunction remain poorly understood. Here, we employed a well-controlled, ion-current-based approach to compare retinas from the SLOS rat model to retinas from age- and sex-matched control rats (n = 5/group). Retinas were subjected to detergent extraction and subsequent precipitation and on-pellet-digestion procedures and then were analyzed on a long, heated column (75 cm, with small particles) with a 7-h gradient. The high analytical reproducibility of the overall proteomics procedure enabled reliable expression profiling. In total, 1,259 unique protein groups, ~40% of which were membrane proteins, were quantified under highly stringent criteria, including a peptide false discovery rate of 0.4%, with high quality ion-current data (e.g. signal-to-noise ratio ≥ 10) obtained independently from at least two unique peptides for each protein. The ion-current-based strategy showed greater quantitative accuracy and reproducibility over a parallel spectral counting analysis. Statistically significant alterations of 101 proteins were observed; these proteins are implicated in a variety of biological processes, including lipid metabolism, oxidative stress, cell death, proteolysis, visual transduction, and vesicular/membrane transport, consistent with the features of the associated retinal degeneration in the SLOS model. Selected targets were further validated by Western blot analysis and correlative immunohistochemistry. Importantly, although photoreceptor cell death was validated by TUNEL analysis, Western blot and immunohistochemical analyses suggested a caspase-3-independent pathway. In total, these results provide compelling new evidence implicating molecular changes beyond the initial defect in cholesterol biosynthesis in this retinal degeneration model, and they might have broader implications with respect to the pathobiological mechanism underlying SLOS.
Collapse
Affiliation(s)
- Chengjian Tu
- From the ‡Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- §New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203
| | - Jun Li
- From the ‡Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- §New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203
| | - Xiaosheng Jiang
- From the ‡Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- §New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203
| | - Lowell G. Sheflin
- ¶Research Service, Veterans Administration Western New York Healthcare System, Buffalo, New York 14215
| | - Bruce A. Pfeffer
- ‖Departments of Ophthalmology and Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- **SUNY Eye Institute, Buffalo, New York 14215
| | - Matthew Behringer
- ‖Departments of Ophthalmology and Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Steven J. Fliesler
- ¶Research Service, Veterans Administration Western New York Healthcare System, Buffalo, New York 14215
- ‖Departments of Ophthalmology and Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- **SUNY Eye Institute, Buffalo, New York 14215
| | - Jun Qu
- From the ‡Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
- §New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York 14203
| |
Collapse
|
124
|
Kawaguchi H, Yamada T, Miura N, Ayaori M, Uto-Kondo H, Ikegawa M, Noguchi M, Wang KY, Izumi H, Tanimoto A. Rapid development of atherosclerosis in the world's smallest Microminipig fed a high-fat/high-cholesterol diet. J Atheroscler Thromb 2013; 21:186-203. [PMID: 24257467 DOI: 10.5551/jat.21246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Experimental studies of human atherogenesis require an appropriate animal model that mimics human physiology and pathology. Because swine physiology is similar to human physiology, we developed a hyperlipidemia-induced atherosclerosis model using the recently developed world's smallest Microminipig(TM). METHODS These animals weigh only 5kg at 3months of age, much smaller than any other miniature pig. We found that the administration of a high-fat/high-cholesterol diet containing at least 0.2% cholesterol without cholic acid for as little as eight weeks induces hypercholesterolemia and subsequent atherosclerosis in these animals. RESULTS The serum levels of low-density lipoprotein cholesterol(LDL-C) and the percent distribution of cholesterol in the LDL fractions were markedly increased. The hepatic expression of LDL receptor and hydroxymethylglutaryl-CoA reductase was coordinately decreased. The cholesteryl ester transfer protein activity, which plays a role in reverse cholesterol transport, was detected in the serum of the Microminipigs. Niemann-Pick C1-like 1 protein was expressed in both the liver and small intestine; however, hepatic apoB mRNA editing enzyme was not expressed. As in humans, and in contrast to that observed in mice, most of the hepatic lipase activity was localized in the liver. These results suggest that the hyperlipidemia-induced gene expression profile linked to cholesterol homeostasis and atherogenesis is similar in Microminipigs and humans. CONCLUSION We conclude that the characteristics of the Microminipig, including its easy handling size, make it an appropriate model for studies of atherosclerosis and related conditions.
