101
|
Abstract
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Collapse
|
102
|
Leema Roseline T, Sachindra NM. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa. Appl Biochem Biotechnol 2018; 186:66-84. [PMID: 29504075 DOI: 10.1007/s12010-018-2726-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30-40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.
Collapse
Affiliation(s)
- T Leema Roseline
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - N M Sachindra
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
| |
Collapse
|
103
|
Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales). Genomics 2018; 110:124-133. [DOI: 10.1016/j.ygeno.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/23/2022]
|
104
|
Zhang W, Xu J, Liu D, Liu H, Lu X, Yu W. Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl Microbiol Biotechnol 2018; 102:2203-2212. [PMID: 29353307 DOI: 10.1007/s00253-018-8762-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
It has been a long time since the first α-agarase was discovered. However, only two α-agarases have been cloned and partially characterized so far and the study of α-agarases has lagged far behind that of β-agarases. Here, we report an α-agarase, AgaD, cloned from marine bacterium Thalassomonas sp. LD5. Its cDNA consists of 4401 bp, encoding a protein of 1466 amino acids. Based on amino acid similarity, AgaD is classified into glycoside hydrolase (GH) family GH96. The recombinant enzyme gave a molecular weight of about 180 kDa on SDS-PAGE and 360 kDa on Native-PAGE indicating it acted as a dimer. However, the recombinant enzyme is labile and easy to be fractured into series of small active fragments, of which the smallest one is about 70 kDa, matching the size of catalytic module. The enzyme has maximal activity at 35 °C and pH 7.4, and shows a strong dependence on the presence of calcium ions. AgaD degrades agarose to yield agarotetraose as the predominate end product. However, the hydrolysates are rapidly degraded to odd-numbered oligosaccharides under strong alkaline condition. The spectra of ESI-MS and 1H-NMR proved that the main hydrolysate agarotetraose is degraded into neoagarotriose, bearing the sequence of G-A-G (G, D-galactose; A, 3,6-anhydro-α-L-galactose). Unlike the alkaline condition, the hydrolysates are further hydrolyzed into smaller degree polymerization (DP) of agaro-oligosaccharides (AOS) in dilute strong acid. Therefore, this study provides more insights into the properties for both the α-agarases and the AOS.
Collapse
Affiliation(s)
- Weibin Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Jingnan Xu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Dan Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Huan Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Xinzhi Lu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China.
| | - Wengong Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
105
|
Wang Y, Liu T, Guo S, Zhang P, Sun P, Chen M, Ming H. Characterization and overexpression of a glycosyl hydrolase family 16 β-agarase Aga0917 from Pseudoalteromonas fuliginea YTW1-15-1. J GEN APPL MICROBIOL 2018; 64:276-283. [DOI: 10.2323/jgam.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yan Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Tingwei Liu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Shuai Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Peng Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Pengyang Sun
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Mengqian Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| | - Hong Ming
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University
| |
Collapse
|
106
|
Lee SH, Sung JH. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv Healthc Mater 2018; 7. [PMID: 28945001 DOI: 10.1002/adhm.201700419] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/04/2017] [Indexed: 12/14/2022]
Abstract
In the drug development process, the accurate prediction of drug efficacy and toxicity is important in order to reduce the cost, labor, and effort involved. For this purpose, conventional 2D cell culture models are used in the early phase of drug development. However, the differences between the in vitro and the in vivo systems have caused the failure of drugs in the later phase of the drug-development process. Therefore, there is a need for a novel in vitro model system that can provide accurate information for evaluating the drug efficacy and toxicity through a closer recapitulation of the in vivo system. Recently, the idea of using microtechnology for mimicking the microscale tissue environment has become widespread, leading to the development of "organ-on-a-chip." Furthermore, the system is further developed for realizing a multiorgan model for mimicking interactions between multiple organs. These advancements are still ongoing and are aimed at ultimately developing "body-on-a-chip" or "human-on-a-chip" devices for predicting the response of the whole body. This review summarizes recently developed organ-on-a-chip technologies, and their applications for reproducing multiorgan functions.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering; Hongik University; Seoul 04066 Republic of Korea
| |
Collapse
|
107
|
Yu S, Choi IG, Yun EJ, Kim KH. High substrate specificity of 3,6-anhydro- l -galactose dehydrogenase indicates its essentiality in the agar catabolism of a marine bacterium. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
108
|
An K, Shi X, Cui F, Cheng J, Liu N, Zhao X, Zhang XH. Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01 T. Protein Expr Purif 2017; 143:1-8. [PMID: 28986239 DOI: 10.1016/j.pep.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
Agar, usually extracted from seaweed, has a wide variety of industrial applications due to its gelling and stabilizing characteristics. Agarases are the enzymes which hydrolyze agar into agar oligosaccharides. The produced agar oligosaccharides have been widely used in cosmetic, food, and medical fields due to their biological functions. A beta-agarase gene, YM01-1, was cloned and expressed from a marine bacterium Catenovulum agarivorans YM01T. The encoding agarase of YM01-1 consisted of 331 amino acids with an apparent molecular mass of 37.7 kDa and a 23-amino-acids signal peptide. YM01-1 belongs to glycoside hydrolase 16 (GH16) family based on the amino acid sequence homology. The optimum pH and temperature for its activity was 7.0 and 50 °C, respectively. YM01-1 was stable at a pH of pH 6.0-9.0 and temperatures below 45 °C. Thin layer chromatography (TLC) and ion trap mass spectrometer of the YM01-1 hydrolysis products displayed that YM01-1 was an endo-type β-agarase and degrades agarose, neoagarohexaose, neoagarotetraose into neoagarobiose. The Km, Vmax, Kcat and Kcat/Km values of the YM01-1 for agarose were 8.69 mg/ml, 4.35 × 103 U/mg, 2.4 × 103 s-1 and 2.7 × 106 s-1 M-1, respectively. Hence, the enzyme with high agarolytic activity and single end product was different from other GH16 agarases, which has potential applications for the production of oligosaccharides with remarkable activities.
Collapse
Affiliation(s)
- Ke An
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Fangyuan Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingguang Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Na Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
109
|
Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N Biotechnol 2017; 40:261-267. [PMID: 28962879 DOI: 10.1016/j.nbt.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Research on the enzymatic breakdown of seaweed-derived agar has recently gained attention due to the progress in green technologies for marine biomass utilization. The enzymes known as agarases catalyze the cleavage of glycosidic bonds within the polysaccharide. In this study, a new β-agarase, Aga2, was identified from Cellulophaga omnivescoria W5C. Aga2 is one of four putative agarases from the W5C genome, and it belongs to the glycoside hydrolase 16 family. It was shown to be exclusive to the Cellulophaga genus. Agarase activity assays showed that Aga2 is an endolytic-type β-agarase that produces tetrameric and hexameric neoagaro-oligosaccharides, with optimum activity at 45°C and pH 8.0. Zinc ions slightly enhanced its activity while manganese ions had inhibitory effects even at very low concentrations. Aga2 has a Km of 2.59mgmL-1 and Vmax of 275.48Umg-1. The Kcat is 1.73×102s-1, while the Kcat/Km is 8.04×106s-1M-1. Aga2 also showed good thermostability at 45°C and above, and retained >90% of its activity after repeated freeze-thaw cycles. Bioinformatic analysis of its amino acid sequence revealed that intrinsic properties of the protein (e.g. presence of certain dipeptides and the relative volume occupied by aliphatic amino acids) and tertiary structural elements (e.g. presence of salt bridges, hydrophobic interactions and H-bonding) contributed to its thermostability.
Collapse
Affiliation(s)
- Kristine Rose M Ramos
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
110
|
In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0049-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
111
|
Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ, Blom J, Tietbohl MD, Berumen ML, Stingl U. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proc Natl Acad Sci U S A 2017; 114:E7592-E7601. [PMID: 28835538 PMCID: PMC5594648 DOI: 10.1073/pnas.1703070114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage, "Candidatus Epulopiscium" and related giant bacteria. These symbionts lack cellulases but encode a distinctive and lineage-specific array of mostly intracellular carbohydrases concurrent with the unique and tractable dietary resources of their hosts. Importantly, enzymes initiating the breakdown of the abundant and complex algal polysaccharides also originate from these symbionts. These are also highly transcribed and peak according to the diel lifestyle of their host, further supporting their importance and host-symbiont cospeciation. Because of their distinctive genomic blueprint, we propose the classification of these giant bacteria into three candidate genera. Collectively, our findings show that the acquisition of metabolically distinct "Epulopiscium" symbionts in hosts feeding on compositionally varied algal diets is a key niche-partitioning driver in the nutritional ecology of herbivorous surgeonfishes.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Sou Miyake
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Matt Cahill
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Timothy J Hackmann
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University of Giessen, D-35392 Giessen, Germany
| | - Matthew D Tietbohl
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
112
|
Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. Toxicological evaluation of neoagarooligosaccharides prepared by enzymatic hydrolysis of agar. Regul Toxicol Pharmacol 2017; 90:9-21. [PMID: 28782575 DOI: 10.1016/j.yrtph.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Agar, a heterogeneous polymer of galactose, is the main component of the cell wall of marine red algae. It is well established as a safe, non-digestible carbohydrate in Oriental countries. Although neoagarooligosaccharides (NAOs) prepared by the hydrolysis of agar by β-agarase have been reported to exert various biological activities, the safety of these compounds has not been reported to date. For safety evaluation, NAOs containing mainly neoagarotetraose and neoagarohexaose were prepared from agar by enzymatic hydrolysis using β-agarase DagA from Streptomyces coelicolor. Genotoxicity tests such as the bacterial reverse mutation assay, eukaryotic chromosome aberration assay, and in vivo micronucleus assay all indicated that NAOs did not exert any mutational effects. The toxicity of NAOs in rat and beagle dog models was investigated by acute, 14-day, and 91-day repeated oral dose toxicity tests. The results showed that NAO intake of up to 5,000 mg/kg body weight resulted in no significant changes in body weight, food intake, water consumption, hematologic and blood biochemistry parameters, organ weight, or clinical symptoms. Collectively, a no-observed-adverse-effect level of 5,000 mg/kg body weight/day for both male and female rats was established for NAO. These findings support the safety of NAO for possible use in food supplements and pharmaceutical and cosmetic products.