Collapse
Affiliation(s)
- Hiroaki Kawaguchi
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci 2013; 23:1-22. [PMID: 24155031 DOI: 10.1002/pro.2385] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 01/23/2023]
Abstract
As of mid 2013 a Medline search on "cholesterol" yielded over 200,000 hits, reflecting the prominence of this lipid in numerous aspects of animal cell biology and physiology under conditions of health and disease. Aberrations in cholesterol homeostasis underlie both a number of rare genetic disorders and contribute to common sporadic and complex disorders including heart disease, stroke, type II diabetes, and Alzheimer's disease. The corresponding author of this review and his lab stumbled only recently into the sprawling area of cholesterol research when they discovered that the amyloid precursor protein (APP) binds cholesterol, a topic covered by the Hans Neurath Award lecture at the 2013 Protein Society Meeting. Here, we first provide a brief overview of cholesterol-protein interactions and then offer our perspective on how and why binding of cholesterol to APP and its C99 domain (β-CTF) promotes the amyloidogenic pathway, which is closely related to the etiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | | | | |
Collapse
|
126
|
Komatsu H, Shindo Y, Kawashima SA, Yamatsugu K, Oka K, Kanai M. Intracellular activation of acetyl-CoA by an artificial reaction promoter and its fluorescent detection. Chem Commun (Camb) 2013; 49:2876-8. [PMID: 23443073 DOI: 10.1039/c3cc40616d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of a new rhodamine-based fluorescent probe, RH-NH2 3 and an acyl transfer promoter, PBu3, to Hela cells induced a time-dependent increase in fluorescence in the mitochondria, which was most likely due to acetylation of RH-NH2 3 with activated acetyl-CoA by the artificial reaction promoter in living cells.
Collapse
Affiliation(s)
- Hirokazu Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Madrigal-Matute J, Rotllan N, Aranda JF, Fernández-Hernando C. MicroRNAs and atherosclerosis. Curr Atheroscler Rep 2013; 15:322. [PMID: 23512606 DOI: 10.1007/s11883-013-0322-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at posttranscriptional level. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs), including atherosclerosis. MiRNAs control endothelial cell (EC), vascular smooth muscle cell (VSMC), and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNA expression is modulated by different stimuli involved in every stage of atherosclerosis, and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis, and we further discuss their potential use as biomarkers and therapeutic targets in CVDs.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
128
|
Dávalos A, Fernández-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 2013; 75:60-72. [PMID: 23435093 PMCID: PMC3825518 DOI: 10.1016/j.phrs.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 02/09/2023]
Abstract
There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.
Collapse
|
129
|
Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4:e780. [PMID: 23990020 PMCID: PMC3763462 DOI: 10.1038/cddis.2013.301] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Aberrant regulation of cholesterol homeostasis is associated with obesity as well as multiple types of cancer. However, the mechanism behind these is largely missing. Here, we show that microRNA (miRNA)-128-2 is not only a pro-apoptotic microRNA but it also alters the expression of genes involved in cellular cholesterol homeostasis. Cholesterol efflux via ATP-binding cassette transporters (ABCA1 and ABCG1) is a mechanism for cells to eliminate excess cholesterol and prevent cellular cholesterol accumulation. The regulation of these pathways is complex with transcriptional regulation by sterol-regulatory element-binding protein (SREBP) and liver X receptor/retinoid X receptor (RXR) transcription factors but poorly understood at the post-transcriptional levels. MiR-128-2 increases the expression of SREBP2 and decreases the expression of SREBP1 in HepG2, MCF7 and HEK293T cells independent of sirtuin 1 (SIRT1) status. MiR-128-2 inhibits the expression of ABCA1, ABCG1 and RXRα directly through a miR-128-2-binding site within their respective 3'untranslated regions. The administration of miR-128-2 leads to decline in the protein and mRNA levels of ABCA1, ABCG1 and RXRα. Conversely, anti-miRNA treatment leads to increased ABCA1, ABCG1 and RXRα expression. The inverse correlation between miR-128-2 and its targets viz. ABCA1 and ABCG1 was also established during high-fat diet in different mice tissues. Our data show that cholesterol efflux is attenuated by miR-128-2 overexpression and, conversely, stimulated by miR-128-2 silencing. Further, we also observed the induction of ER stress response by miR-128-2. In this study, we provide the first evidence of miR-128-2 to be a new regulator of cholesterol homeostasis. Our study shows dual role of miR-128-2, as a pro-apoptotic molecule as well as a regulator of cholesterol homeostasis.