Collapse
Affiliation(s)
- Sun Joo Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea; Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Je-Hyeon Lee
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Eun Joo Kim
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Hea Jung Yang
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Jae-Seon Park
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
113
|
Xu H, Qin S, Lan Y, Liu M, Cao X, Qiao D, Cao Y, Cao Y. Comparative genomic analysis of Paenibacillus sp. SSG-1 and its closely related strains reveals the effect of glycometabolism on environmental adaptation. Sci Rep 2017; 7:5720. [PMID: 28720902 PMCID: PMC5516027 DOI: 10.1038/s41598-017-06160-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/08/2017] [Indexed: 11/21/2022] Open
Abstract
The extensive environmental adaptability of the genus Paenibacillus is related to the enormous diversity of its gene repertoires. Paenibacillus sp. SSG-1 has previously been reported, and its agar-degradation trait has attracted our attention. Here, the genome sequence of Paenibacillus sp. SSG-1, together with 76 previously sequenced strains, was comparatively studied. The results show that the pan-genome of Paenibacillus is open and indicate that the current taxonomy of this genus is incorrect. The incessant flux of gene repertoires resulting from the processes of gain and loss largely contributed to the difference in genomic content and genome size in Paenibacillus. Furthermore, a large number of genes gained are associated with carbohydrate transport and metabolism. It indicates that the evolution of glycometabolism is a key factor for the environmental adaptability of Paenibacillus species. Interestingly, through horizontal gene transfer, Paenibacillus sp. SSG-1 acquired an approximately 150 kb DNA fragment and shows an agar-degrading characteristic distinct from most other non-marine bacteria. This region may be transported in bacteria as a complete unit responsible for agar degradation. Taken together, these results provide insights into the evolutionary pattern of Paenibacillus and have implications for studies on the taxonomy and functional genomics of this genus.
Collapse
Affiliation(s)
- Hui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Shishang Qin
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Yanhong Lan
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Mengjia Liu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiyue Cao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Yu Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China.
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China.
| |
Collapse
|
114
|
Xu XQ, Su BM, Xie JS, Li RK, Yang J, Lin J, Ye XY. Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study. Food Chem 2017; 240:330-337. [PMID: 28946280 DOI: 10.1016/j.foodchem.2017.07.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/07/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Hydrolysis of Gracilaria lemaneiformis agar by β-agarase was compared with HCl hydrolysis. The results showed that optimum catalysis conditions for the β-agarase were pH 7.0 at 45°C. Mass spectroscopy, thin-layer chromatography and GPC results showed that the polymerization degrees of the hydrolysis products by the β-agarase were mainly four, six and eight (more specific than the hydrolysate by HCl). The enzymatic degradation products of agar were distinctly different from those of HCl hydrolysis in the ratios among galactose and 3,6-anhydro-galactose and sulfate group contents. The NMR spectrometry proved that the products of β-agarase were neoagaroligosaccharides, which was not found in the agarolytic products by HCl. The neoagarotetraose inhibited tyrosinase activity competitively with the KI value of 16.0mg/ml. Hydroxyl radical-scavenging ability of neoagaroligosaccharides was much greater than that of agar HCl hydrolysate. This work suggests that neoagaroligosaccharide products produced by our β-agarase could be more effective in function than products from acid hydrolysis.
Collapse
Affiliation(s)
- Xin-Qi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bing-Mei Su
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jin-Sheng Xie
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ren-Kuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xiu-Yun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
115
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
116
|
Lee YS, Choi YL. Complete genome sequence and analysis of three kinds of β-agarase of Cellulophaga lytica DAU203 isolated from marine sediment. Mar Genomics 2017; 35:43-46. [PMID: 28528769 DOI: 10.1016/j.margen.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
Cellulophaga lytica DAU203 (KACC 19187), isolated from the marine sediment in Korea, has a strong ability to degrade agar. The genome of C. lytica DAU203 contains a single chromosome that is 3,952,957bp in length, with 32.02% G+C contents. The genomic information predicted that the DAU203 has the potential to be utilized in various enzymatic industries.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, Republic of Korea
| | - Yong-Lark Choi
- Department of Biotechnology, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
117
|
Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. Anti-Obesity and Anti-Diabetic Effect of Neoagarooligosaccharides on High-Fat Diet-Induced Obesity in Mice. Mar Drugs 2017; 15:md15040090. [PMID: 28333098 PMCID: PMC5408236 DOI: 10.3390/md15040090] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Neoagarooligosaccharides (NAOs), mainly comprising neoagarotetraose and neoagarohexaose, were prepared by hydrolyzing agar with β-agarase DagA from Streptomyces coelicolor, and the anti-obesity and anti-diabetic effects of NAOs on high-fat diet (HFD)-induced obesity in mice were investigated after NAOs-supplementation for 64 days. Compared to the HFD group, the HFD-0.5 group that was fed with HFD + NAOs (0.5%, w/w) showed remarkable reduction of 36% for body weight gain and 37% for food efficiency ratios without abnormal clinical signs. Furthermore, fat accumulation in the liver and development of macrovesicular steatosis induced by HFD in the HFD-0.5 group were recovered nearly to the levels found in the normal diet (ND) group. NAOs intake could also effectively reduce the size (area) of adipocytes and tissue weight gain in the perirenal and epididymal adipose tissues. The increased concentrations of total cholesterol, triglyceride, and free fatty acid in serum of the HFD group were also markedly ameliorated to the levels found in serum of the ND group after NAOs-intake in a dose dependent manner. In addition, insulin resistance and glucose intolerance induced by HFD were distinctly improved, and adiponectin concentration in the blood was notably increased. All these results strongly suggest that intake of NAOs can effectively suppress obesity and obesity-related metabolic syndromes, such as hyperlipidemia, steatosis, insulin resistance, and glucose intolerance, by inducing production of adiponectin in the HFD-induced obese mice.
Collapse
Affiliation(s)
- Sun Joo Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Korea.
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Korea.
| | - Je-Hyeon Lee
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Korea.
| | - Eun Joo Kim
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Korea.
| | - Hea Jung Yang
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Korea.
| | - Jae-Seon Park
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Korea.
| | - Soon-Kwang Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Korea.
| |
Collapse
|
118
|
Lee SH, Shim KY, Kim B, Sung JH. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications. Biotechnol Prog 2017; 33:580-589. [PMID: 28247962 DOI: 10.1002/btpr.2457] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Recent studies have reported that three-dimensionally cultured cells have more physiologically relevant functions than two-dimensionally cultured cells. Cells are three-dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ-on-a-chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation-based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ-on-a-chip. Last, we also discuss the challenges of hydrogel-based three-dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580-589, 2017.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Kyu Young Shim
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| | - Bumsang Kim
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| | - Jong Hwan Sung
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| |
Collapse
|
119
|
Alvarado R, Leiva S. Agar-degrading bacteria isolated from Antarctic macroalgae. Folia Microbiol (Praha) 2017; 62:409-416. [PMID: 28283945 DOI: 10.1007/s12223-017-0511-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.
Collapse
Affiliation(s)
- Roxana Alvarado
- Instituto de Bioquímica & Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Casilla, 567, Valdivia, Chile
| | - Sergio Leiva
- Instituto de Bioquímica & Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Casilla, 567, Valdivia, Chile.
| |
Collapse
|
120
|
Lin B, Liu Y, Lu G, Zhao M, Hu Z. An agarase of glycoside hydrolase family 16 from marine bacterium Aquimarina agarilytica ZC1. FEMS Microbiol Lett 2017; 364:2996628. [DOI: 10.1093/femsle/fnx012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/13/2017] [Indexed: 11/14/2022] Open
|
121
|
Xiao Q, Yin Q, Ni H, Cai H, Wu C, Xiao A. Characterization and immobilization of arylsulfatase on modified magnetic nanoparticles for desulfation of agar. Int J Biol Macromol 2017; 94:576-584. [DOI: 10.1016/j.ijbiomac.2016.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 11/26/2022]
|
122
|
Xiao A, Xiao Q, Lin Y, Ni H, Zhu Y, Cai H. Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
123
|
Zucca P, Fernandez-Lafuente R, Sanjust E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016; 21:E1577. [PMID: 27869778 PMCID: PMC6273708 DOI: 10.3390/molecules21111577] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Agarose is a polysaccharide obtained from some seaweeds, with a quite particular structure that allows spontaneous gelation. Agarose-based beads are highly porous, mechanically resistant, chemically and physically inert, and sharply hydrophilic. These features-that could be further improved by means of covalent cross-linking-render them particularly suitable for enzyme immobilization with a wide range of derivatization methods taking advantage of chemical modification of a fraction of the polymer hydroxyls. The main properties of the polymer are described here, followed by a review of cross-linking and derivatization methods. Some recent, innovative procedures to optimize the catalytic activity and operational stability of the obtained preparations are also described, together with multi-enzyme immobilized systems and the main guidelines to exploit their performances.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| | | | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| |
Collapse
|
124
|
Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 2016; 101:1965-1974. [DOI: 10.1007/s00253-016-7951-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022]
|
125
|
Giles K, Pluvinage B, Boraston AB. Structure of a glycoside hydrolase family 50 enzyme from a subfamily that is enriched in human gut microbiome bacteroidetes. Proteins 2016; 85:182-187. [DOI: 10.1002/prot.25189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kaleigh Giles
- Biochemistry & Microbiology; University of Victoria; PO Box 3055 STN CSC Victoria British Columbia V8W 3P6 Canada
| | - Benjamin Pluvinage
- Biochemistry & Microbiology; University of Victoria; PO Box 3055 STN CSC Victoria British Columbia V8W 3P6 Canada
| | - Alisdair B. Boraston
- Biochemistry & Microbiology; University of Victoria; PO Box 3055 STN CSC Victoria British Columbia V8W 3P6 Canada
| |
Collapse
|
126
|
Horizontal Transfer of a Novel Soil Agarase Gene from Marine Bacteria to Soil Bacteria via Human Microbiota. Sci Rep 2016; 6:34103. [PMID: 27756908 PMCID: PMC5069468 DOI: 10.1038/srep34103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/08/2016] [Indexed: 02/02/2023] Open
Abstract
Seaweed is receiving an increasing amount of attention as a “sea vegetable”. The microbiota of coastal populations may acquire seaweed associated enzymes through marine food. Several agarases have been found in non-marine environments; however, their origin is unknown. In this study, a hypothetical protein, Aga1, was identified as an agarase from an inland soil agar-degrading bacterium, Paenibacillus sp. SSG-1.Having low similarity to known glycoside hydrolases, Aga1 may be a distant member of the glycoside hydrolase family 86. Aga1 has good pH stability (pH 3–11) and is stable in the presence of various metal ions. Aga1 is an exo-type β-agarase that produces NA 4 (neoagarotetraose) and NA 6 (neoagarohexaose) as its main products. In addition, Aga1 may be a cell-surface-binding protein. The bioinformatic analysis showed aga1 may have been transfered together with its surrounding genes, from marine bacteria to soil bacteria via human microbiota. The use of seaweed as food and the disposal of human faeces or saliva were the most likely reasons for this gene transfer pathway. Notably, the results also indicated that microbes from inland humans may degrade agar and that these microbes may have acquired seaweed associated genes because of increased seaweed in diets.