Collapse
|
130
|
van Besien H, Sassano A, Altman JK, Platanias LC. Antileukemic properties of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Leuk Lymphoma 2013; 54:2601-5. [DOI: 10.3109/10428194.2013.790022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
131
|
Wertz PW. Current understanding of skin biology pertinent to skin penetration: skin biochemistry. Skin Pharmacol Physiol 2013; 26:217-26. [PMID: 23921108 DOI: 10.1159/000351949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this review is to summarize some of the biochemical or chemical findings that have contributed most significantly to our current understanding of the permeability barrier of the skin. This literature survey covers the period from the 1970s up to the present. This seems appropriate since earlier progress was comprehensively covered in a 1978 review by Bob Scheuplein entitled 'Permeability of the skin: a review of major concepts' and in the earlier review by Scheuplein and Blank entitled 'Permeability of the skin'. Both of these review articles are still being cited, and the earlier one has been cited more than 800 times. Overlap with material covered in these earlier publications will be minimized. The overall significance of findings from some of the most recent years may not yet be determined. The emphasis will be placed on the determination of the composition and structures of the epidermal lipids, especially those of the stratum corneum, key enzymes in the biosynthesis of these lipids and some of the physical chemical properties of these lipids as revealed by X-ray diffraction, infrared spectroscopy and other physical methods.
Collapse
Affiliation(s)
- P W Wertz
- Dows Institute, University of Iowa, Iowa City,IA 52242, USA.
| |
Collapse
|
132
|
Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res 2013; 54:2745-53. [PMID: 23881913 DOI: 10.1194/jlr.m039339] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cholesterol homeostasis is crucial for cellular function and organismal health. The key regulator for the cholesterol biosynthesis is sterol-regulatory element binding protein (SREBP)-2. The biochemical process and physiological function of SREBP-2 have been well characterized; however, it is not clear how this gene is epigenetically regulated. Here we have identified sirtuin (Sirt)6 as a critical factor for Srebp2 gene regulation. Hepatic deficiency of Sirt6 in mice leads to elevated cholesterol levels. On the mechanistic level, Sirt6 is recruited by forkhead box O (FoxO)3 to the Srebp2 gene promoter where Sirt6 deacetylates histone H3 at lysines 9 and 56, thereby promoting a repressive chromatin state. Remarkably, Sirt6 or FoxO3 overexpression improves hypercholesterolemia in diet-induced or genetically obese mice. In summary, our data suggest an important role of hepatic Sirt6 and FoxO3 in the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Rongya Tao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | |
Collapse
|
133
|
Cholesterol-secreting and statin-responsive hepatocytes from human ES and iPS cells to model hepatic involvement in cardiovascular health. PLoS One 2013; 8:e67296. [PMID: 23874411 PMCID: PMC3708950 DOI: 10.1371/journal.pone.0067296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/17/2013] [Indexed: 12/23/2022] Open
Abstract
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis, and their proper function is of key importance for cardiovascular health. In particular, hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis, dyslipidemias, the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol, actively secrete cholesterol into the medium, and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly, it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally, the system will also be useful for mechanistic studies of heritable dyslipidemias, drug discovery, and investigation of modes of action of cholesterol-modulatory drugs.