Collapse
|
127
|
Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2016; 181:961-971. [DOI: 10.1007/s12010-016-2262-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
|
128
|
Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, An HJ, Kim JH, Choi IG, Kim KH. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 2016; 101:1111-1120. [DOI: 10.1007/s00253-016-7831-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/14/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
|
129
|
Sharma G, Khatri I, Subramanian S. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 2016; 8:2520-9. [PMID: 27358428 PMCID: PMC5010890 DOI: 10.1093/gbe/evw151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668T that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria.
Collapse
Affiliation(s)
- Gaurav Sharma
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Indu Khatri
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Srikrishna Subramanian
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
130
|
Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04. Appl Environ Microbiol 2016; 82:4944-54. [PMID: 27260364 DOI: 10.1128/aem.00393-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Exo-type agarases release disaccharide units (3,6-anhydro-l-galactopyranose-α-1,3-d-galactose) from the agarose chain and, in combination with endo-type agarases, play important roles in the processive degradation of agarose. Several exo-agarases have been identified. However, their substrate-degrading patterns and corresponding mechanisms are still unclear because of a lack of proper technologies for sugar chain analysis. Herein, we report the novel properties of AgaO, a disaccharide-producing agarase identified from the genus Flammeovirga AgaO is a 705-amino-acid protein that is unique to strain MY04. It shares sequence identities of less than 40% with reported GH50 β-agarases. Recombinant AgaO (rAgaO) yields disaccharides as the sole final product when degrading agarose and associated oligosaccharides. Its smallest substrate is a neoagarotetraose, and its disaccharide/agarose conversion ratio is 0.5. Using fluorescence labeling and two-stage mass spectrometry analysis, we demonstrate that the disaccharide products are neoagarobiose products instead of agarobiose products, as verified by (13)C nuclear magnetic resonance spectrum analysis. Therefore, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. Moreover, AgaO produces neoagarobiose products by gradually cleaving the units from the nonreducing end of fluorescently labeled sugar chains, and so our method represents a novel biochemical visualization of the exolytic pattern of an agarase. Various truncated AgaO proteins lost their disaccharide-producing capabilities, indicating a strict structure-function relationship for the whole enzyme. This study provides insights into the novel catalytic mechanism and enzymatic properties of an exo-type β-agarase for the benefit of potential future applications. IMPORTANCE Exo-type agarases can degrade agarose to yield disaccharides almost exclusively, and therefore, they are important tools for disaccharide preparation. However, their enzymatic mechanisms and agarose degradation patterns are still unclear due to the lack of proper technologies for sugar chain analysis. In this study, AgaO was identified as an exo-type agarase of agarose-degrading Flammeovirga bacteria, representing a novel branch of glycoside hydrolase family 50. Using fluorescence labeling, high-performance liquid chromatography, and mass spectrum analysis technologies, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. We also demonstrate that AgaO produces neoagarobiose by gradually cleaving disaccharides from the nonreducing end of fluorescently labeled sugars. This study will benefit future enzyme applications and oligosaccharide studies.
Collapse
|
131
|
Zeng C, Zhang L, Miao S, Zhang Y, Zeng S, Zheng B. Preliminary characterization of a novel β-agarase from Thalassospira profundimonas. SPRINGERPLUS 2016; 5:1086. [PMID: 27468386 PMCID: PMC4947071 DOI: 10.1186/s40064-016-2748-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 01/18/2023]
Abstract
Background The objective of this study was to characterize the agarase from a newly isolated agarolytic bacterium Thalassospira profundimaris fst-13007. Results Agarase-fst was purified to homogeneity which apparent molecular weight was 66.2 kDa. Its activity was optimal at 45 °C and pH 8 and was stable at pH 5–9 or 30–50 °C. Agarase-fst required Mn2+ for agarase activity and inhibition by Cu2+, Fe3+ and EDTA. Tests of hydrolysis pattern and substrate specificity, TLC analysis and mass spectrometry of the hydrolysis products revealed that it is an endo-type β-agarase hydrolyzing agarose into neoagarobiose, neoagarotetraose and neoagarohexaose. Results of MALDI-TOF-TOF/MS indicate that it lack of homology to previously identified proteins and present conserved domain of β-agarase. Conclusion Agarase-fst from T. profundimaris fst-13007 was confirmed to be a novel endo-type β-agarase.
Collapse
Affiliation(s)
- Cheng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian People's Republic of China
| | - Longtao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian People's Republic of China ; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian People's Republic of China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian People's Republic of China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian People's Republic of China
| |
Collapse
|
132
|
Fujimoto M, Chijiwa M, Nishiyama T, Takano H, Ueda K. Developmental defect of cytochrome oxidase mutants of Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2016; 162:1446-1455. [PMID: 27384768 DOI: 10.1099/mic.0.000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study the link between energy metabolism and secondary metabolism/morphological development in Streptomyces, knockout mutants were generated with regard to the subunits of the cytochrome oxidase supercomplex (CcO) in Streptomyces coelicolor A3(2). All mutants exhibited an identical phenotype: viable but defective in antibiotic production and cell differentiation when grown in both complex and minimal media. The growth yield of the CcO mutant was about half of that of the WT strain on glucose medium while both strains grew similarly on maltose medium. Intracellular ATP measurement demonstrated that the CcO mutant exhibited high intracellular ATP level. A similar elevation of intracellular ATP level was observed with regard to the WT strain cultured in the presence of BCDA, a copper-chelating agent. Reverse transcriptase PCR analysis demonstrated that the transcription of ATP synthase operon is upregulated in the CcO mutant. Addition of carbonylcyanide m-chlorophenylhydrazone, an inhibitor of ATP synthesis, promoted antibiotic production and aerial mycelia formation in the CcO mutant and BCDA-treated WT cells. We hypothesize that the deficiency of CcO causes accumulation of intracellular ATP, and that the high ATP level inhibits the onset of development in S. coelicolor.
Collapse
Affiliation(s)
- Masahiro Fujimoto
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880 Fujisawa, Japan
| | - Masato Chijiwa
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880 Fujisawa, Japan
| | - Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880 Fujisawa, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880 Fujisawa, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880 Fujisawa, Japan
| |
Collapse
|
133
|
A Review on the Valorization of Macroalgal Wastes for Biomethane Production. Mar Drugs 2016; 14:md14060120. [PMID: 27338422 PMCID: PMC4926079 DOI: 10.3390/md14060120] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
The increased use of terrestrial crops for biofuel production and the associated environmental, social and ethical issues have led to a search for alternative biomass materials. Terrestrial crops offer excellent biogas recovery, but compete directly with food production, requiring farmland, fresh water and fertilizers. Using marine macroalgae for the production of biogas circumvents these problems. Their potential lies in their chemical composition, their global abundance and knowledge of their growth requirements and occurrence patterns. Such a biomass industry should focus on the use of residual and waste biomass to avoid competition with the biomass requirements of the seaweed food industry, which has occurred in the case of terrestrial biomass. Overabundant seaweeds represent unutilized biomass in shallow water, beach and coastal areas. These eutrophication processes damage marine ecosystems and impair local tourism; this biomass could serve as biogas feedstock material. Residues from biomass processing in the seaweed industry are also of interest. This is a rapidly growing industry with algae now used in the comestible, pharmaceutical and cosmetic sectors. The simultaneous production of combustible biomethane and disposal of undesirable biomass in a synergistic waste management system is a concept with environmental and resource-conserving advantages.
Collapse
|
134
|
Seo YB, Park J, Huh IY, Hong SK, Chang YK. Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
135
|
Kim SG, Pheng S, Lee YJ, Eom MK, Shin DH. Agarivorans aestuarii sp. nov., an agar-degrading bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:3119-3124. [PMID: 27189058 DOI: 10.1099/ijsem.0.001155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-negative, aerobic, non-spore forming, rod-shaped bacterium motile with a single polar flagellum, designated strain hydD622T, was isolated from the sediment of a tidal flat at Asan Bay, Korea. Strain hydD622T exhibited an agarolytic activity. Comparison of 16S rRNA gene sequences revealed that strain hydD622T was closely related to Agarivorans litoreus KCTC 42116T, Agarivorans albus KCTC 22256T and Agarivorans gilvus KCTC 32555T with similarities of 98.4, 98.0 and 96.5 %, respectively. Strain hydD622T was clustered distantly from the other genera in the family Alteromonadaceae but formed a unique clade within the genus Agarivorans based on the 16S rRNA gene sequence. The DNA-DNA relatedness with Agarivorans litoreus KCTC 42116T and Agarivorans. albus KCTC 22256T was 39.0 and 37.8 %, respectively. The major fatty acids (>10 %) were C16 : 0,C16 : 1ω6c/C16 : 1ω7c and C18 : 1ω6c/C18 : 1ω7c. The respiratory quinone was ubiquinone-8, and the polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified lipid. The DNA G+C content was 44 mol%. On the basis of physiological, chemotaxonomic and phylogenetic analyses, strain hydD622T represents a novel species within the genus Agarivorans, for which the name Agarivorans aestuarii sp. nov. is proposed. The type strain of Agarivorans aestuarii sp. nov. is hydD622T (=KCTC 32543T=CGMCC 1.12692T).
Collapse
Affiliation(s)
- Song-Gun Kim
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea.,University of Science and Technology (UST), 217 Gajeongro, Yuseong, Daejeon 35345, Republic of Korea
| | - Sophea Pheng
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Yong-Jae Lee
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Mi Kyung Eom
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Dong-Hoon Shin
- Department of Biomedicinal Science & Biotechnology, Pai Chai University 155-40 Baejaero, Seo-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
136
|
Characterization of an alkaline β-agarase from Stenotrophomonas sp. NTa and the enzymatic hydrolysates. Int J Biol Macromol 2016; 86:525-34. [DOI: 10.1016/j.ijbiomac.2016.01.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/17/2022]
|
137
|
Romero-Rodríguez A, Rocha D, Ruiz-Villafan B, Tierrafría V, Rodríguez-Sanoja R, Segura-González D, Sánchez S. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. BMC Microbiol 2016; 16:77. [PMID: 27121083 PMCID: PMC4848846 DOI: 10.1186/s12866-016-0690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In the genus Streptomyces, one of the most remarkable control mechanisms of physiological processes is carbon catabolite repression (CCR). This mechanism regulates the expression of genes involved in the uptake and utilization of alternative carbon sources. CCR also affects the synthesis of secondary metabolites and morphological differentiation. Even when the outcome effect of CCR in different bacteria is the same, their essential mechanisms can be quite different. In several streptomycetes glucose kinase (Glk) represents the main glucose phosphorylating enzyme and has been regarded as a regulatory protein in CCR. To evaluate the paradigmatic model proposed for CCR in Streptomyces, a high-density microarray approach was applied to Streptomyces coelicolor M145, under repressed and non-repressed conditions. The transcriptomic study was extended to assess the ScGlk role in this model by comparing the transcriptomic profile of S. coelicolor M145 with that of a ∆glk mutant derived from the wild-type strain, complemented with a heterologous glk gene from Zymomonas mobilis (Zmglk), insensitive to CCR but able to grow in glucose (ScoZm strain). RESULTS Microarray experiments revealed that glucose influenced the expression of 651 genes. Interestingly, even when the ScGlk protein does not have DNA binding domains and the glycolytic flux was