Collapse
|
134
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
135
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
136
|
Abstract
INTRODUCTION Several medical journals published viewpoints and counter-viewpoints supporting or opposing a wider utilization of statins for primary prevention. The objective of this article is not to weigh in the benefits versus risks of statin use, but to discuss various aspects of this controversy. AREAS COVERED This review discusses the challenges in examining the pleotropic effects/adverse events of statins. It also discusses the pitfalls in assessment of adverse events in randomized controlled trials and observational studies. EXPERT OPINION The challenges in solving this controversy include that the pleotropic effect of statins results in an extremely wide spectrum of reported benefits or adverse events, the reported harms/benefits are contradictory, there is basic research ground supporting both sides of the controversy, it is difficult to separate if adverse events are due to statins or due to lower cholesterol, and that there is a lack of standardized definition of statin-associated adverse events and their methods of ascertainment. Both randomized controlled trials and observational studies have pitfalls and caveats in assessment of adverse events. Understanding the points of debate is of paramount significance to enable clinicians to individualize patient care.
Collapse
Affiliation(s)
- Ishak Mansi
- San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234-6200, USA.
| | | |
Collapse
|
137
|
Aller MA, Arias JI, Prieto I, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model 2013; 10:6. [PMID: 23374964 PMCID: PMC3577641 DOI: 10.1186/1742-4682-10-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient's injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose-Ignacio Arias
- General and Digestive Surgery Unit, Monte Naranco Hospital, Oviedo, Asturias, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz Hospital, Autonomous University, Madrid, Spain
| | - Carlos Gilsanz
- General and Digestive Surgery Unit, Sudeste University Hospital, Arganda del Rey, Madrid, Spain
| | - Ana Arias
- Department of Medicine, Puerta de Hierro Hospital, Autonomous University, Madrid, Spain
| | - Heping Yang
- Division of Gastroenterology and Liver Disease, USC Research Centre for Liver Diseases, Los Angeles, CA, USA
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
138
|
Current world literature. Curr Opin Lipidol 2013; 24:86-94. [PMID: 23298962 DOI: 10.1097/mol.0b013e32835cb4f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Imam MU, Ismail M, Omar AR, Ithnin H. The hypocholesterolemic effect of germinated brown rice involves the upregulation of the apolipoprotein A1 and low-density lipoprotein receptor genes. J Diabetes Res 2013; 2013:134694. [PMID: 23671850 PMCID: PMC3647596 DOI: 10.1155/2013/134694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/18/2012] [Indexed: 01/09/2023] Open
Abstract
Germinated brown rice (GBR) is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR) on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies.
Collapse
Affiliation(s)
- Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- *Maznah Ismail:
| | - Abdul Rahman Omar
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hairuszah Ithnin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
140
|
Tian D, Qiu Y, Zhan Y, Li X, Zhi X, Wang X, Yin L, Ning Y. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. Cardiovasc Diabetol 2012; 11:144. [PMID: 23170972 PMCID: PMC3537593 DOI: 10.1186/1475-2840-11-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/16/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. METHODS StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. RESULTS We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the other hand, the role of StAR was inhibited when siRNA was introduced to reduce StAR expression. CONCLUSIONS Our results showed that StAR attenuated lipid synthesis and uptake as well as PA-induced inflammation and reduction in NO bioavailability in aortic endothelial cells. StAR can ameliorate endothelial dysfunction induced by PA via reducing the intracellular lipid levels.
Collapse
Affiliation(s)
- Dai Tian
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Matysik S, Klünemann HH, Schmitz G. Gas Chromatography–Tandem Mass Spectrometry Method for the Simultaneous Determination of Oxysterols, Plant Sterols, and Cholesterol Precursors. Clin Chem 2012; 58:1557-64. [DOI: 10.1373/clinchem.2012.189605] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND
Cholesterol precursors and plant sterols have considerable potential as plasma biomarkers in several disorders of sterol metabolism and intestinal sterol absorption. Oxysterols are associated with atherogenesis, neurodegeneration, and inflammation. We developed a GC-MS method for the simultaneous analysis of these species in human plasma, including 24-, 25-, 27-hydroxycholesterol; 7-ketocholesterol; lanosterol; lathosterol; 7-dehydrocholesterol; desmosterol; stigmasterol; sitosterol; and campesterol.