restored by a heterologous glucokinase, the ScGlk replacement modified the expression of 134 genes. From these, 91 were also affected by glucose while 43 appeared to be under the control of ScGlk. This work identified the expression of S. coelicolor genes involved in primary metabolism that were influenced by glucose and/or ScGlk. Aside from describing the metabolic pathways influenced by glucose and/or ScGlk, several unexplored transcriptional regulators involved in the CCR mechanism were disclosed. CONCLUSIONS The transcriptome of a classical model of CCR was studied in S. coelicolor to differentiate between the effects due to glucose or ScGlk in this regulatory mechanism. Glucose elicited important metabolic and transcriptional changes in this microorganism. While its entry and flow through glycolysis and pentose phosphate pathway were stimulated, the gluconeogenesis was inhibited. Glucose also triggered the CCR by repressing transporter systems and the transcription of enzymes required for secondary carbon sources utilization. Our results confirm and update the agar model of the CCR in Streptomyces and its dependence on the ScGlk per se. Surprisingly, the expected regulatory function of ScGlk was not found to be as global as thought before (only 43 out of 779 genes were affected), although may be accompanied or coordinated by other transcriptional regulators. Aside from describing the metabolic pathways influenced by glucose and/or ScGlk, several unexplored transcriptional regulators involved in the CCR mechanism were disclosed. These findings offer new opportunities to study and understand the CCR in S. coelicolor by increasing the number of known glucose and ScGlk -regulated pathways and a new set of putative regulatory proteins possibly involved or controlling the CCR.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico
| | - Diana Rocha
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico
| | - Beatriz Ruiz-Villafan
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico
| | - Víctor Tierrafría
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico
| | - Daniel Segura-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Mor. 62210, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad de Mexico, 04510, Mexico.
| |
Collapse
|
138
|
Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose. Enzyme Microb Technol 2016; 90:19-25. [PMID: 27241288 DOI: 10.1016/j.enzmictec.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
Interest in agar or agarose-based pharmaceutical products has driven the search for potent agarolytic enzymes. An extracellular β-agarase (AgaA7) recently isolated from Pseudoalteromonas hodoensis sp. nov was expressed in Bacillus subtilis, which was chosen due to its capability to overproduce and secrete functional enzymes. Phenotypic analysis showed that the engineered B. subtilis secreted a functional AgaA7 when fused with the aprE signal peptide (SP) at the amino-terminus. The maximum agarolytic activity was observed during the late logarithmic phase. To further improve the secretion of AgaA7, an expression library of AgaA7 fused to different naturally occurring B. subtilis SPs was created. The amount of AgaA7 secreted by the clones was compared through activity assay, immuno-blot, and purification via affinity chromatography. Although the aprE SP can readily facilitate the secretion of AgaA7, other SPs such as yqgA, pel, and lipA were relatively more efficient. Among these SPs, lipA was the most efficient in improving the secretion of AgaA7.The use of B. subtilis as host for the expression and secretion of agarolytic and other hydrolytic enzymes can be a useful tool in the field of white biotechnology.
Collapse
|
139
|
Leema Roseline T, Sachindra N. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediments. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
140
|
Direct production of ethanol from neoagarobiose using recombinant yeast that secretes α-neoagarooligosaccharide hydrolase. Enzyme Microb Technol 2016; 85:82-9. [DOI: 10.1016/j.enzmictec.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022]
|
141
|
Lim EL, Siow RS, Abdul Rahim R, Ho CL. Global Transcriptome Analysis of Gracilaria changii (Rhodophyta) in Response to Agarolytic Enzyme and Bacterium. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:189-200. [PMID: 26631182 DOI: 10.1007/s10126-015-9680-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Many bacterial epiphytes of agar-producing seaweeds secrete agarase that degrade algal cell wall matrix into oligoagars which elicit defense-related responses in the hosts. The molecular defense responses of red seaweeds are largely unknown. In this study, we surveyed the defense-related transcripts of an agarophyte, Gracilaria changii, treated with β-agarase through next generation sequencing (NGS). We also compared the defense responses of seaweed elicited by agarase with those elicited by an agarolytic bacterium isolated from seaweed, by profiling the expression of defense-related genes using quantitative reverse transcription real-time PCR (qRT-PCR). NGS detected a total of 391 differentially expressed genes (DEGs) with a higher abundance (>2-fold change with a p value <0.001) in the agarase-treated transcriptome compared to that of the non-treated G. changii. Among these DEGs were genes related to signaling, bromoperoxidation, heme peroxidation, production of aromatic amino acids, chorismate, and jasmonic acid. On the other hand, the genes encoding a superoxide-generating NADPH oxidase and related to photosynthesis were downregulated. The expression of these DEGs was further corroborated by qRT-PCR results which showed more than 90 % accuracy. A comprehensive analysis of their gene expression profiles between 1 and 24 h post treatments (hpt) revealed that most of the genes analyzed were consistently upregulated or downregulated by both agarase and agarolytic bacterial treatments, indicating that the defense responses induced by both treatments are highly similar except for genes encoding vanadium bromoperoxidase and animal heme peroxidase. Our study has provided the first glimpse of the molecular defense responses of G. changii to agarase and agarolytic bacterial treatments.
Collapse
Affiliation(s)
- Ee-Leen Lim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rouh-San Siow
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chai-Ling Ho
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
142
|
Guo LY, Li DQ, Sang J, Chen GJ, Du ZJ. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2016; 66:1593-1599. [DOI: 10.1099/ijsem.0.000925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ling-Yun Guo
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Dong-Qi Li
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Jin Sang
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| | - Guan-Jun Chen
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Zong-Jun Du
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
| |
Collapse
|
143
|
Kumar S, Maiti P. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv 2016; 6:67449-67480. [DOI: 10.1039/c6ra08641a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Controlled biodegradation mechanism has been revealed using different nanoparticles which eventually regulate pH of media.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| | - Pralay Maiti
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| |
Collapse
|
144
|
Lee SB, Lee SY, Lim HS. Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
145
|
Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 2015; 5:13845. [PMID: 26343383 PMCID: PMC4561380 DOI: 10.1038/srep13845] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential.
Collapse
|
146
|
Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl Microbiol Biotechnol 2015; 99:10019-29. [PMID: 26245684 DOI: 10.1007/s00253-015-6869-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/30/2015] [Accepted: 07/16/2015] [Indexed: 11/27/2022]
Abstract
An agar-degrading bacterium, strain LGH, was isolated and identified as Cohnella sp. This strain had a capability of utilizing agar as a sole carbon source for growth and showed a strong agarolytic activity. A novel endo-type β-agarase gene agaW, encoding a primary translation product of 891 amino acids, including a 26 amino acid signal peptide, was cloned and identified from a genomic library of strain LGH. The AgaW belonged to the glycoside hydrolase (GH) GH50 family, with less than 39% amino acid sequence similarity with any known protein, and hydrolyzed agarose into neoagarotetraose as the major end product and neoagarobiose as the minor end product through other neoagarooligosaccharide intermediates, such as neoagarohexaose.
Collapse
|
147
|
Cho SJ, Kim JA, Lee SB. Identification and characterization of 3,6-anhydro-L-galactonate cycloisomerase belonging to theenolase superfamily. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
148
|
Li J, Hu Q, Li Y, Xu Y. Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain. Braz J Microbiol 2015; 46:683-90. [PMID: 26413048 PMCID: PMC4568857 DOI: 10.1590/s1517-838246320131289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 11/28/2014] [Indexed: 11/22/2022] Open
Abstract
An extracellular β-agarase was purified from Pseudoalteromonas sp. NJ21, a Psychrophilic agar-degrading bacterium isolated from Antarctic Prydz Bay sediments. The purified agarase (Aga21) revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 80 kDa. The optimum pH and temperature of the agarase were 8.0 and 30 °C, respectively. However, it maintained as much as 85% of the maximum activities at 10 °C. Significant activation of the agarase was observed in the presence of Mg(2+), Mn(2+), K(+); Ca(2+), Na(+), Ba(2+), Zn(2+), Cu(2+), Co(2+), Fe(2+), Sr(2+) and EDTA inhibited the enzyme activity. The enzymatic hydrolyzed product of agar was characterized as neoagarobiose. Furthermore, this work is the first evidence of cold-adapted agarase in Antarctic psychrophilic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.
Collapse
Affiliation(s)
- Jiang Li
- Key Laboratory of Marine Bioactive Substances, The First Institute of
Oceanography, Qingdao, China
| | - Qiushi Hu
- College of Chemical Engineering, Qingdao University of Science &
Technology, Qingdao, China
| | - Yuquan Li
- Marine Science and Engineering College, Qingdao Agriculture University,
Qingdao, China
| | - Yuan Xu
- Marine Science and Engineering College, Qingdao Agriculture University,
Qingdao, China
| |
Collapse
|
149
|
Wietz M, Wemheuer B, Simon H, Giebel HA, Seibt MA, Daniel R, Brinkhoff T, Simon M. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans. Environ Microbiol 2015; 17:3822-31. [DOI: 10.1111/1462-2920.12842] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Heike Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Maren A. Seibt
- ICBM-MPI Bridging Group for Marine Geochemistry; Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| |
Collapse
|
150
|
Takagi E, Hatada Y, Akita M, Ohta Y, Yokoi G, Miyazaki T, Nishikawa A, Tonozuka T. Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94. Biosci Biotechnol Biochem 2015; 79:625-32. [DOI: 10.1080/09168451.2014.988680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
A deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94, has a β-agarase (MtAgaA) belonging to the glycoside hydrolase family (GH) 16. The optimal temperature of this bacterium for growth is 43–49 °C, and MtAgaA is stable at 60 °C, which is one of the most thermostable enzymes among GH16 β-agarases. Here, we determined the catalytic domain structure of MtAgaA. MtAgaA consists of a β-jelly roll fold, as observed in other GH16 enzymes. The structure of MtAgaA was most similar to two β-agarases from Zobellia galactanivorans, ZgAgaA, and ZgAgaB. Although the catalytic cleft structure of MtAgaA was similar to ZgAgaA and ZgAgaB, residues at subsite −4 of MtAgaA were not conserved between them. Also, an α-helix, designated as α4′, was uniquely located near the catalytic cleft of MtAgaA. A comparison of the structures of the three enzymes suggested that multiple factors, including increased numbers of arginine and proline residues, could contribute to the thermostability of MtAgaA.
Collapse
Affiliation(s)
- Emiko Takagi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Masatake Akita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yukari Ohta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Gaku Yokoi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|