METHODS
Sterols were hydrolyzed with ethanolic potassium hydroxide solution, extracted by liquid/liquid extraction with n-hexane, and derivatized with N-methyl-N-trimethylsilyl-trifluoracetamide. Positive chemical ionization with ammonia, as reagent gas, was applied to generate high abundant precursor ions.
RESULTS
The definition of highly sensitive precursor/product ion transitions, especially for coeluting substances, allowed fast gas chromatography run times of under 8.5 min. Using the multiple reaction monitoring mode, detection limits in the picogram per milliliter range could be achieved for most compounds. The method was validated for precision and recovery. Intraassay and interassay CVs were mostly <15% for serum and plasma samples. The recoveries of supplemented plasma samples in different concentrations were 88%–117%. The method was applied to stratification of patients with disorders in cholesterol biosynthesis and/or cholesterol absorption in hypercholesterolemia. The method revealed associations of sterol species with thyroid dysfunction and type 2 diabetes.
CONCLUSIONS
This method allows high-throughput sterol profiling in various diseases.
Collapse
Affiliation(s)
- S Matysik
- University Hospital Regensburg, Regensburg, Germany
| | - HH Klünemann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - G Schmitz
- University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
142
|
Howard A, Udenigwe CC. Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food Funct 2012; 4:40-51. [PMID: 23108291 DOI: 10.1039/c2fo30216k] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperlipidaemia is an important risk factor for developing cardiovascular disease, a leading global health issue. While pharmaceutical interventions have proved efficacious in acute conditions, many hypolipidaemic drugs are known to induce adverse side effects. Due to a strong positive link between functional food components and human health, emerging research has explored the application of natural food-based strategies in disease management. One of such strategies involves the use of food proteins as precursors of peptides with a wide variety of beneficial health functions. Some plant, animal and marine-derived protein hydrolysates and peptides have shown promising hypolipidaemic properties when evaluated in vitro, in cultured mammalian cells and animal models. The products exert their functions via bile acid-binding and disruption of cholesterol micelles in the gastrointestinal tract, and by altering hepatic and adipocytic enzyme activity and gene expression of lipogenic proteins, which can modulate aberrant physiological lipid profiles. The activity of the protein hydrolysates and peptides depends on their physicochemical properties including hydrophobicity of amino acid residues but there is knowledge gap on detailed structure-function relationships and efficacy in hyperlipidaemic human subjects. Based on the prospects, commercial functional food products containing hypolipidaemic peptides have been developed for enhancement of cardiovascular health.
Collapse
Affiliation(s)
- Ashton Howard
- Health and Bio-products Research Laboratory, Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | | |
Collapse
|
143
|
Baselga-Escudero L, Bladé C, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Arola-Arnal A. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 2012; 56:1636-46. [PMID: 22965541 DOI: 10.1002/mnfr.201200237] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/19/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
SCOPE One major health problem in westernized countries is dysregulated fatty acid and cholesterol metabolism that causes pathologies such as metabolic syndrome. Previous studies from our group have shown that proanthocyanidins, which are the most abundant polyphenols in the human diet, regulate lipid metabolism and are potent hypolipidemic agents. The noncoding RNAs, miR-33 and miR-122, regulate genes that are involved in lipid metabolism. METHODS AND RESULTS Here, we show that grape seed proanthocyanidins rapidly and transiently repressed the expression of miR-33 and miR-122 in rat hepatocytes in vivo and in vitro. Furthermore, the miR-33 target gene ATP-binding cassette A1 and the miR-122 target gene fatty acid synthase were also modulated by proanthocyanidins. Specifically, ATP-binding cassette A1 mRNA and protein levels were increased, and fatty acid synthase mRNA and protein levels were reduced after the miRNA levels were altered. CONCLUSION These results suggest that proanthocyanidin treatment increased hepatic cholesterol efflux to produce new HDL particles by repressing miR-33, and it reduced lipogenesis by repressing miR-122. These results highlight a new mechanism by which grape seed proanthocyanidins produce hypolipidemia through their effects on miRNA modulators of lipid metabolism.
Collapse
Affiliation(s)
- Laura Baselga-Escudero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|